

< C band internally matched power GaAs FET >

MGFC45B3436B

3.4 - 3.6 GHz BAND / 30W

DESCRIPTION

The MGFC45B3436B is an internally impedance-matched GaAs power FET especially designed for use in 3.4 – 3.6 GHz band amplifiers. The hermetically sealed metal-ceramic package guarantees high reliability.

FEATURES

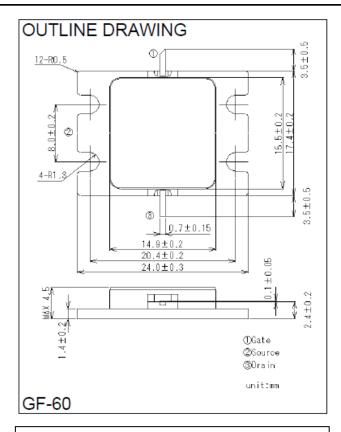
Class AB operation Internally matched to 50(ohm) system

- High output power Po(SAT)=30W (TYP.) @f=3.4 – 3.6GHz
- High power gain GLP=11.0dB (TYP.) @f=3.4 – 3.6GHz
- Distortion ACP=-45dBc (TYP.) @f=3.4 – 3.6GHz

RECOMMENDED BIAS CONDITIONS

• VDS=12V • ID=0.8A • RG=12ohm

Absolute maximum ratings (Ta=25°C)

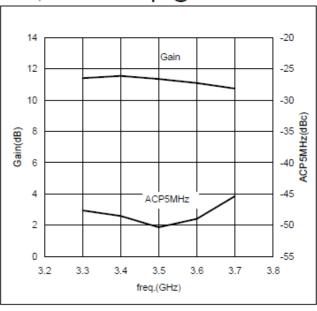

Symbol	Parameter	Ratings	Unit
VGDO	Gate to drain breakdown voltage	-15	V
VGSO	Gate to source breakdown voltage	-10	V
MAXID	Maximum drain current	10	Α
PT *1	Total power dissipation	78	W
Tch	Cannel temperature	175	ç
Tstg	Storage temperature	-65 to +175	°C

^{*1 :} Tc=25°C

Electrical characteristics (Ta=25°C)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Тур.	Max.	
VGS(off)	Gate to source cut-off voltage	VDS=3V,ID=100mA	-0.5	-	-3.0	V
Po(SAT)	Output Power	VDS=12V,ID(RF off)=0.8A	-	45	-	dBm
		f=3.4 - 3.6GHz				
GLP	Linear Power Gain	VDS=12V,ID(RF off)=0.8A	10	11	-	dB
ID	Drain current	f=3.4 - 3.6GHz ,Pout=34dBm	-	1.2	1.5	Α
ACP *2	Adjacent Channel leakage Power		-	-45	-	dBc
Rth(ch-c) *3	Thermal resistance	delta Vf method	-	-	1.9	°C/W

^{*2 :}Mod.3GPP TEST MODEL 1 64code Signal

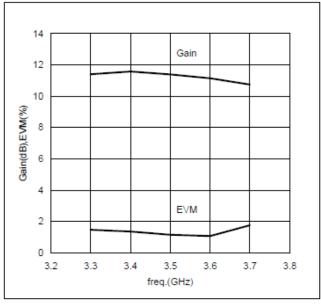


Keep Safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measure such as (I) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

^{*3:} Channel-case

MGFC45B3436B TYPICAL CHARACTERISTICS

ACP, Gain vs. Freq. @Pout=34dBm

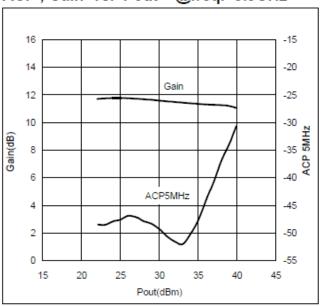


Test Condition:

Pout=34dBm, VD=12V, IDQ=0.8A.Ta=25deg.C Mod.:3GPP TEST MODEL 1 64code Single Signal

Channel Bandwidth = 3.84MHz

EVM, Gain vs. Freq. @Pout=34dBm

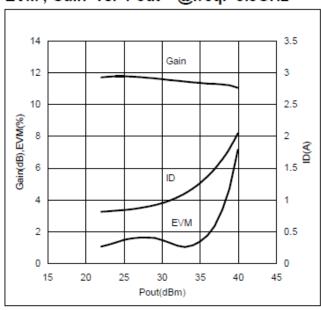


Test Condition:

Pout=34dBm,VD=12V,IDQ=0.8A,Ta=25deg.C

Mod: WiMAX Downlink,64QAM Channel Bandwidth: 3.5MHz

ACP, Gain vs. Pout @freq.=3.5GHz

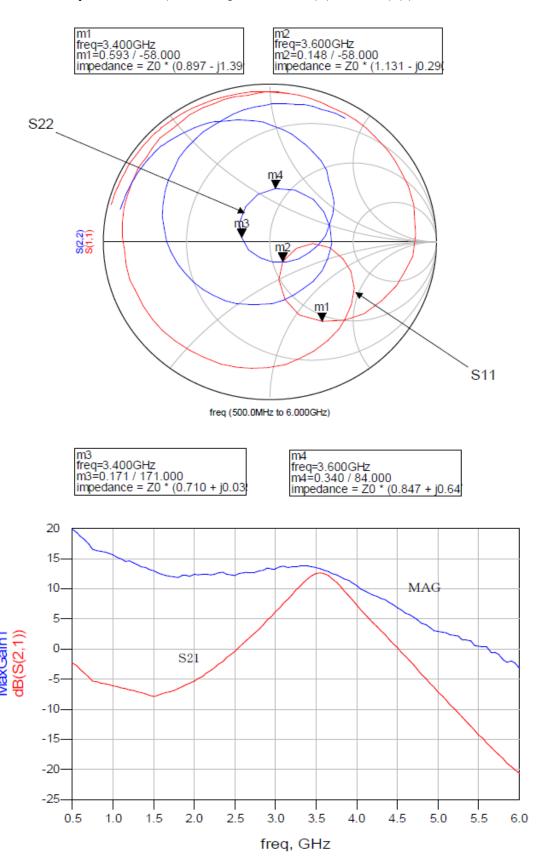

Test Condition:

f=3.5GHz,VD=12V,IDQ=0.8A,Ta=25deg.C

Mod.:3GPP TEST MODEL 1 64code Single Signal

Channel Bandwidth = 3.84MHz

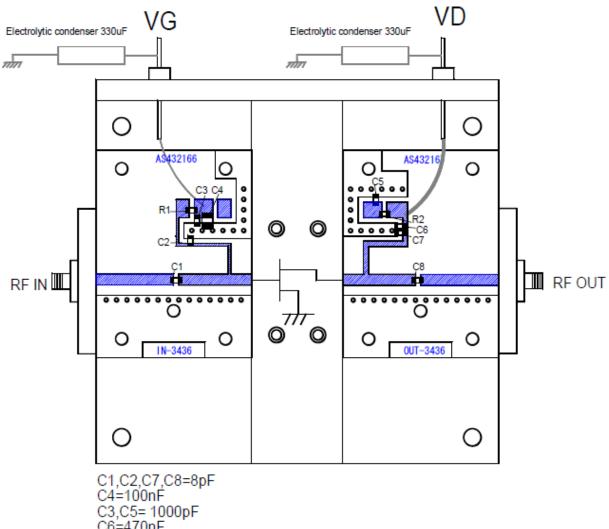
EVM, Gain vs. Pout @freq.=3.5GHz



Test Condition:

f=3.5GHz,VD=12V,IDQ=0.8A,Ta=25deg.C

Mod: WiMAX Downlink,64QAM Channel Bandwidth: 3.5MHz


MGFC45B3436B S-parameters(Ta=25deg.C , VDS=12(V),IDS=0.8(A))

MGFC45B3436B S-parameters(~Ta=25deg.C~,~VDS=12(V),IDS=0.8(A)~)

freq.	S′	11	S21		S12		S22	
GHz	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
0.5	0.981	166	0.767	49	0.004	34	0.921	167
0.6	0.979	163	0.676	41	0.004	28	0.919	165
0.7	0.978	160	0.586	33	0.004	21	0.916	163
8.0	0.977	157	0.531	26	0.004	16	0.913	160
0.9	0.977	155	0.522	22	0.004	15	0.912	158
1.0	0.976	153	0.513	18	0.005	14	0.910	157
1.1	0.976	149	0.495	10	0.005	12	0.907	154
1.2	0.975	146	0.476	2	0.005	10	0.904	150
1.3	0.974	142	0.458	-6	0.006	8	0.901	147
1.4	0.973	139	0.440	-14	0.006	6	0.898	144
1.5	0.973	135	0.422	-22	0.006	4	0.895	141
1.6	0.972	132	0.403	-29	0.007	2	0.892	137
1.7	0.969	127	0.422	-38	0.007	-2	0.881	134
1.8	0.966	122	0.440	-46	0.008	-6	0.870	130
1.9	0.963	117	0.468	-56	0.008	-12	0.857	125
2.0	0.961	111	0.504	-66	0.009	-20	0.844	119
2.1	0.958	106	0.540	-76	0.010	-28	0.831	113
2.2	0.957	97	0.592	-88	0.010	-36	0.806	108
2.3	0.950	90	0.663	-100	0.011	-41	0.785	101
2.4	0.946	83	0.741	-111	0.012	-52	0.760	93
2.5	0.940	75	0.844	-125	0.012	-64	0.717	84
2.6	0.929	66	0.954	-139	0.014	-74	0.673	75
2.7	0.927	56	1.104	-155	0.013	-87	0.624	65
2.8	0.918	46	1.273	-170	0.014	-108	0.566	53
2.9	0.912	34	1.476	172	0.011	-120	0.495	41
3.0	0.905	23	1.733	154	0.011	-148	0.418	25
3.1	0.882	10	2.016	135	0.008	-179	0.339	7
3.2	0.864	-6	2.400	113	0.006	110	0.246	-16
3.3	0.809	-20	2.807	90	0.011	54	0.161	-53
3.4	0.728	-39	3.326	64 36	0.020	6 -26	0.118	-119
3.5 3.6	0.593 0.375	-58 -76	3.853 4.244	2	0.033 0.046	-26 -60	0.171 0.267	171 123
3.7	0.375	-76	4.244	-32	0.046	-93	0.267	84
3.8	0.146	-2	3.835	-32 -65	0.056	-93 -127	0.374	46
3.9	0.452	-14	3.294	-05 -96	0.058	-156	0.374	14
4.0	0.432	-30	2.775	-122	0.054	178	0.366	-17
4.1	0.666	-47	2.317	-147	0.054	159	0.361	-44
4.2	0.716	-61	1.939	-168	0.032	136	0.367	-67
4.3	0.760	-76	1.648	171	0.044	113	0.393	-88
4.4	0.799	-91	1.415	151	0.037	93	0.418	-108
4.5	0.820	-104	1.204	130	0.031	69	0.460	-126
4.6	0.833	-119	1.023	111	0.026	53	0.502	-143
4.7	0.846	-132	0.867	92	0.021	36	0.545	-159
4.8	0.859	-145	0.734	74	0.017	20	0.596	-174
4.9	0.863	-158	0.617	57	0.014	5	0.641	172
5.0	0.875	-170	0.520	40	0.011	-6	0.684	160
5.1	0.886	178	0.440	25	0.010	-22	0.724	147
5.2	0.901	166	0.377	8	0.008	-30	0.761	136
5.3	0.910	155	0.319	-6	0.008	-59	0.791	124
5.4	0.915	144	0.268	-21	0.007	-69	0.815	114
5.5	0.929	135	0.228	-35	0.006	-73	0.838	105
5.6	0.930	124	0.193	-47	0.006	-75	0.859	96
5.7	0.941	115	0.166	-61	0.005	-91	0.874	89
5.8	0.944	107	0.141	-72	0.005	-118	0.885	80
5.9	0.938	98	0.122	-84	0.005	-117	0.897	73
6.0	0.951	92	0.106	-94	0.003	-133	0.899	67

MGFC45B3436B RF TEST FIXTURE

C6=470nF

R1=12ohm

R2=51ohm

Board material: Teflon, t=0.8mm, Specific dielectric constant=2.6

UNIT:(mm)

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
- Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.MitsubishiElectric.com/).
- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.