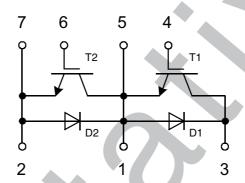

tentative


IGBT Module

= 1700 VV_{CES} C25 = 325 A= 1.90 V

Phase leg

Part number MITH250PF1700LP

Features / Advantages:

- Trench IGBT
- low V_{CE(sat)}
- easy paralleling due to the positive temperature coefficient of the on-state voltage
- Tvjm = 175°C
- square RBSOA @ 2x lc
- short circuit rated for 10 µsec.
- low gate charge
- low EMI
- Free wheeling diode
- fast and soft reverse recovery
- low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- · Air-conditioning systems
- high power converters
- UPS

Package: Y3-M6

- Isolation Voltage: 4000 V~
- Industry standard outline
- RoHS compliant
- Copper base plate
- internally DCB isolated
- · ultrasonic welded power terminals
- · advanced power cycling

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. dered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

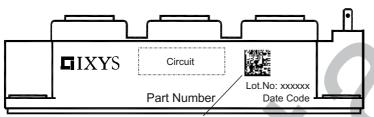
IXYS reserves the right to change limits, test conditions and dimensions.

20160621

tentative

IGBT T1,	T2			Rating	S	
Symbol	Definitions	Conditions	min.	typ.	max.	
\mathbf{V}_{CES}	collector emitter voltage	$T_{VJ} = 25^{\circ}C$			1700	١
V_{GES}	max. DC gate voltage		-20		+20	٧
I _{C25}	collector current	$T_{C} = 25^{\circ}C$			325	Α
I _{C80}		$T_{\rm C} = 80^{\circ}{\rm C}$			250	A
I _{CRM}	repetitive peak collector current	Pulse width and repetition rate should not be such that device junction temperature (T _J) does not exceed the max. rating of 175°C			600	A
\mathbf{P}_{tot}	total power dissipation	$T_C = 25^{\circ}C$			1215	W
$V_{\text{CE(sat)}}$	collector emitter saturation voltage	$I_C = 200 \text{ A}; V_{GE} = 15 \text{ V}$ $T_{VJ} = 25^{\circ}\text{C}$ on die level $T_{VJ} = 150^{\circ}\text{C}$		1.90 2.30	2.20	V V
		$I_{C} = 200 \text{ A}; V_{GE} = 15 \text{ V}$ $T_{VJ} = 25 ^{\circ}\text{C}$ between power terminals $T_{VJ} = 150 ^{\circ}\text{C}$	K	2.00 2.40	2.30	V V
$V_{\text{GE(th)}}$	gate emitter threshold voltage	$I_C = 8 \text{ mA}; V_{CE} = V_{GE}$ $T_{VJ} = 25^{\circ}\text{C}$	5.2	5.8	6.4	V
I _{CES}	collector emitter leakage current	$V_{CE} = 1700 \text{ V}; V_{GE} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 150^{\circ}\text{C}$		3.5	2.7	mA mA
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 \text{ V}; V_{CE} = 0 \text{ V}$			1200	nA
R _G	internal gate resistance	A .		3.75		Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$ $V_{VJ} = 25^{\circ}\text{C}$		18 680 580		nF pF pF
$\mathbf{Q}_{\mathbf{g}}$ $\mathbf{Q}_{\mathbf{gs}}$ $\mathbf{Q}_{\mathbf{gd}}$	total gate charge gate source charge gate drain (Miller) charge	$V_{CE} = 900 \text{ V}; V_{GE} = -8 \text{ V}/15 \text{ V};$ $I_{C} = 200 \text{ A}$		1600		nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{rec(off)} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $V_{CE} = 1200 \text{ V}; I_C = 200 \text{ A}$ $V_{GE} = \pm 15 \text{ V}; R_G = 2.0 \Omega \text{ (external)}$ $V_{VJ} = 150 ^{\circ}\text{C}$		260 35 710 150 69 79		ns ns ns ns mJ mJ
SCSOA t _{sc} I _{sc}	short circuit safe operating area short circuit duration short circuit duration	V_{CEmax} = 1700 V V_{CE} = 720 V; V_{GE} = ±15 V T_{VJ} = 150°C non-repetitive			10	μs Α
R_{thJC} R_{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	per IGBT with heatsink compound; IXYS test setup		0.17	0.123	K/W K/W

tentative


Diode D	1, D2				Rating	s	
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1700	V
I _{F25}	forward current		$T_{C} = 25^{\circ}C$ $T_{C} = 80^{\circ}C$			205 151	A A
V _F	forward voltage	$I_F = 200 \text{ A}; V_{GE} = 0 \text{ V}$ on die level	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		2.00 2.15	2.40	V
		I _F = 200 A; V _{GE} = 0 V between power terminals	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		2.10 2.25	2.50	V V
I _R	reverse current * not applicable, see Ices at IGBT	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		*	*	mA mA
Q _{RM} I _{RM}	reverse recovery charge max. reverse recovery current	$V_R = 1200 \text{ V}, I_F = 200 \text{ A},$	T _{vJ} = 25°C		50 200		μC A
t _{rr} E _{rec}	reverse recovery time reverse recovery energy	-di _F /dt = 3200 A/μs	. 7,5		23		ns mJ
Q _{RM}	reverse recovery charge max. reverse recovery current	V _R = 1200 V, I _F = 200 A,			90 260		μC A
t _{rr} E _{rec}	reverse recovery time reverse recovery energy	-di _F /dt = 3200 A/μs	$T_{VJ} = 125^{\circ}C$		50		ns mJ
R _{thJC}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS	S test setup		0.39	0.28	K/W K/W

Equivale	ent Circuits for Simulation	*on die level				
$I \rightarrow V_0$	-[R ₀]-		IGBT T1, T2	Diode D1, D2		
$V_{0 \text{ max}}$	threshold voltage	T 150°C	0.8	1.08	V	
R_{0max}	slope resistance *	T _{VJ} = 150°C	9.0	5.4	mΩ	
V _{0 max}	threshold voltage	T 175°C			V	
R _{0 max}	slope resistance *	T _{VJ} = 175°C			mΩ	

tentative

Package	Y3-M6		Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			300	Α
T _{stg}	storage temperature		-40		125	°C
T _{op}	operation temperature		-40		150	°C
T _{VJ}	virtual junction temperature		-40		175	°C
Weight					340	g
Ms	mounting torque for screws to heatsink	M6 to heatsink	3		5	Nm
M _T	mounting torque for terminal screws	M6 to terminals	2.5		5	Nm
V _{ISOL}	isolation voltage	t = 1 minute, 50 / 60 Hz, RMS	4000			V
R _{terminal-chip}	resistance terminal to chip			0.5		mΩ
C _P	coupling capacity per switch	between shorted pins of switch and back side metallization				pF

Data Matrix: *Typ* (1-19), DC+*Prod.Index* (20-25), *FKT#* (26-31) *leer* (33), *lfd.#* (33-36)

Part number

M = Module

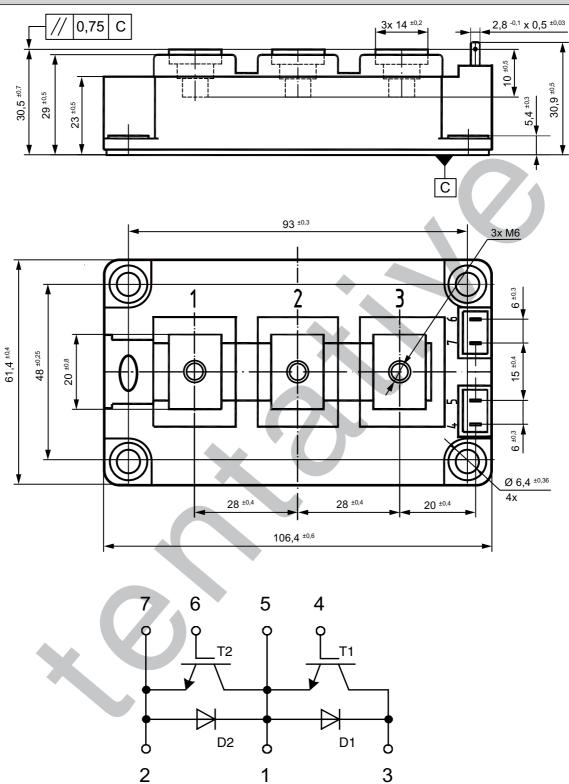
I = IGBT T = Trench IGBT

H = Gen 5

250 = Current Rating [A]

PF = phase leg 1700 = Reverse Voltage [V]

LP = Y3-M6


Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MITH250PF1700LP	MITH250PF1700LP			

tentative

Outlines Y3-M6

