

2 MBIT PCM SIGNALLING CIRCUIT MJ1471 HDB3 OR AMI ENCODER/DECODER

The MJ1471 is an encoder/decoder for pseudo-ternary transmission codes. The codes are true Alternate Mark Inversion (AMI) or AMI modified according to HDB3 rules (CCITT Orange Book Vol 111-2, Annex to Rec.G703). The device encodes and decodes simultaneously and asynchronously. Error monitoring functions are provided to detect violations of HDB3 coding and all ones detection (AIS). In addition a loop test function is provided for terminal testing.

FUNCTIONS

- 5V ±5% Supply 40 mA Max.
- AMI or HDB3 Operation ---- TTL Selectable
- Loop Back Facility
- 'All Ones' Error Monitor to Detect Loss of Synchronising Word (Time Slot Zero)
- Error Monitor of HDB3 Incoming Code
- Decoded Data in NRZ Form

Fig.1 Pin connections

FUNCTIONAL DESCRIPTION

Functions listed by pin number

1. NRZ data in

Input data for encoding into ternary form. The data is clocked by the negative-going edge of the Clock (Encoder).

2. Clock (Encoder)

Clock for encoding data on pin 1.

3. AMI/HDB3

MJ1471 operates in HDB3 if pin 3 is at logic '1'. AMI if pin 3 is at logic '0'.

4. NRZ Data out

Decoded data from ternary inputs Ain, Bin.

5. Clock (Decoder)

Clock for decoding ternary data A_{in}, B_{in}.

6, 7. Reset AIS, AIS

Logic '0' on Reset AIS resets a decoded zero counter and either resets AIS outputs to zero provided 3 or more zeroes have been decoded in the preceding Reset AIS = 1 period or sets AIS to '1' if less than 3 zeroes have been decoded in the preceding two Reset AIS = 1 periods.

Logic '1' on Reset AIS enables the internal decoded zero counter.

8. Ground

Zero volts.

9. Error

A logic '1' indicates that a violation of the HDB3 encoding law has been decoded i.e. 3 '1's of the same polarity.

10. Clock

OR function of A_{in} , B_{in} for clock regeneration when pin 12 = '0', OR function of O₁ O₂ when pin 12 = '1'.

11, 13. A., B.

Inputs representing the received ternary PCM signal. A_{in} = '1' represents a positive going '1', B_{in} = '1' represents a negative going '1'. A_{in} and B_{in} are sampled by the positive going edge of the clock decoder. A_{in} and B_{in} may be interchanged.

12. Loop test enable

TTL input to select normal or loop back operation. Pin $12 = 0^{\circ}$ selects normal operation, encode and decode are independent and asynchronous.

When pin $12 = 1^{1} O_1$ is connected internally to A_{in} and O₂ to B_{in}. Clock becomes the OR function of O₁ O₂. **N.B.** a decode clock has to be supplied. The delay from NRZ in to NRZ out is 7½ clock periods in loop back.

14,15,0,,02

Outputs representing the ternary encoded PCM AMI/HDB3 signal for line transmission. O, and O₂ are in Return to zero form and are clocked out on the positive going edge of the encode clock. The length of O, and O₂ pulses is set by the positive clock pulse length.

16. + V_{cc}

Positive 5V ±5% supply.

MJ1471

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage $V_{CC} = 5V \pm 0.25V$ Ambient temperature $T_{amb} = 0^{\circ}C$ to +70°C

Static Characteristics

Characteristic	Symbol	Pins		Value		Units	Conditions
Characteristic			Min	Тур	Max		Conditions
Low level input voltage	V _{IL})	-0.3		0.8	volts	
Low level input current High level input voltage High level input current Low level output voltage High level output voltage Supply current	I _{IL} VIH IIH V _{OL} V _{OH}	1,2,3,5,6 10,11,12,13 10,14,15 4,7,9 4,7,9 14,15 10	2.5 2.7 2.8 2.8	20	50 V _{cc} 50 0.5 0.4 40	μΑ V μΑ V V V V MA	$V_{IL} = 0V$ $V_{IH} = 5V$ $Isink = 800 \mu A$ $Isource = 60 \mu A$ $Isource = 2mA$ $Isource = 1mA$ All inputs to 0 v All outputs open circuit

Dynamic Characteristics

Characteristic		Value Min Typ Max			Units	Conditions	
Max, Clock (Encoder) frequency		4.0	. , .	inux.	MHz	Figs.9. 14	
Max. Clock (Decoder) frequency	fmaxdoo	2.2			MHz	Figs.10. 14	
Propagation delay Clock (Encoder) to O1. O2	tpd1A/B			100	ns	Figs.8, 9, 14, See Note 1	
Rise and Fall times O1. O2				20	ns	Figs.9, 14	
tpd1A-tpd1B				20	ns	Figs.9, 14	
Propagation delay Clock (Encoder) to Clock	tpd3			150	ns	Loop test enable = 1, Figs.9, 14	
Setup time of NRZ data in to Clock (Encoder)	ts3	30			ns	Figs.7, 9, 14	
Hold time of NRZ data in	th3	55			ns	Figs.7, 9, 14	
Propagation delay A _{in} , B _{in} to Clock	tpd2			150	ns	Loop test enable = '0' Figs.12, 14	
Propagation delay Clock (Decoder) to error	tpd4			200	ns	Figs.11, 14	
Propagation delay Reset AIS to AIS	tpd5			200	ns	Loop test enable = '0' Figs.13, 14	
Propagation delay Clock (Decoder) to NRZ data out	tpd6			150	ns	Figs.7, 10, 14. See Note 2	
Setup time of A _{in} , B _{in} to Clock (Decoder)	ts1	75			ns	Figs.7, 10, 14	
Hold time of A _{in} , B _{in} to Clock (Decoder)	th1	5			ns	Figs.7, 10, 14	
Hold time of Reset AIS = '0'	th2	100			ns	Figs.7, 13, 14	
Setup time Clock (Decoder) to Reset AIS	ts2	200			ns	Figs.7, 13, 14	
Setup time Reset AIS = 1 to Clock (Decoder)	ts2′	0			ns	Figs.13, 14	

NOTES

The Encoded ternary outputs (O₁, O₂) are delayed by 3½ clock periods from NRZ data *in* (Fig.3).
 The decoded NRZ output is delayed by 3 clock periods from the HDB3 inputs (A_{IN}, B_{IN}) (Fig.4).

MJ1471

Fig. 2 MJ1471 Block diagram

Fig. 3 Encode waveforms

Fig. 4 Decode waveforms

Fig. 5 HDB3 error output waveforms

Fig.6 A/S error and reset waveforms

Fig. 7 Decoder timing relationship

Fig. 8 Encoder timing relationship

DEFINITION OF THE HDB3 CODE

Coding of a binary signal into an HDB3 signal is done according to the following rules:

1. The HDB3 signal is psuedo-ternary; the three states are denoted B_+ , B_- and O_-

2. Spaces in the binary signal are coded as spaces in the HDB3 signal. For strings of four spaces however, special rules apply (see 4. below).

3. Marks in the binary signal are coded alternately as B₊ and B₋ in the HDB3 signal (alternate mark inversion). Violations of the rule of alternate mark inversion are introduced when coding strings of four spaces (see 4. below).

4. Strings of four spaces in the binary signal are coded according to the following rules:

a The first space of a string is coded as a space if the preceding mark of the HDB3 signal has a polarity opposite to the polarity of the preceding violation and is not a violation by itself; it is coded as a mark, i.e. not a violation (i.e. B_+ , B_-), if the preceding mark of the HDB3 signal has the same polarity as that of the preceding violation or is by itself a violation.

This rule ensures that successive violations are of alternative polarity so that no DC component is introduced.

b The second and third spaces of a string are always coded as spaces.

Fig. 9

Fig. 11

c The last space of a string of four is always coded as a mark, the polarity of which is such that it violates the rule of alternate mark inversion. Such violations are denoted V, or V_according to their polarity.

© International Telecommunications Union

ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

Electrical Ratings

+Vcc	7V
Inputs	Vcc + 0.5V Gnd - 0.3V
Outputs	Vcc, Gnd -0.3V

Thermal Ratings

Max Junction Temperature 175°C
Thermal Resistance: Chip to Case
40°C/Watt

Chip to Amb. 120°C/Watt

Fig. 13

Fig. 14 Test timing definitions