

MJ1473

PCM TRANSMITTER CIRCUIT

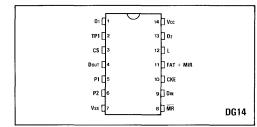
The MJ1400 Series of circuits have been specifically designed for use in 30 channel PCM systems.

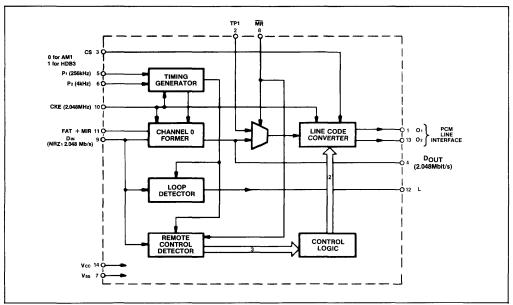
The MJ1473 is designed to simplify the transmit section of a 30 channel, 2 MBit PCM link by converting NRZ PCM data to either AMI or HDB3 format after inserting a synchronising word in channel 0 (conforming to CCITT recommendations G.703 and G.732).

The data is output in pseudo-ternary form to facilitate driving the line interface via a transformer and AMI or HDB3 code may be remotely selected using bits 2 and 3 in channel 0 of the incoming data stream.

FEATURES

- 5V 30mA Power Requirements
- 0-70°C Operation
- Complies with Relevant CCITT Recommendations
- Control Signals Compatible with MJ1472,4
- NRZ, AMI or HDB3-Transmission Format
- Transmission Format Controlled Locally or Remotely Via TSO Data
- Fabricated in NMOS Technology
- Inputs and Outputs TTL Compatible




Fig.1 Pin connections - top view

Bit	1	2	3	4	5	6	7	8
Channel 0 TS0.TA	х	0	0	1	1	0	1	1
Channel 0 TS0.TB	х	1	ATL	х	х	х	х	х
— • • • • • • • • • • • • • • • • • • •								

Table 1

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin with respect to Vss : 7V Storage temperature : -55° C to +155° C

MJ1473

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Supply voltage 5V \pm 0.25V Ambient operating temperature 0°C to $\,$ +70°C Package thermal resistance 95°C/watt

DC CHARACTERISTICS

Characteristic	Cumhal	In mute (euterute	Value			Units	Test conditions	
Characteristic	Symbol	Inputs/outputs	Min. Typ. Max.		Units			
High-level input voltage	ViH	All inputs	2.0			v		
Low-level input voltage	VIL	All inputs			0.8	v		
High-level output voltage	Vон	Outputs L & DOUT	2.7			l v	-60µA	
Low-level output voltage	Vol	Outputs L & DOUT			0.5	l v	0.8mA	
High-level input current	Ьн	All inputs			50	μΑ	VIN = 5.25V 25°C	
High-level output current	Іон1	Outputs L & DOUT	60			μA	Vон = 2.7V	
High-level output current	Іон2	Outputs O1 & O2	2			mA	Vон = 2.8V	
Low-level output current	loL	Outputs L & DOUT	0.8			mA	Vон = 0.5V	
Input capacitance	CIN1	All inputs except			10	pF	1MHz 100mV	
		CKE						
	CIN2	Input CKE			20	pF		
Supply current	Icc			30	45	mA	Vcc = 5.25V	

AC CHARACTERISTICS

Characteristic	Symbol	Value			Units	Conditions	
Characteristic	Symbol	Min.	Typ. Max.		Units	Conditions	
O1 & O2	tpd1			100	ns	Fig. 4 for loading; measure from CKE leading edge. See Fig. 5 for definition: total delay in tet + 4 CKE periods.	
L Propagation delays	t _{pd2}			200	ns	Fig. 3 for loading; measure from CKE trailing edge. See Fig. 5 for definition.	
Dout	tpd3			180	ns	Fig. 3 for loading; measure from CKE leading edge. See Fig. 5 for definition: total delay is t _{pd3} + 8 CKE periods.	
Rise and fall times of O1 & O2	trtf			20	ns	Fig. 4 for loading. Measured between 0.5V and 2.4V points.	
Required delay from D _{IN} P1.P2 transition to CKE TE	tı	50		430	ns		
Required delay from FAT + MIR transition to CKE LE	t2	50		430	ns		
Required delay from CS transition to CKE TE	ta	50		430	ns		

CIRCUIT DESCRIPTION

The MJ1473 generates exchange timing by a synchronous 9-bit counter driven by exchange clock CKE and preset by P1,P2. The exchange clock also clocks data, Distribution the channel 0 former and to Dour via an eight bit shift register. In the channel 0 former, data bits of channel 0 are modified as shown in Table 1.

An X in Table 1 indicates transparency through the circuit, bits 2 and 3 of the shift register are concerned with the loop command circuitry. When '01' is detected an internal latch is set and the loop condition on output L is registered.

Dout may also be routed through the HDB3/AMI Encoder. The CS control is logic '0' for AMI and logic '1' for HDB3. Encoded data is then output to 0₁ and 0₂ in a form suitable for driving the PCM interface.

The line code converter can also be controlled by the

remote control commands present on bits 2 and 3 of the shift register. These commands are as follows:

- The presence of '00' in the first frame yields AMI transmission except channel 0 and 1, which are transmitted in a code determined by CS.
 The presence of '00' in each consecutive frame yields unipolar transmission except in channel 0 and 1 as above.
 The polarity of unipolar transmission is constant for any number of consecutive '00' frames but will alternate with respect to the previous unipolar transmission provided there has been an intermediate frame where '00' was not detected.
- The presence of '11' in any frame yields AMI transmission except for channel 0 and 1 which are transmitted in a code determined by CS.

ATL is forced to a '1' by the presence of the external signal FAT + MIR, or by the presence of one of the two remote control commands or by the loop comand.

An 'all ones' condition on the encoded data outputs (O1 O2) is forced in the presence of a '1' in position 4 of channel 0, when the loop condition is met.

For normal operation $\overline{MR} = TP1 = 1$. The test point TP1 is provided as an input independent of the line code converter. In order to enable this input when $\overline{MR} = 0$.

All inputs and outputs are compatible with LSTTL.

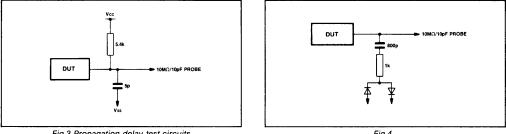
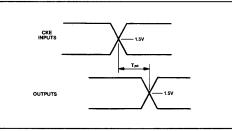



Fig.3 Propagation delay test circuits

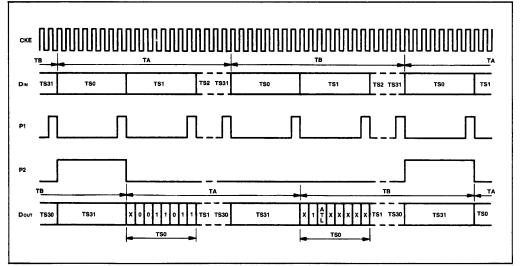


Fig.6 Timing diagram