

MJ2500-MJ2501-PNP MJ3000-MJ3001-NPN

High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

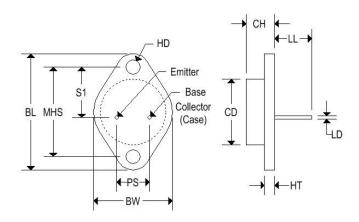
MAXIMUM RATINGS

Rating	Symbol	MJ2500 MJ3000	MJ2501 MJ3001	Unit
Collector-Emitter voltage	V _{CEO}	60	80	Volts
Collector-Base voltage	V _{CB}	60	80	Volts
Emitter-Base voltage	V _{EB}	5.0		Volts
Collector-Current	lc	10		Amps
Base Current	IB	0.2		Amps
Total Device Dissipation @ Tc = 25°C Derate above 25°C	P _D	150 0.857		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +200		°C
Thermal Resistance, Junction to Case	R _{ejc}	1.17		°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristics	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $^{(1)}$ (I_C = 100mA, I_B = 0)	MJ2500, MJ3000 MJ2501, MJ3001	V _{(BR)CEO}	60 80	-	Volts
Collector-Emitter Leakage Current					
$(V_{EB} = 60V, R_{BE} = 1.0k\Omega)$	MJ2500, MJ3000		-	1.0	
$(V_{EB} = 80V, R_{BE} = 1.0k\Omega)$	MJ2501, MJ3001	I _{CER}	-	1.0	mA
$(V_{EB} = 60V, R_{BE} = 1.0k\Omega, T_{C} = 150^{\circ}C)$	MJ2500, MJ3000		-	5.0	
$(V_{EB} = 80V, R_{BE} = 1.0k\Omega, T_{C} = 150^{\circ}C)$	MJ2501, MJ3001		-	5.0	
Emitter Cutoff Current (V _{BE} = 5.0V, I _C = 0)		I _{EBO}	-	2.0	mA
Collector-Emitter Leakage Current					
$(V_{CE} = 30V, I_B = 0)$	MJ2500, MJ3000	ICEO	-	1.0	mA
$(V_{CE} = 40V, I_B = 0)$	MJ2501, MJ3001		-	1.0	
ON CHARACTERISTICS ⁽¹⁾					
DC Current Gain		h			
(I _C = 5.0A, V _{CE} = 3V)		h _{FE}	1000	-	-
Collector-Emitter Saturation Voltage					
(I _C = 5.0A, I _B = 20mA)		$V_{CE(sat)}$	-	2.0	Volts
(I _C = 10A, I _B = 50mA)			-	4.0	
Base Emitter Voltage		N			Valta
(I _C = 5.0A, V _{CE} = 3.0V)		V _{BE(ON)}	-	3.0	Volts

Note 1: Pulse test: Pulse width \leq 300µs, duty cycle \leq 2.0%.


MJ2500-MJ2501-PNP MJ3000-MJ3001-NPN

High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS

MECHANICAL CHARACTERISTICS

Case	ТО-3	
Marking	Alpha-numeric	
Polarity	See below	

	TO-3				
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	-	0.875	-	22.220	
CH	0.250	0.380	6.860	9.650	
HT	0.060	0.135	1.520	3.430	
BW	-	1.050	-	26.670	
HD	0.131	0.188	3.330	4.780	
LD	0.038	0.043	0.970	1.090	
LL	0.312	0.500	7.920	12.700	
BL	1.550 REF		39.370 REF		
MHS	1.177	1.197	29.900	30.400	
PS	0.420	0.440	10.670	11.180	
S 1	0.655	0.675	16.640	17.150	

MJ2500-MJ2501-PNP MJ3000-MJ3001-NPN

High-reliability discrete products and engineering services since 1977

COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS

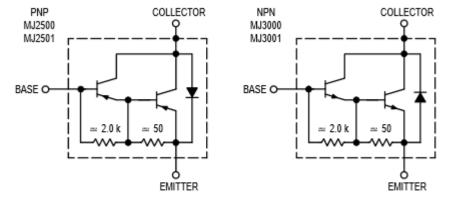
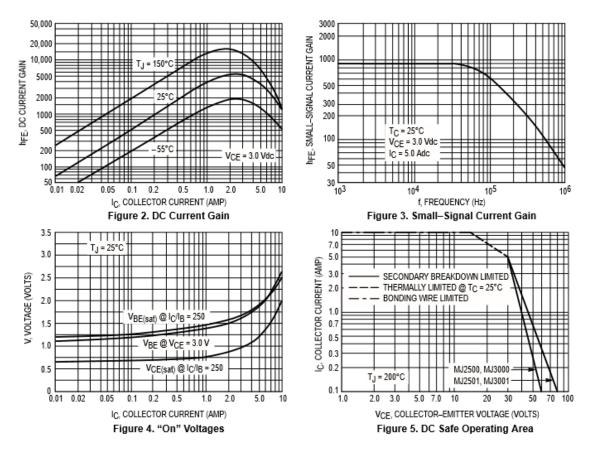



Figure 1. Darlington Circuit Schematic

There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operating area curves IC-VCE limits of the transistor that must be observed for reliable operation: eg., the transistor must not be subjected to greater dissipation that the curves indicate. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.