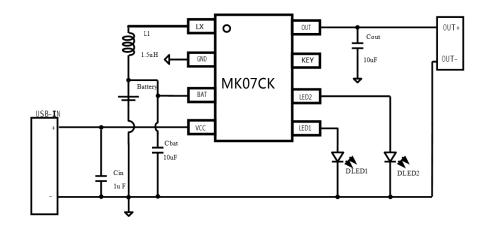


1. 概述

MK07CK是一款专为小容量锂电池充电/放电应用设计的单芯片解决方案IC , 集成了充电电流0.3A 的线性充电管理模块、最大放电电流0.5A的 同步升压放电管理模块 , 内置功率MOS。它集成了电池电量检测、LED状态指示模 块及按键功能模块 , 针对小容量锂电池 (锂离子 或锂聚合物)的应用 , 提供简单 易用的解决方案。


MK07CK针对KEY键、放电模块开/关机等功能提供两套订制方案,方便客户选择使用。 MK07CK采用的封装形式为SOP-8。 应用于小容量锂电池的充电/放电。

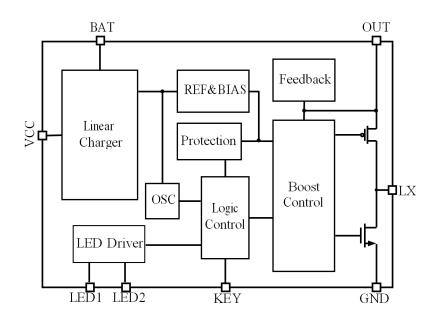
2. 特点

- 1. 线性充电电流 0.3A, 可编程最大充电电流 0.5A
- 2. 涓流/恒流/恒压三段式充电
- 3. 充电电流温度智能调节功能
- 4. 充电截止电流 40mA, 自动再充电
- 5. 预设 4.2V 充电浮充电压,精度达±1%
- 6. 同步升压输出 5.1V,放电开关频率 1MHz
- 7. 放电效率高达 92%
- 8. 放电截止电流 10mA
- 9. 独创升压输出热调节功能
- 10. 放电模块过流、短路、过压、过温保护
- 11. KEY键及 LED 指示,可订制版本及功能MK07CK_2L:无需接 KEY键,升压常输出,轻载自动关闭 LED 显示;2 颗 LED 充/放电状态指 示。

MK07CK_KEY2L:单击KEY键显示电量并启动/关闭升压,自动关机功能(VOUT掉到0V);2颗LED充/放电状态指示。

12.MK07CK_4L:无需接 KEY键,升压常输出,轻载自动关闭LED显示;4颗 LED 充/放电状态指示。
MK07CK_KEY4L:单击KEY键显示电量并启动/关闭升压,自动关机功能(VOUT掉到 0V);4颗 LED 充/放电状态指示。

3. 封装、脚位元及标记信息


脚位	符号	I/O	说明 管脚排列图	
1	LX	I	BOOST 开关输出	000.0
2	GND	-	芯片地	SOP-8
3	BAT	-	电池正极	
4	VCC	I	适配器正电压输入端	LX O OUT
5	LED1	0	LED 指示灯输出端 1	
6	LED2	0	LED 指示灯输出端 2	GND KEY
			MK07CK_2LMK07CKC_4L:	BAT LED2
			(1) 可以浮空,此时不能接任何电平	
7	KEY	I/O	(2) 可以接按键,用于查看电量	VCC LED1
			MK07CK_KEY2LMK07CKC_KEY4L:	
			按键输入端	
8	OUT	0	升压输出	

引脚类型订购信息

产品型号	版本区分	封装形式	Package Qty
MK07CK _2L	常输出2 颗 LED	SOP8	4000
MK07CK _4L	常输出4颗LED	SOP8	4000
MK07CK _KEY2L	按键开/关2 颗 LED	SOP8	4000
MK07CK _KEY4L	按键开/关4 颗 LED	SOP8	4000

4. 功能方框图

5. 电性参数

极限参数 (注1)

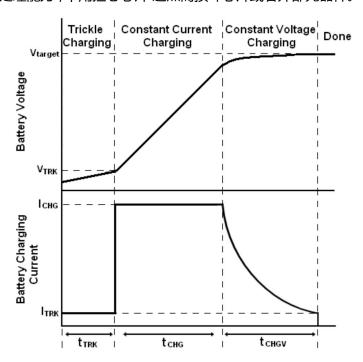
参数	最小值	最大值	单位
引脚电压	-0.3	+6	V
储存环境温度	-65	150	$^{\circ}\!\mathbb{C}$
工作环境温度	-40	85	$^{\circ}\!\mathbb{C}$
工作结温范围	-40	150	$^{\circ}\mathbb{C}$
HBM (人体放电模型)	4K	-	V
MM (机器放电模型)	200	_	V

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

推荐工作条件

输入电压	2.9V to 5.5V
工作结温范围	-40℃ to 125℃
环境温度范围	-20℃ to 85℃

(如无特殊说明, VCC=5V, VBAT=3.7V, Ta=25℃)


符号	参数	 测试条件	最小值	典型值	最大值	单位
充电部分		N-94-9-21-1	7, 3, 12		707 111	
VCC	充电输入电压		4.4	5	5.5	٧
I VCC	输入电源电流	待机模式 (充电终止)	-	600	-	μΑ
VFLOAT	稳定输出(浮充)电压	0°C≤ TA≤ 85°C	4.158	4.2	4.242	٧
I BAT	恒流充电电流	VBAT=3.7V	-	400	-	mA
ITRIKL	涓流充电电流	VBAT <vtrikl ,<="" td=""><td>30</td><td>40</td><td>50</td><td>mA</td></vtrikl>	30	40	50	mA
VTRIKL	涓流充电阈值电压	VBAT上升	2.8	2.9	3.0	٧
VTRHYS	涓流充电迟滞电压		-	100	-	mV
VUV	VCC欠压闭锁阈值电压	VCC从低至高	2.9	3.0	3.1	٧
VUVHYS	VCC欠压闭锁迟滞		0.15	0.2	0.25	٧
VASD	VCC-VBAT闭锁阈值电压	VCC从低到高	60	100	140	mV
VA3D	VCC VDAT的吸阈值而压	VCC从高到低	5	30	50	1117
I TERM	终止电流门限		-	40	-	mA
△ VRECHRG	再充电电池门限电压	VFLOAT-VRECHRG	100	150	200	mV
TLIM	限定温度模式中的结温		-	100	-	$^{\circ}$
放电部分						
VBAT	电池工作电压		2.9		4.35	٧
VOUT	额定输出电压	VBAT=3.7V	4.85	5.1	5.25	٧
		MK07CL/SWK1807	-	100	-	μΑ
I STDB	待机电流	MK07CKEY2L/	- 25	_	μΑ	
		MK07 CK EY4L				Μ / .
VUV_BAT	电池欠压闭锁阈值电压	VBAT下降	2.85	2.9	2.95	V
VHYS_BAT	电池欠压闭锁迟滞	VBAT上升	0.25	0.3	0.35	V
FSW	工作频率		-	1	-	MHz
I OUT	输出电流	VBAT=2.9~4.2V	_	0.5	-	Α
I LIM	周期电流限制	VOUT=5V	-	2	-	Α
η	 转换效率	VBAT=4.2V	92	-	_	%
- 1	103094 1	VOUT=5.0V&IOUT=1A				
DMAX	最大占空比		-	85	-	%
I END	放电结束电流		_	10	-	mA
TOV	过温保护		-	150	-	°C
THYS	过温保护滞回		-	20	-	°C
VRIPPLE	输出纹波电压	VOUT=5.0V&IOUT=1A	-	100	-	mV
TSHUT	输出无负载关闭检测时间		-	16	-	S
VSHORT	短路保护电压		-	4.3	-	V
LED 及 KEY 键音	P分		_			
	LEDx充电/低电量闪烁频率		-	1	-	Hz
I KEY	KEY引脚上拉电流		-	5	-	μΑ

6. 功能说明

充电模式

MK07CK 内部集成了完整的充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流由芯片内部设定,持续充电电流为0.3A,不需要另加阻流二极管和电流检测电阻。芯片内部的功率管理电路在芯片的结温超过100℃时自动降低充电电流,直到140℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当VCC的输入电压超过3.0V并且大于电池电压时,充电模块开始对电池充电。如果电池电压低于2.9V,充电模块采用涓流模式(小电流)对电池进行预充电。当电池电压超过2.9V时,充电模块采用恒流模式对电池充电。当电池电压接近4.2V时,充电电流逐渐减小,系统进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。完整的充电过程为涓流-恒流-恒压。

充电结束阈值是恒流充电电流的10%。 当电池电压降到再充电阈值以下时,自动开始新的 充电周期。

升压输出模式

MK07CK 提供一路同步升压输出,集成功率MOS,可提供5.1V/0.5A输出,效率高达90%。MK07CK 采用1MHz的开关频率,可有效减小外部元件尺寸。

MK07CK进入充电状态后,若电池电压处于放电工作电压范围(即VBAT>3.2V)时,芯片会同时启动升压输出,即进入边充边放状态。芯片退出充电状态后,芯片保持升压输出,若此

时IOUT < IEND,则进入输出轻载模式,16s后自动关闭LED指示。在芯片处于非充电状态时,升压输出为芯片内部设定的5.1V。在额定负载的状况下,

MK07CK工作在固定频率1MHz 并且逐周期限流 当负载的电流逐渐减小并进入轻负载状况时, MK07CK会进入间歇式输出模式,以保证输出电压调整能力。 MK07CL/LL/MK07CL/LL版本中, 当负载电流继续减小,并 低于12mA(典型值)超过16s后,输出电压仍然保持5.1V,LED灯灭, 提醒用户外接设备充电已结束。 MK07CK_KEY2L/MK07CK_KEY4L版本中,当负载电流继续减小、

并低于12mA(典型值)超过16s后,芯片关闭升压输出,LED灯灭,芯片进入待机状态。 当VBAT放电至3.2V时,LED1开始显示欠压报警。当VBAT放电至2.9V时,放电结束,LED1

熄灭。此时,电池电压将会反弹,只有当VBAT反弹至3.5V以上时,无需按KEY键VOUT即可自动 重启。若电池电压反弹至3.20V<VBAT<3.5V,则需要按KEY键才能重启VOUT,此电压区间是为了防止电池放电结束后,电压反弹所导致的VOUT反复关闭、自动重启。当电池电压低于2.9V以后,升压模块会被锁定在关闭状态,此时,按键即不会启动升压,也不会显示电量,只有插入适配器充电,LED才会有指示。

MK07CK提供输出过流、输出过压、输出短路、芯片过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在发生输出过流、输出短路及芯片过温情况时,MK07CK自动关闭升压输出,等待180mS后重新启动,若异常未解除则芯片不断关闭重启 称之为打嗝模式),直到异常解除后,芯片进入正常工作状态。MK07CK通过控制续流PM0S可以有效阻止输出电流的倒灌。

系统管理

MK07CK 支持边充边放,如果负载与充电电源都有接入且VBAT>3.2V,则充电及升压输出模块同时启动,芯片给电池充电的同时从电池取电实现升压输出。充电电源移除后,芯片保持升压输出状态。当电池电压处于UVLO时,升压输出不启动,芯片单纯工作在充电状态。

KEY键功能及升压输出

根据升压常输出与KEY键开启/关闭升压输出功能,区分MK07CK_2LMK07CKC_4L和MK07CKEY2LMK07CK_KEY4L两种版本。

MK07CK_2LMK07CKC_4L版本:此版本没有 KEY键引脚和功能(引脚PIN7必须浮空),升压输出为常输出。 当输出电流小

于10mA并持续16s,自动关闭LED显示,而VOUT保持5V输出。当VBAT电压下降到2.9V以下后,VBAT的欠压闭锁电路会锁死,放电模块不能工作,只有VCC重新插入才能解锁。有负载插入时,开启LED状态显示。

MK07CKKEY2LMK07CK_KEY4L版本:KEY键单击开启/关闭升压输出,同时LED输出相应的状态显示,无自动识别负载功能。在

VCC没有插入、系统处于待机情况下,单击KEY键可以查看电量,同时开启升压输出;在升压输出已工作的情况下:(1)单击KEY键,将关闭升压输出且VOUT掉到OV;(2)若VOUT电流小于12mA,则16s后VOUT将自动关闭且VOUT掉到OV。单击KEY键还可以解锁VBAT的欠压闭锁,当VBAT电压下降到2.9V以下后,VBAT的欠压闭锁电路会锁死,升压输出不能工作,只有VCC重新插入或者按键才能解锁。

LED灯显示

根据LED 2灯显示和4灯显示,区分MK07CK_2L/ MK07CK_KEY2LMK07CKC_4L/ MK07CKEY4L 两种版本。

MK07CL/QLMK07CL/C_KEY2L版本: MK07CL/QL/MK07CL/KEY2L采用两颗LED显示,引脚LED1和LED2为PMOS漏极输出。LED灯显

示分为充电状态显示、放电状态显示、放电低电量报警显示和电路异常显示。充电模式下LED1

以1Hz频率闪烁,电池充满后LED2常亮;放电模式下LED1常亮,放电低电量报警时LED1以1Hz闪烁。芯片异常时,2颗LED灯全部熄灭。

充电电量LED显示:

当VCC的输入电压在4V到6V之间且大于电池电压时,系统进入充电状态,LED2显示充电状态。

电池电压	电量	LED1	LED2
>4.2V	100%	灭	亮
0V-4.2V	0%-100%	灭	1Hz闪

放电LED状态显示:

当电池电压大于3.2V时,单击KEY键,升压模块开始工作, LED1指示放电状态。

电池电压	电量	LED1	LED2
>3.2	5%-100%	亮	灭
2.9V-3.2V	0%-5%	1Hz闪	灭
<2.9V	0%	灭	灭

待机状态单击KEY键后LED状态指示(仅MK07CK_KEY2L版本):

在待机状态下 单击KEY键 放电模块启动 LED1进入放电指示状态。如果VBAT小于3.2V ,放电模块不启动 , LED1~LED2全灭。

电池电压	电量	LED1	LED2
>3.2	0%-100%	亮	灭
2.9V-3.2V	-	灭	灭

MK07CK_4L/MK07CK_KEY4L版本:

MK07CML/MK07CMEY4L采用LED1和LED2两个引脚,分别外接2个LED灯来指示充放电状态与电量。如MK07CML4L/MK07CMEY4L典型应用电路中所示其中LED2引脚(PIN6)外接DLED1和DLED2两颗LED; LED1引脚(PIN5),外接LED3和LED4两颗LED。

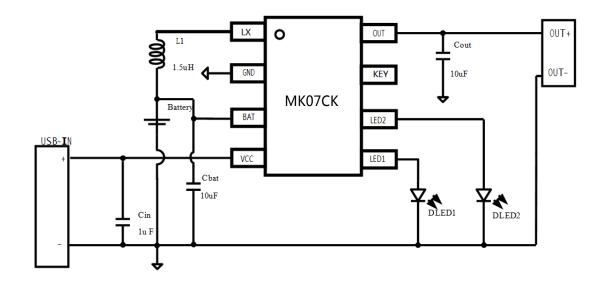
充电电量LED显示:

当VCC的输入电压在4V到6V之间且大于电池电压时,系统进入充电状态,DLED1~DLED4显示充电状态电量。

电池电压(充电)	电量(充电)	LED1	LED2	LED3	LED4
>4.2V	4级	亮	亮	亮	亮
3.9V-4.2V	3级	亮	亮	亮	1Hz闪
3.7V-3.90V	2级	亮	亮	1Hz闪	灭
3.5V-3.7V	1级	亮	1Hz闪	灭	灭
<3.5V	0级	1Hz闪	灭	灭	灭

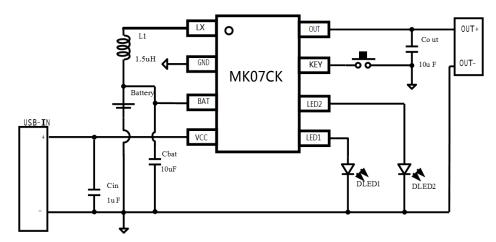
放电电量LED显示:

当电池电压大于3.2V时,单击KEY键,升压模块开始工作, LED1~LED4进入电量指示 状态显示。

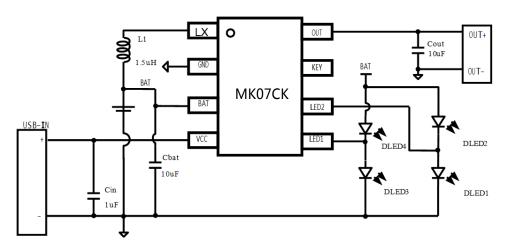

电池电压(放电)	电量(放电)	LED1	LED2	LED3	LED4
>3.9V	4级	亮	亮	亮	亮
3.7V-3.9V	3级	亮	亮	亮	灭
3.5V-3.7V	2级	亮	亮	灭	灭
3.2V-3.5V	1级	亮	灭	灭	灭
2.9V-3.2V	0级	1Hz闪	灭	灭	灭
<2.9V(欠压保护)	-	灭	灭	灭	灭

待机状态KEY键电量显示(仅MK07CK_KEY4L版本):

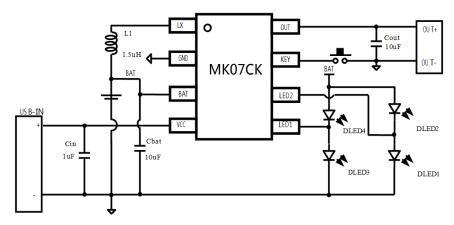
在待机状态下 单击KEY键 放电模块启动, LED1~LED4进入电量指示状态显示 LED1~LED4显示电量16s 后关闭。如果VBAT小于3.2V, 放电模块不启动, LED1~LED4全灭。


电池电压	电量	LED1	LED2	LED3	LED4
>3.9V	4级	亮	亮	亮	亮
3.7V-3.9V	3级	亮	亮	亮	灭
3.5V-3.7V	2级	亮	亮	灭	灭
3.2V-3.5V	1级	亮	灭	灭	灭
<3.2V	0级	灭	灭	灭	灭

7. 典型应用电路

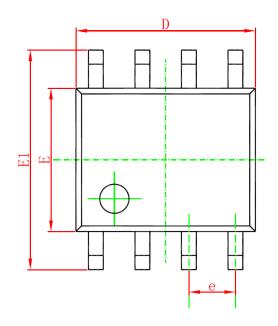


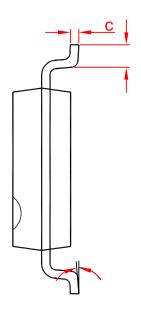
MK07CK_2L(5.1V/0.5A)应用电路

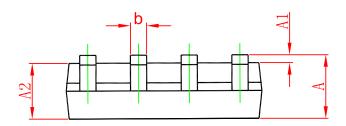


MK07CK_KEY2L应用电路

MK07CK_4L应用电路


MK07CK _KEY4L 应用电路


PCBLAYOUT 注意事项(重点):


- 1. Cbat尽量靠近BAT脚, Cin尽量靠近VCC脚,并且走线时都经过电容再到IC管脚。
- 2. 电感L1与LX脚之间存在高频振荡,必须相互靠近并且尽量减小布线面积;其它敏感的器件必须远离 电感以减小耦合效应。
- 3. 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 4. 芯片GND直接连到系统地,连接的铜箔需要短、粗且尽量保持完整,不被其他走线所截断。
- 5. PCB的地线覆铜面积尽可能大,以利于散热。
- 6. 应用中所使用的电容必须选用X5R材质。

8. 产品外形尺寸

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A 1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270	1.270(BSC)		(BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°