

7V to 100V Input, Ultra-Low I_Q, 3 A Integrated High-Side MOSFET, Buck

DC/DC Converter with 3.3V/50mA LDO

1 DESCRIPTION

The MK9118 operates over a wide input voltage range from 7 V to 100V. With integrated the main MOSFET, the MK9118 delivers up to 3A output current.

The MK9118 adopts a constant on-time (COT) control architecture to achieve excellent transient response.

MK9118 integrated a 3.3V fixed output LDO, which could deliver up to 50mA output current.

With patented standby circuits, the device can achieve ultra-low I_Q , and exit the standby mode fast.

2 APPLICATIONS

- GPS tracker
- Automotive and Industry Systems
- Motor Drives, Telecom
- BMS

4 TYPICAL APPLICATIONS

- Wide Input Voltage 7V-100V
- Wide Output Voltage 1.22V-26V
- Integrated 120mΩ High-Side MOSFET
- <100µA quiescent current
- Adjustable F_{sw} up to 1MHz
- Internal 3ms Soft-start
- Smart power saving and ultra-Fast Transient Response
- Precision ±1% Feedback Reference
- Integrated 3.3 V/50 mA LDO
- OC, OT Protection with Hiccup Mode
- No Loop Compensation Components
- ESOP8 Package with Thermal PAD

Figure 1. Typical Application Diagram

Figure 2. Efficiency and Load Regulation at 12Vout

5 PACKAGE REFERENCE AND PIN FUNCTION

ESOP8 (top view)

Order No.	Description
MK9118AAD	ESOP-8, tape, 4k/reel

Pin #	MK9118	Name	Description		
1	GND	Analog Input	Ground		
2	LDO	Analog Power Output	3.3V LDO output, connect a capacitor to GND higher than 1uF; leav as float to disable internal LDO.		
3	RT	Analog Input	Connect a resistor to GND, set the switching frequency.		
4	EN	Analog input	Buck and LDO enable, internal pull down by 0.08uA. Source 2uA after device enabled. Tie to VIN is if hysteresis function is not used.		
5	FB	Analog Input	Feedback input, connect to output voltage resistor divider.		
6	VOS	Analog Power Input	Output sense and internal LDO input, connect to output cap with 100mA current capability PCB trace; Place 0.1uF cap close to VOS pin.		
7	воот	Analog Power Input	Boot-strap pin. Decouple this pin to SW pin with a >100nF (0.2V drop) ceramic capacitor.		
8	sw	Analog Power Output	Inductor pin. Connect to the switch node of the power inductor and a shotty diode between SW and GND.		
9	VIN	Analog Power Input	Input pin. Decouple this pin to GND with low ESR capacitor. Connect to a VIN power plane to improve thermal performance.		

6 ABSOLUTE MAXIMUM RATINGS (1)

VIN, EN, SW to GND	
SW to GND (20ns pulse)	
BOOT to GND	
RT to GND·····	
FB to GND	-0.3V to 6.6V
VOS to GND	-0.3V to 26V
Power Dissipation, P _D @T _A =25°C, ESOP8	
Package Thermal Resistance	30
θ_{JA} (Junction to ambient)	
θ_{JC} (Junction to case)	10°C/W
Operating Junction Temperature, T _J	
Storage Temperature, T_{stg}	
Soldering Temperature(10 second), T _{sld}	
Notes:	.0~

(1). Stresses beyond the "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated in "RECOMMENED OPERATING CONDITIONS". Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7 RECOMMENDED OPERATING CONDITIONS

VIN Voltage	
EN Valtaga	
EN voltage	-0.3 v to 100 v
SW Voltage······	 -0.3V to 100V
Ambient Temperature	

8 ESD RATINGS

		Value	Units
Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, SW, BOOT, EN, RT, FB, PGOOD ⁽¹⁾ .	±2000	V
discharge V _{ESD}	Charged device model (CDM), per JEDEC specification JESD22-C101, SW, BOOT, EN, RT, FB, PGOOD ⁽²⁾ .	±500	V

Notes:

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process

9 ELECTRICAL CHARACTERISTICS

V _{IN} =48V, V _{OUT} =12V, L=22µH, C _O	$_{1}F, T_{A}=25 ^{\circ}C$, unless otherwise specified	1

Parameter		Test Conditions	MIN	ТҮР	MAX	UNIT
Input Voltag	ge					
V _{IN}	Input Voltage		7		100	V
V _{INUVLO}	Input UVLO Off			6.3	7	V
VINUVLO-HYS	Input UVLO hysteresis			0.7		V
Supply Curr	rent					
Ishutdown	Shutdown Current	$V_{EN}=0V$		7.5	3	μA
I _{Q1}	None switching quiet current	EN=V _{IN} , VOS higher than target, ILDO=0A		18		μΑ
ISTANDBY	Standby Current	I _{OUT} =0A, ILDO=0A			100	μΑ
Feedback				\sim		
V _{REF}	Feedback reference voltage			1.22		V
EN/UVLO			10	-		
V _{ENH}	EN rising threshold	V _{IN} =48V, I _{OUT} =0.1A	0.	1.24		V
I _{EN Hysteresis}	Hysteresis Input Current	V _{IN} =48V, I _{OUT} =0.1A		-2		μΑ
Frequency						
Б	Programmable Switching	$E_{cw}(l_{r}H_{z}) = \frac{22 \times 10^{3}}{22 \times 10^{3}}$	100		1000	1-11-
ГSW	Frequency Range	$TSW(KI1Z) = \frac{1}{RT(k\Omega)}$	100		1000	КПХ
LDO						
VLDO	LDO output voltage	Vos=12V, 0mA - 50mA	3.26	3.3	3.33	V
ILDOOC	LDO over current	VLDO=0V		75	125	mA
Timing						-
t _{ON-MIN}	Minimum on-time			150		ns
t _{OFF-MIN}	Minimum off-time			190		ns
Power Switc	hes					
R _{DSON-HS}	High-side MOSFET RDSON			0.12		Ω
Current Lin	nit					
I	High-side MOSFET Peak			18		•
IPEAK-HS	Current limit		4.8			A
Soft Start	6.					
t _{ss}	Soft-start time			3		ms
t _{hiccup}	UVP hiccup time			56		ms
Thermal Shu	utdown					
T _{SD}	Thermal Shutdown Threshold	T _J rising		160		°C
T _{HYS}	Thermal Shutdown Hysteresis			20		°C

10 BLOCK DIAGRAM

Meraliconfidential on Wheepared for this

12 AIPPLICATIONS

12.1 Operation Overview

The MK9118 operates over a wide input voltage range from 7V to 100V. With integrated the main MOSFET, the MK9118 delivers up to 3A output current.

The MK9118 adopts a constant on-time (COT) control architecture to achieve excellent transient response.

MK9118 integrated a fixed output LDO, which could deliver up to 50mA output current.

With patented standby circuits, the device can achieve ultra-low I_Q, and exit the standby mode fast.

12.2 Switching Frequency (R_T)

The switch frequency of MK9118 is set by the on-time resistor RT. As shown below, in $5V_{OUT}$ application a $100k\Omega$ resistor sets the switching frequency at 220kHz.

$$Fsw(kHz) = \frac{22 \times 10^3}{RT(k\Omega)}$$

Note that the final switching frequency is not only affected by component tolerant but also $t_{\text{ON-MIN}}$ and $t_{\text{OFF-MIN}}$.

Figure 4. Switching Frequency v.s. RT-Resistance

12.3 Output Voltage Program

Choose R_{f1} and R_{f2} to program the output voltage. For target V_{OUT} setpoint, calculate Rf1 and Rf2 using below equation:

$$V_{OUT} = 1.22 \text{V} \times (1 + \frac{R_{f1}}{R_{f2}})$$

 R_{fl} in the range of $100k\Omega$ to $500k\Omega$ is recommended for most applications. Larger feedback resistors consumes less DC current, which is important if light-load efficiency is critical. But too large resistors is not recommended as the feedback path would become more susceptible.

The feedforward capacitor $C_{\rm ff}$ and feedforward resistor $R_{\rm ff}$ are strongly recommended, which can improve the system stability and transient responses.

Figure 5. Feedback Resistance

12.4 Input Capacitor (CIN)

An input capacitor is necessary to limit the input ripple voltage while providing AC current to the buck converter at every switching cycle. The input ripple voltage ΔV_{IN} at input capacitor is calculated as:

$$\Delta V_{IN} = \frac{I_{OUT} \times D \times (1 - D)}{F_{SW} \times C_{IN}} + I_{OUT} \times R_{ESR}$$

The capacitance of input capacitor is calculated as:

$$C_{IN} \ge \frac{I_{OUT} \times D \times (1 - D)}{F_{SW} \times (\Delta V_{IN} - I_{OUT} \times R_{ESR})}$$

To minimize the potential noise problem, a X5R or better grade capacitor with sufficient voltage rating is recommended. This capacitor should be close to the VIN and GND pins to minimize the loop area formed by C_{IN} and VIN/GND pins. In this application, a 1µF low ESR ceramic capacitor is recommended.

12.5 Output Inductor (L)

It is recommended to choose the ripple current of inductor between 30% to 50% of the rated load current I_{OUT}(max) for most applications. The inductance is calculated as:

$$L = \frac{V_{OUT}}{F_{SW} \times \Delta I_L} \times (1 - \frac{V_{OUT}}{V_{IN}})$$

And the peak current of inductor is calculated as:

$$I_L(\text{peak}) = I_{OUT}(max) + \frac{\Delta I_L}{2}$$

The saturation current rating of the inductor must greater than the I_L(peak). An inductor whose saturation current is above the current limit setting of the MK9118 will be best choice. Note that inductor saturation current levels generally decrease as the inductor temperature increase.

12.5 Output Capacitor (COUT)

The output capacitor limits the capacitive voltage ripple at the converter output. This voltage ripple which is generated from the triangular inductor current ripple flowing into and out of the capacitor can be calculated as:

$$\Delta V_{OUT} = \frac{\Delta I_L}{8 \times F_{SW} \times C_{OUT}}$$

Above equation only take the steady state ripple into consideration. The transient requirements also must be taken into consideration when selecting the output capacitor. The X5R or better grade ceramic capacitor larger than 22μ F is recommended. For high peak current applications, an E-cap larger than 100uF is recommended too.

12.6 Enable Operation

Input UVLO can be programmed by EN rising threshold. The UVLO turn-on voltage can be calculated as:

$$V_{UVLO} = (1 + \frac{R_{EN1}}{R_{EN2}}) \times V_{ENH}$$

V_{ENH} is EN rising threshold voltage, typical is 1.24V.

The UVLO hysteresis is accomplished with an internal $2\mu A$ current source that is switched on or off into the impedance of the set-point divider. When the voltage at the EN pin exceeds the rising threshold, the current source is activated to quickly raise the voltage at the EN pin. The hysteresis can be calculated as:

$$V_{hys}(V) = R_{EN1} \times 2\mu A$$

Figure 6. Enable Resistance Divider

Tie EN pin to VIN if hysteresis function is not used to improve quiescent current.

12.7 Boot-strap capacitor

This capacitor provides the energy for high-side gate driver. A high quality 10nF ceramic capacitor connected between the BS pin and the SW pin is recommended. Also a RC series net can be used to slow down the turn-on speed of high side MOSFET.

12.8 CATCH DIODE

MK9118 should be taken to connect external catch diode between the SW pin and the GND pin. The diode require adherence to absolute maximum ratings of application. Opposite direction voltage should be higher than maximum voltage of the VIN pin. Also for saturation current of diode, select the one with larger current than the total of maximum output current and 1/2 of inductor ripple current Δ IL. Choose catch diode with lower voltage drop to enhance efficiency and thermal performance.

12.9 LDO

MK9118 integrated a 3.3V/50mA LDO, which is suitable for MCU's bias input. The LDO converter VOS to 3.3V with 50mA capability, put a ceramic cap $>1\mu$ F as close as possible to LDO pin in application.

Merali Confidential only prepared for the

Application Examples

1.

Parameter	Symbol	Specification Value
Input Voltago	y Visi	24.1/ ~ 75.1/
Input voltage	VIN	24 V / 75 V
Output Voltage	Vout	5.0 V
Switching Frequency	fosc	200 kHz (Typ)
Maximum Output Current	Іоитмах	3 A

Figure 7. Vout=5V Schematic

2.		
Parameter	Symbol	Specification Value
Input Voltage	VIN	24 V ~75 V
Output Voltage	Vout	12.3 V
Switching Frequency	fosc	200 kHz (Typ)
Maximum Output Current	Іоитмах	3 A

Figure 8. Vout=12.3V Schematic

13 LAYOUT

13.1 Layout Guide

To achieve high performance of the MK9118, the following layout tips must be followed.

- (1). At least one low-ESR ceramic bypass capacitor C_{IN} must be used. Place the C_{IN} as close as possible to the MK9118 VIN and GND pins, place decoupling caps as close as possible between VIN and catch diode's GND.
- (2). Minimize the loop area formed by C_{IN} connections to VIN and GND pins.
- (3). Inductor must be placed close to the SW pin. Minimize the area of SW trace to avoid the potential noise problem.
- (4). Maximize the PCB area connecting to the VIN pin/thermal pad. If it is allowed, a ground plane can be used as noise shielding and heat dissipation path.
- (5). Place the feedback resistors, R_{f1} and R_{f2} , close to the FB pin. Route the feedback V_{OUT} sense path away from noisy nodes such as the SW net.
- (6). Connect VOS pin to output cap directly, place a 0.1uF cap between VOS and GND.
- (7). The RT pin is sensitive to noise. The on-time set resistor R_T must be close to the device.

13.2 Layout Example

Figure 9. Evkit Layout (Tope Layer)

a Layer

14 PACKAGE SIZE

Figure17. Recommended Land Pattern (mm)

Figure 18. MK9118 Top View

Figure19. MK9118 Side View

Figure20. MK9118 Side View

Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	SVADOL	Millimeter		
	SYMBOL	MIN	NOM	
	А	1.300	1.700	
	A1	0.000	0.100	
	A2	1.350	1.550	
	b	0.330	0.510	
	с	0.170	0.250	
	D	4.700	5.100	
	D1	3.050	3.250	
	Е	3.800	4.000	
	E1	5.800	6.200	
	E2	2.160	2.360	
	e	1.270(BSC)		
	L	0.400	1.270	
	θ	0°	8°	

A0

B0

15 REEL AND TAPE INFORMATION

K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Device	Package Type	Pins	Quantities	Reel Diameter (mm)	Reel Width W1(mm)
MK9118	ESOP8	8	4000	332	12.5
A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	
4.0	3.3	1.1	8.0	12.0	

16 TAPE AND REEL BOX DIMENSIONS

