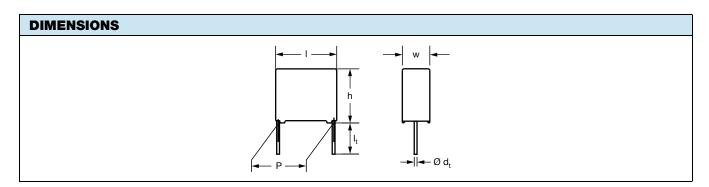


Interference Suppression Film Capacitor - Class X1 Radial MKP 440 V_{AC} - Standard Across the Line

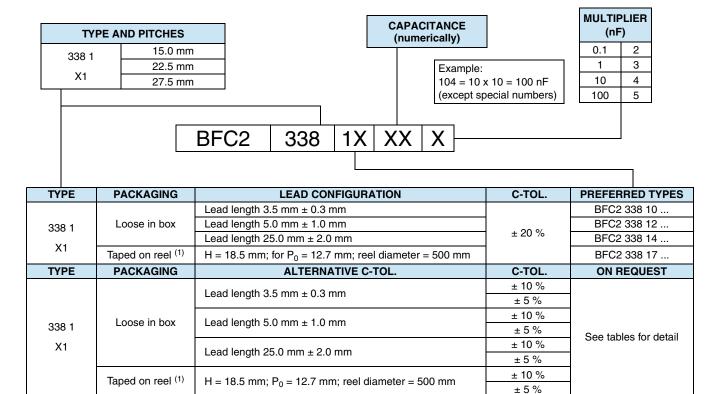
FEATURES

- 15 mm to 27.5 mm lead pitch
- 440 V rated AC voltage


APPLICATIONS

For standard across the line X1 applications.

See also application note: www.vishay.com/doc?28153


QUICK REFERENCE DATA			
Capacitance range (E12 series)	0.01 μF to 1 μF (referred values acc. to E6)		
Capacitance tolerance	± 20 %, ± 10 %, ± 5 %		
Rated AC voltage	440 V _{AC} ; 50 Hz to 60 Hz		
Permissible DC voltage	1000 V _{DC}		
Climatic testing class acc. to IEC 60068-1	$50/105/56/C$ for product volumes > 1750 mm ³ $50/105/56/B$ for volumes ≤ 1750 mm ³		
Maximum application temperature	105 °C		
Reference standards	IEC 60384-14 ed-4 (2013) and EN 60384-14 IEC 60065 pass. flamm. class B for volumes > 1750 mm ³ UL 60384-14		
Dielectric	Polypropylene film		
Electrodes	Metallized film		
Construction	Mono construction		
Encapsulation	Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0		
Leads	Tinned wire		
Marking	C-value; tolerance; rated voltage; sub-class; manufacturer's type; code for dielectric material; manufacturer location, year and week; manufacturer's logo or name; safety approvals		

· For more detailed data and test requirements, contact rfi@vishay.com

COMPOSITION OF CATALOG NUMBER

Note

(1) For detailed tape specification refer to packaging information: www.vishay.com/doc?28139

SPECIFIC REFERENCE DATA			
DESCRIPTION	VALUE		
Rated AC voltage (U _{RAC})	440) V	
Permissible DC voltage (U _{RDC})	100	0 V	
Tangent of loss angle:	at 1 kHz	at 10 kHz	
C ≤ 470 nF	≤ 10 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴	
C > 470 nF	≤ 20 x 10 ⁻⁴	\leq 70 x 10 ⁻⁴	
Rated voltage pulse slope (dU/dt) _R at 615 V _{DC}			
Pitch = 15 mm	250 V/μs		
Pitch = 22.5 mm	150 V/μs		
Pitch = 27.5 mm	100 V/μs		
R between leads, for C \leq 0.33 μF at 100 V, 1 min	> 15 000 MΩ		
RC between leads, for C > 0.33 μ F at 100 V, 1 min	> 5000 s		
R between leads and case, 100 V, 1 min	ads and case, 100 V, 1 min $>$ 30 000 M Ω		
Withstanding (DC) voltage (cut off current 10 mA) ⁽¹⁾ , rise time ≤ 1000 V/s	3400 V, 1 min		
Withstanding (AC) voltage between leads and case	2380 V, 1 min		
Maximum application temperature	105	°C	

Note

⁽¹⁾ See "Voltage Proof Test for Metallized Film Capacitors": www.vishav.com/doc?28169

					CATALOG NU	MBER B	FC2 338 1XXXX <i>A</i>	ND PAC		
	CAP. DIMENSIONS MAS		MASS	LOOSE IN BOX					TAPED REEL (1)(2)	
U _{RAC}	CAP. (μF)	w x h x l (mm)	(g) ⁽³⁾	SHC	ORT LEADS		LONG LEAD	s	Ø = 500 mn	1
		(iiiiii)		l _t = 3.5 mm ± 0.3 mm	l _t = 5.0 mm ± 1.0 mm	SPQ	l _t = 25.0 mm ± 2.0 mm	SPQ	H = 18.5 mm; $P_0 = 12.7 \text{ mm}$	SPQ
			PITCH	I = 15.0 mm ± 0.4	4 mm; d _t = 0.60	mm ± 0.0	06 mm; C-tol. = ±	20 %		
	0.010			10103	12103		14103		17103	
	0.012			10123	12123		14123		17123	
	0.015	5.0 x 11.0 x 17.5	1.0	10153	12153	1000	14153	1000	17153	1100
	0.018			10183	12183		14183		17183	
	0.022			10223	12223		14223		17223	
	0.027	0.010.017.5	4.4	10273	12273	1000	14273	1000	17273	000
	0.033	6.0 x 12.0 x 17.5	1.4	10333	12333	1000	14333	1000	17333	900
		1	PITCH	I = 15.0 mm ± 0.	4 mm; d _t = 0.80	mm ± 0.0	08 mm; C-tol. = ±	20 %		
	0.039	70 105 175	4.0	10393	12393	750	14393	500	17393	1 000
	0.047	7.0 x 13.5 x 17.5	1.8	10473	12473	750	14473	500	17473	800
	0.056			10563	12563		14563		17563	1
	0.068	8.5 x 15.0 x 17.5	2.4	10683	12683	750	14683	500	17683	650
	0.082			10823	12823		14823		17823	600
	0.10	10.0 x 16.5 x 17.5	3.0	10104	12104	500	14104	450	17104	
			PITCH	I = 22.5 mm ± 0.4	4 mm; d _t = 0.80	mm ± 0.0	08 mm; C-tol. = ±	20 %		
	0.12			10124	12124		14124		17124	1
	0.15	8.5 x 18.0 x 26.0	3.8	10154	12154	200	14154	250	17154	450
	0.18			10184	12184		14184	1 1	17184	+
	0.22	10.0 x 19.5 x 26.0	6.8	10224	12224	200	14224	200	17224	350
			PITCH	I = 27.5 mm ± 0.	4 mm; d _t = 0.80	mm ± 0.0	08 mm; C-tol. = ±	20 %		
440	0.27	11.0 x 21.0 x 31.0	7.4	10274	12274	100	14274	125		T
	0.33	13.0 x 23.0 x 31.0	9.2	10334	12334	100	14334	125	- -	
	0.39			10394	12394		14394			
	0.47	15.0 x 25.0 x 31.5	12.3	10474	12474	100	14474	125		
	0.56			10564	12564		14564		-	-
	0.68	18.0 x 28.0 x 31.5	16.1	10684	12684	100	14684	100		
	0.82			10824	12824		14824			
	1.00	21.0 x 31.0 x 31.0	20.3	10105	12105	50	14105	75		
			PITCH	I = 15.0 mm ± 0.4	4 mm; d _t = 0.60	mm ± 0.0	06 mm; C-tol. = ±	10 %		
	0.010			18114	18314		18514		18914	T
	0.012			18115	18315		18515		18915	
	0.015	5.0 x 11.0 x 17.5	1.0	18116	18316	1000	1000 18516	1000	18916	1100
	0.018			18117	18317		18517		18917	
	0.022			18118	18318		18518		18918	+
	0.027	6.0 x 12.0 x 17.5	1.4	18119	18319	1000	18519	1000	18919	900
			PITCH			mm ± 0.0	08 mm; C-tol. = ±	10 %		
	0.033			18121	18321		18521		18921	
	0.039	7.0 x 13.5 x 17.5	1.8	18122	18322	750	18522	500	18922	800
	0.047			18123	18323	1	18523	1 1	18923	+
	0.056	8.5 x 15.0 x 17.5	2.4	18124	18324	750	18524	500	18924	650
	0.068			18125	18325	+ +	18525		18925	+
	3.300	10.0 x 16.5 x 17.5	3.0	10120	1.5020	500	10020	450	10020	600

Vishay BCcomponents

		CAL DATA AN				MBER R	FC2 338 1XXXX A	AND PAC	CKAGING	
		DIMENSIONS		LOOSE IN BOX					TAPED REEL	(1)(2)
U _{RAC}	CAP. (µF)	' wybyl	MASS (g) (3)	SHORT LEADS LONG LEAD		os	Ø = 500 mm			
	(με)	(mm)	(9)	l _t = 3.5 mm ± 0.3 mm	l _t = 5.0 mm ± 1.0 mm	SPQ	l _t = 25.0 mm ± 2.0 mm	SPQ	H = 18.5 mm; P ₀ = 12.7 mm	SPQ
			PITCI	H = 22.5 mm ± 0.	4 mm; d _t = 0.80	mm ± 0.0	08 mm; C-tol. = ±	: 10 %		1
	0.10	7.0 x 16.5 x 26.0	2.9	18127	18327	200	18527	250	18927	550
	0.12	0.510.000.0	0.0	18128	18328	200	18528	050	18928	450
	0.15	8.5 x 18.0 x 26.0	3.8	18129	18329		18529	250	18929	450
	0.18	10.0 x 19.5 x 26.0	6.8	18131	18331	200	18531	200	18931	350
			PITC	H = 27.5 mm ± 0.	4 mm; d _t = 0.80	mm ± 0.0	08 mm; C-tol. = ±	10 %		
	0.22	11.0 x 21.0 x 31.0	7.4	18132	18332	100	18532	125		
	0.27	11.0 x 21.0 x 31.0	7.4	18133	18333	100	18533	123		
	0.33	13.0 x 23.0 x 31.0	9.2	18134	18334	100	18534	125		
	0.39	15.0 x 25.0 x 31.0	12.3	18135	18335	100	18535	125	1	
	0.47	13.0 % 23.0 % 31.0	12.0	18136	18336	100	18536	120		
	0.56	18.0 x 28.0 x 31.0	16.1	18137	18337	100	18537	100		
	0.68	10.0 % 20.0 % 31.0	10.1	18138	18338	100	18538	100		
	0.82	21.0 x 31.0 x 31.0	20.3	18139	18339	50	18539	75		
			PITC	H = 15.0 mm ± 0	.4 mm; d _t = 0.60	mm ± 0.	.06 mm; C-tol. = :	± 5 %		
	0.010			18214	18414		18614		18934	
	0.012	5.0 x 11.0 x 17.5	1.0	18215	18415	1000	18615	1000	18935	1100
	0.015	3.0 X 11.0 X 17.3	1.0	18216	18416	1000	18616	1000	18936	
	0.018			18217	18417		18617		18937	
	0.022	6.0 x 12.0 x 17.5	1.4	18218	18418	1000	18618	1000	18938	900
440	0.027	0.0 X 12.0 X 17.5	1.4	18219	18419	1000	18619	1000	18939	900
440			PITC	H = 15.0 mm ± 0	$.4 \text{ mm}; d_t = 0.80$	mm ± 0.	.08 mm; C-tol. = :	± 5 %		
	0.033	7.0 x 13.5 x 17.5	1.8	18221	18421	750	18621	500	18941	800
	0.039	7.0 X 13.3 X 17.3	1.0	18222	18422	730	18622	300	18942	
	0.047	8.5 x 15.0 x 17.5	2.4	18223	18423	750	18623	500	18943	650
	0.056	6.5 X 15.0 X 17.5	2.4	18224	18424	750	18624	300	18944	650
	0.068	10.0 x 16.5 x 17.5	3.0	18225	18425	500	18625	450	18945	600
	0.082	10.0 x 10.3 x 17.3	3.0	18226	18426	300	18626	430	18946	600
			PITC	H = 22.5 mm ± 0	.4 mm; d _t = 0.80	mm ± 0.	.08 mm; C-tol. = :	± 5 %		
	0.10	8.5 x 18.0 x 26.0	3.8	18227	18427	200	18627	250	18947	450
	0.12	0.5 X 10.0 X 20.0	0.0	18228	18428	200	18628	230	18948	430
	0.15	10.0 x 19.5 x 26.0	6.8	18229	18429	200	18629	200	18949	350
	0.18	10.0 X 13.3 X 20.0	0.0	18231	18431	200	18631	200	18951	000
		1	PITC	$H = 27.5 \text{ mm} \pm 0$.4 mm; d _t = 0.80	mm ± 0.	.08 mm; C-tol. = :	± 5 %		
	0.22	11.0 x 21.0 x 31.0	7.4	18232	18432	100	18632	125		
	0.27	13.0 x 23.0 x 31.0	9.2	18233	18433	100	18633	125		
	0.33	13.0 % 23.0 % 01.0		18234	18434		18634	0		
	0.39	15.0 x 25.0 x 31.5	12.3	18235	18435	100	18635	125	_	_
	0.47	13.0 % 20.0 % 01.0	12.0	18236	18436	100	18636	120		
	0.56	18.0 x 28.0 x 31.5	16.1	18237	18437	100	18637	100		
	0.68	13.0 % 23.0 % 01.3	15.1	18238	18438	100	18638	100		
	0.82	21.0 x 31.0 x 31.0	20.3	18239	18439	50	18639	75		

Notes

- SPQ = Standard Packing Quantity
- (1) $H = \text{in-tape height; } P_0 = \text{sprocket hole distance; for detailed specifications refer to packaging information: } \underline{\text{www.vishay.com/doc?28139}}$
- (2) Reel diameter = 356 mm is available on request
- (3) Weight for short lead product only

www.vishay.com Vishay BCcomponents

APPROVALS						
SAFETY APPROVALS X1	VOLTAGE	VALUE	FILE NUMBERS	LINKS		
EN 60384-14 (ENEC) (= IEC 60384-14 ed-4 (2013))	440 V _{AC}	10 nF to 1 μF	FI 2016037	www.vishay.com/doc?28202		
UL 60384-14	440 V _{AC}	10 nF to 1 μF	E354331	www.vishay.com/doc?28190		
CSA E384-14	440 V _{AC}	10 nF to 1 μF	E354331	www.vishay.com/doc?26190		
CB-test certificate	440 V _{AC}	10 nF to 1 μF	FI 9218	www.vishay.com/doc?28201		

The ENEC-approval together with the CB-certificate replace all national marks of the following countries (they have already signed the ENEC-agreement): Austria; Belgium; Czech. Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway; Portugal; Slovenian; Spain; Switzerland and United Kingdom.

MOUNTING

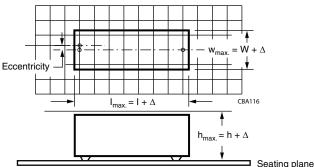
Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information: www.vishav.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- For longer pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed Circuit Board

The maximum space for length (I_{max}), width (w_{max}) and height (h_{max}) of film capacitors to take in account on the printed circuit board is shown in the drawings.

• For products with pitch \leq 15 mm, $\Delta w = \Delta l = 0.3$ mm; $\Delta h = 0.1$ mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

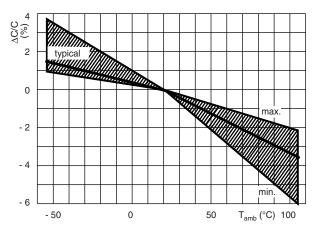
SOLDERING

For general soldering conditions and wave soldering profile, we refer to the application note:

"Soldering Guidelines for Film Capacitors": www.vishav.com/doc?28171

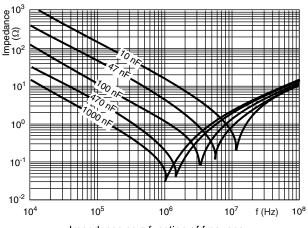
Storage Temperature

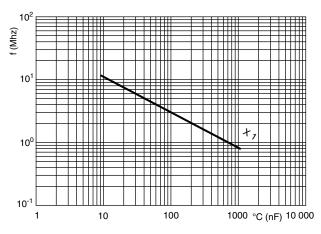
 T_{stg} = -25 °C to +35 °C with RH maximum 75 % without condensation

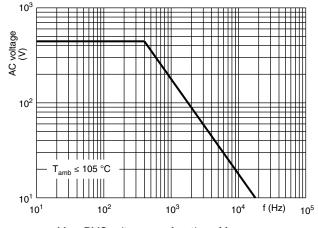

Ratings and Characteristics Reference Conditions

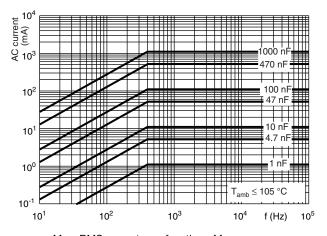
Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

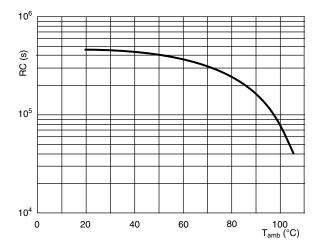

CHARACTERISTICS


Capacitance as a function of ambient temperature (typical curve)


Tangent of loss angle as a function of frequency (typical curve)


Impedance as a function of frequency (typical curve)

Resonant frequency as a function of capacitance (typical curve)



Max. RMS voltage as a function of frequency

Max. RMS current as a function of frequency

Insulation resistance as a function of ambient temperature

APPLICATION NOTES

- For X1 electromagnetics interference suppression in standard across the line applications (50 Hz/60 Hz) with a maximum mains voltage of 440 V_{AC}.
- For series impedance applications we refer to application note: www.vishay.com/doc?28153
- For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: rfi@vishay.com
- These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse programs must be used.
- The maximum ambient temperature must not exceed 105 °C.
- Rated voltage pulse slope:
 If the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 615 V_{DC} and divided by the applied voltage.

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-14 ed-3 and Specific Reference Data".

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS		
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1				
4.1 Dimensions (detail)		As specified in chapters "General data" of this specification		
Initial measurements	Capacitance Tangent of loss angle at 10 kHz			
4.3 Robustness of terminations	Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°	No visible damage		
4.4 Resistance to soldering heat	No pre-drying Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s			

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1		
4.19 Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured initially
	Tangent of loss angle	Increase of tan $\delta \leq 0.008$ Compared to values measured initially
	Insulation resistance	As specified in section "Insulation Resistance" of this specification
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1		
Initial measurements	Capacitance Tangent of loss angle at 10 kHz	
4.20 Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: Cotton wool Immersion time: 5 min ± 0.5 min	No visible damage Legible marking
4.6 Rapid change of temperature	$\theta A = -55 ^{\circ}C$ $\theta B = +105 ^{\circ}C$ 5 cycles Duration t = 30 min	
4.6.1 Inspection 4.7 Vibration	Visual examination Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or acceleration 98 m/s² (whichever is less severe) Total duration: 6 h	No visible damage
4.7.2 Final inspection	Visual examination	No visible damage
4.9 Shock	Mounting: See section "Mounting" for more information Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	
4.9.2 Final measurements	Visual examination	No visible damage
	Capacitance	$ \Delta C/C \le 5$ % of the value measured initially
	Tangent of loss angle	Increase of tan $\delta \leq 0.008$ Compared to values measured initially
	Insulation resistance	As specified in section "Insulation Resistance" of this specification

GROUP C INSPECTION REQUIR	EMENTS	
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B		
4.11 Climatic sequence		
4.11.1 Initial measurements	Capacitance Measured in 4.4.2 and 4.9.2 Tangent of loss angle Measured initially in C1A and C1B	
4.11.2 Dry heat	Temperature: 105 °C Duration: 16 h	
4.11.3 Damp heat cyclic Test Db First cycle		
4.11.4 Cold	Temperature: - 55 °C Duration: 2 h	
4.11.5 Damp heat cyclic Test Db Remaining cycles		
4.11.6 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.1
	Tangent of loss angle	Increase of tan $\delta \le 0.008$ Compared to values measured in 4.11.1.
	Voltage proof 1900 V _{DC} ; 1 min between terminations	No permanent breakdown or flash-over
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C2		
4.12 Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH No load	
4.12.1 Initial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.12.3 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.12.1
	Tangent of loss angle	Increase of tan $\delta \le 0.008$ Compared to values measured in 4.12.1.
	Voltage proof 1900 V _{DC} ; 1 min between terminations	No permanent breakdown or flash-over
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C3		
4.13.1 Initial measurements	Capacitance	
	Tangent of loss angle at 10 kHz	
4.13 Impulse voltage	3 successive impulses, full wave, peak	No self healing breakdowns or flash-over
	voltage:	-
	X1: 4 kV	
	Max. 24 pulses	
4.14 Endurance	Duration: 1000 h	
	1.25 x U _{RAC} at 105 °C	
	Once in every hour the voltage is increased to	
	1000 V_{RMS} for 0.1 s via resistor of 47 Ω ± 5 %	
4.14.7 Final measurements	Visual examination	No visible damage
		Legible marking
	Capacitance	 ΔC/C ≤10 % compared to values measure
		in 4.13.1.
	Tangent of loss angle	Increase of tan $\delta \le 0.008$
		Compared to values measured in 4.13.1.
	Voltage proof	No permanent breakdown or flash-over
	1900 V _{DC} ; 1 min between terminations	
	2380 V _{AC} ; 1 min between terminations	
	and case.	
	Insulation resistance	≥ 50 % of values specified in section
	insulation resistance	"Insulation Resistance" of this specification
SUB-GROUP C4		
4.15 Charge and discharge	10 000 cycles	
	Charged to 615 V _{DC}	
	Discharge resistance:	
	$R = \frac{615 \text{ V}_{DC}}{1.5 \text{ x C (dU/dt)}}$	
	1.5 x C (dU/dt)	
4.15.1 Initial measurements	Capacitance	
The state of the s	Tangent of loss angle at 10 kHz	
4.15.3 Final measurements	Capacitance	ΔC/C ≤ 10 % compared to values measure
		in 4.15.1.
	Tangent of loss angle	Increase of tan $\delta \le 0.008$
		Compared to values measured in 4.15.1.
	Insulation resistance	≥ 50 % of values specified in section
		"Insulation Resistance" of this specification
SUB-GROUP C5		
4.16 Radio frequency characteristic	Resonance frequency	≥ 0.9 times value as specified in section "Resonant Frequency" of this specification

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C6		
4.17 Passive flammability Class B	Bore of gas jet: Ø 0.5 mm Fuel: Butane Test duration for actual volume V in mm³: $V \le 250$: 10 s $250 < V \le 500$: 20 s $500 < V \le 1750$: 30 s $V > 1750$: 60 s One flame application	After removing test flame from capacitor, the capacitor must not continue to burn for more than 10 s. No burning particle must drop from the sample.
SUB-GROUP C7		
4.18 Active flammability	20 cycles of 4 kV discharges on the test capacitor connected to U _{RAC} .	The cheese cloth around the capacitors shall not burn with a flame. No electrical measurements are required.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.