January 9, 2024

ML5206

5 series Cell Li-ion Rechargeable Battery Protection IC with cell balancing function

■ General Description

The ML5206 is a protection IC with cell balancing funcion for the 3- to 5-cell Li-ion rechargeable battery pack. It detects individual cell overvoltage and battery cell open-wire, and alerts by alarm output signal. And cell balancing function is built in and it is automatically executed.

Features

• 3 to 5 cell high precision overvoltage detection function

Overvoltage detection threshold V_{OV} : 4.0V to 4.4V (5mV step), error: ± 25 mV (0°C to 60°C)

Overvoltage release threshold V_{OVR} : VOV - 0 to 200mV (10mV step)

error: ± 25 mV to 35mV (0°C to 60°C)

Overvoltage detection delay time : 0sec to 5.6 sec(typ)

• Open-wire detection function

Open-wire detection threshold : 0.6V(typ)
Open-wire detection sink current : 100nA(typ)
Open-wire detection delay time : 0sec to 5.6sec(typ)

• Cell balancing function

Cell balancing detection threshold V_{CB} : 4.0V to 4.4V (5mV step), error: ± 25 mV (0°C to 60°C)

Cell balancing relase threshold V_{CBR}: VCB - 0 to 200mV (10mV step),

error: ± 25 mV ot 35mV (0°C to 60°C)

Cell balancing current : 40mA(typ)
Cell balancing detection delay time : 0sec to 5.6sec(typ)

• 3 types of alarm output

Selected from CMOS / Nch open drain / Pch open drain

• Setting number of connected battery cells : defined with part-number

5 cells = ML5206-001, 4 cells = ML5206-001A, 3 cells = ML5206-001B

• Low current consumption

 $1\mu A(typ)$, $2\mu A(max)$ (0°C to 60°C)

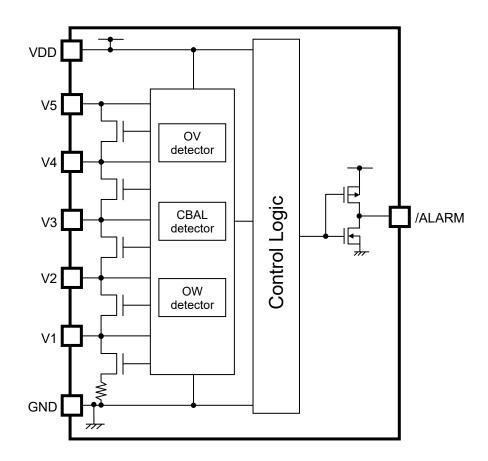
• Power supply voltage : +5V to +25V

• Operating temperature : -20°C to +85°C

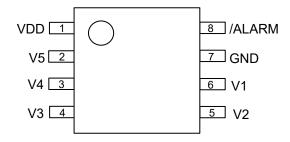
• Package : 8 pin VSSOP

Application

• Power tools and Garden tools


· Cordless Cleaner

■ Part number


ML5206-001MB 5 cells, Nch open drain output
ML5206-001BMB 3 cells, Nch open drain output
The detection voltage, etc., is the same for both 5 cells and 3 cells.

■ Block Diagram

■ Pin Configuration (top view)

■ Pin Description

Pin	I/O	Description
VDD	_	Power supply input pin.
V5	ı	Battery cell 5 high voltage input pin
V4	ı	Battery cell 5 low voltage input and Battery cell 4 high voltage input pin.
V3	ı	Battery cell 4 low voltage input and Battery cell 3 high voltage input pin.
\/2	1	Battery cell 3 low voltage input and Battery cell 2 high voltage input pin.
VZ	ı	Should be connected to GND for the 3 cell series connected battery pack application.
\/1		Battery cell 2 low voltage input and Battery cell 1 high voltage input pin.
VI	ı	Should be connected to GND for the 3 or 4 cell series connected battery pack application.
GND	_	Ground pin.
		Alarm signal output pin.
		•If CMOS output : Output level is "L" level(GND level) if overvoltage/ open-wire is
		detected, else "H" level (VDD power supply level). Its reversed setting is possible.
/ALARM	0	If Nch open drain output: Output level is "L" level(GND level) if overvoltage/
		open-wire is detected, else "Hi-Z" level. Its reversed setting is possible.
		If Pch open drain output: Output level is "H"level (VDD power supply level) if
		overvoltage/open-wire is detected, else "Hi-Z" level. Its reversed setting is possible.
	VDD V5 V4 V3 V2 V1 GND	VDD — V5 I V4 I V3 I V2 I V1 I GND —

■ Absolute Maximum Ratings

(GND= 0 V, Ta = 25 °C)

Item	Symbol	Condition	Rating	Unit
Supply Voltage	V_{DD}	Applied to VDD pin	-0.3 to $+33$	V
Input Voltage	V _{IN}	Applied to V5 to V1 pins Vn+1 –Vn pin voltage defference (note1) V1 – GND pin voltage difference	-0.3 to +6.5	٧
	V _{IN2}	Applied to between V2-V1 pins. When cell balancing switch between V2-V1 pins is OFF.	-0.3 to +7.5	V
	V _{IN5}	Applied to V5 pin	-0.3 to + VDD + 6.5	V
Output Voltage	V _{OUT1}	Applied to /ALARM pin (CMOS, Pch open-drain)	−0.3 to V _{DD} +0.3	V
Output Voltage	V _{OUT2}	Applied to /ALARM pin (Nch open-drain)	-0.3 to +32	V
Cell balancing current	I _{CB}	Per every cellbalancing switch	100	mA
Short-circuit output current	los	Applied to /ALARM pin	10	mA
Power dissipation	P _D	Mounted on the JEDEC 4-layer board	730	mW
Storage temperature	T _{STG}	_	-55 to +150	°C

(note 1) When connecting or disconnecting battery cells, the voltage difference between V_{n+1} . V_n pins might exceed this ratings and the LSI will be destructed.

■ Recommended Operating Conditions

(GND= 0 V)

				(- ,
Item	Symbol	Condition	Range	Unit
Supply Voltage	V_{DD}	_	5 to 25	V
Operating temperature	Top	_	-20 to +85	°C

■ Electrical Characteristics

DC Characteristics

 $V_{\text{DD}}\!\!=\!\!5$ to 25V, GND=0 V, Ta=-20 to +85°C

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
V5 to V1 pins		Each cell voltage =	00	400	000	
Open-wire detection	Ivcl	3.6V	30	100	300	nA
sink current		Ta=0 to 60°C				
/ALARM pin	Іона	I _{OH} =-100μA	V _{DD} -0.2	_	V_{DD}	V
"H" output voltage						
/ALARM pin "L" output voltage	Vola	I _{OL} =100μA	0	_	0.2	V
/ALARM pin Output leakage current	I _{OLKA}	Output state is Hi-Z	-2	_	2	μА
V5 to V2 pins Cell balance Switch ON resistance	R _{BL1}	Internal balance FET Vn+1 - Vn = 0.3V V _{DD} - V2 ≧ 6V V _{DD} =9V to 25V	3	6	12	Ω
V1 pin Cell balance Switch ON resistance	R _{BL2}	Internal balance FET V1=2.1V VDD=9V to 25V	38	57	91	Ω

Supply Current Characteristics

 V_{DD} =5 to 25V, GND=0 V, Ta=-20 to +85°C

					0 · , · a = 0 ·		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
		Each cell voltage=3.6V					
	I _{DD}	No output load	_	1	2	μΑ	
Current concumption		Ta=0 to 60°C					
Current consumption		Each cell voltage=3.6V					
	I _{DDT}	No output load	_	1	3	μΑ	
		Ta=-20 to 85°C					

(Note) VDD pin current consumption. V5 to V1 pin input current, /ALARM pin output current is not included.

LAPIS Technology Co., Ltd.

Detection Threshold Chracteristics (Ta=0 to 60°C)

				$V_{DD}=18V$, G	6ND=0 V, Ta=0	to 60°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Overvoltage detection threshold	Vov	_	V _{OV} -25mV	Vov	V _{OV} +25mV	V
Overvoltage release	Vovr	V _{OV} -V _{OVR} ≦50mV	Vovr -25m	Vovr	Vovr +25m	V
threshold	VOVR	$V_{OV}-V_{OVR}>50$ m V	V _{OVR} -35m	V_{OVR}	V _{OVR} +35m	V
Cell balancing detection threshold	V _{CB}	_	V _{CB} -25mV	V _{CB}	V _{CB} +25mV	V
Cell balancing release	\/	V _{CB} -V _{CBR} ≦50mV	V _{CBR} -25m	V _{CBR}	V _{CBR} +25m	V
threshold	V _{CBR}	V _B -V _{CBR} >50mV	V _{CBR} -35m	V_{CBR}	V _{CBR} +25m	V
Open-wire detection / release threshold	Vow	_	0.5	0.6	0.7	V
Quick test mode transition VDD-V5 pin voltage difference	Vтsтт	Ta=25°C	10	_	_	V
Quick test mode release VDD-V5 pin voltage difference	VTSTR	Ta=25°C	0	_	3	V

● Detection delay time characteristtics (Ta=0 to 60°C)

				$V_{DD}=18V, GN$	ND=0 V, Ta=0) to 60°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Cell voltage monitoring cycle	t _{DET}	_	300	400	500	ms
Cell voltage monitoring term	t _{MON}	_	37	50	63	ms
Cell balancing term	T _{BAL}	_	262	350	438	ms
Overvoltage detection delay time setting range	tov	Defined with detection cycle	0	_	14	cycle
Cell balancing detection delay time setting range	t _{CB}	Defined with detection cycle	0	_	14	cycle
Open-wire detection/release delay time setting range	t _{OW}	Defined with detection cycle	0	_	14	cycle
Quick test mode Cell voltage monitoring cycle	tdett	Ta=25°C	75	100	125	ms
Quick test mode Cell balancing term	t BALT	Ta=25°C	37	50	63	ms
Quick test mode Overvoltage detection delay time, Cell balancing detection delay time, open-wire detection/release delay time	t _{DLYT}	Defined with detection cycle	_	_	1	cycle

2

cycle

● Code-001: Setting Parameters

Open-wire

detection/release delay

time

• • • • • • • • • • • • • • • • • • • •	9					
				V _{DD} =18V, GN	ND=0 V, Ta=0) to 60°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Overvoltage detection threshold	Vov	_	4.275	4.300	4.325	V
Overvoltage release threshold	Vovr	_	4.165	4.200	4.235	V
Cell balancing detection threshold	V _{CB}	_	4.075	4.100	4.125	V
Cell balancing release threshold	V _{CBR}	_	4.075	4.100	4.125	V
Overvoltage detection delay time	tov	Defined with detection cycle	3	_	4	cycle
Cell balancing detection delay time	tсв	Defined with detection cycle	1	_	2	cycle

Defined with

detection cycle

1

 $t_{\text{OW}} \\$

■ Functional Description

Selecting the number of battery cells

Number of battery cells is determined by part number. 5-cells=ML5206-001, 4-cells=ML5206-001A, 3-cells=ML5206-001B

● /ALARM output pin

/ALARM pin output status for overvoltage/open-wire detected state.

		/ALARM pin output stat	tus
	CMOS	Nch open drain (Code 001)	Pch open drain
Overvoltage/open-wire detected state	"L" level	"L" level	"H" level
Undetected state	"H" level	"Hi-Z" level	"Hi-Z" level

(note 1) /ALARM pin output status for detected state and undetected state can be reversed.

Handling VDD pin and V1 to V5 pins

Since the VDD pin is the power supply input, put a noise elimination RC filter in front of the VDD input for stabilization. The resistor value of this noise filter should be adjusted so that the voltage drop across the resistor is smaller than 0.3 V.

The V1 to V5 pins are the monitor pins for individual cell voltages. Put a noise elimination RC filter in front of each battery cell to prevent false detection.

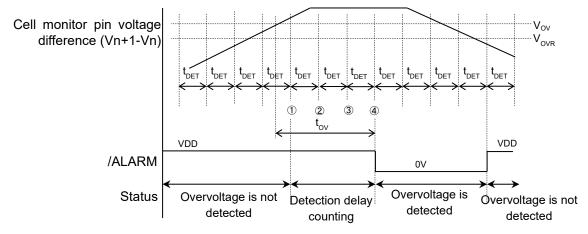
Unused pin Treatment

The following table shows how to handle unused pins

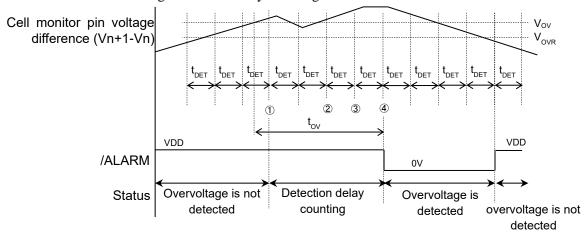
Unused pins	Recommended treatment
V1 , V2	Connected to GND pin

Power-on/Power-off sequence

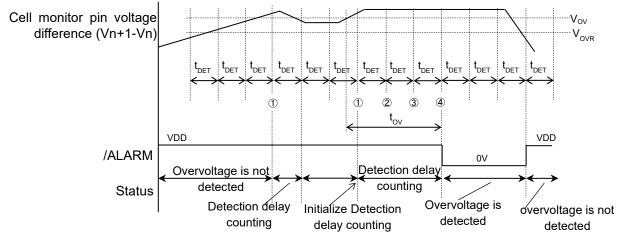
Battery cells can be connected in any order, but it is recommend that the lowest voltage cell is connected first, and then connection continues from lower to higher voltage cells, and the highest voltage cell is connected last. There are no restrictions on the power supply voltage rise time at power-on, and power-off sequence or power supply voltage fall time at power-off.


It may transition to the open-wire or overvoltage detection state if it takes long time to connect all cells.

Overvoltage detection function (In case if the overvoltage detection delay time = 3
detection cycles)


After power-on, cell voltage monitoring is started with cell voltage monitoring cycle of t_{DET} =400ms(typ). When any one or more battery cell voltages reach or exceed the overvoltage detection threshold Vov for series four times, it detects overvoltage state. And if /ALARM pin output type is CMOS output, /ALARM pin output changes from "H" level to "L" level.

If the state in which cell voltage of all cell is lower than overvoltage detection threshold V_{OV} is detected once, detection delay time is not initialized. But if it is detected for series two times, detection delay time counting is initialized.

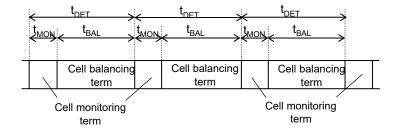

After the overvoltage detection, if the cell voltage of all cell is lower than overvoltage release threshold V_{OVR} , and if /ALARM pin output type is CMOS output, /ALARM pin output changes from "L" level to "H" level.

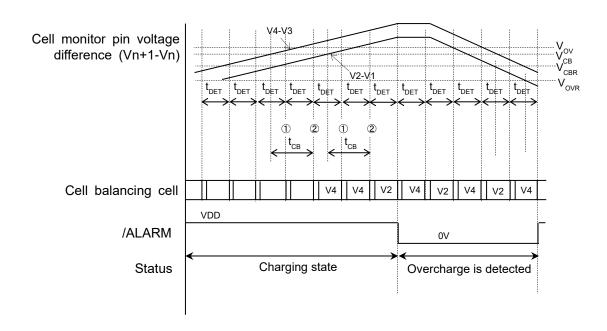
• In case if the overvoltage detection delay counting is not initialized

• In case if the overvoltage detection delay counting is initialized

Cell balancing function (In case if the cell balancing detection delay time = 1 detection cycle)

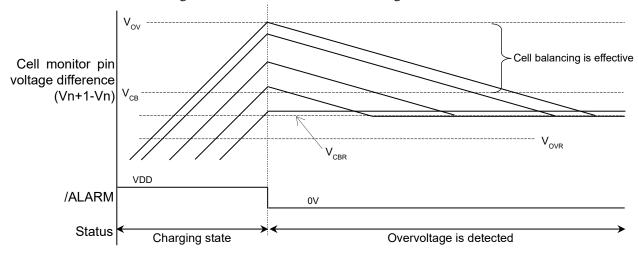
After power-on, cell voltage monitoring is started with cell voltage monitoring cycle of t_{DET} =400ms(typ). When a cell voltage reach or exceed the cell balancing detection threshold V_{CB} for series two times, the cell balancing switch of the cell is turned on. Not more than one cell balancing switches are turned on in the same time, but only one cell balancing switche is turned on in the order of V1 to V5.

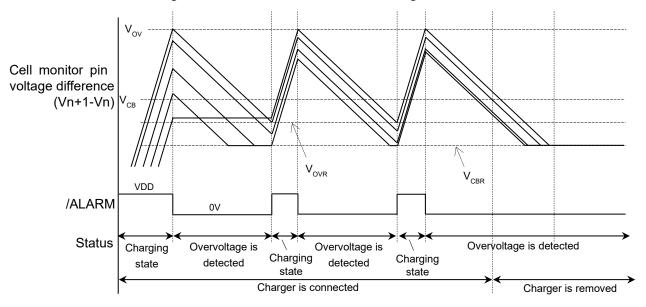

When a cell voltage of the cell reach or below the cell balancing detection threshold V_{CB} for one time, the detection delay time counting is initialized.


For monitoring the cell voltage, in the cell monitoring term t_{MON} =50ms(typ), cell balancing switch is automatically turned-off. The cell balancing switch is turned on during the call balancing term t_{BAL} =350ms(typ).

If the cell voltage of which cell balancing switch is turned-on is decrease below cell balance release voltage V_{CBR} , cell balancing switch is turned off.

This cell balancing is operated independently each other.


If the connected cells is less then five, the cell balancing term is as much as the connected cells.

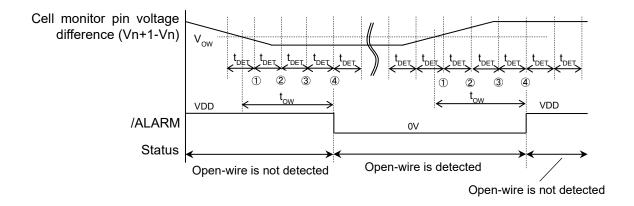

Cell balancing operation is shown below.

ullet In case if the cell balancing release threshold V_{CBR} > overvoltage release threshold V_{OVR}

Cell balancing is executed at cells whose voltage is between over voltage detection threshold V_{OV} and cell balancing detection threshold V_{CB} .

• In case if the overvoltage release threshold V_{OVR} > cell balancing release threshold V_{CBR}

When the charger is connected, charging and discharging by cell balancing is repeated. When the charger is removed, the cell monitor voltage difference (Vn+1-Vn) will settle in cell balancing release threshold V_{CBR} .

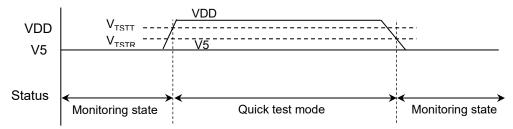

Open-wire detection function (In case if the open-wire detection delay time = 3 detection cycles)

After power-on, cell voltage monitoring is started with cell voltage monitoring cycle of t_{DET} =400ms(typ). When any one or more battery cell voltages reach or below the open-wire detection threshold V_{OW} for series four times. It detects open-weire state. And if /ALARM output type is CMOS output, /ALARM pin output changes from "H" level to "L" level.

If the state in which voltage of all cell is higher than open-wire detection threshold $V_{\rm OW}$ is detected for once, detection delay time counting is initialized.

After the open-wire detection, if the state in which cell voltage of all cell is higher than open-wire detection threshold V_{OW} is detected for series four times, and if /ALARM output type is CMOS output, /ALARM pin output changes from "L" level to "H" level.

If the state in which cell voltage of one or more cell is lower than open-wire detection threshold $V_{\rm OW}$ is detected for once, detection delay time counting is initialized.


Quick test mode

In the Quick test mode, cell voltage monitoring cycle is 100ms(typ), cell balancing term is 50ms(typ), overvoltage/cell balancing detection delay time and open-wire detection/release delay time are set shorter than one detection cycle..

If the voltage of VDD pin is more than 10V higher than V5 pin, the state changes into this quick test mode.

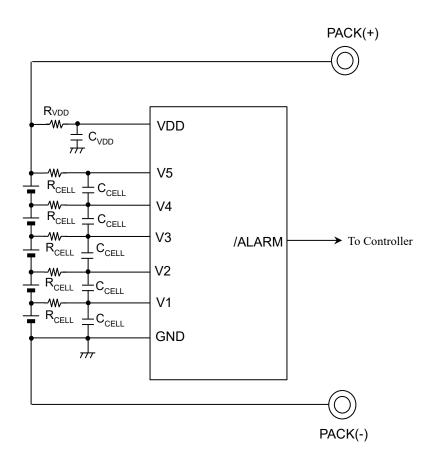
For recovering from quick test mode to normal mode, set the difference voltage of V5 and VDD pin lower than 3V".

This test mode can decrease the test time after board mounting.

 Redefinition of overvoltage / release voltage, cell balancing detection / release voltage Setting Range and Step

The threshold for Overvoltage detection, Overvoltage Release voltage, Cell Balancing Threshold, and Cell Balancing Release voltage are ROM code selectable per this table. Since some combinations are unavailable, contact us for details.

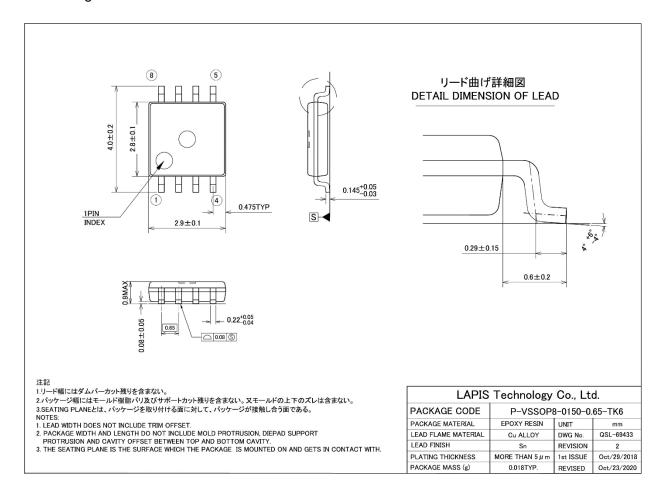
Detection voltage	Setting range	Step voltage
Overvoltage detection threshold Vov	4.0V to 4.4V	5mV
Overvoltage release threshold Vovr	V _{OV} -(0 to 200mV)	10mV
Cell balancing detection threshold V _{CB}	4.0V to 4.4V	5mV
Cell balancing release threshold V _{CBR}	V _{CB} -(0 to 200mV)	10mV


 Redefinition of overvoltage / cell balancing Detection Delay time and open-wire Detection/Relase Delay Time Range

The overvoltage detection delay time and open-wire detection/release delay time are ROM code selectable per these tables.

Delay time		Settable time (detection cycle)									Unit				
Overvoltage	0	1	2	3	4	5	6	7	8	9	10	12	13	14	
detection delay	to	to	to	to	T0	to	to	to	to	to	to	to	to	to	cycle
time	1	2	3	4	5	6	7	8	9	10	11	13	14	15	
cell balancing	0	1	2	3	4	5	6	7	8	9	10	12	13	14	
detection delay	to	to	to	to	T0	to	to	to	to	to	to	to	to	to	cycle
time	1	2	3	4	5	6	7	8	9	10	11	13	14	15	
Open-wire	0	1	2	3	4	5	6	7	8	9	10	12	13	14	
detection/relea	to	to	to	to	T0	to	to	to	to	to	to	to	to	to	cycle
se delay time	1	2	3	4	5	6	7	8	9	10	11	13	14	15	

Delay time	Settable time (monitoring cycle=400ms)									Unit					
Overvoltage	0	0.4	8.0	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	
detection delay	to	to	to	to	to	to	to	to	to	to	to	to	to	to	sec
time	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.0	3.6	4.0	4.4	4.8	5.2	5.6	
cell balancing	0	0.4	8.0	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	
detection delay	to	to	to	to	to	to	to	to	to	to	to	to	to	to	sec
time	0.4	8.0	1.2	1.6	2.0	2.4	2.8	3.0	3.6	4.0	4.4	4.8	5.2	5.6	
Open-wire	0	0.4	8.0	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8	5.2	
detection/relea	to	to	to	to	to	to	to	to	to	to	to	to	to	to	sec
se delay time	0.4	8.0	1.2	1.6	2.0	2.4	2.8	3.0	3.6	4.0	4.4	4.8	5.2	5.6	


■ Application Circuit Example (5-cell system)

■ Recommended values for External Components

Component	Recommended					
	Value					
R_{VDD}	1kΩ					
C _{VDD}	4.7μF					
RCELL	51Ω					
C _{CELL}	0.1μF					

■ Package Dimensions

Caution regarding surface mount type packages

Surface mount type packages are susceptible to heat applied in solder reflow and moisture absorbed during storage. Please contact your local ROHM sales representative for recommended mounting conditions (reflow sequence, temperature and cycles) and storage environment.

■ Revision History

		Pa	ige			
Document No.	Issue date	Before	After	Revision Description		
		rvision	revision			
FEDL5206-01	2020.11.27	_	_	First edition		
FEDL5206-02	Jan. 9, 2024	1	1	Add Application Part number		
		16	16	Add Notes		

Notes

- 1) When using LAPIS Technology Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings*1, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.
 - *1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.
- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) LAPIS Technology intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a LAPIS Technology representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using LAPIS Technology Products, please confirm the latest information with a ROHM sales office. LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document, however, LAPIS Technology shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.
- 7) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 8) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 10) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2020 – 2024 LAPIS Technology Co., Ltd.

LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/

LTSZ08023 • 01 • 002