

8-bit Microcontroller with a Built-in LCD driver

GENERAL DESCRIPTION

This LSI is a high-performance 8-bit CMOS microcontroller into which peripheral circuits, such as synchronous serial port, UART, RC oscillation type A/D converter, and LCD driver, are incorporated around LAPIS Semiconductor-original 8-bit CPU nX-U8/100. ML610Q461 /ML610Q462/ML610Q463 operates in both high/low-speed mode and power-saving mode, it is most suitable for battery operated products.

FEATURES

- CPU
 - 8-bit RISC CPU (CPU name: nX-U8/100)
 - Instruction system: 16-bit instructions
 - Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on
 - On-Chip debug function
 - Minimum instruction execution time 30.5 µs (@32.768 kHz system clock) 2µs (@500kHz system clock) 0.5µs(@2MHz system clock)
- Internal memory
 - Internal 16KByte Flash ROM (8K×16 bits) (including unusable 1K Byte TEST area)
 - Internal 1KByte Data RAM (1024×8 bits)
- Interrupt controller
 - 1 non-maskable interrupt sources
 - Internal source: 1 (Watch dog timer)
 - 17 maskable interrupt sources
 Internal sources: 12 (SSIO0, Timer0, Timer1, Timer2, Timer3, UART0, RC-A/D converter, PWM0, TBC128Hz, TBC32Hz, TBC16Hz, TBC2Hz)
 External sources: 5 (P00, P01, P02, P03, P04)
- Time base counter
 - Low-speed time base counter ×1 channel
 Frequency compensation (Compensation range: Approx. –488ppm to +488ppm. Compensation accuracy: Approx. 0.48ppm)
 - High-speed time base counter ×1 channel
- Watchdog timer
 - Non-maskable interrupt and reset
 - Free running
 - Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s)

ML610Q461/ML610Q462/ML610Q463

• Timers

- 8 bits × 4 channels (Timer0-3: 16-bit x 2 configuration available by using Timer0-1 or Timer2-3)
- Clock frequency measurement mode (in one channel of 16-bit configuration using Timer2-3)
- Capture
 - Time base capture \times 2 channels (4096 Hz to 32 Hz)
- PWM
 - Resolution 16 bits \times 1 channel

• Synchronous serial port

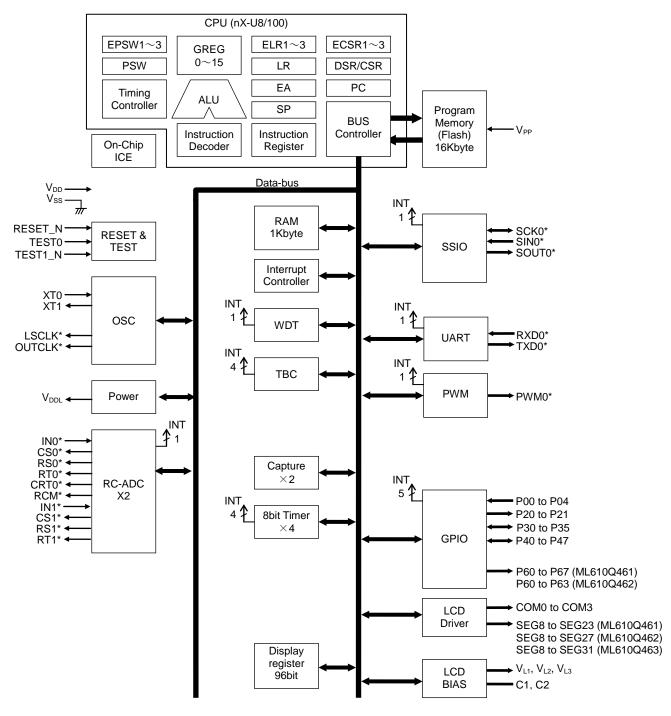
- Master/slave selectable × 1 channel
- LSB first/MSB first selectable
- 8-bit length/16-bit length selectable
- UART
 - Half-Duplex Communication
 - TXD/RXD × 1 channel
 - Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
 - Positive logic/negative logic selectable
 - Built-in baud rate generator
- RC oscillation type A/D converter
 - 16-bit counter
 - Time division \times 2 channels
- General-purpose ports
 - Input-only port × 5 channels (including secondary functions)
 - Output-only port
 - ML610Q461 : 10 channels (including secondary functions)
 - ML610Q462 : 6 channels (including secondary functions)
 - ML610Q463 : 2 channels (including secondary functions)
 - Input/output port × 14 channels (including secondary functions)
- LCD driver
 - The number of segments
 - ML610Q461 : 64 dots max. (16seg×4com)
 - ML610Q462 : 80 dots max. (20seg×4com)
 - ML610Q463 : 96 dots max. (24seg×4com)
 - 1/1 to 1/4 duty
 - -1/2, 1/3 bias (built-in bias generation circuit)
 - Frame frequency selecable: approx. 64Hz, 73Hz, 85Hz, and 102Hz
 - Bias voltage multiplying clock selectable (8 types)
 - LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
- Reset
 - Reset through the RESET_N pin
 - Power-on reset generation when powered on
 - Reset when oscillation stop of the low-speed clock is detected
 - Reset by the watchdog timer (WDT) overflow
- Clock
 - Low-speed clock: Crystal oscillation (32.768 kHz)
 - (This LSI can not guarantee the operation withoug low-speed crystal oscillation clock)
 - High-speed clock: Built-in RC oscillation (500 kHz, 2MHz)

• Power management

- HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
- STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
- High-speed Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8 of the oscillation clock)
- Block Control Function: Resets and completely turns circuits of unused peripherals off.
- Guaranteed operating range
 - Operating temperature: -20°C to +70°C
 - Operating voltage: $V_{DD} = 1.25V$ to 3.6V

• Product name — Supported Function

The line-up of the ML610Q461 ,the ML610Q462 and the ML610Q463 are below.

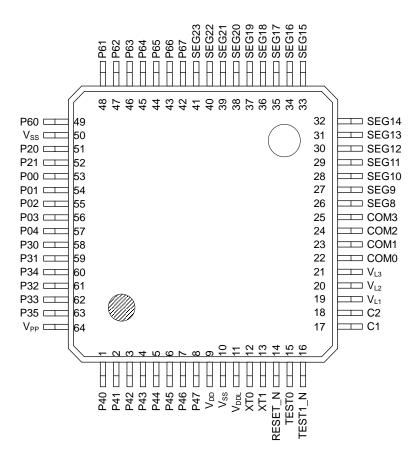

- 64-Pin plastic TQFP -	ROM type	Operating temperature	Product availability	
ML610Q461-xxxTB	Flash ROM	-20°C to +70°C	Yes	
ML610Q462-xxxTB	Flash ROM	-20°C to +70°C	Yes	
ML610Q463-xxxTB	Flash ROM	-20°C to +70°C	Yes	

xxx:ROM code number (xxx of the blank product is NNN) Q:Flash ROM version TB:TQFP

BLOCK DIAGRAM

Block Diagram of ML610Q461/ML610Q462/ML610Q463

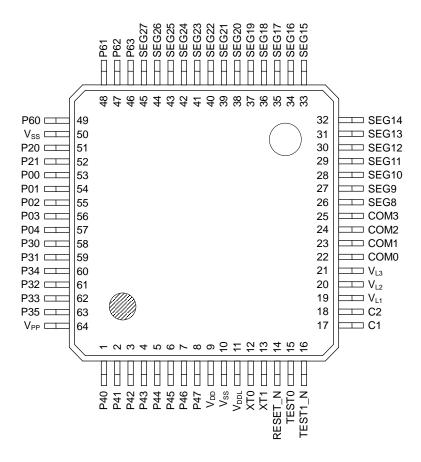
Figure 1 show the block diagram of the ML610Q461/ML610Q462/ML610Q463.



"*" indicates the secondary or tertiary function of each port.

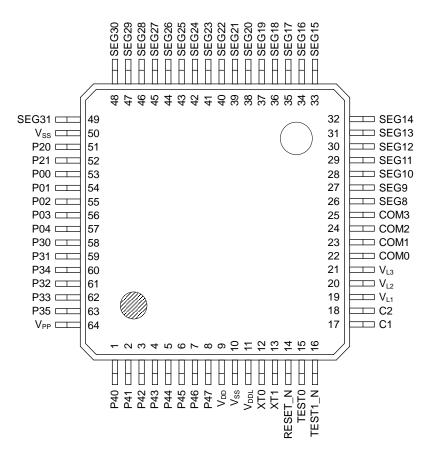
Figure 1 ML610Q461/ML610Q462/ML610Q463 Block Diagram

PIN CONFIGURATION


ML610Q461 TQFP64 Pin Layout

Note: The assignment of the P30 to P35 are not in order.

Figure 2 ML610Q461 TQFP64 Pin Configuration


ML610Q462 TQFP64 Pin Layout

Note: The assignment of the P30 to P35 are not in order.

Figure 3 ML610Q462 TQFP64 Pin Configuration

ML610Q463 TQFP64 Pin Layout

Note: The assignment of the P30 to P35 are not in order.

Figure 4 ML610Q463 TQFP64 Pin Configuration

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

PIN LIST

		F	Primary function	S	econdarv fu	Inctio	n or Tertiary function
PIN No.	Pin name	I/O	Function	Secondary /Tertiary	Pin name	I/O	Function
10 50	Vss	—	Negative power supply pin	_			—
9	V _{DD}		Positive power supply pin				
11	V _{DDL}		Power supply pin for internal logic (internally generated)				—
64	V _{PP}	—	Power supply pin for Flash ROM			—	
19	V _{L1}		Power supply pin for LCD bias (internally generated or connected to positive power supply pin) ^(*1)	_	_		_
20	V _{L2}	—	Power supply pin for LCD bias (internally generated or connected to positive power supply pin) ^(*1)	_	_		_
21	V _{L3}	—	Power supply pin for LCD bias (internally generated)	_	_	_	—
17	C1	—	Capacitor connection pin for LCD bias generation			—	_
18	C2	—	Capacitor connection pin for LCD bias generation	_	_	—	—
15	TEST0	I/O	Test pin	—	—		—
16	TEST1_N	I	Test pin			_	
14	RESET_N	Ι	Reset input pin				
12	XT0	1	Low-speed clock oscillation pin				
13	XT1	0	Low-speed clock oscillation pin	_	_		
53	P00/EXI0/ CAP0	I	Input port, External interrupt, Capture 0 input		_		—
54	P01/EXI1/ CAP1	I	Input port, External interrupt, Capture 1 input	_	_	_	_
55	P02/EXI2/ RXD0	I	Input port, External interrupt, UART0 received data				—
56	P03/EXI3	Ι	Input port, External interrupt				_
57	P04/EXI4/ T02P0CK	I	Input port, Timer 0/Timer 2/PWM0 external clock input External interrupt				—
51	P20/LED0	0	Output port	Secondary	LSCLK	0	Low-speed clock output
52	P21/LED1	0	Output port	Secondary	OUTCLK	0	High-speed clock output
58	P30	I/O	Input/output port	Secondary	IN0	Ι	RC type ADC0 oscillation input pin
59	P31	I/O	Input/output port	Secondary	CS0	0	RC type ADC0 reference capacitor connection pin
60	P34	I/O	Input/output port	Secondary	RCT0	0	RC type ADC0 resistor/capacitor sensor connection pin
61	P32	I/O	Input/output port	Secondary	RS0	0	RC type ADC0 reference resistor connection pin
62	P33	I/O	Input/output port	Secondary	RT0	0	RC type ADC0 measurement resistor sensor connection pin
63	P35	I/O	Input/output port	Secondary	RCM	0	RC type ADC oscillation monitor

PIN	Primary function			Secondary function or Tertiary function			
No.	Pin name	I/O	Function	Secondary /Tertiary	Pin name	I/O	Function
1	P40	I/O	Input/output port	Secondary	—		
1	F40	1/0		Tertiary	SIN0	Ι	SSIO0 data input
				Secondary	—		—
2	P41	I/O	Input/output port	Tertiary	SCK0	I/O	SSIO0 synchronous clock input/output
3	P42	I/O	Innut/outnut nort	Secondary	RXD0		UART data input
3	P42	1/0	Input/output port	Tertiary	SOUT0	0	SSIO0 data output
4	P43	I/O	Input/output port	Secondary	TXD0	0	UART data output
4	F43	Ņ		Tertiary	PWM0	0	PWM0 output
5	P44/ T02P0CK	I/O	Input/output port, Timer 0/Timer 2/PWM0 external	Secondary	IN1	Ι	RC type ADC1 oscillation input pin
	TUZFUCK		clock input	Tertiary	SIN0	—	SSIO0 data input
6	P45/T13CK	I/O	Input/output port, Timer 1/Timer 3 external clock	Secondary	CS1	0	RC type ADC1 reference capacitor connection pin
0	140/11001	10	input	Tertiary	SCK0	I/O	SSIO0 synchronous clock input/output
7	P46	I/O	Input/output port	Secondary	RS1	0	RC type ADC1 reference resistor connection pin
				Tertiary	SOUT0	0	SSIO0 data output
8	P47	I/O	Input/output port	Secondary	RT1	0	RC type ADC1 measurement resistor sensor connection pin

ML610Q461/ML610Q462/ML610Q463

PIN		Pr	imary function	Se	condary fu	Inctior	n or Tertiary function
No.	Pin name	I/O	Function	Secondary/ Tertiary	Pin name	I/O	Function
22	COM0	0	LCD common pin	—	_		
23	COM1	0	LCD common pin	_	_		
24	COM2	0	LCD common pin	—	_	_	
25	COM3	0	LCD common pin	—	_		
26	SEG8	0	LCD segment pin	_	_	_	
27	SEG9	0	LCD segment pin	—	_		—
28	SEG10	0	LCD segment pin	—	_		
29	SEG11	0	LCD segment pin	—	_		—
30	SEG12	0	LCD segment pin	—	_		
31	SEG13	0	LCD segment pin	—	_		
32	SEG14	0	LCD segment pin	—	_		
33	SEG15	0	LCD segment pin	—	_		
34	SEG16	0	LCD segment pin	_	_	_	
35	SEG17	0	LCD segment pin	—		—	
36	SEG18	0	LCD segment pin	_	_	_	
37	SEG19	0	LCD segment pin	—		_	
38	SEG20	0	LCD segment pin	—	_	—	
39	SEG21	0	LCD segment pin	—	_		
40	SEG22	0	LCD segment pin	_	_	_	
41	SEG23	0	LCD segment pin	—	_		
42	P67 ^(*2)	0	Output port	_	_	_	
42	SEG24 ^{(*3) (*4)}	0	LCD segment pin	_	_	_	
40	P66 ^(*2)	0	Output port	_	_	—	_
43	SEG25 ^{(*3) (*4)}	0	LCD segment pin	_	_	—	_
44	P65 ^(*2)	0	Output port	—		_	
44	SEG26 ^{(*3) (*4)}	0	LCD segment pin	_	_	_	
45	P64 ^(*2)	0	Output port	—	_	—	
45	SEG27 ^{(*3) (*4)}	0	LCD segment pin	—	_	—	
46	P63 ^(*2) (*3)	0	Output port	_			
40	SEG28 ^(*4)	0	LCD segment pin	_	_	—	_
47	P62 ^(*2) (*3)	0	Output port	—	_	—	—
47	SEG29 ^(*4)	0	LCD segment pin	—	_	—	_
40	P61 ^(*2) (*3)	0	Output port	_		—	
48	SEG30 ^(*4)	0	LCD segment pin		_	_	_
40	P60 ^(*2) (*3)	0	Output port			—	_
49	SEG31 ^(*4)	0	LCD segment pin		_	—	

^(*1) Internally generated, or connect to either positive power supply pin (V_{DD}) or power supply pin for internal logic (V_{DDL}). For details, see "Chapter 20 LCD Drivers. In the user's manual"
 ^(*2) For ML610Q461. ^(*3) For ML610Q462. ^(*4) For ML610Q463.

ML610Q461/ML610Q462/ML610Q463

PIN DESCRIPTION

Pin name	I/O	Description	Primary/ Secondary/ Tertiary	Logic
System				
RESET_N	I	Reset input pin. When this pin is set to a "L" level, system reset mode is set and the internal section is initialized. When this pin is set to a "H" level subsequently, program execution starts. A pull-up resistor is internally connected.	_	Negative
XT0	I	Crystal connection pin for low-speed clock.		—
XT1	0	A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to this pin. Capacitors CDL and CGL are connected across this pin and V_{SS} .	—	—
LSCLK	0	Low-speed clock output pin. This pin is used as the secondary function of the P20 pin.	Secondary	_
OUTCLK	0	High-speed clock output pin. This pin is used as the secondary function of the P21 pin.	Secondary	—
General-purpo	ose in	put port		
P00-P04	I	General-purpose input port. Since these pins have secondary functions, the pins cannot be used as a port when the secondary functions are used.	Primary	Positive
General-purpo	ose ou	utput port		
P20-P21	0	General-purpose output port. Since these pins have secondary functions, the pins cannot be used as a port when the secondary functions are used.	Primary	Positive
General-purpo	ose in	put/output port		
P30-P35	I/O	General-purpose input/output port. Since these pins have secondary functions, the pins cannot be used as a port when the secondary functions are used.	Primary	Positive
P40-P47	I/O	General-purpose input/output port. Since these pins have secondary functions, the pins cannot be used as a port when the secondary functions are used.	Primary	Positive
P60-P63	0	General-purpose output port. Incorporated only into ML610Q461/ML610Q462, and not into ML610Q463.	Primary	Positive
P64-P67	0	General-purpose output port. Incorporated only into ML610Q461, and not into ML610Q462/ ML610Q463.	Primary	Positive

ML610Q461/ML610Q462/ML610Q463

Pin name	I/O	Description	Primary/ Secondary/ Tertiary	Logic
UART				
TXD0	0	UART data output pin. This pin is used as the secondary function of the P43 pin.	Secondary	Positive
RXD0	I	UART data input pin. This pin is used as the secondary function of the P42 or the primary function of the P02 pin.	Primary/ Secondary	Positive
Synchronous	serial	(SSIO)		
SCK0	I/O	Synchronous serial clock input/output pin. This pin is used as the tertiary function of the P41 or P45 pin.	Tertiary	—
SIN0	Ι	Synchronous serial data input pin. This pin is used as the tertiary function of the P40 or P44pin.	Tertiary	Positive
SOUT0	0	Synchronous serial data output pin. This pin is used as the tertiary function of the P42 or P46 pin.	Tertiary	Positive
PWM				
PWM0	0	PWM0 output pin. This pin is used as the tertiary function of the P43 or P34 pin.	Tertiary	Positive
External inter	rrupt			
EXI0-4	I	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the P00-P04 pins.	Primary	Positive/ negative
Capture				
CAP0	Ι	Capture trigger input pins. The value of the time base counter is captured in the register synchronously with the interrupt edge selected by software.	Primary	Positive/ negative
CAP1	CAP1 These pins are used as the primary functions of the P00 pin(CAP0) and P01 pin(CAP1).		Primary	Positive/ negative
LED drive				
LED0-1	0	Nch open drain output pins to drive LED.	Primary	Positive/ negative

ML610Q461/ML610Q462/ML610Q463

			Primary/	
Pin name	I/O	Description	Secondary/	Logic
	., C		Tertiary	_09.0
RC oscillation	n type	A/D converter		
INO	I	Channel 0 oscillation input pin. This pin is used as the secondary function of the P30 pin.	Secondary	
CS0	0	Channel 0 reference capacitor connection pin. This pin is used as the secondary function of the P31 pin.	Secondary	
RCT0	0	Resistor/capacitor sensor connection pin of Channel 0 for measurement. This pin is used as the secondary function of the P33 pin.	Secondary	
RS0	0	This pin is used as the secondary function of the P32 pin which is the reference resistor connection pin of Channel 0.	Secondary	
RT0	0	Resistor sensor connection pin of Channel 0 for measurement. This pin is used as the secondary function of the P34 pin.	Secondary	_
RCM	0	RC oscillation monitor pin. This pin is used as the secondary function of the P35 pin.	Secondary	_
IN1	Ι	Oscillation input pin of Channel 1. This pin is used as the secondary function of the P44 pin.	Secondary	_
CS1	0	Reference capacitor connection pin of Channel 1. This pin is used as the secondary function of the P45 pin.	Secondary	_
RS1	0	Reference resistor connection pin of Channel 1. This pin is used as the secondary function of the P46 pin.	Secondary	_
RT1	0	Resistor sensor connection pin for measurement of Channel 1. This pin is used as the secondary function of the P47 pin.	Secondary	—
LCD drive sig	inal			
COM0-3	0	Common output pins.	—	_
SEG8-23	0	Segment output pins.	—	_
SEG24-27	0	Segment output pins. Incorporated into ML610Q462/ML610Q463, not into ML610Q461.		_
SEG28-31	0	Segment output pins. Incorporated into ML610Q463, not into ML610Q461/ML610Q462.	—	—
LCD driver po	ower s	upply		
V _{L1}	—	Power supply pins for LCD bias (internally generated or positive power supply	—	_
V _{L2}	—	pin connected). Depending on LCD Bias setting and V_{DD} voltage level, V_{DD}		—
V _{L3}	—	or V_{DDL} or capacitor is connected. For details of the connection method, see user's manual.	—	
C1	—	Power supply pins for LCD bias (internally generated). Capacitors C12 is		—
C2		connected between C1 and C2.	—	—
For testing	1		· · · ·	
TEST0	I/O	Input/output pin for testing. A pull-down resistor is internally connected.		—
TEST1_N	I	Input pin for testing. A pull-up resistor is internally connected.	—	_
Power supply	'		, т	
Vss	—	Negative power supply pin.	-	—
V _{DD}	-	Positive power supply pin for I/O, internal regulator, battery low detector, and power-on reset.	—	
V _{DDL}	-	Positive power supply pin (internally generated) for internal logic. Capacitor CL (see measuring circuit 1) is connected between this pin and V_{SS} .	—	_
V _{PP}		Power supply pin for programming Flash ROM. A pull-down resistor is internally connected.	—	—

TERMINATION OF UNUSED PINS

Table 2 shows methods of terminating the unused pins.

Pin	Recommended pin termination
V _{PP}	Open
V _{L1} , V _{L2} , V _{L3}	Open
C1, C2	Open
RESET_N	Open
TEST0	Open
TEST1_N	Open
P00 to P04	V _{DD} or V _{SS}
P20 to P21	Open
P30 to P35	Open
P40 to P47	Open
P60 to P67	Open
COM0 to 3	Open
SEG8 to 31	Open

Table 2 Termination of Unused Pins

Note:

It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or the output mode since the supply current may become excessively large if the pins are left open in the high impedance input setting.

FEDL610Q461-03

LAPIS Semiconductor Co., Ltd.

ML610Q461/ML610Q462/ML610Q463

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

				$(V_{SS} = 0)$
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V _{DD}	Ta = 25°C	-0.3 to +4.6	V
Power supply voltage 2	V _{PP}	Ta = 25°C	-0.3 to +9.5	V
Power supply voltage 3	V _{DDL}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 4	V _{L1}	Ta = 25°C	-0.3 to +2.0	V
Power supply voltage 5	V _{L2}	Ta = 25°C	-0.3 to +4.0	V
Power supply voltage 6	V _{L3}	Ta = 25°C	-0.3 to +6.0	V
Input voltage	V _{IN}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT}	Ta = 25°C	–0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	Port3–6, Ta = 25°C	-12 to +11	mA
Output current 2	I _{OUT2}	Port2, Ta = 25°C	-12 to +20	mA
Power dissipation	PD	Ta = 25°C	0.9	W
Storage temperature	T _{STG}		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

				$(V_{SS} = 0V)$
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}		-20 to +70	°C
		$f_{OP} = 30k \text{ to } 625kHz$	1.25 to 3.6	Ň
Operating voltage	V _{DD}	f_{OP} = 30k to 2.5MHz	1.8 to 3.6	V
	£	V _{DD} = 1.25 to 3.6V	30k to 625k	Hz
Operating frequency (CPU)	f _{OP}	V _{DD} = 1.8 to 3.6V	30k to 2.5M	HZ
Capacitor externally connected to V_{DDL} pin	CL	_	0.47±30%	μF
Capacitors externally connected to $V_{L1, 2, 3}$ pins	С _{а, b, c}	—	0.1±30%	μF
Capacitors externally connected across C1 and C2 pins	C ₁₂	_	0.47±30%	μF

CLOCK GENERATION CIRCUIT OPERATING CONDITIONS

						(100 01)
Parameter	Cumhal				11-14	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-speed crystal oscillation frequency	f _{XTL}	_	—	32.768k	_	Hz
Recommended equivalent series resistance value of low-speed crystal oscillation	R∟				40k	Ω
Low-speed crystal oscillation	C /C	C _L =6pF of crystal oscillation		12		р Г
external capacitor	C _{DL} /C _{GL}	C _L =9pF of crystal oscillation		18		pF

 $(V_{SS} = 0V)$

FEDL610Q461-03

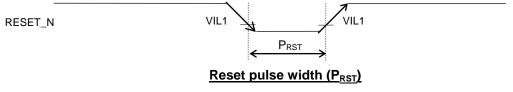
ML610Q461/ML610Q462/ML610Q463

OPERATING CONDITIONS OF FLASH ROM

				(V _{SS} = 0√
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}	At write/erase	0 to +40	°C
· ·	V _{DD}	At write/erase ^{*1}	2.75 to 3.6	
Operating voltage	V _{DDL}	At write/erase ^{*1}	2.5 to 2.75	V
	V _{PP}	At write/erase ^{*1}	7.7 to 8.3	
erase/program cycles	C _{EP}		80	cycles
Data retention	Y _{DR}		10	years

¹: Those voltages must be supplied to V_{DDL} pin and V_{PP} pin when programming and eraseing Flash ROM. V_{PP} pin has an internal pulldown resister.

DC CHARACTERISTICS (1/5)


 $(V_{DD} = 1.25 \text{ to } 3.6 \text{V}, V_{SS} = 0 \text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specified})$

Doromotor	Symbol	Condition Rating Min. Typ.		Rating		Unit	Measuring	
Parameter	Symbol			Min.	Typ. Max.		Unit	circuit
		V _{DD} = 1.25	Ta = 25°C	Typ. –10%	500	Тур. +10%	kU-	
500kHz/2MHz RC oscillation	£	to 3.6V	*3	Тур. –25%	500	Тур. +25%	kHz	
frequency	f _{RC}	V _{DD} = 1.80	Ta = 25°C	Тур. –10%	2.0	Тур. +10%		MHz
		to 3.6V	*3	Тур. –25%	2.0	Тур. +25%		
Low-speed crystal oscillation start time* ²	T _{XTL}				0.6	2	S	1
500kHz/2MHz RC oscillation start time	T _{RC}	_				0.3	μS	
Low-speed oscillation stop detect time ^{*1}	T _{STOP}		_		16.4	41	ms	
Reset pulse width	P _{RST}		—	200				
Reset noise elimination pulse width	P _{NRST}		_			0.3	μS	
Power-on reset activation power rise time	T _{POR}		_		_	10	ms	

*¹: When low-speed crystal oscillation stops for a duration more than the low-speed oscillation stop detect time, the system is reset to shift to system reset mode.

*²: Use 32.768KHz Crystal resonator DT-26 (Load capacitance 6pF) (made by KDS:DAISHINKU CORP.) is used $(C_{GL}=C_{DL}=12pF).$

 $*^3$: Recommended operating temperature (Ta = -20 to +70°C) [Reset pulse width]

[Power-on reset activation power rise time]

Power-on reset activation power rise time (T_{POR})

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

DC CHARACTERISTICS (2/5)

		$(V_{DD} = 1.25 \text{ to } 3.6 \text{V}, \text{V}_{SS})$	= 0V, Ta	= -20 to ·	+70°C, ur	nless othe	rwise specified)
Deremeter	Symbol	Condition		Rating		Unit	Measuring
Parameter S	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
	V	$f_{OP} = 30k \text{ to } 625kHz$	1.1	1.2	1.3		
V _{DDL} voltage	V _{DDL}	f_{OP} = 30k to 2.5MHz	1.35	1.5	1.65		
V _{DDL} temperature deviation * ¹	ΔV_{DDL}	$V_{DD} = 3.0V$	_	-1		mV/°C	1
V _{DDL} voltage dependency * ¹	ΔV_{DDL}			5	20	mV/V	

*¹:V_{DDL} can not exceed V_{DD} level. The maximum V_{DDL} becomes V_{DD} level when the V_{DDL} calculated by the temperature deviation and voltage dependency is going to exceed the V_{DD} level.

ML610Q461/ML610Q462/ML610Q463

DC CHARACTERISTICS (3/5)

				(V _{DD} =	= 3.0V, V	$V_{\rm SS} = 0V$, Ta = −2	0 to +70°C)	
Parameter	Sumbol	Condition			Rating			Measuring	
Parameter	Symbol	Condition	Condition		Тур.	Max.	Unit	circuit	
Supply current 1	IDD1	CPU: In STOP state. Low-speed/high-speed	Ta= 25°C	_	0.4	0.8	μA		
		RC500kHz/2MHz oscillation: stopped.	*5	_		8	μ		
Supply current 2	IDD2	CPU: In HALT state (LTBC and WDT are Operating). ^{*3*4} High-speed 500kHz/2MHz	Ta= 25°C	_	0.9	1.8	μA		
		oscillation: Stopped. LCD and BIAS circuits: Operating. * ⁶	*5			9	μ		
Currate surrout 2			CPU: In 32.768kHz operating state.* ¹ * ³	Ta= 25°C	_	5	8	•	1
Supply current 3	IDD3	High-speed 500kHz/2MHz oscillation: Stopped. LCD and BIAS circuits: Operating. * ²	*2			15	μA		
Supply current	IDD4-1	CPU: In RC 500kHz operating state.	Ta= 25°C		70	100	•		
4-1	IDD4-1	LCD and BIAS circuits: Operating. * ²	*5			120	μA		
Supply current	Supply current IDD4-2	CPU: In RC 2MHz operating state.	Ta= 25°C	_	280	350	μA		
4-2 IDD4		LCD and BIAS circuits: Operating. * ²				400	h		

*¹: When the CPU operating rate is 100% (No HALT state).

*²: All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz, Bias voltage multiplying clock: 1/128 LSCLK (256Hz) *³ : Use 32.768KHz Crystal resonator DT-26 (Load capacitance 6pF) (made by KDS:DAISHINKU CORP.) is used (C_{GL}=C_{DL}=6pF)

*⁴ : Significant bits of BLKCON0~BLKCON4 registers except DLCD bit on BLKCON4 are all "1". *⁵ : Recommended operating temperature (Ta = -20 to $+70^{\circ}$ C)

*6: LCD Stop mode, 1/3 bias, Bias voltage multiplying clock: 1/128 LSCLK (256Hz)

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

DC CHARACTERISTICS (4/5)

Parameter	Symbol	ymbol Condition		Rating	1	Unit	Measuring	
randineter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
Output voltage 1 (P20–P21 Nch	VOH1	IOH1 = -0.5 mA, V _{DD} = 1.8 to 3.6V	V _{DD} -0.5					
open drain mode is Not selected)	VOITI	IOH1 = -0.03mA, V_{DD} = 1.25 to 3.6V V_{DD} -0.3						
(P30–P35) (P40–P47)		IOL1 = +0.5mA, V _{DD} = 1.8 to 3.6V			0.5			
(P60–P67)	VOL1	$IOL1 = +0.1 mA$, $V_{DD} = 1.25 to 3.6 V$			0.3			
Output voltage 2 (P20–P21 Nch open drain mode is selected)	VOL2	IOL2 = +5mA, V _{DD} = 1.8 to 3.6V			0.5			
-	VOH3	IOH4 = -0.05mA, VL1=1.2V	V _{L3} -0.2			V	2	
Output voltage 3	VOML3	IOMH4 = +0.05mA, VL1=1.2V			V _{L2} +0.2			
(COM0 to 3) (SEG8 to 23) ^{*1}	VOML3S	IOM4S = -0.05mA, VL1=1.2V	V _{L2} -0.2					
(SEG8 to 27) ^{*2} (SEG8 to 31) ^{*3}	VOLM3	IOML4 = +0.05mA, VL1=1.2V			V _{L1} +0.2			
	VOLM3S	IOML4S = -0.05mA, VL1=1.2V	V _{L1} -0.2		—			
	VOL3	IOL4 = +0.05mA, VL1=1.2V			0.2			
Output leakage (P20–P21) (P30–P35)	IOOH	VOH = V_{DD} (in high-impedance state)			1	μA	3	
(P40–P47) (P60–P67)	IOOL	VOL = V_{SS} (in high-impedance state)	(in high-impedance state) -1 — —					
Input current 1	IIH1	VIH1 = V _{DD}	0		1			
(RESET_N) (TEST1_N)	IIL1	VIL1 = V _{SS}	-600	-300	-2			
Input current 2	IIH2	VIH1 = V _{DD}	2	300	600			
(TEST0)	IIL2	VIL1 = V _{ss}	-1					
		$VIH3 = V_{DD}$, $V_{DD} = 1.8$ to 3.6V (when pulled-down)	2	30	200			
Input current 3	IIH3	VIH3 = V _{DD} ,V _{DD} = 1.25 to 3.6V (when pulled-down)				μΑ	4	
(P00-P04) (P30-P35)		$UIL3 = V_{SS}, V_{DD} = 1.8 \text{ to } 3.6V$ (when pulled-up) -200 -30 -30 -30 -30		-30	-2			
(P40-P47)	IIL3			-0.01				
	IIH3Z	VIH3 = V_{DD} (in high-impedance state)			1			
-	IIL3Z	VIL3 = V_{SS} (in high-impedance state)	-1					

*1: Characteristics for ML610Q461.

*2: Characteristics for ML610Q462.

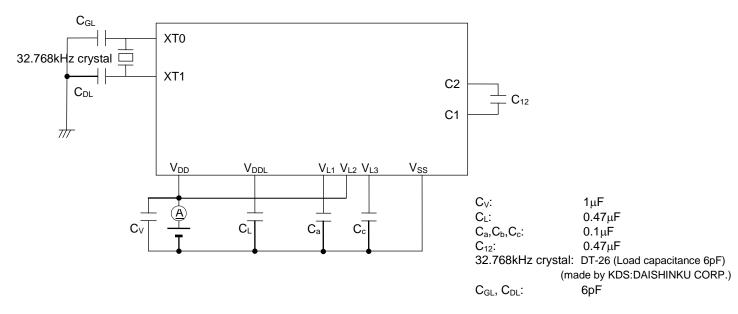
*3: Characteristics for ML610Q463.

FEDL610Q461-03

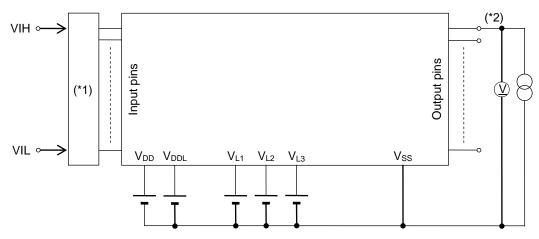
ML610Q461/ML610Q462/ML610Q463

DC CHARACTERISTICS (5/5)

		$(V_{DD} = 1.25 \text{ to } 3.6 \text{V}, \text{V}_{SS})$	= 0V, Ta	= -20 to	+70°C, u	nless oth	erwise specified)	
Devenueter	Ci uma la al	Condition		Rating	1	l lait	Measuring	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
Input voltage 1 (RESET_N) (TEST0, TEST1_N)	VIH1	_	0.7 ×V _{DD}		V _{DD}		_	
(P00–P04) (P30–P35)	VIL1	V _{DD} = 1.8 to 3.6V	0 —		0.3 ×V _{DD}	V	5	
(P40–P47)	VILI	$V_{DD} = 1.25$ to 3.6V	0	—	0.2 ×V _{DD}			
Input pin capacitance (P00–P04) (P30–P35) (P40–P47)	CIN	f = 10kHz $V_{rms} = 50mV$ $Ta = 25^{\circ}C$			5	pF		

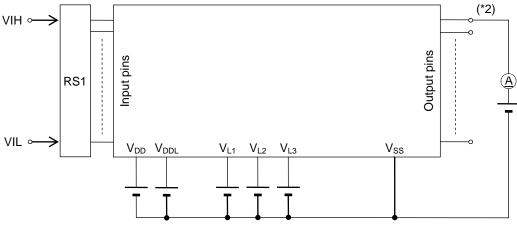

FEDL610Q461-03

LAPIS Semiconductor Co., Ltd.

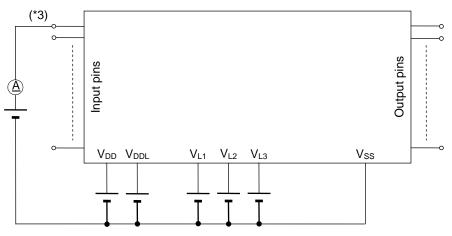

ML610Q461/ML610Q462/ML610Q463

MEASURING CIRCUITS

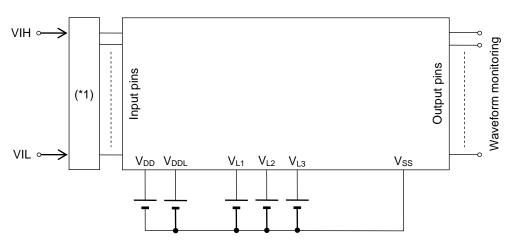
MEASURING CIRCUIT 1


MEASURING CIRCUIT 2

(*1) Input logic circuit to determine the specified measuring conditions.(*2) Measured at the specified output pins.


ML610Q461/ML610Q462/ML610Q463

MEASURING CIRCUIT 3

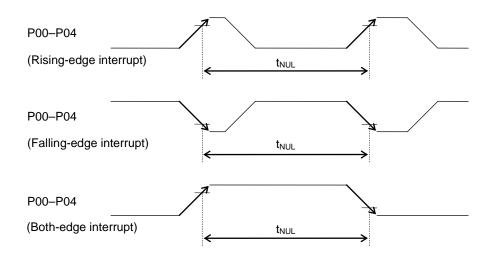

*1: Input logic circuit to determine the specified measuring conditions.*2: Measured at the specified output pins.

MEASURING CIRCUIT 4

*3: Measured at the specified output pins.

MEASURING CIRCUIT 5

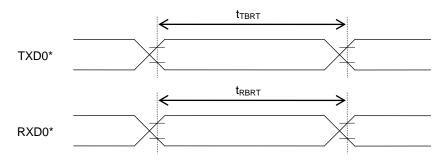
*1: Input logic circuit to determine the specified measuring conditions.


-

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

AC CHARACTERISTICS (External Interrupt)


	(V _D	_D = 1.25 to 3.6V, V _{SS} = 0V, Ta = –20 to +	-70°C, ur	nless oth	erwise sp	ecified)
Deremeter	Symbol Condition			Rating		Linit
Parameter			Min.	Тур.	Max.	Unit
External interrupt disable period	T _{NUL}	Interrupt: Enabled (MIE = 1), CPU: NOP operation System clock: 32.768kHz	76.8		106.8	μs

AC CHARACTERISTICS (Serial Port)

	(V _D	$_{\rm D}$ = 1.25 to 3.6V, V _{SS} = 0V, Ta	= -20 to +7	0°C, unless	otherwise sp	pecified)	
Deveryeter	Currente e l	Condition			1.1		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Transmit baud rate	t _{TBRT}			BRT* ¹		s	
Receive baud rate	t _{RBRT}		BRT* ¹ –3%	BRT* ¹	BRT* ¹ +3%	S	

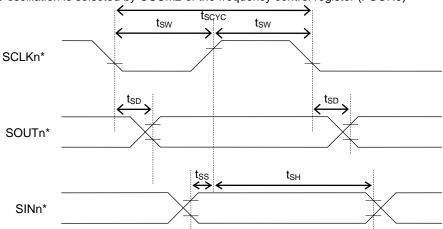
*1: Baud rate period (including the error of the clock frequency selected) set with the serial port baud rate register (SIOBRTL,H) and the serial port mode register 0 (SIOMOD0).

*: Indicates the secondary function of the port.

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

AC CHARACTERISTICS (Synchronous Serial Port)


 $(V_{DD} = 1.25 \text{ to } 3.6\text{V}, V_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{ unless otherwise specified})$

Deremeter	Cumbel.	under a Constituer		Rating			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
SCLKn input cycle		When RC oscillation is 500kHz $*^2$ (V _{DD} = 1.25 to 3.6V)	10				
(slave mode)	tscyc	When RC oscillation is 2MHz $*^3$ (V _{DD} = 1.8 to 3.6V)	2			μS	
SCLKn output cycle (master mode)	tscyc		_	SCLKn*1		S	
SCLKn input pulse width		When RC oscillation is 500kHz $*^2$ (V _{DD} = 1.25 to 3.6V)	4				
(slave mode)	t _{SW}	When RC oscillation is 2MHz $*^3$ (V _{DD} = 1.8 to 3.6V)	04			μS	
SCLKn output pulse width (master mode)	t _{SW}		SCLKn* ¹ ×0.4	SCLKn* ¹ ×0.5	SCLKn* ¹ ×0.6	s	
SOUTn output delay time		When RC oscillation is 500kHz * ² (V _{DD} = 1.25 to 3.6V) output load 10pF		_	500		
(slave mode)	t _{SD}	When RC oscillation is 2MHz * ³ (V_{DD} = 1.8 to 3.6V) output load 10pF			240	ns	
SOUTn output delay time		When RC oscillation is 500kHz * ² (V _{DD} = 1.25 to 3.6V) output load 10pF			500		
(master mode)	t _{SD}	When RC oscillation is 2MHz * ³ (V_{DD} = 1.8 to 3.6V) output load 10pF			240	ns	
SINn input setup time (slave mode)	t _{ss}		80			ns	
SINn input setup time		When RC oscillation is 500kHz $*^2$ (V _{DD} = 1.25 to 3.6V)	500				
(master mode)	t _{SS}	When RC oscillation is 2MHz * ³ (V_{DD} = 1.8 to 3.6V)	240			ns	
		When RC oscillation is 500kHz $*^2$ (V _{DD} = 1.25 to 3.6V)	300				
SINn input hold time	t _{SH}	When RC oscillation is 2MHz $*^{3}$ (V _{DD} = 1.8 to 3.6V)	80			ns	

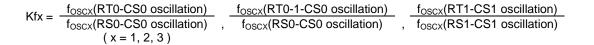
n= 0,1

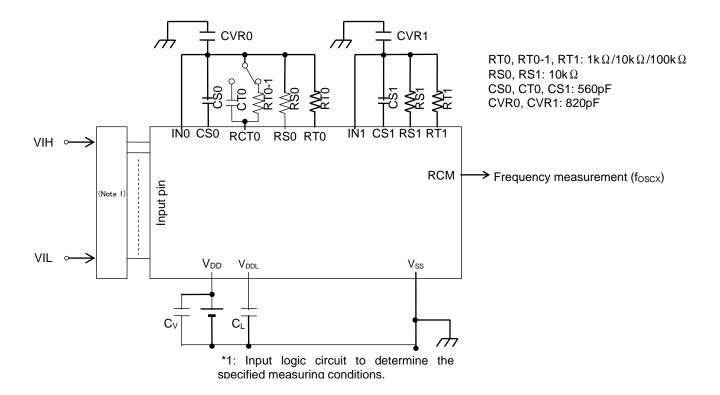
*1: Clock period selected with SnCK3–0 of the serial port n mode register (SIOnMOD1)

*²: When 500kHz RC oscillation is selected by OSCM2 of the frequency control register (FCON0)
 *³: When 2MHz RC oscillation is selected by OSCM2 of the frequency control register (FCON0)

*: Indicates the secondary function of the port (n= 0,1)

FEDL610Q461-03

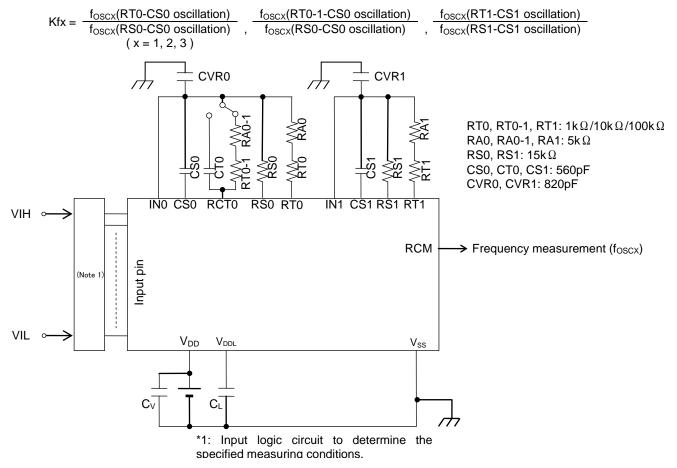

ML610Q461/ML610Q462/ML610Q463


AC CHARACTERISTICS (RC Oscillation A/D Converter)

Condition for V_{DD} =1.8 to 3.6V

(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-20 to +70°C, unless otherwise specified) Rating Parameter Symbol Condition Unit Min. Тур. Max. RS0,RS1,RT0, Oscillation resistor CS0, CT0, CS1≥740pF 1 kΩ ____ RT0-1,RT1 457.3 Resistor for oscillation=1kΩ 525.2 575.1 kHz f_{OSC1} Oscillation frequency Resistor for oscillation=10kΩ 53.48 58.18 62.43 kHz f_{OSC2} $V_{DD} = 3.0V$ Resistor for oscillation=100kΩ 5.43 5.89 6.32 kHz fosc3 RT0, RT0-1, RT1 =1kΩ RS to RT oscillation Kf1 7.972 9.028 9.782 frequency ratio Kf2 RT0, RT0-1, RT1 =10k Ω 0.981 1 1.019 $V_{DD} = 3.0V$ 0.101 Kf3 RT0, RT0-1, RT1 =100kΩ 0.099 0.104 ____

*¹: Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same conditions.



	(V _{DD} =1.25 to 3.6V, V _{SS} =0V, Ta=-20 to +70°C, unless otherwise specified)										
Parameter	Symbol	Condition		Unit							
Falameter	Symbol	Condition	Min.	Тур.	Max.	Unit					
Oscillation resistor	RS0,RS1,RT0, RT0-1,RT1	CS0, CT0, CS1≥740pF	1	—		kΩ					
	fosc1	Resistor for oscillation=6kΩ	81.93	93.16	101.2	kHz					
Oscillation frequency $V_{DD} = 1.5V$	f _{OSC2}	Resistor for oscillation=15k Ω	35.32	38.75	41.48	kHz					
VDD = 1.5 V	f _{OSC3}	Resistor for oscillation=105kΩ	5.22	5.65	6.03	kHz					
RS to RT oscillation	Kf1	RT0, RT0-1, RT1 =1kΩ	2.139	2.381	2.632						
frequency ratio ^{*1}	Kf2	RT0, RT0-1, RT1 =10kΩ	0.973	1	1.028	_					
$V_{DD} = 1.5V$	Kf3	RT0, RT0-1, RT1 =100kΩ	0.142	0.147	0.152	_					
	f _{OSC1}	Resistor for oscillation=6kΩ	85.28	94.58	103.3	kHz					
Oscillation frequency VDD = 3.0V	f _{OSC2}	Resistor for oscillation=15k Ω	35.72	38.87	41.78	kHz					
VBD = 3.0V	fosc3	Resistor for oscillation=105kΩ	5.189	5.622	6.012	kHz					
RS to RT oscillation	Kf1	RT0, RT0-1, RT1 =1kΩ	2.227	2.432	2.626						
frequency ratio ^{*1}	Kf2	RT0, RT0-1, RT1 =10kΩ	0.982	1	1.018						
$V_{DD} = 3.0V$	Kf3	RT0, RT0-1, RT1 =100kΩ	0.141	0.145	0.149						

Condition for VDD=1.25 to 3.6V

*¹: Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same conditions.

Note:

- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise around the node.

- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to the signal.


- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved components may affect to the A/D conversion operation by noise the components itself may have.

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

Package Dimensions

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

FEDL610Q461-03

ML610Q461/ML610Q462/ML610Q463

Revision History

		Pa	ge				
Document No.	Date	Previous	Current	Description			
		Edition	Edition				
FEDL610Q461-01	Oct.10,2013	_	_	Final edition 1			
		All	All	Change header and footer.			
		1-4 6-11 14 15	1-4 8 9	Delete ML610Q462 and ML610Q463			
		17	11				
FEDL610Q461-02	2 Apr. 14, 2015	Apr. 14, 2015	1 3 19-24 27-30	1 3 15-20 23-26	Delete wide range temperature version (P version)		
							3
		_	13	Add CLOCK GENERATION CIRCUIT OPERATING CONDITIONS			
		20	14	Change "RESET" to "Reset pulse width (P_{RST}) " and "Power-on reset activation power rise time (T_{POR})".			
		25	25	Change in the Package figure			
		34	27	Change description in Notes.			
		All	All	Change header.			
FEDL610Q461-03	July.28,2015	1-4 8-9 11	1-4 6-7 10-11 13	Add ML610Q462 and ML610Q463			

Notes

- 1) The information contained herein is subject to change without notice.
- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2013 – 2015 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/