

Dual Echo Canceler & Noise Canceler with Dual Codec for Hands-Free

GENERAL DESCRIPTION

The ML7037-003 is an IC device developed for portable, handsfree communication with built-in line echo canceler, acoustic echo canceler, and transmission signal noise canceler. Built-in to the voice signal interface is a PCM CODEC for the analog interface on the acoustic-side, and another PCM CODEC for the analog interface on the line-side. On the line-side, in addition to the analog interface, there is also a μ -law PCM/16-bit linear digital interface.

Equipped with gain and mute controls for data transmission and reception, a μ -law PCM/16-bit linear digital interface for memo recording and message output, and transfer clock and sync clock generators for digital communication, this device is ideally suited for a handsfree system.

FEATURES

- Single 3.3 V Power Supply Operation (3.0 to 3.6 V) [with built-in regulator to generate internal power supply]
- Built-in 2-channel (line and acoustic) echo canceler
- Echo attenuation
 : 35 dB (typ.) for white noise

 Cancelable echo delay time
 :

 Single echo canceler mode (only an acoustic echo canceler is enabled)
 Tacoud= 64 ms (max)

 Dual echo canceler mode (both of an acoustic and line echo cancelers are enabled)
 Tacoud= 64 ms

 Tacoud = 64 ms
 Tlined = 20 ms

 Built-in transmission signal noise canceler
 Noise attenuation

 : 13 dB (typ.) for white noise
- Built-in 2-channel CODEC's
- Analog input gain amp's (Acoustic side = 2 stages; Line-side = 1 stage)
- Analog output configuration: Push-pull drive (can drive a 2.0 k Ω load)
- Receive-side ALC (Auto Level Controler)
- Programmable Gain/Mute
- A slope filter on transmit side
- 16 GPI's and 8 GPO's
- Speech digital interface coding formats : µ-law PCM (G.711 [64kbps]), 16-bit linear (2's complement)
- Speech digital interface sync formats : Long-frame-sync, short-frame-sync
- PCM shift clocks (BCLK)
- Clock slave mode : 64kHz to 2.048MHz (μ -law PCM) / 128kHz to 2.048MHz (16bit Linear PCM)
 - Clock master mode : 64kHz (µ-law PCM) / 128kHz (16bit Linear PCM)
- Master clock frequency : 12.288 MHz (crystal unit the ML7037's built-in driving circuit for a crystal unit or a crystal oscillator)
- Transmission signal equalizer
- Package : 64-pin plastic TQFP (TQFP64-P-1010-0.50-K) (ML7037-003TB)

BLOCK DIAGRAM

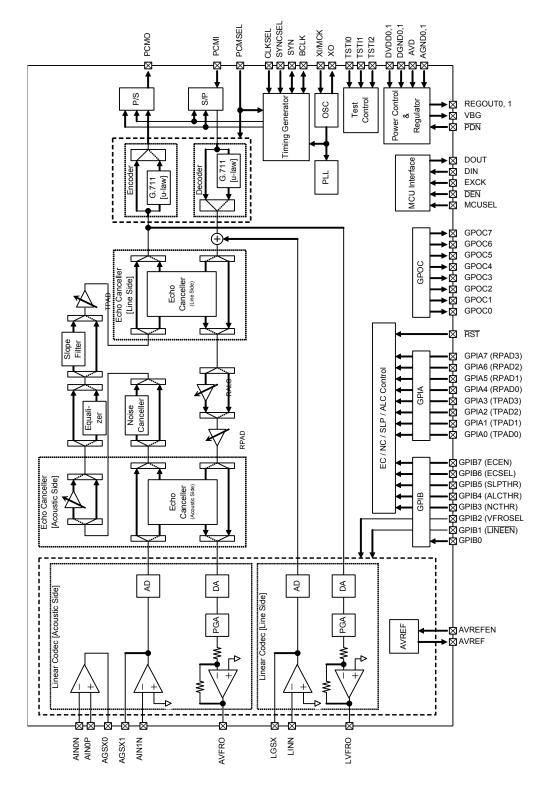


Figure 1

PIN CONFIGURATION (TOP VIEW)

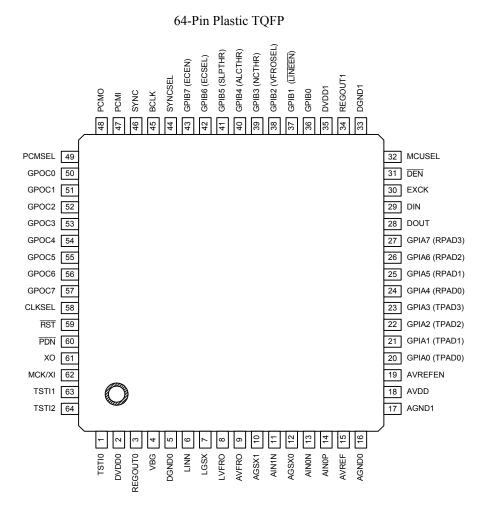


Figure 2

ML7037-003

Pin	Pin Name	I/O	PDN="0"	Descriptions
1	TSTIO	1		Test pin0
2	DVDD0	-	-	Digital power supply pin
3	REGOUT0	-	-	Regulatoroutput pin
4	VBG	-	-	Regulatorreference voltage output pin
5	DGND0	-		Digital ground pin
6	LINN	Ι	l	Line-sideanalog input pin (reversed input pin for an analog input amplifier)
7	LGSX	0	Hi-Z	Line-sideanalog output pin (output pin from an analog input amplifier)
8	LVFRO	0	L (*1) 1.4V apporx(*2)	Line-sideanalog output pin
9	AVFRO	0	L (*1) 1.4V apporx(*2)	Acoustic-sideanalog output pin
10	AGSX1	0	HI-Z	Acoustic-sideanalog output pin (output pin from an analog input amplifier)
11	AIN1N	Т	I	Acoustic-sideanalog input pin (reversed input pin for an analog input amplifier)
12	AGSX0	0	Hi-Z	Acoustic-sideanalog output pin (output pin from an analog input amplifier)
13	AINON	I	I	Acoustic-sideanalog input pin (reversed input pin for an analog input amplifier)
14	AINOP	I	I	Acoustic-sideanalog input pin (reversed input pin for an analog input amplifier)
15	AVREF	0	L (*1) 1.4V apporx(*2)	
16	AGND0	-	-	Analog ground pin
17	AGND1	-	-	Analog ground pin
18	AVDD	-	-	Analog power supply pin
19	AVREFEN	I	_	Input pin to switch enabling/disabling AVREF during power-down
20	GPIA0 (TPAD0)	I	Ι	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of transmit speech signals</secondary></primary>
21	GPIA1 (TPAD1)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of transmit speech signals</secondary></primary>
22	GPIA2 (TPAD2)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of transmit speech signals</secondary></primary>

PIN OVERVIEW

(Note) (*1):Shows the output state when the AVREFEN pin is logic '0'. (*2):Shows the output state when the AVREFEN pin is logic '1'.

ML7037-003

Pin Number	Pin Name	I/O	PDN="0"	Descriptions
23	GPIA3 (TPAD3)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of transmit speech signals</secondary></primary>
24	GPIA4 (RPAD0)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of receive speech signals</secondary></primary>
25	GPIA5 (RPAD1)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of receive speech signals</secondary></primary>
26	GPIA6 (RPAD2)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of receive speech signals</secondary></primary>
27	GPIA7 (RPAD3)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to tune volume of receive speech signals</secondary></primary>
28	DOUT	0	Hi-Z	Data output pin for MCU interface
29	DIN	Ι	I	Data input pin for MCU interface
30	EXCK	I	I	Clock input pin for MCU interface
31	DEN	I	I	Data enable input pin for MCU interface
32	MCUSEL	I	I	Input pin to switch between MCU interface enabled and disabled
33	DGND1	-	-	Digital ground pin
34	REGOUT1	-	-	Regulatoroutput pin
35	DVDD1	-	-	Digital power supply pin
36	GPIB0	1	1	General-purpose input port pin
37	GPIB1 (LINEEN)	1	1	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to switch between enabling and disabling of line-side analog interface</secondary></primary>
38	GPIB2 (VFROSEL)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to select output signals from AVFRO/LVFRO</secondary></primary>
39	GPIB3 (NCTHR)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to select noise canceler mode between normal mode and through mode</secondary></primary>

ML7037-003

Pin Number	Pin Name	I/O	PDN="0"	Descriptions
40	GPIB4 (ALCTHR)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to select ALC mode between normal mode and through mode</secondary></primary>
41	GPIB5 (SLPTHR)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to select slope filter mode between normal mode and through mode</secondary></primary>
42	GPIB6 (ECSEL)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to select echo canceler mode between single echo canceler mode and dual echo canceler mode</secondary></primary>
43	GPIB7 (ECEN)	I	I	General-purpose input port pin <primary function=""> General-purpose input port pin <secondary function=""> Input pin to switch between disabling and enabling echo canceler</secondary></primary>
44	SYNCSEL	I	I	Input pin to select between long frame sync and short frame sync
45	BCLK	I/O	L (*1) I (*2)	Shift clock input pin for PCM interface
46	SYNC	I/O	L (*1) I (*2)	Sync clock input pin for PCM interface
47	PCMI	I		line-side PCM data input pin
48	РСМО	0	Hi-Z	line-side PCMdata output pin
49	PCMSEL	I	Ι	Input pin to select speech digital interface coding format between 16bit Linear PCM and $\mu\text{-law}$ PCM
50	GPOC0	0	L	General-purpose output port pin
51	GPOC1	0	L	General-purpose output port pin
52	GPOC2	0	L	General-purpose output port pin
53	GPOC3	0	L	General-purpose output port pin

(Note)

(*1):Shows the output state when the CLKSEL-pin is logic '0'. (*2):Shows the output state when the CLKSEL-pin is logic '1'.

ML7037-003

Pin Number	Pin Name	I/O	PDN="0"	Descriptions			
54	GPOC4	0	L	General-purpose output port pin			
55	GPOC5	0	L	General-purpose output port pin			
56	GPOC6	0	L	General-purpose output port pin			
57	GPOC7	0	L	General-purpose output port pin			
58	CLKSEL	Ι		nput pin to select between clock slave mode and clock master mode CM interface			
59	RST	-	I	Reset pin			
60	PDN	-	I	Power-down pin			
61	хо	0	Н	Ouput pin to connect a crystal unit for master clock			
62	MCK/XI	Ι	I	Input pin to connect a crystal unit for master clock Master clock input pin			
63	TSTI1		I	Test pin1			
64	TSTI2	I	I	Test pin2			

PIN FUNCTIONAL DESCRIPTION

AINON, AINOP, AGSX0, AIN1N, AGSX1

These are the acoustic analog input and level tuning pins. The AIN0N pin and the AIN1N pin are connected to the inverting input of the internal amp (AMP2, AMP1), and the AIN0P pin is connected to the non-inverting input of the internal amp (AMP2). The AGSX0 pin and the AGSX1 pin are connected to the internal amp (AMP2, AMP1). For the way to tune the level, refer to Figure 3 Analog Interface.

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1'), the AGSX0 pin and the AGSX1 pin go to a high impedance state.

- (Note) When the acoustic side LSI-internal amplifier (AMP2) is not used, connect the AIN0P pin and the AVREF pin and short the AIN0N pin and the AGSX0 pin.
- (Note) Please refer to the application circuit example when the acoustic side LSI-internal amplifier (AMP2) is used as a single-end input.

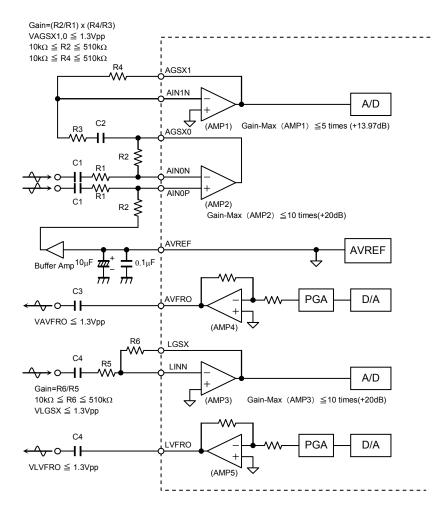


Figure 3 Analog Interface

LINN, LGSX

These are the line analog input and level tuning pins. The LINN pin is connected to the inverting input of the internal amp (AMP3) and the LGSX pin is connected to the output of the amp (AMP3). For level tuning, refer to Figure 3 Analog Interface.

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1'), the LGSX pin goes to a high impedance state.

(Note) When the line side analog interface is not used, set the secondary function of the GPIB1 pin (LINEEN) to logic '1' or set the LINEEN-bit [CR0-B5] to '1', and short the LINN pin and the LGSX pin.

AVFRO, LVFRO

These are analog output pins respectively for acoustic-side and line-side. The AVFRO is connected to the output of the internal amp (AMP4), and the LVFRO is connected to the output of the internal amp (AMP5).

The output state of the AVFRO pin and the LVFRO pin can be selected between speech signal output and the AVREF level output (1.4V approx.) by the VFROSEL pin or by the AVFROSEL-bit [CR16-B1] and the LVFROSEL-bit [CR16-B0]. When the concerned pin or the concerned bit is logic '1', the AVFRO and/or the LVFRO pin outputs speech signals; when the concerned pin and the concerned bit is logic '0', the AVFRO pin and/or the LVFRO pin outputs the AVREF level (1.4V approx.).

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1'), if the AVREFEN pin and the AVREFEN-bit [CR16-B7] are logic '0', the AVFRO pin and the LVFRO pin go to a high impedance state; and, if the AVREFEN pin or the AVREFEN-bit [CR16-B7] are logic '1', the pins output 1.4V approx..

(Note) If the AVREFEN pin and the AVREFEN-bit [CR16-B7] are logic '0', pop noises may occur on release and execution of power-down. If the AVREFEN pin and the AVREFEN-bit [CR16-B7] need to be logic '0' and still the pop noises have to be eliminated, it has to be fixed outside of this LSI.

To avoid the pop noises, set the AVREFEN pin or the AVREFEN-bit [CR16-B7] to logic '1' and let the AVREF and the analog output amps alive. Furthermore, the power-down should be released and executed having the output state of the AVFRO pin and the LVFRO pin the AVREF level.

In concrete, the power-down should be released while keeping the VFROSEL pin and by the AVFROSEL-bit [CR16-B1] and the LVFROSEL-bit [CR16-B0] to logic '0', and then change the VFROSEL pin or the AVFROSEL-bit [CR16-B1] and the LVFROSEL-bit [CR16-B0] to logic '1'.

And, the VFROSEL pin and the AVFROSEL-bit [CR16-B1] and the LVFROSEL-bit [CR16-B0] should be changed to logic '0' before the power-down execution.

Please note that the power supply current during the power-down would be I_{SS2} compliant (Please refer to the specification under the DC Characteristics to come in a later section.) if the AVREFEN pin or the AVREFEN-bit [CR16-B7] are logic '1'.

AVREF

This is the output pin for the analog signal ground level. The output voltage is approximately 1.4 V.

Insert a 10 μ F bypass capacitor (a tantalum capacitor [recommendation] or an aluminum electrolytic capacitor) and a 0.1 μ F capacitor (laminating ceramic type) in parallel between this pin and the AGND0 pin.

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') with the AVREFEN pin and the AVREFEN-bit [CR16-B7] to be logic '0', the AVREF pin outputs 0.0V.

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') with the AVREFEN pin or the AVREFEN-bit [CR16-B7] to be logic '1', the AVREF pin outputs 1.4V approx.

(Note) If you make use of the AVREF pin output externally in your system, it must be via a buffer amp.

AVREFEN

This is to select disabling and enabling the AVREF output during power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1').

When this is logic '0', the AVREF pin is disabled (power-down state).

When this is logic '1', the AVREF pin is enabled, and the outputs of the AVREF, the AVFRO and the LVFRO become 1.4V approx..

This pin control is valid only during power-down.

GPIB1 (LINEEN)

This is a general-purpose input port pin.

This also works as a power-down control over the line-side analog interface as the secondary function.

When this pin is logic '0', the line-side analog interface is enabled; and, when this pin is logic '1', the line-side analog interface is powered-down (excluding the LVFRO output amp).

During power-down, the LVFRO outputs 1.4V approx..

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function. When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB1-bit [GPCR1-B1]. (Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change

- of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.
- (Note) In an application where the line-side codec is never enabled, the LINN pin and the LGSX pin must be shorted.
- (Note) The change of the enabled/disabled state of the line-side codec must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.

GPIB2 (VFROSEL)

This is a general-purpose input port pin.

This also works as the output state control over the AVFRO pin and the LVFRO pin as the secondary function. When this pin is logic '0', they output the AVREF level (1.4V apporx.); and, when this pin is logic '1', they output speech signals.

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function.

When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB2-bit [GPCR1-B2].

- (Note) When, during a call, the output state is changed or the reset is made, minor noises could happen due to an interruption at an arbitrary point in a sequence of PCM codes so that this output state selection and the reset are recommended to be made before a call as long as it is application-wise allowed.
- (Note) The power-down execution and its release are recommended to be made when the AVFRO pin and the LVFRO pin are selected to output the AVREF level.
- (Note) When this pin is not used, set this pin to logic '0'.

MCK/X1. XO

These are pins to connect a crystal unit, and the former is used as the master clock input pin as well. The clock frequency is 12.288 MHz.

During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1'), oscillation of the connected crystal unit is stopped.

After the release of the power-down, the connected crystal unit starts being oscillated, but the master clocks start being utilized within this LSI only after the steady oscillation waiting time (28ms approx.).

Refer to Figure 4 for an example application with an external clock and that with a crystal unit.

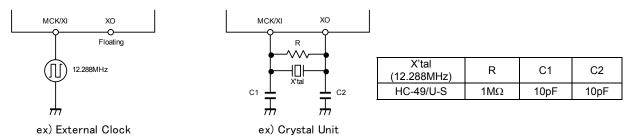


Figure 4 Examples of external clock and crystal unit as a master clock

(Note) When a crystal unit is used, connect the unit and a feedback resistor of $1M\Omega$ (R) between the MCK/XI and the XO. The appropriate values of capacitors (C1, C2) to be connected between the MCK/XI and GND and between the XO and GND are influenced by load capacitance of a crystal unit and PCB patterns so that they are recommended to be determined by asking a crystal unit vendor for a matching test.

SYNC

This is the 8 kHz sync clock I/O pin for PCM interface. When the internal clock mode is selected by the CLKSEL pin = logic '0', this pin outputs 8kHz sync clocks synchronizing with the BCLK. When the external clock mode is selected by the CLKSEL pin = logic '1', input 8kHz clocks to this pin in synchronization with the BCLK. When the SYNCSEL pin is logic '0', this pin outputs/expects to have sync clocks in a long frame sync timing; whereas, when the SYNCSEL pin is logic '1', this pin outputs/expects to have sync clocks in a short frame sync timing.

BCLK

This is the shift clock I/O pin for PCM interface. When the internal clock mode is selected by the CLKSEL pin = logic '0', this pin outputs 64kHz in μ -law PCM mode or 128kHz in 16-bit linear PCM mode. When the external clock mode is selected by the CLKSEL pin = logic '1', input shift clocks to this pin in synchronization with the SYNC. The input frequency must be between 64 kHz and 2048 kHz in μ -law PCM mode and 128 kHz and 2048 kHz in 16-bit linear PCM mode.

CLKSEL

This pin selects internal or external clock modes for PCM interface.

A logic '0' selects the internal clock mode where the SYNC pin and the BCLK pin output clocks so that this LSI could works as a clock master device in your system.

A logic '1' selects the external clock mode where this LSI needs the SYNC and the BCLK externally so that this LSI could works as a clock slave device in your system.

If PCM digital interface is not used, set this pin to a logic '0' to select internal clock mode.

(Note) The change of the input state of this pin must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.

SYNCSEL

This is the frame sync timing selection pin for PCM interface.

A logic "0" selects long frame sync timing, and a logic "1" selects short frame sync timing.

Refer Figure 5 to Figure8 for the timing.

(Note) The change of the input state of this pin must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.

PCMSEL

This is the coding format selection pin for PCM interface for the PCMO-pin output and the PCMI-pin input signal. A logic '0' selects 16-bit linear PCM (2's complement) coding format, and a logic '1' selects μ -law PCM coding format.

The full scale table for both formats are shown below;

TODIL LINEAL FOM	(230	omple	ment)	Full S	cale i	able										
Level	MSB															LSB
+ Full Scale	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
+1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
- Full Scale	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

16bit Linear PCM (2's complement) Full Scale Table

μ-law PCM Full Scale Table

	1							
Level	MSB							LSB
+ Full Scale	1	0	0	0	0	0	0	0
+0	1	1	1	1	1	1	1	1
-0	0	1	1	1	1	1	1	1
- Full Scale	0	0	0	0	0	0	0	0

(Note) If PCM interface is not used, set this pin to a logic '0'.

(Note) The change of the input state of this pin must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.

PCMI

This is the receive PCM data input pin on the line-side. This input data is shifted at the falling edge of the BCLK. The PCM coding format can be selected between 16-bit linear PCM (2's complement) coding format and μ -law PCM coding format with the PCMSEL pin or the PCMSEL-bit [CR0-B4].

The PCM frame sync timing can be selected between a long frame sync and a short frame sync with the SYNCSEL pin.

Refer Figure 5 to Figure 8 for the timing.

(Note) If this pin is not used, set this pin to a logic '0'.

(Note) The change of the input state of this pin must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.

РСМО

This is the receive PCM data output pin on the line-side. This output data is shifted at the rising edge of the BCLK. During power-down mode (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') and initial mode or while effective PCM data bits are not being output, this pin goes to a high impedance state.

The PCM coding format can be selected between 16-bit linear PCM (2's complement) coding format and μ -law PCM coding format with the PCMSEL pin or the PCMSEL-bit [CR0-B4].

The PCM frame sync timing can be selected between a long frame sync and a short frame sync with the SYNCSEL pin.

Refer Figure 5 to Figure8 for the timing.

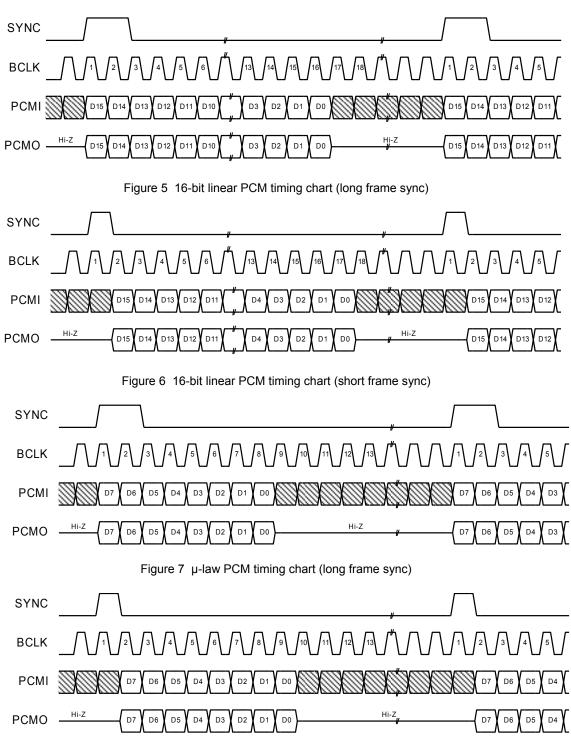


Figure 8 µ-law PCM timing chart (short frame sync)

GPIB3 (NCTHR)

This is a general-purpose input port pin.

This also works as a through-mode control pin over the noise canceller as the secondary function.

A logic '0' enables the noise canceller, and a logic '1' disables the noise canceller and the speech data by-passes the noise canceller.

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function.

When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB3-bit [GPCR1-B3].

- (Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.
- (Note) For 24ms approx. after the state change from a noise canceller enabling mode to a through-mode, the speech signals may not be ordinarily processed and be got mute or attenuated. The state change, if needed, is recommended to be made before a call.
- (Note) If this pin is not used, set this pin to a logic '0'.

GPIB4 (ALCTHR)

This is a general-purpose input port pin.

This also works as a through-mode control pin over the automatic level controller (ALC) as the secondary function.

A logic '0' enables the ALC, and a logic '1' disables the ALC and the speech data by-passes the ALC.

The ALC is a function to mainly aim to absorb the difference in speech volume with handsets to connect to a hands-free. For the functional details, please refer to descriptions under the RALCTHR-bit [CR2-B4].

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function.

When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB4-bit [GPCR1-B4]. (Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change

of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.

(Note) If this pin is not used, set this pin to a logic '0'.

GPIB5 (SLPTHR)

This is a general-purpose input port pin.

This also works as a through-mode control pin over the slope filter as the secondary function.

A logic '0' enables the slope filter, and a logic '1' disables the slope filter and the speech data by-passes the slope filter.

The slope filter has frequency characteristics to suppress low frequency range and gain high frequency range so that it helps to relax near-end ambient noises usually dominant in low frequency range and to emphasize speech consonants mostly dominant in high frequency range. For the functional details, please refer to the slope filter characteristics under Reference Data.

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function.

When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB5-bit [GPCR1-B5]. (Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change

of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.

(Note) If this pin is not used, set this pin to a logic '0'.

GPIB6 (ECSEL)

This is a general-purpose input port pin.

This also works as an echo canceller selection as the secondary function.

A logic '0' selects single echo canceller mode (enables only acoustic echo canceller), and a logic '1' selects dual echo canceller mode (enables both of acoustic and line echo cancellers).

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function.

When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB6-bit [GPCR1-B6]. (Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change

- of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.
- (Note) The single echo canceller mode should be selected in an environment where no line echoes exist.
- (Note) The change of the input state of this pin must be made during power-down state (PDN pin = logic '0' or SPDN-bit [CR0-B7] = '1') or during initial mode.
- (Note) If this pin is not used, set this pin to a logic '0'.

GPIB7 (ECEN)

This is a general-purpose input port pin.

This also works as an enabling/disabling selection for echo cancellers as the secondary function.

A logic '0' disables echo cancellers and their auxiliary functions (ATTrA/ATTrL, ASIPAD/LPAL, ASOPAD/LSOPAD, ATTsA/ATTrA, Center Clip), and a logic '1' enables them.

When the MCUSEL pin is logic '1', this pin is automatically assigned with its secondary function. When the MCUSEL pin is logic '0', this pin's function assignment follows the state of GPFB7-bit [GPCR1-B7].

(Note) The change of the input state to this pin is detected at the rising edge of the SYNC clock so that the change of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.

(Note) If this pin is not used, set this pin to a logic '0'.

GPIA0 (TPAD0), GPIA1 (TPAD1), GPIA2 (TPAD2), GPIA3 (TPAD3)

These are general-purpose input port pins.

These also work as transmit-side volume control as the secondary function.

For the setting, please refer to Table 1.

When the MCUSEL pin is logic '1', these pins are automatically assigned with their secondary function.

When the MCUSEL pin is logic '0', these pins' function assignment follows the state of GPFA3-0-bits [GPCR0-B3,2,1,0].

(Note) The change of the input state these pins is detected at the rising edge of the SYNC clock so that the change of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.

(Note) If these pins are not used, set them to a logic '0'.

GPIA4(RPAD0), GPIA5(RPAD1), GPIA6(RPAD2), GPIA7(RPAD3)

These are general-purpose input port pins.

These also work as receive-side volume control as the secondary function.

For the setting, please refer to Table 1.

When the MCUSEL pin is logic '1', these pins are automatically assigned with their secondary function.

When the MCUSEL pin is logic '0', these pins' function assignment follows the state of GPFA7-4-bits [GPCR0-B7,6,5,4].

- (Note) The change of the input state to these pins is detected at the rising edge of the SYNC clock so that the change of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.
- (Note) If these pins are not used, set them to a logic '0'.

GPIA7	GPIA6	GPIA5	GPIA4	GPIA3	GPIA2	GPIA1	GPIA0	Level
(RPAD3)	(RPAD2)	(RPAD1)	(RPAD0)	(TPAD3)	(TPAD2)	(TPAD1)	(TPAD0)	Level
0	1	1	1	0	1	1	1	+21dB
0	1	1	0	0	1	1	0	+18dB
0	1	0	1	0	1	0	1	+15dB
0	1	0	0	0	1	0	0	+12dB
0	0	1	1	0	0	1	1	+9dB
0	0	1	0	0	0	1	0	+6dB
0	0	0	1	0	0	0	1	+3dB
0	0	0	0	0	0	0	0	0dB
1	1	1	1	1	1	1	1	-3dB
1	1	1	0	1	1	1	0	-6dB
1	1	0	1	1	1	0	1	-9dB
1	1	0	0	1	1	0	0	-12dB
1	0	1	1	1	0	1	1	-15dB
1	0	1	0	1	0	1	0	-18dB
1	0	0	1	1	0	0	1	-21dB
1	0	0	0	1	0	0	0	MUTE

Table 1 Receive-/Transmit-Side Volume Control

ML7037-003

MCUSEL

This pin selects whether the microcontroller interface is used or unused.

When the microcontroller interface is used, set this pin to a logic '0'.

When the microcontroller interface is not used, set this pin to a logic "1".

A logic '1' with this pin automatically determines general-purpose input port pins to work as their secondary functions.

This pin is OR'ed with OPE_STAT-bit [CR0-B0]. Refer to NOTE ON USE.

DEN, EXCK, DIN, DOUT

These are serial control ports for the microcontroller interface.

This LSI has 32 bytes control registers, and the data read and write between the registers and the microcontroller are made via these pins.

The DEN pin is a data read/write enabling signal input pin, the EXCK pin is a clock signal input pin for data shifting, the DIN pin is an address and data input pin, the DOUT pin is a data output pin. If the mirrocontroller interface is not used, set the DEN pin to a logic "1", the EXCK pin and DIN pins to a logic "0", and the MCUSEL pin to logic '1'.

Figure 9-12 shows the input/output timing.

FEDL7037-003-03

ML7037-003

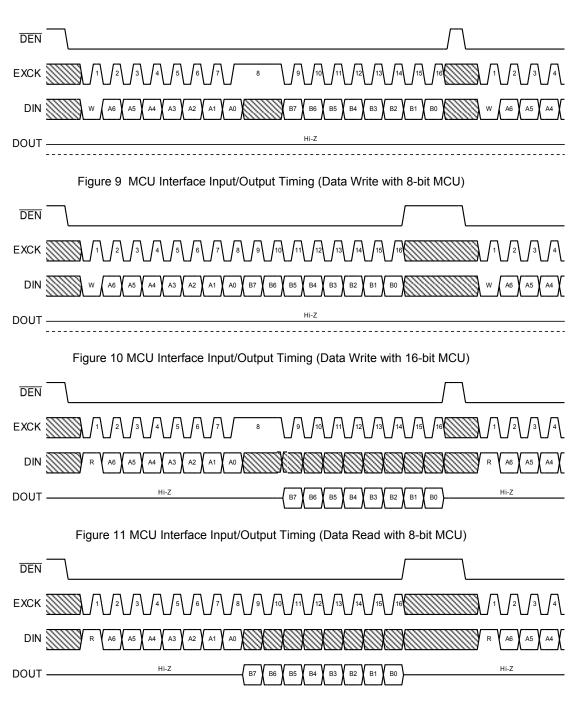


Figure 12 MCU Interface Input/Output Timing (Data Read with 16-bit MCU)

ML7037-003

GPIB0

This is a general-purpose input port pin. (Note) If this pin is not used, set this pin to a logic '0'.

GPOC0, GPOC1, GPOC2, GPOC3, GPOC4, GPOC5, GPOC6, GPOC7

These are general-purpose output port pins. (Note) If these pins are not used, leave these pins floating.

DVDD0, DVDD1, AVDD

These are power supply pins. The DVDD0 and the DVDD1 are connected to digital circuits and the AVDD is connected to analog circuits in this LSI via the built-in regulator.

Connect them common in the shortest distance, and insert a 10 μ F bypass capacitor (a tantalum capacitor [recommendation] or an aluminum electrolytic capacitor) and a 0.1 μ F capacitor (laminating ceramic type) in parallel between these pins and the DGND0, 1 pins and the AGND0, 1 pins respectively.

DGND0, DGND1, AGND0, AGND1

These are ground pins. The DGND0 pin and the DGND1 pin are connected to the ground of digital circuits in this LSI. The AGND0 pin and the AGND1 pin are connected to the ground of analog circuits in this LSI. Connect them common in the shortest distance

REGOUT0, REGOUT 1

These are the built-in regulator output pins (2.6V approx.).

Insert a 10 μ F capacitor (a tantalum capacitor [recommendation] or an aluminum electrolytic capacitor) and a 0.1 μ F capacitor (laminating ceramic type) in parallel between the REGOUT0 pin and the DGND0 pin.

Insert a 0.1 µF capacitor (laminating ceramic type) in parallel between the REGOUT1 pin and the DGND1 pin.

VBG

This is an output pin for a reference voltage of the built-in regulator (1.2V approx.). Insert a 150 pF (approx.) laminating ceramic capacitor between the this pin and the DGND0.

PDN

This is the power-down reset control input pin.

A logic '0' executes the power-down reset.

When a logic '1' is input to this pin, this LSI is in a normal operation.

This execution also initializes all of this LSI including the control registers, the internal data memories, the filter coefficients of the echo cancellers and those of the noise cancellers.

- (Note) The negative logic of this pin is ORed with the SPDN-bit [CR0-B7].
- (Note) To avoid unstable operations, right after the power-up, execute the power-down rest with this pin (not with the SPDN-bit [CR0-B7]). The master clock input to the XI pin and the REGOUT output higher than 90% of the normal state are prerequisite to secure the power-down reset.
- (Note) When an ORed logic of the AVREFEN pin and the AVREFEN-bit [CR16-B7] are logic '1', the AVREF and analog output amps keep powered up even during the power-down state.

RST

This is an input pin to initialize the filter coefficients of the echo cancellers and the noise canceller and the ALC acquired gain.

A logic '0' executes the initialization. For a normal operation, give this pin a logic '1'.

During the reset state, no speech signals are output. Control registers are preserved.

Execute the initialization in cases where the echo path changes (due to line switching during a telephone conversation, etc.), or for another call.

- (Note) The negative logic of this pin is ORed with the RST-bit [CR0-B6].
- (Note) The change of the input state to these pins is detected at the rising edge of the SYNC clock so that the change of the input state to this pin less than 250 µs may not be reflected as the LSI behavior.
- (Note) The execution of this reset during a call may cause minor noises due to interruption at an arbitrary point in a sequence of PCM codes so that an execution of the reset is recommended to be made in a silent state.

TSTI0, TSTI1, TSTI2 These are LSI manufacturer's test input pins. Set these pins to a logic "0".

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Analog power supply voltage	AV_{DD}	—	-0.3 to +4.6	V
Digital power supply voltage	DV_DD	—	–0.3 to +4.6	V
	V _{AIN}	Analog pins	–0.3 to AV _{DD} +0.3	V
Input voltage	V _{DIN}	Digital pins	–0.3 to DV _{DD} +0.3	V
Short-circuit output current	los	—	–20 to +20	mA
Power dissipation	PD	Ta = 85 °C, per package	350	mW
Storage Temperature	T _{STG}	—	–65 to +150	°C

RECOMMENDED OPERATING CONDITION (1)

		- ····		_			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Analog power supply voltage (*1)	AV_{DD}	AVDD	3.0	3.3	3.6	V	
Digital power supply voltage (*1)	DV_DD	DVDD0, DVDD1	3.0	3.3	3.6	V	
Operating temperature	Ta	—	-40	_	85	°C	
	V _{IH1}	MCK/XI	DVDD x	_	DVDD +	V	
High-level input voltage	• 111 1	Mortva	0.75		3.6 V 3.6 V 85 °C	v	
nigh-level input voltage	V _{IH2}	Normal digital nins	DVDD x		DVDD +	V	
	V IH2	Normal digital pins DVDD x 0.75 MCK/XI 0.0		0.3	v		
	V _{IL1}	MCK/YI	0.0		DVDD x	V	
	V IL1	NICR/AI	0.0	—	0.19	v	
Low-level input voltage	V _{IL2}	Normal digital pins	0.0		DVDD x	V	
	VIL2	Normai digital pins	0.0	—	3.6 3.6 85 DVDD + 0.3 DVDD + 0.3 DVDD x 0.19 DVDD x 0.19 20 20 12.2892288 (+0.01%)	v	
Digital input rise time	t _{IR}	Digital pins	-	2	20	ns	
Digital input fall time	t _{IF}	Digital pins	-	2	20	ns	
Maator alaak fraguanay	£	MCK/XI	12.2867712	12.288	12.2892288		
Master clock frequency	f _{мск}		(-0.01%)	12.200	(+0.01%)	IVIHZ	
Master Clock Duty Ratio	d _{MCK}	MCK/XI	40	50	60	%	
lata							

Note

*1 Turn on and off the analog power supply and digital power supply simultaneously, or turn on digital power supply prior to analog power supply and turn off analog power supply prior to digital power supply.

RECOMMENDED OPERATING CONDITION (2)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	f _{BCLK1}	BCLK (*1) µ-law PCM	64		2048	kHz
Bit clock frequency	f _{BCLK2}	BCLK (*1) 16bit Linear PCM	128		2048	KHz
Bit clock duty ratio	d _{BCLK}	BCLK (*1)	40	50	60	%
Synchronous Signal Frequency	f _{SYNC}	SYNC (*1)	7.992 (-0.1%)	8.0	8.008 (+0.1%)	kHz
Synchronous Signal Width	f _{WS}	SYNC (*1)	1BCLK	_	100	μs
Transmit/Receive Sync Signal	t _{BS}	BCLK to SYNC (*1)	100		_	ns
Setting Time	t _{SB}	SYNC to BCLK (*1)	100			ns
Digital output load resistance	C _{DL}	Digital pins	_		50	pF
Bypass capacitor for AVREF	CAVREF	AVREF - AGND0	_	10+0.1	—	μF
Bypass capacitor for VBG	C _{VBG}	VBG-DGND0	_	150	—	pF
	C _{REGOUT1}	REGOUT0-DGND0	_	10+0.1	_	μF
Bypass capacitor for REGOUT	C _{REGOUT2}	REGOUT1-DGND1	_	0.1	_	μF

Note *1 In external clock mode (CLKSEL = logic "1')

ML7037-003

ELECTRICAL CHARACTERISTICS

DC Characteristics

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{SS1}	Stand-by state (1) PDN="0", AVREFEN="0", AVDD=DVDD0,1=3.30V	_	100	500	μA
Power supply current	I _{SS2}	Stand-by state (2) PDN="0", AVREFEN="1", AVDD=DVDD0,1=3.30V	_	3.5	7.0	mA
	I _{DD1}	Operating state MCK/XI, XO 12.288MHz crystal connected Inpu signal : none AVDD=DVDD0,1=3.30V, T _a =25°C	_	50	60	mA
Digital input pin input leak	I _{IH1}	V _{IN} =DVDD		0.02	10	μA
current	I _{IL1}	V _{IN} =0.0V	-10	-0.02		μA
Digital I/O pin input leak current	I _{OZH}	V _{IN} =DVDD		0.02	10	μA
	I _{OZL}	V _{IN} =0.0V	-10	-0.02	500 7.0 60 <u>10</u>	μA
High-level output voltage	V _{OH1}	Digital output pins Digital I/O pins I _{OH} =4.0mA	0.78 x DVDD	—	—	v
	V _{OH2}	XO pin I _{OH} =0.5mA	0.78 x DVDD	_	_	V
Low-level output voltage	V _{OL1}	Digital output pins Digital I/O pins I _{OL} =-4.0mA	_	_	0.4	V
	V _{OL2}	XO pin I _{OL} =-0.5mA	_	—	500 7.0 60 10 10 0.4	V
Input capacitance	CIN	Input pins, I/O pins	_	6.0	_	pF

Analog Interface

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input resistance	R _{IN}	Analog input pins (*2)	10		—	MΩ
Output load resistance	R _{L1}	AGSX0, AGSX1, LGSX	10		_	kΩ
Output load resistance	R _{L2}	AVFRO, LVFRO	2	Ι	—	kΩ
Output load capacitance	CL	Analog output pins (*3)	_		50	pF
Offset voltage	V _{OF}	Analog output pins (*3)	-40		40	mV
Output voltage level (*1)	Vo	LVFRO, AVFRO RL=10kΩ, Input=+3dBm0	1.158	1.3	1.458	V _{PP}

Note

*1 -7.7dBm(600Ω)=0dBm0, +3dBm0=1.3Vpp

*2 Analog input pins (AIN0P, AIN0N, AIN1N, LINN)

*3 Analog output pins (AGSX0, AGSX1, LGSX, AVFRO, LVFRO)

ML7037-003

PDN, XO, AVREF Timing

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)											
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit					
AVDD supply start delay time	tavdds	AVDD	0	_		ns					
DVDD supply cease delay time	t _{DVDDE}	DVDD0,1	0	_		ns					
Power-down reset start latency	t _{RSTS}		_	_	100	ns					
Power-dwon reset signal pulse width	t _{RSTW}	PDN	1.0	—	—	μs					
Power-down reset release latency	t _{RSTE}			—	250	ms					
Oscillation activation time	t _{sxo}	crystal unit (*1)	_	—	28	ms					

Note

*1 Crystal unit (HC-49/U-S), R=1MΩ, C1=C2=10pF

Timing Chart (PDN, XO, AVREF timing)

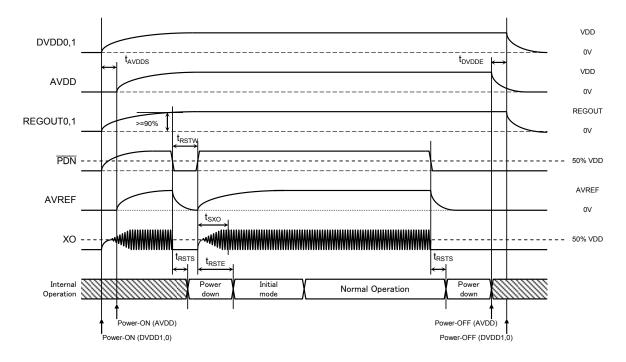


Figure 13 PDN, XO, AVREF Timing

ML7037-003

Digital Interface (Pin control, general port timing)

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Pin control latency (Low to High)	t _{PARD}			_	250	μs
Pin control pulse width	t _{PARW}	*1	250	_		μs
Pin control latency (High to Low)	t _{PARH}			_	250	μs
General purpose output port output delay time	tgpod	*2		—	100	ns
General output port hold time	t _{GPOH}		_	—	100	ns

Note

*1 GPIA7-4 (RPAD3-0), GPIA3-0 (TPAD3-0), GPIB7 (ECEN), GPIB6 (ECSEL), GPIB5 (SLPTHR), GPIB4 (ALCTHR), GPIB3 (NCTHR), GPIB2 (VFROSEL), GPIB1 (LINEEN), GPIB0, RST, PCMSEL, CLKSEL

*2 GPOC7-0

Timing Chart (Pin Control, General Ports)

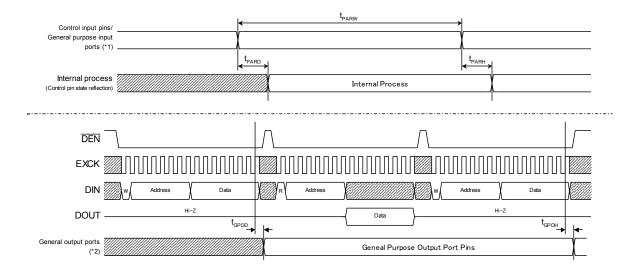
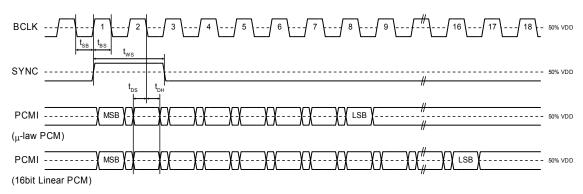


Figure 14 Control Input Pin and General Purpose Output Port Pin Timing

ML7037-003

PCM Interface

Parameter	Symbol	o 3.60V, DGND0,1=0.0V, AGND0,1= Condition	Min.	Тур.	Max.	Unit
	fBCLK1	µ-law PCM mode (*1, *2, *3)	63.36	64	64.64	kHz
Bit clock frequency	f _{BCLK2}	16bit Linear PCM mode (*1, *2, *3)	126.72	128	129.28	kHz
Bit clock duty ratio	d _{BCLK}	(*1, *2, *3)	40	50	60	%
Sync signal frequency	fsync	(*1, *2, *3)	7.92	8.0	8.08	kHz
Sync signal duty ratio	d _{SYNC1}	μ-law PCM mode (*1, *2, *3) Long frame sync mode (*1, *2, *3)	24.85	25	25.15	%
	d _{SYNC2}	16bit Linear PCM mode Long frame sync mode (*1, *2, *3)	12.35	12.5	12.65	%
	d _{SYNC3}	µ-law PCM mode (*1, *2, *3) Short frame sync mode (*1, *2, *3)	12.35	12.5	12.65	%
	d _{SYNC4}	16bit Linear PCM mode Short frame sync mode (*1, *2, *3)	6.10	6.25	6.40	%
Transmit/Receive Sync	t _{SB}	SYNC to BCLK (*3)	100	—	—	ns
signal timing	t _{BS}	BCLK to SYNC (*3)	100	—	—	ns
Input setup time	t _{DS}	—	100	_	—	ns
Input hold time	t _{DH}	_	100	_	—	ns
Digital output delay time	t _{SDX}	C _{DL} =50pF	_	_	100	ns
	t _{XD1}	C _{DL} =50pF	—	—	100	ns
Digital output hold time	t _{XD2}	C _{DL} =50pF	—	—	100	ns
	t _{XD3}	C _{DL} =50pF	—	—	100	ns


Note

*1 C_{DL}=20pF

*2 MCK/XI=12.288MHz

*3 In internal clock mode (CLKSEL = logic "0")

Timing Chart (PCM Interface)

Figure 15 PCM Input Timing (Long Frame Sync)

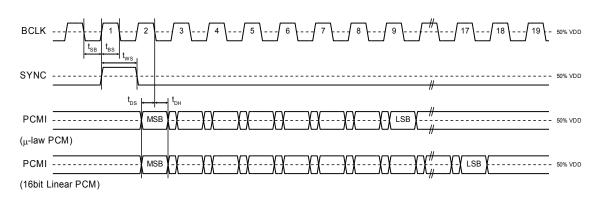
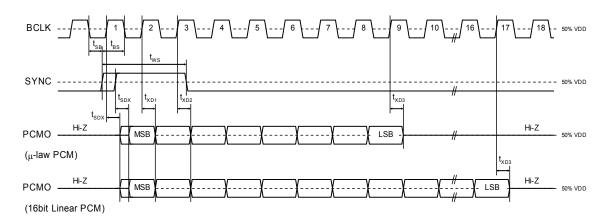



Figure 16 PCM Input Timing (Short Frame Sync)

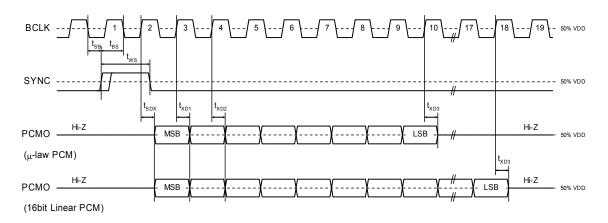


Figure 18 PCM Output Timing (Short Frame Sync)

ML7037-003

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)											
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit					
	t _{M1}		20	_	_	ns					
	t _{M2}		20	—		ns					
	t _{M3}		50	—		ns					
	t _{M4}		100	—		ns					
	t _{M5}		50	—		ns					
Digital input/output timing	t _{M6}	C _{DL} =50pF	50	—	—	ns					
	t _{M7}			—	30	ns					
	t _{M8}		0	—		ns					
	t _{M9}		50	—	—	ns					
	t _{M10}			—	30	ns					
	t _{M11}		100	_		ns					
EXCK clock frequency	f _{EXCK}	—	—	—	10	MHz					

Microcontroller Interface (Serial Interface)

Timing Chart (Microcontroller Serial Interface)

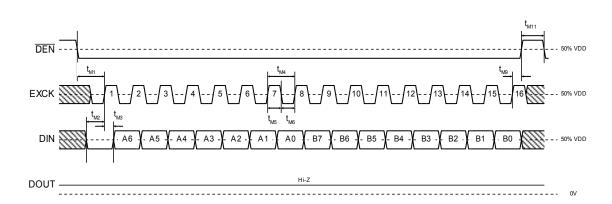


Figure 19 Write Timing

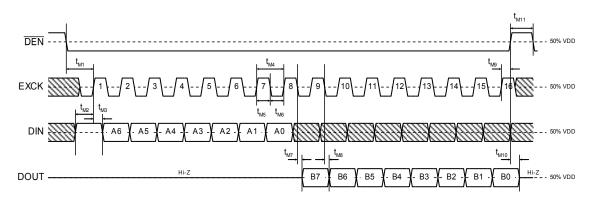


Figure 20 Read Timing

FEDL7037-003-03

ML7037-003

LAPIS Semiconductor Co., Ltd.

DVDD0,1=3.00V to 3.60V	<u>, AVDD=3.00</u>			GND0,1=0.0	V, Ta=-40°	C to +85°C	(otherwise	specified)
			Condition					
Parameter	Symbol	Frequency	Level	Others	Min.	Тур.	Max.	Unit
		(Hz)	(dBm0)	Others				
	LossT1	0 to 60			25		_	dB
	LossT2	300 to 3000			-0.15	—	0.25	dB
Transmit frequency	LossT3	1020	0	*1, *2		Reference		—
response	LossT4	3300	Ū	1, 2	-0.15	—	0.8	dB
	LossT5	3400			0	—	0.8	dB
	LossT6	3968.75			13	—	-	dB
	LossR1	0 to 3000			-0.15		0.2	dB
Receive frequency	LossR2	1020				Reference	;	
response	LossR3	3300	0	*1, *2	-0.15		0.8	dB
response	LossR4	3400			-0.15		0.8	dB
	LossR5	3968.75			13			dB
	SDT1		+3		35			dB
The second the investor	SDT2		0		35	_	—	dB
Transmit signal to distortion ratio	SDT3	1020	-30	*1, *2, *3	35			dB
	SDT4		-40		28	—		dB
	SDT5		-45		23	_	_	dB
	SDR1		+3	*1, *2, *3	35	_	_	dB
Dessitive sizes al to	SDR2		0		35			dB
Receive signal to distortion ratio	SDR3	1020	-30		35			dB
	SDR4		-40		28			dB
	SDR5		-45		23			dB
	GTT1		+3		-0.2		0.2	dB
	GTT2		-10			Reference	;	
Transmit gain tracking	GTT3	1020	-40	*1, *2, *3	-0.2		0.2	dB
	GTT4		-50		-0.5		0.5	dB
	GTT5		-55		-1.2		1.2	dB
	GTR1		+3		-0.2		0.2	dB
	GTR2		-10			Reference	;	
Receive gain tracking	GTR3	1020	-40	*1, *2, *3	-0.2		0.2	dB
	GTR4		-50		-0.5	_	0.5	dB
	GTR5		-55		-1.2	_	1.2	dB
	N _{IDL} T			*1, *2, *3			-68	dBm0p
Idle channel noise	N _{IDL} R	—	_	*5	_	—	-72	dBm0p
Absolute signal level	AVT	1020	0	*1, *2	0.285	0.32	0.359	Vrms
(*4)	AVR	1020	0	Ι, Ζ	0.285	0.32	0.359	Vrms
Note								

AC Characteristics (Codec Characteristics)

4000 4-0500 (-4) -1

Note

*1 Echo cancellers, Noise canceller, slope filter, ALC = off

Programmable gain = 0dB

*2 Analog and digital gain = 1

*3 with a psophometric filter

*4 0.32Vrms = 0dBm0 = -7.7dBm (600 Ω)

*5 Input signals = Idle pattern

AC Characteristics (Programmable Gain Characteristics) DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Transmit/Receive gain	G _{AC1}	against a set gain (*1)	-1.0		+1.0	dB
accuracy	G _{AC2}	against an adjacent gain step (*2)	-1.0		+1.0	dB

Note *1 TPAD, RPAD

*2 Acoustic-side PGA's (Programmable Gain Amp's), Line-side PGA

ML7037-003

Noise Canceller Characteristics

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)										
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit				
Noise attenuation	N _{RES}	with white noise for voice band noise attenuation setting = default	_	13	_	dB				

[Measurement System Block Diagram]

White Noise Generator

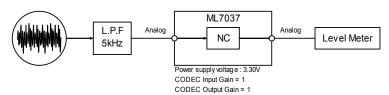


Figure 21 Measurements (Noise Attenuation)

Echo Canceller Characteristics

DVDD0,1=3.00V to 3.60V, AVDD=3.00V to 3.60V, DGND0,1=0.0V, AGND0,1=0.0V, Ta=-40°C to +85°C (otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Echo attenuation	E _{RES}	Acoustic-side, Line-side *3 (Analog interface or 16bit Linear PCM mode)	_	35	_	dB
		Line-side (µ-law PCM mode)	—	30	—	dB
Cancellable echo delay time	TACOUD	Acoustic-side	Ι		64	ms
Cancellable echo delay lime	T _{LINED}	Line-side *3	_		20	ms
					·	

Note *3 Only in dual echo canceller mode

[Measurement System Block Diagram]

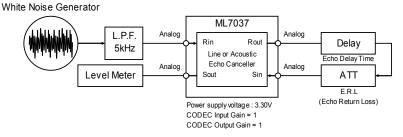


Figure 22 Measurements (Echo Attenuation)

FUNCTIONAL DESCRIPTION

Control Register

The control register map and the general-purpose port control register map are shown as Table 2 and Table3 respectively.

Register	Address				Da	ata				R/W
Name	Address	B7	B6	B5	B4	B3	B2	B1	B0	r///
CR0	00h	SPDN	RST	LINEEN	PCMSEL	CLKEN	PCMEN	ECSEL	OPE_STAT (MCUSEL)	R/W
		/E	/E	I/	I/	I/	I/	I/	I/	
CR1	01h	DMWR	#	#	#	#	#	#	#	R/W
		I/E	-	-	-	-	-	-	-	
CR2	02h	#	#	#	RALCTHR	RPAD3	RPAD2	RPAD1	RPAD0	R/W
		-	-	-	I/E	I/E	I/E	I/E	I/E	
CR3	03h	#	#	#	#	TPAD3	TPAD2	TPAD1	TPAD0	R/W
		-	-	-	-	I/E	I/E	I/E	I/E	
CR4	04h	#	#	#	APGA4	APGA3	APGA2	APGA1	APGA0	R/W
		-	-	-	I/E	I/E	I/E	I/E	I/E	1000
CR5	05h	#	#	#	LPGA4	LPGA3	LPGA2	LPGA1	LPGA0	R/W
		-	-	-	I/E	I/E	I/E	I/E	I/E	1.0.00
CR6	06h	A15	A14	A13	A12	A11	A10	A9	A8	R/W
		I/E	I/E	I/E	I/E	I/E	I/E	I/E	I/E	
CR7	07h	A7	A6	A5	A4	A3	A2	A1	A0	R/W
		I/E	I/E	I/E	I/E	I/E	I/E	I/E	I/E	F(/ V V
CR8	08h	D15	D14	D13	D12	D11	D10	D9	D8	R/W
		I/E	I/E	I/E	I/E	I/E	I/E	I/E	I/E	F(/ V V
CR9	09h	D7	D6	D5	D4	D3	D2	D1	D0	
		I/E	I/E	I/E	I/E	I/E	I/E	I/E	I/E	R/W
CR10	0Ah	READY	#	#	#	#	#	#	#	D/
		-	-	-	-	-	-	-	-	R/
CR11	0Bh	LTHR	LECEN	LHLD	#	LCLP	LSLC	LATT	#	
		I/E	I/E	I/E	-	I/E	I/	I/E		R/W
CR12	0Ch	ATHR	AECEN	AHLD	#	ACLP	ASLC	AATT	#	
		I/E	I/E	I/E	-	I/E	I/	I/E	-	R/W
CR13	0Dh	ASOPAD1	ASOPAD0		ASIPAD0	LSOPAD1	LSOPAD0	LSIPAD1	LSIPAD0	
	-	I/E	I/E	I/E	I/E	I/E	I/E	I/E	I/E	R/W
CR14	0Eh	SLPTHR	#	#	#	NCTHR	#	#	#	
		I/E	-	-	-	I/E	-	-	-	R/W

Table 2-1 Control Register Map

ML7037-003

Register	Address		Data							
Name	Address	B7	B6	B5	B4	B3	B2	B1	B0	R/W
CR15	0Fh	\$	\$	\$	\$	\$	\$	\$	\$	/
		-	-	-	-	-	-	-	-	/
CR16	10h	AVREFE N	#	#	#	#	#	AVFROS EL	LVFROS EL	R/W
		I/E	-		-	-		I/E	I/E	
CR17	11h	#	#	#	#	#	#	AATTMO DE1	AATTMO DE0	R/W
		-	-	-	-	-	-	I/E	I/E	
CR18	12h	#	#	#	#	#	#	LATTMO DE1	LATTMO DE0	R/W
		-	-	-	-	-	-	I/E	I/E	
CR19	13h	\$	\$	-	\$	\$	\$	\$	\$	· /
CR20	14h		#	#	#	EQL_EN I/E	EQL_2 I/E	EQL_1 I/E	EQL_0 I/E	R/W
CR21	15h		\$	- \$	\$	\$	\$	\$	\$. /
CR22	16h	\$	\$	\$	\$	\$	\$	\$	\$. /
CR23	17h	\$	\$	\$	\$	- - - -	\$	- \$	\$	· /
CR24	18h	\$ -	\$	\$	\$	\$	\$	-	\$. /
CR25	19h	\$	\$	\$	\$	\$	\$	\$	\$	· /
CR26	1Ah	<u> </u>	<u>\$</u>	\$	\$	<u>\$</u>	\$	-	\$	· /
CR27	1Bh	\$	\$	\$	\$	\$	\$	\$	\$	- /
CR28	1Ch	- \$ -	\$ 	- \$ -	\$	\$	\$	- \$	- \$ -	· /
CR29	1Dh		\$	\$	\$	\$	\$	\$	\$	· /
CR30	1Eh	\$	- \$	- \$	- \$	- \$	\$	- \$	\$	- /
CR31	1Fh	\$	\$	- \$	\$	\$	\$	-	\$. /

Table 2-2 Control Register Map

LAPIS Semiconductor Co., Ltd.

Register	Address				Da	ata				R/W
Name	Audiess	B7	B6	B5	B4	B3	B2	B1	B0	
GPCR0	20h	GPFA7	GPFA6	GPFA5	GPFA4	GPFA3	GPFA2	GPFA1	GPFA0	
		I/E	R/W							
GPCR1	21h	GPFB7	GPFB6	GPFB5	GPFB4	GPFB3	GPFB2	GPFB1	#	R/W
		I/E	-	r/w						
GPCR2	22h	\$	\$	\$	\$	\$	\$	\$	\$	1
		-	-	-	-	-	-	-	-	/
GPCR3	23h	GPDA7	GPDA6	GPDA5	GPDA4	GPDA3	GPDA2	GPDA1	GPDA0	R/W
		I/E	R/W							
GPCR4	24h	GPDB7	GPDB6	GPDB5	GPDB4	GPDB3	GPDB2	GPDB1	GPDB0	R/W
		I/E	R/VV							
GPCR5	25h	GPDC7	GPDC6	GPDC5	GPDC4	GPDC3	GPDC2	GPDC1	GPDC0	R/W
		I/E	R/VV							
GPCR6	26h	\$	\$	\$	\$	\$	\$	\$	\$	1
		-			-	-	-	-	-	/
GPCR7	27h	\$	\$	\$	\$	\$	\$	\$	\$,
		-	-			-	-	-	-	/
GPCR8	28h	\$	\$	\$	\$	\$	\$	\$	\$,
		-				-	-	-	-	/
	•	-						-	•	

Table 3 General-Purpose Port Control Register Map

Symbols for register name

- # : Reserved bits
- \$: Don't read nor write

Symbols to show when it can be altered (When to alter)

- I/E : both in the initial mode and in normal operation
- I/ : only in the initial mode
- /E : only in normal operation
- : Don't change

Symbols to show Read or Write

- R/W : Both for Read and Write
- R/ : Read only
- /W : Write only
- / : Both read and write prohibited
- (Note) The change of control registers (including the control registers for general-purpose ports) is detected with SYNC signals (8kHz) so that the change of the control registers less than 250 ms may not be reflected as the LSI behavior.
- (Note) When you write a control register in any other mode than the initial mode, SYNC signals (8kHz) must be supplied unless the ML7037-003 is in the internal clock mode (the CLKSEL pin = logic 0').
- (Note) Refer to descriptions under Internal Data Memory Access for a way to set CR6, CR7, CR8 and CR9.

ML7037-003

(1) CR0

	B7	B6	B5	B4	B3	B2	B1	B0
CR0	SPDN	RST	LINEEN	PCMSEL	CLKEN	PCMEN	ECSEL	OPE_STAT (MCUSEL)
When to alter	/E	/E	Ι/	Ι/	I/	I/	I/	I/
Initial value (*1)	0	0	0	0	0	0	0	0

*1: The initial value refers to the control register bit data that is set when this LSI is reset by the PDN pin. (Also when reset by SPDN of B7, the bits other than CR0-B7 and CR16-B7 are set to their initial value.)

B7 : Software Power-Down Control Register

- 0 : Normal operation
- 1 : Software power-down reset

During the software power-down reset, this device enters the power-down state. In this state, the control registers, the internal data memories, the filter coefficients of the echo cancellers and those of the noise cancellers and the ALC acquired gain. To go out of the software power-down, write a logic '0'. Then, this LSI goes into the initial mode approx. 250ms after the release of the software power-down.

This function is determined by an ORed result of this bit and the negative logic of the PDN pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when the PDN pin is set to a logic 0.

For more details, refer to "Pin Control and Control Registers".

(Note) When an ORed logic of the AVREFEN pin and the AVREFEN-bit [CR16-B7] are logic '1', the AVREF and analog output amps keep powered up even during the power-down state.

B6 : Reset Control Register for the Filter Coefficients of Echo Cancellers and Noise Canceller

- 0 : Normal operation
- 1 : Reset

An execution of reset initializes the filter coefficients of echo cancellers and a noise canceller and the ALC acquired gain are initialized.

During the reset state, no speech signals are output. Control registers are preserved.

Execute the initialization in cases where the echo path changes (due to line switching during a telephone conversation, etc.), or for another call.

This function is determined by an ORed result of this bit and the negative logic of the RST pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when the RST pin is set to a logic 0.

For more details, refer to "Pin Control and Control Registers".

(Note) The execution of this reset during a call may cause minor noises due to interruption at an arbitrary point in a sequence of PCM codes so that an execution of the reset is recommended to be made in a silent state.

B5 : Line-Side Analog Interface Power-Down Control Register

- 0 : Normal operation
- 1 : Power-down

During the power-down, the line-side analog interface is powered-down (excluding the LVFRO output amp). Inputs from input pins are processed as idle patterns, and the LVFRO pin outputs approx. 1.4V.

This function is determined by an ORed result of this bit and the secondary function (LINEEN) of the GPIB1 pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B4 : Coding Format Selection Register for PCM Interface

- 0 : 16bit linear PCM
- $1 : \mu$ -law PCM

This is the coding format selection register for PCM interface for the PCMO-pin output and the PCMI-pin input signal. This function is determined by an ORed result of this bit and the PCMSEL pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

- B3 : BCLK, SYNC Clock Output On/Off Selection Register
 - 0 : On (outputs clocks)
 - 1 : Off (outputs no clocks)

This control is valid only when the CLKSEL pin is a logic '0' (internal clock mode). When OFF, the SYNC and BCLK output pins are in the high impedance state.

- B2 : PCM I/O Control Register
 - 0 : PCM interface enabled
 - 1 : PCM interface disabled

When the PCM interface is disabled, the input from the PCMI pin is internally processed as idle patterns, and the PCMO pin goes to a high impedance state.

- B1 : Echo Canceller Mode Selection Register
 - 0 : Single echo canceller mode
 - 1 : Dual echo canceller mode

In the single echo canceller mode, only the acoustic echo canceller is enabled. The 64ms cancelable echo delay time is give to the acoustic echo canceller.

In the dual echo canceller mode, both of the acoustic and line echo cancellers are enabled, and the 64ms and the 20ms cancelable delay time are given respectively.

This function is determined by an ORed result of this bit and the secondary function (ECSEL) of the GPIB6 pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1.For more details, refer to "Pin Control and Control Registers". For more details, refer to "Pin Control and Control Registers".

- B0 : Operation Mode Selection Register
 - 0 : Initial mode
 - 1 : Normal operation

(Initial mode)

This LSI transits into the initial mode approx. 250ms after the release of power-down reset.

A logic '1' in the initial mode status flag register (READY) shows that this LSI is in the initial mode. After confirming the device is in the initial mode, start writing control registers (including the control registers for general-purpose ports) and the internal data memories.

In this mode, all the following functions are disabled;

- Output pins of the PCM interface go to a high impedance state
- Speech signal inputs are internally processed as idle patterns
- Echo cancellers, a noise canceller, a slope filter, programmable gains (TPAD, RPAD), and the ALC are disabled.

A logic '1' with the MCUSEL pin skips this initial mode after the release of the power-down reset.

(Normal operation)

A logic '1' in this register automatically alters the READY bit [CR10-B7] to a logic '0', and lets the device start the normal operation.

Control over echo cancellers, a noise canceller, a slope filter, programmable gains (TPAD, RPAD), and the ALC with their relevant control registers are possible.

- (Note) Acoustic and line echo cancellers are disabled and outputs of the AVFRO pin and the LVFRO pin in their default states. In order to enable echo cancellers and to get speech outputs, the following registers are required to altered from their initial values;
 - Acoustic echo canceller enable control register (AECEN-bit [CR12-B6])
 - Line echo canceller enable control register (LECEN-bit [CR11-B6])
 - Acoustic-side analog output selection register (AVFROSEL-bit [CR16-B1])
 - Line-side analog output selection register (LVFROSEL-bit [CR16-B0])

ML7037-003

(2) CR1

	B7	B6	B5	B4	B3	B2	B1	B0
CR1	DMWR	#	#	#	#	#	#	#
When to alter	I/E	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7 : Internal Data Memory Write Execution Register

0 : Write inhibited

1 : Write

A logic '1' in this register transfers the data specified by the CR8 (D15-D8) and the CR9 (D7-D0) into the internal data memory address specified by the CR6 (D15-D8) and the CR7 (D7-D0). After the completion of the data transfer, this register bit is automatically cleared to a logic '0'.

Confirm if this register bit turns to a logic '0' before another internal data memory write is made.

For more details, refer to descriptions under Internal Data Memory Access.

B6-B0: Reserved bits ... Do not alter the initial values.

ML7037-003

(3) CR2

	B7	B6	B5	B4	B3	B2	B1	B0
CR2	#	#	#	RALCTHR	RPAD3	RPAD2	RPAD1	RPAD0
When to alter	-	-	-	I/E	I/E	I/E	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7-5 : Reserved bits ... Do not alter the initial values.

B4 : Receive-Side ALC Through Mode Selection Register

- 0 : Normal mode (ALC enabled)
- 1 : Through mode

The ALC is to automatically amplify and attenuate its input signal to the target output level (-10dBm0) mainly for a purpose to absorb difference in handset speech output level varying from a handset to a handset. The maximum gain with the ALC is +27dB. In the through mode, the ALC outputs its given input as it is, and the internal state of the ALC is initialized.

The maximum gain could be altered via internal data memory access. For more details, refer to descriptions under Internal Data Memory Access.

This function is determined by an ORed result of this bit and the secondary function (ALCTHR) of the GPIB4 pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B3-0: Receive-Side Volume Control Register

A combination of these bits determines the gain setting (including mute) for the receive-side speech signals. This function is determined by an ORed result of these bits and the secondary functions (RPAD3-0) of the GPIA7-4 pins. Also, each of these bit registers is designed to contain the ORed value automatically so that these bits show a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B3 (RPAD3)	B2 (RPAD2)	B1 (RPAD1)	B0 (RPAD0)	Level
0	1	1	1	+21dB
0	1	1	0	+18dB
0	1	0	1	+15dB
0	1	0	0	+12dB
0	0	1	1	+9dB
0	0	1	0	+6dB
0	0	0	1	+3dB
0	0	0	0	0dB
1	1	1	1	-3dB
1	1	1	0	-6dB
1	1	0	1	-9dB
1	1	0	0	-12dB
1	0	1	1	-15dB
1	0	1	0	-18dB
1	0	0	1	-21dB
1	0	0	0	MUTE

Table 4	Receive-Side Volume Control

ML7037-003

(4) CR3

	B7	B6	B5	B4	B3	B2	B1	B0
CR3	#	#	#	#	TPAD3	TPAD2	TPAD1	TPAD0
When to alter	-	-	-	-	I/E	I/E	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7-4 : Reserved bits ... Do not alter the initial values.

B3-0: Transmit-Side Volume Control Register

A combination of these bits determines the gain setting (including mute) for the transmit-side speech signals.

This function is determined by an ORed result of these bits and the secondary functions (TPAD3-0) of the GPIA3-0 pins. Also, each of these bit registers is designed to contain the ORed value automatically so that these bits show a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B3	B2	B1	B0	Level
(TPAD3)	(TPAD2)	(TPAD1)	(TPAD0)	
0	1	1	1	+21dB
0	1	1	0	+18dB
0	1	0	1	+15dB
0	1	0	0	+12dB
0	0	1	1	+9dB
0	0	1	0	+6dB
0	0	0	1	+3dB
0	0	0	0	0dB
1	1	1	1	-3dB
1	1	1	0	-6dB
1	1	0	1	-9dB
1	1	0	0	-12dB
1	0	1	1	-15dB
1	0	1	0	-18dB
1	0	0	1	-21dB
1	0	0	0	MUTE

Table 5 Transmit-Side Volume Control

ML7037-003

(5) CR4

	B7	B6	B5	B4	B3	B2	B1	B0
CR4	#	#	#	APGA4	APGA3	APGA2	APGA1	APGA0
When to alter	-	-	-	I/E	I/E	I/E	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7-5 : Reserved bits ... Do not alter the initial values.

B4-0: Acoustic Side PGA Gain Level Tuning Registers

A combination of these bits determines the gain level of acoustic side PGA. Refer to Table 6. (Note) Tune acoustic side PGA gain level only during the reset state by the RST pin or the RST-bit [CR0-B6] or in the initial mode.

B4	B3	B2	B1	B0	
(APGA4)	(APGA3)	(APGA2)	(APGA1)	(APGA0)	Level
0	1	1	1	1	(inhibited for use)
0	1	1	1	0	(inhibited for use)
0	1	1	0	1	(inhibited for use)
0	1	1	0	0	(inhibited for use)
0	1	0	1	1	(inhibited for use)
0	1	0	1	0	+20dB
0	1	0	0	1	+18dB
0	1	0	0	0	+16dB
0	0	1	1	1	+14dB
0	0	1	1	0	+12dB
0	0	1	0	1	+10dB
0	0	1	0	0	+8dB
0	0	0	1	1	+6dB
0	0	0	1	0	+4dB
0	0	0	0	1	+2dB
0	0	0	0	0	0dB
1	1	1	1	1	-2dB
1	1	1	1	0	-4dB
1	1	1	0	1	-6dB
1	1	1	0	0	-8dB
1	1	0	1	1	-10dB
1	1	0	1	0	-12dB
1	1	0	0	1	-14dB
1	1	0	0	0	-16dB
1	0	1	1	1	-18dB
1	0	1	1	0	-20dB
1	0	1	0	1	(inhibited for use)
1	0	1	0	0	(inhibited for use)
1	0	0	1	1	(inhibited for use)
1	0	0	1	0	(inhibited for use)
1	0	0	0	1	(inhibited for use)
1	0	0	0	0	(inhibited for use)

Table 6 Acoustic Side PGA Gain Level

ML7037-003

(6) CR5

	B7	B6	B5	B4	B3	B2	B1	B0
CR5	#	#	#	LPGA4	LPGA3	LPGA2	LPGA1	LPGA0
When to alter	-	-	-	I/E	I/E	I/E	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7-5 : Reserved bits ... Do not alter the initial values.

B4-0: Line-Side PGA Gain Level Tuning Registers

A combination of these bits determines the gain level of line-side PGA. Refer to Table 7. (Note) Tune line-side PGA gain level only during the reset state by the RST pin or the RST-bit [CR0-B6] or in the initial mode.

B4	B3	B2	B1	B0	Level
(LPGA4)	(LPGA3)	(LPGA2)	(LPGA1)	(LPGA0)	
0	1	1	1	1	(inhibited for use)
0	1	1	1	0	(inhibited for use)
0	1	1	0	1	(inhibited for use)
0	1	1	0	0	(inhibited for use)
0	1	0	1	1	(inhibited for use)
0	1	0	1	0	+20dB
0	1	0	0	1	+18dB
0	1	0	0	0	+16dB
0	0	1	1	1	+14dB
0	0	1	1	0	+12dB
0	0	1	0	1	+10dB
0	0	1	0	0	+8dB
0	0	0	1	1	+6dB
0	0	0	1	0	+4dB
0	0	0	0	1	+2dB
0	0	0	0	0	0dB
1	1	1	1	1	-2dB
1	1	1	1	0	-4dB
1	1	1	0	1	-6dB
1	1	1	0	0	-8dB
1	1	0	1	1	-10dB
1	1	0	1	0	-12dB
1	1	0	0	1	-14dB
1	1	0	0	0	-16dB
1	0	1	1	1	-18dB
1	0	1	1	0	-20dB
1	0	1	0	1	(inhibited for use)
1	0	1	0	0	(inhibited for use)
1	0	0	1	1	(inhibited for use)
1	0	0	1	0	(inhibited for use)
1	0	0	0	1	(inhibited for use)
1	0	0	0	0	(inhibited for use)
•	·	· ·	· ·	v	

Table 7	Line-Side PGA Gain Level

ML7037-003

(7) CR6

	B7	B6	B5	B4	B3	B2	B1	B0
CR6	A15	A14	A13	A12	A11	A10	A9	A8
When to alter	I/E							
Initial value	0	1	1	1	0	0	0	0

B7-0: Internal Data Memory Upper Address Specifying Register

For a way to access to the internal data memory, please refer to descriptions under Internal Data Memory Access in later section.

The initial values of CR6-CR9 indicate the version number.

(8) CR7

	B7	B6	B5	B4	B3	B2	B1	B0
CR7	A7	A6	A5	A4	A3	A2	A1	A0
When to alter	I/E							
Initial value	0	0	1	1	0	1	1	1

B7-0: Internal Data Memory Lower Address Specifying Register

For a way to access to the internal data memory, please refer to descriptions under Internal Data Memory Access in later section.

The initial values of CR6-CR9 indicate the version number.

(9) CR8

	B7	B6	B5	B4	B3	B2	B1	B0
CR8	D15	D14	D13	D12	D11	D10	D9	D8
When to alter	I/E							
Initial value	0	0	0	0	0	0	1	1

B7-0: Internal Data Memory Upper Data Specifying Register

For a way to access to the internal data memory, please refer to descriptions under Internal Data Memory Access in later section.

The initial values of CR6-CR9 indicate the version number.

(10) CR9

	B7	B6	B5	B4	B3	B2	B1	B0
CR9	D7	D6	D5	D4	D3	D2	D1	D0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	1

B7-0: Internal Data Memory Lower Data Specifying Register

For a way to access to the internal data memory, please refer to descriptions under Internal Data Memory Access in later section.

The initial values of CR6-CR9 indicate the version number.

ML7037-003

(11) CR10

	B7	B6	B5	B4	B3	B2	B1	B0
CR10	READY	#	#	#	#	#	#	#
When to alter	-	-	-	-	-	-	-	-
Initial value	1	0	0	0	0	0	0	0

B7 : Initial Mode Status Flag Register

0 : Not in the initial mode

1 : In the initial mode

This LSI automatically transits into the initial mode approx. 250ms after a release of the power-down reset. During the initial mode, this register shows a logic '1' to indicate that it's ready for the internal data memory access. The alternation of the OPE_STAT bit [CR0-B0] to a logic '1'let this device transit to normal operation out of the initial mode, and this register automatically returns to logic '0'. By reading this register, it could be known if this device is in the initial mode or not.

ML7037-003

(12) CR11

	B7	B6	B5	B4	B3	B2	B1	B0
CR11	LTHR	LECEN	LHLD	#	LCLP	LSLC	LATT	#
When to alter	I/E	I/E	I/E	-	I/E	I/	I/E	-
Initial value	0	0	0	0	0	1	0	0

This register byte gets valid only in the dual echo canceller mode specified with ECSEL-bit [CR0-B1] (Echo Canceller Mode Selection Register) or the secondary function (ECSEL) if theGPIB6 pin.

B7 : Line Echo Canceller Through Mode Selection Register

- 0 : Normal mode
- 1 : Through mode

When the through mode is selected, speech data at the RinL and the SinL are output to the RoutL and the SoutL respectively as they are.

In the through mode, the filter coefficients of the line echo canceller are preserved, not reset, and the functions of the LHLD, the LCLP, the LATT, and the LSLC are disabled.

The line echo canceller functional block diagram is shown in Figure 23.

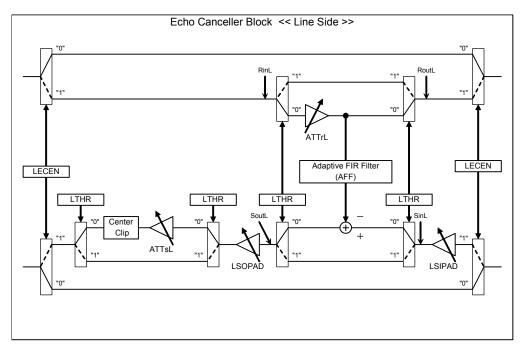


Figure 23 Line Echo Canceller Functional Block Diagram

- B6 : Line Echo Canceller Enable Register
 - 0 : Disabled
 - 1 : Enabled

When the line echo canceller is disabled, the functions of the LHLD, the LCLP, the LSLC, the LATT, the LSOPAD0, the LSOPAD1, the LSIPAD0, and the LSIPAD1 are invalid, and the filter coefficients of the line echo canceller are initialized.

This function is determined by an ORed result of this bit and the secondary functions (ECEN) of the GPIB7 pins. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B5 : Line Echo Canceller Filter Coefficients Update Suspension Register

- 0 : Allows updates
- 1 : Update suspended

The update suspension may be helpful for an application where the upper system can detect the RinL signals to be tones with which the coefficient convergence may not be so appropriate.

This control is valid when the LTHR-bit [CR11-B7] is logic '0' and the ORed logic of the LECEN-bit [CR11-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

B4 : Reserved bits … Do not alter the initial values.

- B3 : Line Echo Canceller Center Clip On/Off Register
 - 0 : Off
 - 1 : On

When the input to this functional block is not more than the Center Clip Operating Threshold or less, the center clip function forcibly sets it to the zero PCM code (or the positive zero μ -law PCM code). The initial value of the threshold is approx. -53dBm0.

This control is valid when the LTHR-bit [CR11-B7] is logic '0' and the ORed logic of the LECEN-bit [CR11-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

The Center Clip Operating Threshold and the Center Clip Attenuation Level can be altered through the internal data memory access. Refer to descriptions under Internal Data Memory Address Map in the later section.

B2 : Line Echo Canceller Automatic SinL Level Control Register

- 0 : Off
- 1 : On

This is a function to automatically tune the SinL input level and to recover the level decrease at the SoutL to maintain the level diagram flat. The echo attenuation of the echo canceller would decrease when the Echo Return Loss (E.R.L. = RoutL – SinL) is positive. With this function enabled, the degree of the decrease in echo attenuation is relieved.

This control is valid when the LTHR-bit [CR11-B7] is logic '0' and the ORed logic of the LECEN-bit [CR11-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

(Note) When this register is set to a logic '1', the gains with the LSOPAD and the LSIPAD must be set to 0dB (initial value).

B1 : Line Echo Canceller ATT On/Off Register

- $0 \quad : \ On$
- 1 : Off

This bit turns on or off the ATT function to complement echo cancellation by the line echo canceller's adaptive FIR filter and to suppress howling by means of attenuators (ATTsL, ATTrL) provided in the RinL input and SoutL output of the line echo canceler.

When only a speaker on the RinL-side speaks, the ATTsL works.

When a speaker on the RinL-side is silent or when both of speakers on the RinL-side and the SinL-side speak, the ATTrL works.

The initial values of the ATTrL and the ATTsL are 0dB and 6dB (approx.) respectively. The attenuation level of the ATTrL and the ATTsL can be altered by the internal data memory. Refer to descriptions under Internal Data Memory Address Map in the later section.

This control is valid when the LTHR-bit [CR11-B7] is logic '0' and the ORed logic of the LECEN-bit [CR11-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

ML7037-003

(13) CR12

	B7	B6	B5	B4	B3	B2	B1	B0
CR12	ATHR	AECEN	AHLD	#	ACLP	ASLC	AATT	#
When to alter	I/E	I/E	I/E	-	I/E	I/	I/E	-
Initial value	0	0	0	0	0	1	0	0

B7 : Acoustic Echo Canceller Through Mode Selection Register

0 : Normal mode

1 : Through mode

When the through mode is selected, speech data at the RinA and the SinA are output to the RoutA and the SoutA respectively as they are.

In the through mode, the filter coefficients of the acoustic echo canceller are preserved, not reset, and the functions of the AHLD, the AHD, the AATT, ACLP, and the ASLC are disabled.

The acoustic echo canceller functional block diagram is shown in Figure 24.

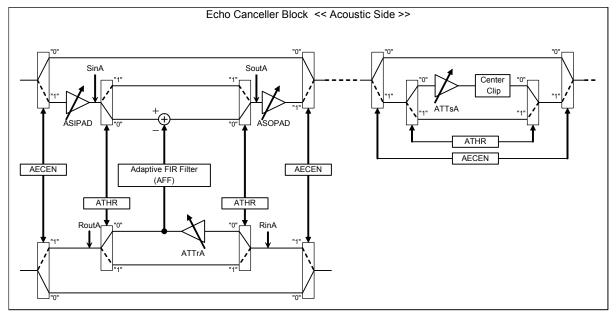


Figure 24 Acoustic Echo Canceller Functional Block Diagram

- B6 : Acoustic Echo Canceller Enable Register
 - 0 : Disabled
 - 1 : Enabled

When the line echo canceller is disabled, the functions of the AHLD, the AATT, the ACLP, the ASLC, the ASOPAD0, the ASOPAD1, the ASIPAD0, and the ASIPAD1 are invalid, and the filter coefficients of the acoustic echo canceller are initialized.

This function is determined by an ORed result of this bit and the secondary functions (ECEN) of the GPIB7 pins. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B5 : Acoustic Echo Canceller Filter Coefficients Update Suspension Register

- 0 : Allows updates
- 1 : Update suspended

The update suspension may be helpful for an application where the upper system can detect the RinS signals to be tones with which the coefficient convergence may not be so appropriate.

This control is valid when the ATHR-bit [CR12-B7] is logic '0' and the ORed logic of the AECEN-bit [CR12-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

B4 : A reserved bit ... Do not alter the initial value.

- B3 : Acoustic Echo Canceller Center Clip On/Off Register
 - 0 : Off
 - 1 : On

When the input to this functional block is not more than the Center Clip Operating Threshold or less, the center clip function forcibly sets it to the zero PCM code (or the positive zero μ -law PCM code). The initial value of the threshold is approx. -53dBm0.

This control is valid when the ATHR-bit [CR12-B7] is logic '0' and the ORed logic of the AECEN-bit [CR12-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

The Center Clip Operating Threshold and the Center Clip Attenuation Level can be altered through the internal data memory access. Refer to descriptions under Internal Data Memory Address Map in the later section.

B2 : Acoustic Echo Canceller Automatic SinA Level Control Register

- 0 : Off
- 1 : On

This is a function to automatically tune the SinA input level and to recover the level decrease at the SoutA to maintain the level diagram flat. The echo attenuation of the echo canceller would decrease when the Echo Return Loss (E.R.L. = RoutA - SinA) is positive. With this function enabled, the degree of the decrease in echo attenuation is relieved.

This control is valid when the ATHR-bit [CR12-B7] is logic '0' and the ORed logic of the AECEN-bit [CR12-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

(Note) When this register is set to a logic '1', the gains with the ASOPAD and the ASIPAD must be set to 0dB (initial value).

B1 : Acoustic Echo Canceller ATT On/Off Register

- 0 : On
- 1 : Off

This bit turns on or off the ATT function to complement echo cancellation by the acoustic echo canceller's adaptive FIR filter and to suppress howling by means of attenuators (ATTsA, ATTrA) provided in the RinA input and SoutA output of the line echo canceler. When only a speaker on the RinA-side speaks, the ATTsA works. When both of speakers on the RinA-side and the SinA-side speak, the ATTrA works.

The initial values of the ATTrA and the ATTsA are 6dB (approx.) and 36dB (approx.) respectively. The attenuation level of the ATTrA and the ATTsA can be altered by the internal data memory. Refer to descriptions under Internal Data Memory Address Map in the later section.

This control is valid when the ATHR-bit [CR12-B7] is logic '0' and the ORed logic of the AECEN-bit [CR12-B6] and the secondary function (ECEN) of the GPIB7 pin is logic '1'.

ML7037-003

(14) CR13

	B7	B6	B5	B4	B3	B2	B1	B0
CR13	ASOPAD1	ASOPAD0	ASIPAD1	ASIPAD0	LSOPAD1	LSOPAD0	LSIPAD1	LSIPAD0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	0

B7-6: Acoustic Echo Canceller SoutA Gain Level Control Registers

B5-4: Acoustic Echo Canceller SinA Loss Level Control Registers

The echo attenuation of the echo canceller would decrease when the Echo Return Loss (E.R.L. = RoutA – SinA) is positive (SinA > RoutA). A combination of the ASIPAD1 and the ASIPAD0 determines a loss level with the ASIPAD to tune the Echo Return Loss adequate for the acoustic echo canceller. A combination of the ASOPAD1 and the ASOPAD0 determines a gain level with the ASOPAD so that the loss by the ASIPAD could be recovered and the level diagram could be kept flat, if needed.

The ASIPAD is a signal processing to narrower the dynamic range so that the loss level is recommended to be 0dB when the Echo Return Loss is known to be negative (SinA < RoutA). Refer to Table 8 and Table 9.

Table 8 Acoustic Echo Canceller SoutA Gain Level (ASOPAD)

B7 (ASOPAD1)	B6 (ASOPAD0)	Level
0	0	0dB
0	1	+6dB
1	0	+12dB
1	1	+18dB

Table 9	Acoustic Echo	Canceller SinA	Loss Level	(ASIPAD)

B5 (ASIPAD1)	B4 (ASIPAD0)	Level
0	0	0dB
0	1	-6dB
1	0	-12dB
1	1	-18dB

(Note) When Acoustic Echo Canceller Automatic SinA Level Control is enabled (ASLC-bit [CR12-B2] = '1'), Set all of the ASOPAD1, the ASOPAD0, the ASIPAD1, and the ASIPAD0 to logic '0' (initial value).

(Note) The alternation of the setting with these bits must be made either in the initial mode or while the RST pin is a logic '0' or the RST-bit [CR0-B6] is a logic '1'.

B3-2: Line Echo Canceller SoutL Gain Level Control Registers B1-0: Line Echo Canceller SinL Loss Level Control Registers

The echo attenuation of the echo canceller would decrease when the Echo Return Loss (E.R.L. = RoutL – SinL) is positive (SinL > RoutL). A combination of the LSIPAD1 and the LSIPAD0 determines a loss level with the LSIPAD to tune the Echo Return Loss adequate for the line echo canceller. A combination of the LSOPAD1 and the LSOPAD0 determines a gain level with the LSOPAD so that the loss by the LSIPAD could be recovered and the level diagram could be kept flat, if needed.

The LSIPAD is a signal processing to narrower the dynamic range so that the loss level is recommended to be 0dB when the Echo Return Loss is known to be negative (SinL \leq RoutL).

Refer to Table 10 and Table 11.

B3	B2	Level
(LSOPAD1)	(LSOPAD0)	Level
0	0	0dB
0	1	+6dB
1	0	+12dB
1	1	+18dB

 Table 10
 Line Echo Canceller SoutL Gain Level (LSOPAD)

Table 11	Line Echo	Canceller	SinL Loss	Level	(LSIPAD)
----------	-----------	-----------	-----------	-------	----------

B1 (LSIPAD1)	B0 (LSIPAD0)	Level
0	0	0dB
0	1	-6dB
1	0	-12dB
1	1	-18dB

- (Note) When Line Echo Canceller Automatic SinL Level Control is enabled (LSLC-bit [CR11-B2] = '1'), Set all of the LSOPAD1, the LSOPAD0, the LSIPAD1, and the LSIPAD0 to logic '0' (initial value).
- (Note) The alternation of the setting with these bits must be made either in the initial mode or while the RST pin is a logic '0' or the RST-bit [CR0-B6] is a logic '1'.

(15) CR14

	B7	B6	B5	B4	B3	B2	B1	B0
CR14	SLPTHR	#	#	#	NCTHR	#	#	#
When to alter	I/E	-	-	-	I/E	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7 : Slope Filter Through Mode Selection Register

0 : Normal mode

1 : Through mode

The slope filter has frequency characteristics to suppress low frequency range and gain high frequency range so that it helps to relax near-end ambient noises usually dominant in low frequency range and to emphasize speech consonants mostly dominant in high frequency range.

This function is determined by an ORed result of this bit and the secondary functions (SLPTHR) of the GPIB5 pins. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

B6-4 : Reserved bits ... Do not alter the initial values.

- B3 : Noise Canceller Through Mode Selection Register
 - 0 : Normal Mode (enabled)
 - 1 : Through Mode

In the though mode, input signals to the noise canceller functional block are output as they are. In the normal mode, the noise canceller works. The initial attenuation level setting for the noise canceller is 13dB (approx.). The noise attenuation level setting could be altered through the internal data memory access. Refer to descriptions under Internal Data Memory Address Map in the later section.

This function is determined by an ORed result of this bit and the secondary functions (NCTHR) of the GPIB3 pins. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin configured as its secondary function is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

ML7037-003

(16) CR15

	B7	B6	B5	B4	B3	B2	B1	B0
CR15	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	1	0	0	0	0	0	0	0

(17) CR16

	B7	B6	B5	B4	B3	B2	B1	B0
CR16	AVREFEN	#	#	#	#	#	AVFROSEL	LVFROSEL
When to alter	I/E	-	-	-	-	-	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7 : Power-Down State AVREF/Analog Output Amps Control Register

- 0 : Powered down during power-down mode
- 1 : Powered up even during power-down mode

This bit specifies the power-down or the power-up with the AVREF and analog output amps in the power-down state with the PDN pin to be a logic '0' or with the SPDN-bit [CR0-B7] to be a logic '1'.

When this is logic '0', the AVREF and the analog output amps are also powered down in the power-down mode. When this is logic '1', the AVREF and the analog output amps are powered up even in the power-down mode, and the AVREF pin, the AVFRO pin and the LVFRO pin output 1.4V (approx.).

By keeping the AVREF and analog output amps kept powered up, pop noises which may occur on release and execution of power-down could be relaxed.

This function is determined by an ORed result of this bit and the AVREFEN pin. Also, this bit register is designed to contain the ORed value automatically so that this bit shows a logic '1' when its concerned pin is set to a logic 1. For more details, refer to "Pin Control and Control Registers".

(Note) This control is valid only during power-down.

(Note) "Analog output amps" here refer to the AVFRO output amp and the LVFRO output amp.

- B1 : Acoustic Side Analog Output Selection Register
 - 0 : AVREF (1.4V approx.)
 - 1 : Speech signals
- B1 : Line- Side Analog Output Selection Register
 - 0 : AVREF (1.4V approx.)
 - 1 : Speech signals

ML7037-003

(18) CR17

	B7	B6	B5	B4	B3	B2	B1	B0
CR17	#	#	#	#	#	#	AATTMODE	AATTMODE
GRI							1	0
When to alter	-	-	-	-	-	-	I/E	I/E
Initial value	0	0	0	0	0	0	1	0

B7-2 : Reserved bits … Do not alter the initial values.

B1-0: ATTsA Operation Mode Selection Register

The acoustic echo canceller's transmit-side attenuator (ATTsA) helps to further suppress echoes left over by the adaptive FIR filter and to reduce residual echoes; whereas it attributes half-duplexity perceived by a far-end speaker. A combination of these bits determines the balance between the two characteristics out of the 4 modes below;

Table 12	ATTsA Operation N	∕lode
----------	-------------------	-------

			Full
AATTMODEU	Operation Mode	Suppress	Duplexity
1	Туре А	Modest	More
0	Type B*	:	:
1	Туре С	:	:
0	Type D	Aggressive	Less
	AATTMODE0 1 0 1 0	1 Type A 0 Type B* 1 Type C	1 Type A Modest 0 Type B* : 1 Type C :

* Initial setting = Type B

(19) CR18

	B7	B6	B5	B4	B3	B2	B1	B0
CR18	#	#	#	#	#	#	LATTMODE	LATTMODE
CKIO							1	0
When to alter	-	-	-	-	-	-	I/E	I/E
Initial value	0	0	0	0	0	0	1	0

B7-2 : Reserved bits ... Do not alter the initial values.

B1-0: ATTsL Operation Mode Selection Register

The acoustic echo canceller's transmit-side attenuator (ATTsL) helps to further suppress echoes left over by the adaptive FIR filter and to reduce residual echoes; whereas it attributes half-duplexity perceived by a far-end speaker. A combination of these bits determines the balance between the two characteristics out of the 4 modes below;

Table 12	ATTsL Operation Mo	de
----------	--------------------	----

LATTMODE1	LATTMODE0	Operation Mode	Echo	Full
LATTWODET	LATTMODEU	Operation mode	Suppress	Duplexity
1	1	Туре А	Modest	More
1	0	Type B*	:	:
0	1	Туре С	:	:
0	0	Type D	Aggressive	Less
* 1 . 11 . 1	T D			

* Initial setting = Type B

ML7037-003

(20) CR19

	B7	B6	B5	B4	B3	B2	B1	B0
CR19	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

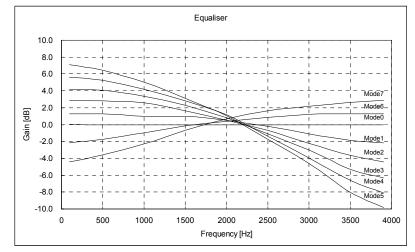
ML7037-003

(21) CR20

	B7	B6	B5	B4	B3	B2	B1	B0
CR20	#	#	#	#	EQL_EN	EQL_2	EQL_1	EQL_0
When to alter	-	-	-	-	I/E	I/E	I/E	I/E
Initial value	0	0	0	0	0	0	0	0

B7-4 : Reserved bits ... Do not alter the initial values.

B3 : Equalizer On/Off Register


0 : Off

1 : On

B2-0: Equalizer mode selection register

The equalizer modes and their frequency characteristics are shown below;

EQL_2	EQL_1	EQL_0	Mode	Note				
0	0	0	Mode 0	Through mode				
0	0	1	Mode1					
0	1	0	Mode 2					
0	1	1	Mode 3	3 High frequency attenuated ; low frequency amplified				
1	0	0	Mode 4					
1	0	1	Mode 5					
1	1	0	Mode 6	High frequency amplified : low frequency attenuated				
1	1	1	Mode 7	High frequency amplified ; low frequency attenuated				

ML7037-003

(22) CR21

	B7	B6	B5	B4	B3	B2	B1	B0
CR21	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(23) CR22

	B7	B6	B5	B4	B3	B2	B1	B0
CR22	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

ML7037-003

(24) CR23

	B7	B6	B5	B4	B3	B2	B1	B0
CR23	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(25) CR24

	B7	B6	B5	B4	B3	B2	B1	B0
CR24	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(26) CR25

	B7	B6	B5	B4	B3	B2	B1	B0
CR25	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(27) CR26

	B7	B6	B5	B4	B3	B2	B1	B0
CR26	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(28) CR27

	B7	B6	B5	B4	B3	B2	B1	B0
CR27	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

ML7037-003

(29) CR28

	B7	B6	B5	B4	B3	B2	B1	B0
CR28	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(30) CR29

	B7	B6	B5	B4	B3	B2	B1	B0
CR29	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(31) CR30

	B7	B6	B5	B4	B3	B2	B1	B0
CR30	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(32) CR31

	B7	B6	B5	B4	B3	B2	B1	B0
CR31	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

ML7037-003

(33) GPCR0

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR0	GPFA7	GPFA6	GPFA5	GPFA4	GPFA3	GPFA2	GPFA1	GPFA0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	0

This register byte selects the primary or the secondary function of the GPIA7-0 pins (general-purpose input port pins).

- B7 : GPIA7 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) RPAD3
- B6 : GPIA6 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) RPAD2
- B5 : GPIA5 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) RPAD1
- B4 : GPIA4 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) RPAD0
- B3 : GPIA3 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) TPAD3
- B2 : GPIA2 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) TPAD2
- B1 : GPIA1 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) TPAD1
- B0 : GPIA0 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) TPAD0

ML7037-003

(34) GPCR1

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR1	GPFB7	GPFB6	GPFB5	GPFB4	GPFB3	GPFB2	GPFB1	#
When to alter	I/E	-						
Initial value	0	0	0	0	0	0	0	0

This register byte selects the primary or the secondary function of the GPIB7-0 pins (general-purpose input port pins).

- B7 : GPIB7 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) ECEN
- B6 : GPIB6 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) ECSEL
- B5 : GPIB5 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) SLPTHR
- B4 : GPIB4 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) ALCTHR
- B3 : GPIB3 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) NCTHR
- B2 : GPIB2 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) VFROSEL
- B1 : GPIB1 Primary/Secondary Function Selection Register
 - 0 : (Primary function) General-purpose port
 - 1 : (Secondary function) LINEEN
- B0 : A reserved bit ... Do not alter the initial value.

ML7037-003

(35) GPCR2

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR2	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

ML7037-003

(36) GPCR3

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR3	GPDA7	GPDA6	GPDA5	GPDA4	GPDA3	GPDA2	GPDA1	GPDA0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	0

These are the input status flag registers for the general-purpose input port pins (the GPIA7-0). By reading these registers, the input status of the concerned pins is known.

B7 : GPIA7 pin Input Status Flag Register

GPFA7-bit	GPIA7 pin Function	Read	Write		
0	General input port	shows the input status	does not influence to the pin status		
1	RPAD3	shows the input status	does not influence to the pin status		

B6 : GPIA6 pin Input Status Flag Register

GPFA6-bit	GPIA6 pin Function	Read	Write		
0	General input port	shows the input status	does not influence to the pin status		
1	RPAD2	shows the input status	does not influence to the pin status		

B5 : GPIA5 pin Input Status Flag Register

(GPFA5-bit	GPIA5 pin Function	Read	Write		
	0	General input port	shows the input status	does not influence to the pin status		
	1	RPAD1	shows the input status	does not influence to the pin status		

B4 : GPIA4 pin Input Status Flag Register

GPFA4-bit	GPIA4 pin Function	Read	Write	
0	General input port	shows the input status	does not influence to the pin status	
1	RPAD0	shows the input status	does not influence to the pin status	

B3 : GPIA3 pin Input Status Flag Register

GPFA3-bit	GPIA3 pin Function	Read	Write
0	General input port	shows the input status	does not influence to the pin status
1	TPAD3	shows the input status	does not influence to the pin status

B2 : GPIA2 pin Input Status Flag Register

-	GPFA2-bit	GPIA2 pin Function	Read	Write		
-	0	General input port	shows the input status	does not influence to the pin status		
	1	TPAD2	shows the input status	does not influence to the pin status		

B1 : <u>GPIA1 pin Input Status Flag Register</u>

GPFA1-bit	GPIA1 pin Function	Read	Write		
0	General input port	shows the input status	does not influence to the pin status		
1	TPAD1	shows the input status	does not influence to the pin status		

B0 : GPIA0 pin Input Status Flag Register

GPFA0-bit	GPIA0 pin Function	Read	Write		
0	General input port	shows the input status	does not influence to the pin status		
1	TPAD0	shows the input status	does not influence to the pin status		

ML7037-003

(37) GPCR4

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR4	GPDB7	GPDB6	GPDB5	GPDB4	GPDB3	GPDB2	GPDB1	GPDB0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	0

These are the input status flag registers for the general-purpose input port pins (the GPIB7-0). By reading these registers, the input status of the concerned pins is known.

B7 : GPIB7 pin Input Status Flag Register

$\frac{011D}{p1}$	ii input Status I lug Regi		
GPBF7-b	oit GPIB7 pin Function	Read	Write
0	General input port	shows the input status	does not influence to the pin status
1	ECEN	shows the input status	does not influence to the pin status

B6 : GPIB6 pin Input Status Flag Register

	GPBF6-bit	GPIB6 pin Function	Read	Write
-	0	General input port	shows the input status	does not influence to the pin status
_	1	ECSEL	shows the input status	does not influence to the pin status

B5 : GPIB5 pin Input Status Flag Register

-	GPBF5-bit	GPIB5 pin Function	Read	Write
-	0	General input port	shows the input status	does not influence to the pin status
-	1	SLPTHR	shows the input status	does not influence to the pin status

B4 : GPIB4 pin Input Status Flag Register

	GPBF4-bit	GPIB4 pin Function	Read	Write	
_	0	General input port	shows the input status	does not influence to the pin status	
_	1	ALCTHR	shows the input status	does not influence to the pin status	

B3 : GPIB3 pin Input Status Flag Register

GPBF3-bit GPIB3 pin Function		Read	Write	
0	General input port	shows the input status	does not influence to the pin status	
1	NCTHR	shows the input status	does not influence to the pin status	

B2 : GPIB2 pin Input Status Flag Register

GPBF2-bit	GPIB2 pin Function	Read	Write	
0	General input port	shows the input status	does not influence to the pin status	
1	VFROSEL	shows the input status	does not influence to the pin status	

B1 : GPIB1 pin Input Status Flag Register

GPBF1-bit	GPIB1 pin Function	Read	Write
0	General input port	shows the input status	does not influence to the pin status
1	LINEEN	shows the input status	does not influence to the pin status

B0 : GPIB0 pin Input Status Flag Register

GPIB0 pin Function	Read	Write
General input port	shows the input status	does not influence to the pin status

ML7037-003

(38) GPCR5

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR5	GPDC7	GPDC6	GPDC5	GPDC4	GPDC3	GPDC2	GPDC1	GPDC0
When to alter	I/E							
Initial value	0	0	0	0	0	0	0	0

These determine the output status for the general-purpose output port pins (the GPOC7-0). By reading these registers, the output status of the concerned pins is known.

B7 : GPOC7 Output Specifying Register

Read	Write
GPOC7 register value	Specifies the output status of the GPOC7 pin

B6	GPOC6 Output Specifying Register					
	Read	Write				
	GPOC6 register value	Specifies the output status of the GPOC6 pin				

B5 : GPOC5 Output Specifying Register Read Write GPOC5 register value Specifies the output status of the GPOC5 pin

B4 <th:</th> GPOC4 Output Specifying Register Read Write GPOC4 register value Specifies the output status of the GPOC4 pin

B3 : GPOC3 Output Specifying Register

Read	Write
GPOC3 register value	Specifies the output status of the GPOC3 pin

B2 : GPOC2 Output Specifying Register

Read	Write
GPOC2 register value	Specifies the output status of the GPOC2 pin

B1 : GPOC1 Output Specifying Register

Read	Write
GPOC1 register value	Specifies the output status of the GPOC1 pin

B0 : GPOC0 Output Specifying Register

Read	Write			
GPOC0 register value	Specifies the output status of the GPOC0 pin			

ML7037-003

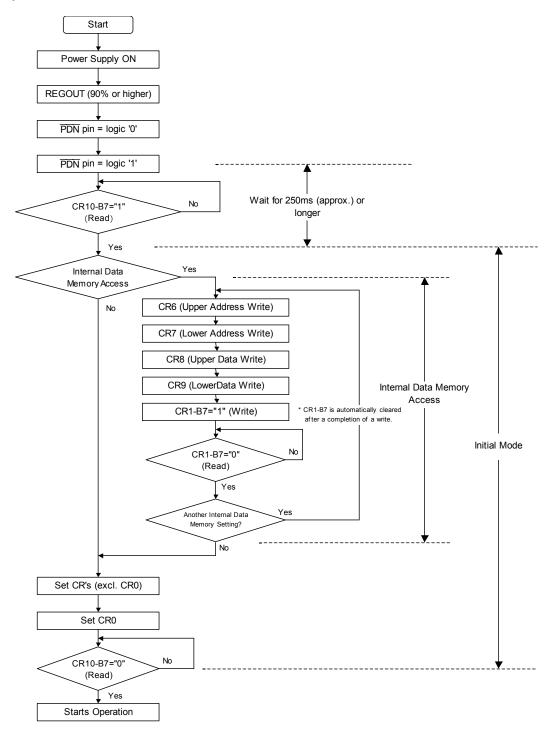
(39) GPCR6

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR6	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7-0 : Reserved bits ... Do not alter the initial values.

(40) GPCR7

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR7	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0


B7-0 : Reserved bits ... Do not alter the initial values.

(41) GPCR8

	B7	B6	B5	B4	B3	B2	B1	B0
GPCR8	\$	\$	\$	\$	\$	\$	\$	\$
When to alter	-	-	-	-	-	-	-	-
Initial value	1	1	1	1	1	1	1	1

MICRO CONTROLLER INTERFACE

A way to use the micro controller interface is shown herebelow;

INTERNAL DATA MEMORY ACCESS

The ML7037-003 has an area called the internal data memories (16-bit wide address and 16-bit wide data), and operates reading variables such as coefficients and thresholds retained therein. By alternating the data in the given memory addresses, the default state could be customized.

How to Write into the Internal Data Memory

The CR6 (A15-A8) and the CR7 (A7-A0) are registers to specify the address of the internal data memory to alter. The CR8 (D15-D8) and the CR9 (D7-D0) are registers to store the data to write into the internal data memory to alter.

When the MCUSEL pin is given a logic '0', the ML7037-003 automatically transits into the initial mode 250ms (approx.) after a release of power-down reset by the PDN pin or the SPDN-bit [CR0-B7], and the READY-bit [CR10-B7] turns to be a logic '1' which shows the ML7037-003 has got ready for the control register access. During this initial mode, specify both the 16-bit wide address by the CR6-CR7 and the 16-bit wide data by the CR8-CR9 first, and then write a logic '1' into the DMWR-bit [CR1-B7], which executes alternation of the internal data memory in the given address. After the internal data memory alternation, the DMWR-bit [CR1-B7] automatically is cleared to be a logic '0'. The flow of this internal data memory access is shown in Figure 26. When more than an internal data memory, repeat the procedure above. A change of the OPE_STAT-bit [CR0-B0] to a logic '1' let the ML7037-003 out of the initial mode, and it starts normal operation.

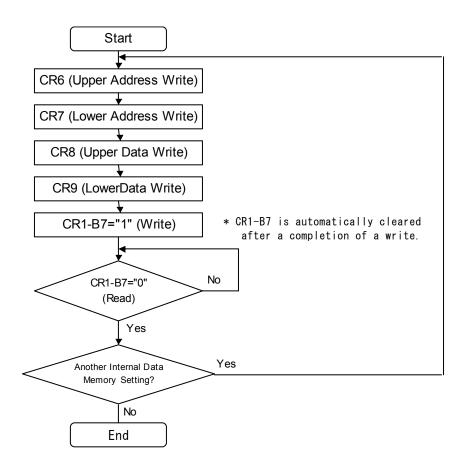


Figure 26 Internal Data Memory Access Flow Chart

PIN CONTROL AND CONTROL REGISTERS

Some of functions and states with the ML7037-003 could be determined either by input state of certain pins (their secondary functions, if the pins are general-purpose input port pins) and/or the control registers. In such cases, the functions and states are determined by ORed logics between them. Hence, when a function or a state is determined (called as "State Control") by the concerned pin input, it is required to be careful with the concerned register setting; and visa versa.

Table 13 shows such pins and the relevant control registers.

All the values to be set in the relevant control registers are the initial values set on a release of power-down reset by the PDN pin or the SPDN-bit [CR0-B7].

Function	Pin input to make when State Control	Pin	Control register value to set when	
Power-down reset	is made by the control register logic '1'	PDN	State Control is made by the pin logic '0'	Register SPDN
Reset	logic '1'	RST	logic '0'	RST
PCM Coding Format Selection	logic '0'	PCMSEL		PCMSEL
Micro Control Interface Enable/Disable Selection	o	MCUSEL	logic '0'	OPE_STAT
Transmit-Side Volume Control	logic '0'	GPIA[3-0] (TPAD[3-0]) *1	logic '0'	TPAD[3-0]
Receive-Side Volume Control	logic '0'	GPIA[4-7] (RPAD[3-0]) *1	logic '0'	RPAD[3-0]
Line-Side Analog Interface Power-Down Control	logic '0'	GPIB1 (LINEEN) *1	logic '0'	LINEEN
Analog Output Selection	logic '0'	GPIB2 (VFROSEL) *1	logic '0'	AVFROSEL LVFROSEL
Noise Canceller Through Mode Selection	logic '0'	GPIB3 (NCTHR) *1	logic '0'	NCTHR
Receive-Side ALC Through Mode Selection	logic '0'	GPIB4 (ALCTHR) *1	logic '0'	RALCTHR
Slope Filter Through Mode Selection	logic '0'	GPIB5 (SLPTHR) *1	logic '0'	SLPTHR
Echo Canceller Mode Selection Register	logic '0'	GPIB6 (ECSEL) *1	logic '0'	ECSEL
Acoustic Echo Canceller Enable Control	logic '0'	GPIB7 (ECEN) *1	logic '0'	LECEN AECEN

*1 : A name in (bracket) shows the pin name when the secondary function is assigned.

Table 13 Relevant Input Pins And Control Registers

ML7037-003

INTERNAL DATA MEMORY ADDRESS MAP

Functional			Initia	l Value		allowed	to alter
Block	What to Determine	Address	Data	Operation Definition	Initial Mode ^{*1}	On Halt ^{*2}	On Operation ^{*3}
	Maximum Gain (Data 1)	0F11h	1400h		Yes	Yes	No
	Maximum Gain (Data 2)	0F0Ah	0B49h		Yes	Yes	No
ALC	Maximum Gain (Data 3)	0F0Bh	07FDh	27dB	Yes	Yes	No
ALC	Maximum Gain (Data 4)	0F0Ch	0401h	2700	Yes	Yes	No
	Maximum Gain (Data 5)	0F14h	08F4h		Yes	Yes	No
	Maximum Gain (Data 6)	0F15h	00E4h		Yes	Yes	No
Noise	Noise Attenuation Level (Data1)	01B5h	199Ah	13dB	Yes	Yes	No
Canceller	Noise Attenuation Level (Data2)	01ACh	1400h	TSUB	Yes	Yes	No
	ATTsL Attenuation	0788h	4027h	6dB	Yes	Yes	No
	ATTrL Attenuation (Data1)	0AA2h	7FFFh		Yes	Yes	No
	ATTrL Attenuation (Data2)	0AA0h	0000h	6dB	Yes	Yes	No
Line Echo Canceller	ATTrL Attenuation (Data3)	0AA1h	0000h		Yes	Yes	No
	Center Clip Operational Threshold	07B2h	0020h	-53dBm0 (approx.)	Yes	Yes	No
	Center Clip Attenuation Level	07B3h	0000h	MUTE	Yes	Yes	No
	Echo Cancellable Delay Time	0AA4h	00A0h	20ms	Yes	No	No
	ATTsA Attenuation	076Bh	0207h	36dB	Yes	Yes	No
	ATTsA On-to-Off Transition (Data1)	077Dh	0140h	Mode	Yes	Yes	No
	ATTsA On-to-Off Transition (Data2)	0777h	00A0h	woue	Yes	Yes	No
Acoustic	ATTrA Attenuation	0ABBh	3FFFh	6dB	Yes	Yes	No
Echo Canceller	Center Clip Operational Threshold	07ABh	0020h	-53dBm0 (approx.)	Yes	Yes	No
	Center Clip Attenuation Level	07ACh	0000h	MUTE	Yes	Yes	No
	Speech/Silence Judging Threshold on Receive-Side	0AC0h	0200h	-29 dBm0 (approx.)	Yes	Yes	No
	Echo Cancellable Delay Time	0ABDh	0200h	64ms	Yes	No	No

*1 Initial Mode : A state the ML7037-003 enters after a release of power-down reset when the MCUSEL pin is *2 Halt : When the concerned function is disabled or set in the through mode
*3 On Operation : When the concerned function is enabled and operational

Table 14 Relevant Input Pins and Control Registers

Automatic Level Controller (Maximum Gain)

The default maximum gain could be altered through the internal data memory. Though the ALC could automatically gain its received signals when the received signals are weak, it amplifies not only speech but also noises such as a far-end speaker's background noises when the ALC gets gain. When such a trade-off is unwanted or when system noise level with your hands-free is relatively high, the maximum gain is recommended to be relaxed.

Noise Maximum	Address (0F11h)	Address (0F0Ah)	Address (0F0Bh)	Address (0F0Ch)	Address (0F14h)	Address (0F15h)
Gain [dB]	Data	Data	Data	Data	Data	Data
0	0200h	1944h	11E3h	08F7h	0400h	0200h
3	0200h	11E3h	0CAAh	0658h	05A6h	016Ah
6	0200h	0CAAh	08F7h	047Eh	07FBh	0100h
9	0284h	0B49h	07FDh	0401h	08F4h	00E4h
12	038Eh	0B49h	07FDh	0401h	08F4h	00E4h
15	0506h	0B49h	07FDh	0401h	08F4h	00E4h
18	0718h	0B49h	07FDh	0401h	08F4h	00E4h
21	0A06h	0B49h	07FDh	0401h	08F4h	00E4h
24	0E28h	0B49h	07FDh	0401h	08F4h	00E4h
27*	1400h	0B49h	07FDh	0401h	08F4h	00E4h
* The state	4			-		

* The initial values.

Noise Canceller (Noise Attenuation Level)

The default noise attenuation level could be altered through the internal data memory. There is a trade-off between noise attenuation and sound quality. In other words, increasing the noise attenuation deteriorates sound quality, and decreasing the noise attenuation improves sound quality.

Noise	Address (01B5h)	Address (01ACh)
Attenuation Level [dB]	Data1	Data2
6	3D71h	1400h*
9	28F6h	1400h*
13	199Ah*	1400h*
18	0E14h	2000h

* The initial values.

ML7037-003

ATTsL Attenuation

The default ATTsL Attenuation level could be altered through the internal data memory.

Address (0788h)
Data
7FFFh
5A9Dh
4027h*
2D6Ah
2027h

* The default and the initial value

ATTrL Attenuation

The default ATTrL Attenuation level could be altered through the internal data memory.

Attenuation	Address (0AA2h)	Address (0AA0h)	Address (0AA1h)	
[dB]	Data1	Data2	Data3	
0*	7FFFh*	0000h*	0000h*	
6	3FFFh	0040h	FF80h	

* The default and the initial value

ATTsA Attenuation

The default ATTsA Attenuation level could be altered through the internal data memory.

Attenuation	Address (076Bh)		
[dB]	Data		
3	5A9Eh		
6	4027h		
9	2D6Bh		
12	2027h		
15	16C3h		
18	101Dh		
21	0B68h		
24	0814h		
27	05B8h		
30	040Ch		
33	02DEh		
36*	0207h*		
* The default and the initial value			

ATTsA On-to-Off Transition

The default mode of ATTsA On-to-Off transition could be altered through the internal data memory. Basically full duplexity and a degree of non-linear echo suppression is in a relationship of a trade-off. This balance is primarily determined by selecting among Type A, B, C and D using CR17-B1, B0 (AATTMODE1-bit, AATTMODE0-bit).

After you choose an appropriate AATTMODE, you may be able to minorly relax the half-duplexity by fastening On-to-Off transition of ATTsA.

Address (077Dh)	Address (0777h)	Transition	Echo	Full
Data1	Data2		Suppress	Duplexity
0140h*	00A0h*	Slow	Aggressive	Less
0050h	00A0h	:	:	:
0000h	0050h	Fast	Modest	More
	Data1 0140h* 0050h	Data1 Data2 0140h* 00A0h* 0050h 00A0h	Data1 Data2 Transition 0140h* 00A0h* Slow 0050h 00A0h :	Data1Data2TransitionSuppress0140h*00A0h*SlowAggressive0050h00A0h::

* The default and the initial value

ML7037-003

ATTrA Attenuation

The default ATTrA Attenuation level could be altered through the internal data memory.

Attenuation	Address (0ABBh)	
[dB]	Data	
0	7FFFh	
3	5A9Dh	
6*	3FFFh*	
9	2D6Ah	
12	2026h	

* The default and the initial value

Line Echo Canceller's Center Clip's (LCLP's) Operational Threshold and Attenuation Level

The default of the line echo canceller's center clip's (LCLP's) operational threshold and the attenuation level could be altered through the internal data memory.

It may help to further suppress near-end ambient noises to complement.

Address (07B2h)
Data
01FDh
0169h
00FFh
00B5h
0080h
005Bh
0040h
002Dh
0020h*

* The default and the initial value

(Note) The thresholds above are applicable when the input signals are tones. The threshold against verbal speeches or noises may be a bit higher than them.

It's possible to make use of this function not only to mute the output when the input to this functional block is below the given operational threshold but also to attenuate the input by a given loss by altering the internal data memory.

Attenuation	Address (07B3h)
[dB]	Data
3	2D4Eh
6	2000h
9	16B5h
MUTE*	0000h*

* The default and the initial value

(Note) The threshold inadequately high may affect the transmit speech quality or increase the half-duplexity.

Acoustic Echo Canceller's Center Clip's (ACLP's) Operational Threshold and Attenuation Level

The default of the acoustic echo canceller's center clip's (ACLP's) operational threshold and the attenuation level could be altered through the internal data memory.

It may help to further suppress near-end ambient noises to complement.

Address(07ABh)
Data
01FDh
0169h
00FFh
00B5h
0080h
005Bh
0040h
002Dh
0020h*

* The default and the initial value

(Note) The thresholds above are applicable when the input signals are tones. The threshold against verbal speeches or noises may be a bit higher than them.

It's possible to make use of this function not only to mute the output when the input to this functional block is below the given operational threshold but also to attenuate the input by a given loss by altering the internal data memory.

Attenuation	Address (07ACh)
[dB]	Data
3	2D4Eh
6	2000h
9	16B5h
MUTE*	0000h*

* The default and the initial value

(Note) The threshold inadequately high may affect the transmit speech quality or increase the half-duplexity.

LAPIS Semiconductor Co.,Ltd.

Silence Threshold of Receive Signals with Acoustic Echo Canceller

The default silence threshold of receive signals with the acoustic echo canceller could be altered by writing a given data in a given memory address.

Tuning this threshold might be effective such as when the setting with the RPAD is extremely high. When changing this threshold, the Data below should be altered.

Threshold	Address (0AC0h)
	Data
-47dBm0	0040h
-41dBm0	0080h
-35dBm0	0100h
-29dBm0*	0200h*
A T 1 1 10 1 1	

* The initial values

(Note) The thresholds above are applicable when the input signals are tones. The threshold against verbal speeches or noises may be a bit higher than them.

LAPIS Semiconductor Co., Ltd.

Cancellable Echo Delay Time

Example (15ms)

Address

Cancellable echo delay time could be altered through internal data memory access. In principle, the longer the cancellable echo delay time is, the less the echo attenuation is, though the difference is not so major. Therefore, in an environment where the echo delay time is known to be shorter than the LSI default, it is advantageous to shorten the cancellable echo delay time.

(1) Line Echo Canceller's Cancellable Echo Delay Time

Address	: 0AA4h
Initial Value (20ms)	: 00A0h

 A data in 0236h address to set cancellable echo delay time (X) can be calculated by the following formula;

 Formula
 : X [ms] x 8

 Upper Limit (20ms)
 : 00A0h

 Lower Limit (0.5ms)
 : 0004h

 $: 15 \ge 8 = 120d = 0078h$

: 0ABDh

- (Note) The minimum alternation step for cancellable echo delay time is 0.25ms. Cancellable echo delay time cannot be defined in finer step than 0.25ms.
 The cancellable delay time for line echo canceller can be defined only in the Dual Echo Canceller Mode, and 0236h address must not be accessed in the Single Echo Canceller Mode.
- (2) Acoustic Echo Canceller's Cancellable Echo Delay Time

Initial Value (64ms)	: 0200h
A data in 0237h address to set cancella	able echo delay time (X) can be calculated by the following formula;
Formula	: X [ms] x 8
Upper Limit (64ms)	: 0200h
Lower Limit (0.5ms)	: 0004h
Example (50ms)	$: 50 \ge 8 = 400d = 0190h$

(Note) The minimum alternation step for cancellable echo delay time is 0.25ms. Cancellable echo delay time cannot be defined in finer step than 0.25ms.

DIFFERENCE BETWEEN THE ML7037-002 AND THE ML7037-003

1. Difference in Pin Assignment

No difference.

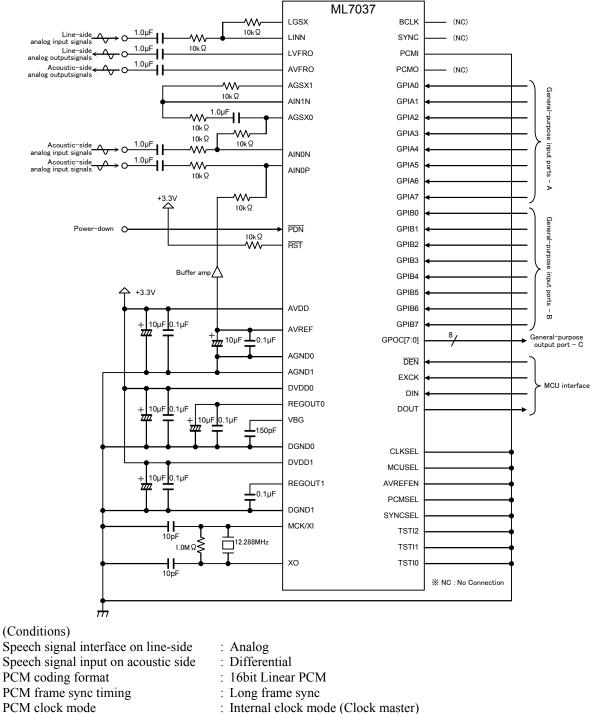
2. Difference in Control Registers

		ML7037-002		ML7037-003	
Control R	Register	Name	Initial Value	Name	Initial Value
CR8	B1	D9	1	D9	1
CR8	B0	D8	0	D8	1
CR11	B3	N/A	0	LCLP	0
CR11	B2	N/A	0	LSLC	0
CR13	B[7:6]	GPADA[1:0]	0	ASOPAD[1:0]	0
CR13	B[5:4]	LPADA[1:0]	0	ASIPAD[1:0]	0
CR13	B[3:2]	GPADL[1:0]	0	LSOPAD[1:0]	0
CR13	B[1:0]	LPADL[1:0]	0	LSIPAD[1:0]	0
CR17	B7	FILLER	1	N/A	0
CR17	B1	AATTMODE1	0	AATTMODE1	1
CR18	B1	N/A	0	LATTMODE1	1
CR18	B0	N/A	0	LATTMODE0	0
CR20	B3	N/A	0	EQL_EN	0
CR20	B[2:0]	N/A	0	EQL_[2:0]	0

3. Difference in Functions

Item	ML7037-002	ML7037-003
Line Echo Canceller's Center Clip	N/A	LCLP
Line Echo Canceller Automatic SinL Level Control	N/A	LSLC
ATTrL Attenuation	-6dB	0dB
Acoustic Echo Canceller In/Out Level Control	GPADA[1:0] / LPADA[1:0]	Re-named (ASOPAD[1:0] / ASIPAD[1:0])
Line Echo Canceller In/Out Level Control	GPADL[1:0] / LPADL[1:0]	Re-named (LSOPAD[1:0] / LSIPAD[1:0])
ALC's Maximum Gain (default)	+20dB	+27dB
ATT FILLER	FILLER	N/A
ATTsL Operational Mode	N/A	Mode Selection (Type A ~ D) LATTMODE[1:0]
Equalizer	N/A	CR20

LAPIS Semiconductor Co., Ltd.

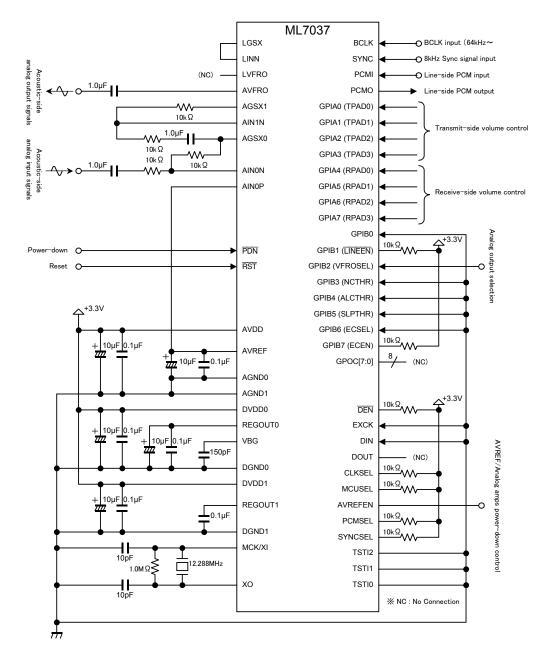

ML7037-003

Function	Name of Internal Data Memory	ML7037-002 Internal Data Memory Address	ML7037-003 Internal Data Memory Address
ALC	Maximum Gain (Data 1)	N/A	0F11h
ALC	Maximum Gain (Data 2)	N/A	0F0A
ALC	Maximum Gain (Data 3)	N/A	0F0B
ALC	Maximum Gain (Data 4)	N/A	0F0C
ALC	Maximum Gain (Data 5)	N/A	0F14
ALC	Maximum Gain (Data 6)	N/A	0F15
NC	Noise Canceller Attenuation (Data3)	0302h	N/A
LEC	ATTsL Attenuation	025Ch	0788h
LEC	ATTrL Attenuation (Data1)	025Fh	0AA2h
LEC	ATTrL Attenuation (Data2)	N/A	0AA0h
LEC	ATTrL Attenuation (Data3)	N/A	0AA1h
LEC	Center Clip's (LCLP's) Operational Threshold	N/A	07B2h
LEC	Center Clip's (LCLP's) Attenuation	N/A	07B3h
AEC	ATTsA Attenuation	0314h	076Bh
AEC	ATTsA On-to-Off Transition (Data1)	N/A	077Dh
AEC	ATTsA On-to-Off Transition (Data2)	N/A	0777h
AEC	ATTrA Attenuation	0262h	0ABBh
AEC	ATTrA Attenuation	0303h	N/A
AEC	Center Clip's (ACLP's) Operational Threshold	0336h	07ABh
AEC	Center Clip's (ACLP's) Attenuation	0337h	07ACh
AEC	Silence Threshold of Receive Signals	0252h	0AC0h
		0309h	N/A
AEC	ATTsA Operational Mode Intermediate Type Setting	0321h	N/A
LEC	Cancellable Echo Delay Time	0236h	0AA4h
AEC	Cancellable Echo Delay Time	0237h	0ABDh
	·	031Ch	N/A
Misselanes		0243h	N/A
Miscelaneous		0244h	N/A
		0323h	N/A

4. Difference in Internal Data Memory Address Map

Abbreviations : AEC = Acoustic Echo Canceller LEC = Line Echo Canceller

APPLICATION CIRCUIT (1)



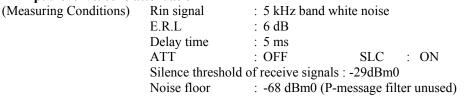
MCU interface

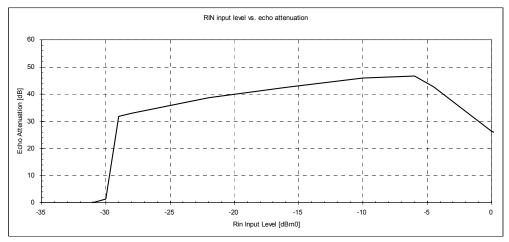
: used

APPLICATION CIRCUIT (2)

(Conditions)

Speech signal interface on line-side Speech signal input on acoustic side PCM coding format PCM frame sync timing PCM clock mode MCU interface


- : Digital (PCM)
- : Single
- : µ-law PCM
- : Short frame sync
- : External clock mode (Clock slave)
- : not used

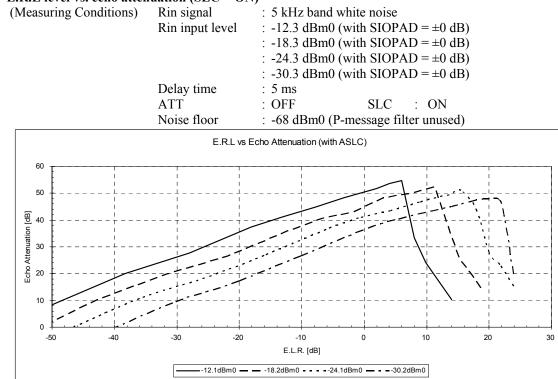
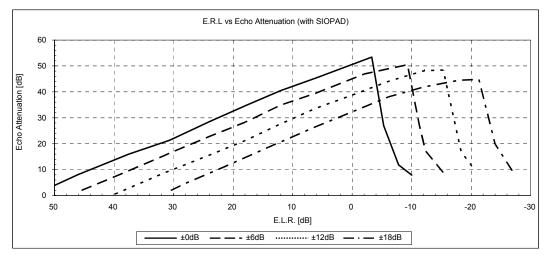


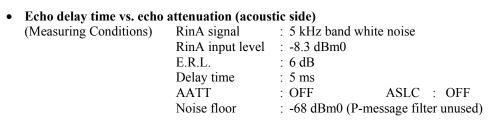
REFERENCE DATA

Echo Canceller Characteristics

• Rin input level vs. echo attenuation

• E.R.L level vs. echo attenuation (SLC = ON)


Figure 30

• E.R.L level vs. echo attenuation (SLC = OFF)

(Measuring Conditions)	Rin signal	: 5 kHz band white noise
	Rin input level	: -12.3 dBm0 (with GLPAD = $\pm 0 \text{ dB}$)
		: -12.3 dBm0 (with GLPAD = $\pm 6 \text{ dB}$)
		: -12.3 dBm0 (with GLPAD = $\pm 12 \text{ dB}$)
		: -12.3 dBm0 (with GLPAD = $\pm 18 \text{ dB}$)
	Delay time	: 5 ms
	ATT	: OFF SLC : OFF
	Noise floor	: -68 dBm0 (P-message filter unused)

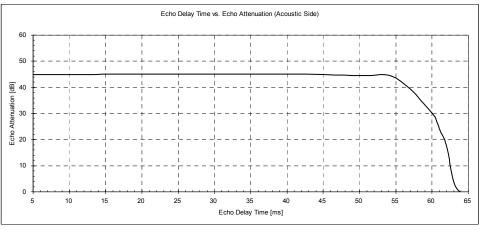
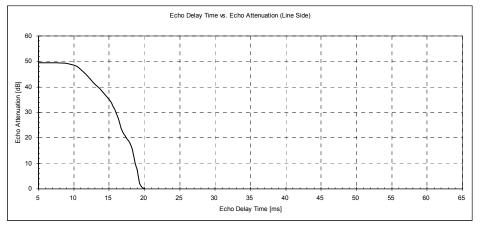



Figure 32

LAPIS Semiconductor Co., Ltd.

٠	Echo delay time vs. echo	attenuation (line-s	ide)	
	(Measuring Conditions)	RinL signal	: 5 kHz band white noise	
		RinL input level	: -8.3 dBm0	
		E.R.L.	: 6 dB	
		LATT	: OFF LSLC : OFF	
		Noise floor	: -68 dBm0 (P-message filter unused)	

Slope Filter Characteristics

Slope filter frequency Characteristics (including CODEC frequency characteristics) • Rin signal

Rin input

Noise floor

(Measuring Conditions)

: 5 kHz band white noise : -8.3dBm0 : -62 dBm0 (P-message filter unused)

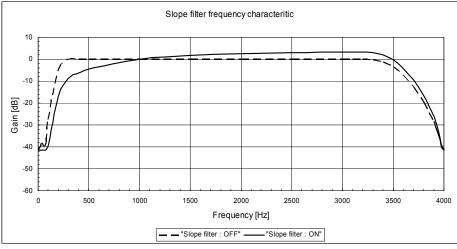
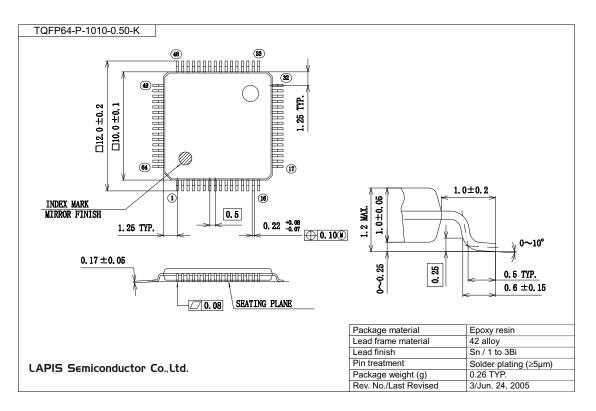


Figure 34

NOTE ON USE


- 1. Use a stabilized power supply with a low level of noises (especially spike noises and pulse noises of high frequencies) in order to prevent this device from malfunction or degradation in characteristics.
- 2. Place bypass-capacitors with a good high frequency characteristics for the power supply near the pins of this device in order to assure its electrical characteristics.
- 3. Place bypass-capacitors with a good high frequency characteristics for the analog signal ground (AVREF pin) near the pins of this device in order to assure its electrical characteristics.
- 4. Place bypass-capacitors with a good high frequency characteristics for the regulator's reference voltage output (VBG pin) and for the regulator outputs (REGOUT0,1 pins) near the pins of this device in order to assure its electrical characteristics.
- 5. Connect the AGND0, AGND1, DGND0 and DGND 2 to the system ground at a shortest distance and in a low impedance state.
- 6. Turn on and off the analog power supply and digital power supply simultaneously, or turn on digital power supply prior to analog power supply and turn off analog power supply prior to digital power supply.
- 7. After turning on the power, be sure to reset the device with the PDN pin while the master clocks are being supplied.
- 8. Set a system level diagram so that a value of the Echo Return Loss (E.R.L. = [Power of echo-originating signals at RoutA/RoutL] [Power of echo signals at SinA/SinL]) is negative and the ASLC function is recommended to be enabled. When the E.R.L. cannot be negative all the time, the GLPAD function is recommended to be enabled with the ASLC function disabled. Refer to a reference data for the E.R.L level vs. echo attenuation of an echo canceller.
- 9. The input level should be -10 to -20 dBm0. Refer to a reference data for Rin input level vs. echo attenuation.
- 10. Application-level volume control on use is recommended to be made outside of the echo path such as by the RALC, the RPAD and the TPAD (not between the RoutA and the SinA in the single echo canceller mode; or not between the RoutA and the SinA nor not between the RoutL and the SinL).

in Dual Echo Canceler mode	: to be controlled with the TPAD, the RPAD, and/or the RALC.
in Signal Echo Canceler mode	: to be controlled with the TPAD, the RPAD, the RALC, and/or with analog input (LINN) that is set at less than 1.3 VPP.

- 11. Turn off an echo canceller in an environment where no echoes exist.
- 12. When the echo path is changed (such as when resuming telephone communication), reset the device either with the PDN pin, the SPDN bit [CR0-B7], the RST pin or the RST bit [CR0-B6].
- 13. The Pin Control Mode (the MCUSEL-pin = logic '1') which defines behaviors of this LSI by logic '0' / '1' to concerned input pins has less flexibility in comparison with the External MCU Mode (the MCUSEL-pin = logic '0') which defines behaviors of this LSI through control register setting due to its limitation of the available pin count. Therefore, basically, this LSI is recommended to use in the External MCU Mode.

the

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code, and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

REVISION HISTORY

Document		Page		
No.	Date	Previous	Current	Description
NO.		Edition	Edition	
FEDL7037-003-01	Oct. 15, 2007	-	-	Final edition 1
FEDL7037-003-02	Mar. 25, 2008	77	77	Addition of CR20-B3 and CR20-B[2:0] in a table under Difference in Control Registers
		80	80	"used" is corrected to "not used"
FEDL7037-003-03	Aug. 09, 2010	29	29	Cancellable echo delay time 64mS
		_	-	· · · · · · · · · · · · · · · · · · ·
		8G	8G	Figure 31 : Rin input level -12.3dBm0 Fix

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2011 LAPIS Semiconductor Co., Ltd.