

ML9077

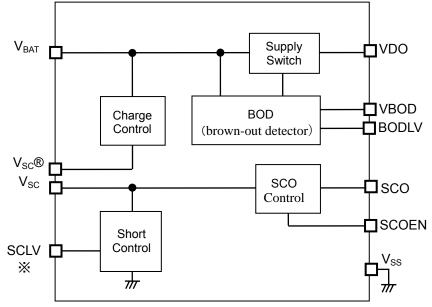
Power-saving solar power supply control LSI

GENERAL DESCRIPTION

ML9077 controls charging a solar power current to a rechargeable battery.

The control circuit is consists of a overcharge prevention circuit, a charge control circuit and a rechargeable battery voltage monitor circuit. Each circuit performs following operation.

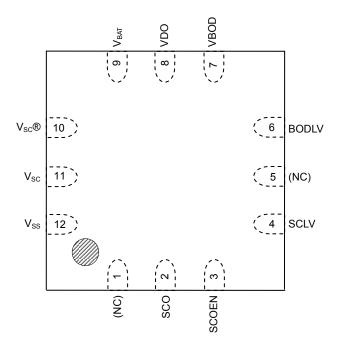
- Overcharge prevention circuit When a rechargeable battery becomes FULL charge state, the current of solar cell is drawn to VSS and the charge current for the rechargeable battery is omitted so that rechargeable battery voltage does not rise any more.
- Charge control circuit The voltage of solar cell (VSC) is always compared to the voltage of rechargeable battery (VBAT) and it will have starting to charge the battery if VSC>VBAT, and stop to charge if VSC≦BAT.
- Rechargeable battery voltage monitor circuit (BOD : Brown-Out Detector) The voltage of rechargeable battery (VBAT) is always supervised, and it controls VBAT low voltage detection signal (VBOD) and rechargeable battery voltage output (VDO).


FEATURES

- Self control the solar cell current for charging a rechargeable battery.
- Direct charge solar cell current (ISC) to a rechargeable battery.
 - [VSC>2.0V, ISC≦1mA conditions]: Potential difference=Max 0.1V (VSC-VBAT)
 - [VSC>2.0V, ISC \leq 1mA conditions]: Potential difference=Max 2.0V (VSC-VBAT)
- 2 Selectable overcharge prevention voltage.
- 2 Selectable low voltage detection voltage.
- Power supply system detects a low voltage of rechargeable battery and power off a external microcomputer.
- Low power operation
 - Solar cell current : 80nA
 - Rechargeable battery current : 80nA
- Shipment
 - 12-pin plastic WQFN
 - Part number: ML9077GDZ05B
 - Chip Part number: ML9077WA
- Guaranteed operating range
 - Operating temperature: -20°C to 70°C
 - Operating voltage: $V_{SC} = 0.0V$ to 3.6V, $V_{BAT} = 0.0V$ to 3.2V

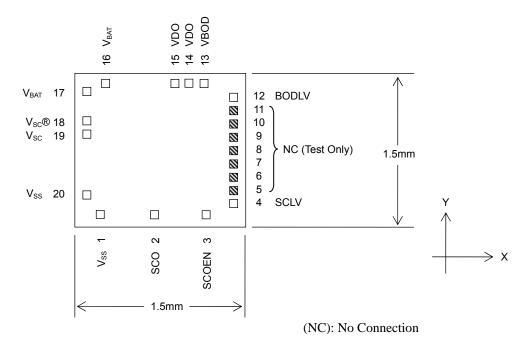
BLOCK DIAGRAM

ML9077 Block Diagram


Figure 1 shows ML9077 block diagram.

%Charge maximum voltage is set up by terminal

Figure 1 ML9077 Block Diagram


PIN CONFIGURATION ML9077 WQFN12 Pin Layout

(NC): No Connection

Figure 2 ML9077 WQFN12 Pin Configuration

ML9077 Chip Pin Layout & Dimension

[Note] There may be some causions for assembly condition (To Be Noted)

Chip size:	1.5mm×1.5mm
PAD count:	20 pins (Test Only PAD count:7pins)
Minimum PAD pitch:	120 μm
PAD aperture:	90 μm × 90 μm
Chip thickness:	350 μm
Voltage of the rear side of chip:	V _{SS} level

Figure 3 ML9077 Chip Layout & Dimension

ML9077 Pad Coordinates

Table 1 ML9077 Pad Coordinates

						Chij	o Center: X=0,Y=0
PAD	Pad	MLS	9077	PAD	Pad	ML	9077
No.	Name	X (μm)	Υ (μm)	No.	Name	X (μm)	Υ (μm)
1	VSS	-442.0	-632.0	11	NC	632.0	275.0
2	SCO	-94.0	-632.0	12	BODLV	632.0	395.0
3	SCOEN	337.0	-632.0	13	VBOD	484.0	632.0
4	SCLV	632.0	-565.0	14	VDO	364.0	632.0
5	NC	632.0	-445.0	15	VDO	244.0	632.0
6	NC	632.0	-325.0	16	VBAT	-479.0	632.0
7	NC	632.0	-205.0	17	VDAT	-632.0	534.0
8	NC	632.0	-85.0	18	VSC®	-632.0	275.0
9	NC	632.0	35.0	19	VSC	-632.0	155.0
10	NC	632.0	155.0	20	VSS	-632.0	-532.0

[Note]

XThe following PADs is the same signal, please bonding it to one of PAD.

PAD No. 1 and 20, PAD No. 14 and 15, PAD No. 16 and 17

: The directions for VSC®.

When charging current limitation resistance is required, it connects with VSC through resistance, please short to VSC ex cept it.

PIN DESCRIPTION

Pin name	I/O	Description	Logic
Power supply			
Vss		Negative power supply pin	—
V _{BAT}	_	Rechargeable battery positive power supply pin	—
V _{SC}	—	Solar cell positive power supply pin	_
V _{SC} ®	_	Solar cell positive power supply pin to have a charging current limitation resistor. When the charge current limitation is needed for a solar panel, connect the positive power(+) of solar panel to VSC pin and connect the positive power(+) to VSC® through the current limitation register.	
		When the charge current limitation is Not needed for a solar panel, connect the positive power(+) of solar panel to both VSC pin and VSC® pin.	
Solar current mo	nitor t	erminal	
SCOEN	Ι	Solar current monitor enable pin	Positive
SCO	0	Output for solar current monitor	—
BOD voltage set	ting in	put	
BODLV		Brown-out detector voltage select pin	Positive
Fault charge det	ection	voltage setting input	
SCLV	Ι	Overcharge prevention voltage select pin	Positive
BOD output term	ninal		
VBOD	0	Brown-out detector output for rechargeable battery low voltage	
Rechargeable ba	attery	output	
VDO	0	Rechargeable battery voltage output	_

TERMINATION OF UNUSED PINS

Table 3 shows methods of terminating the unused pins.

Table 3 Termination of Unused Pins

Pin	Recommended pin termination
VDO	Open
VBOD	Open
BODLV	V _{BAT} or V _{SS}
SCLV	V _{BAT} or V _{SS}
SCOEN	Open
SCO	Open

ELECTRICAL CHARACTERISTICS

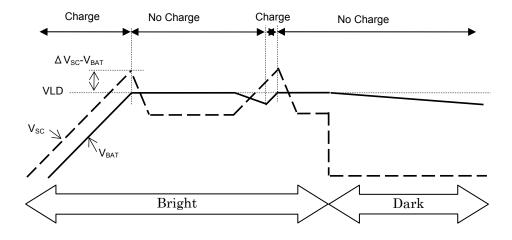
ABSOLUTE MAXIMUM RATINGS

				$(V_{SS}=0V)$
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V _{BAT}	Ta=25°C	-0.3 to +3.7	V
Power supply voltage 2	V _{SC}	Ta=25°C	-0.3 to +3.7	V
Power supply voltage 3	VDO	Ta=25°C	-0.3 to +3.7	V
Input voltage	V _{IN}	Ta=25°C	-0.3 to V _{BAT} +0.3	V
Output voltage	V _{OUT}	Ta=25°C	-0.3 to V _{BAT} +0.3	V
Output current 1	I _{OUT1}	VDO、Ta=25°C	30	mA
Output current 2	I _{OUT2}	VBOD、Ta=25℃	-4 to +4	mA
Power dissipation	PD	Ta=25°C	0.88	W
Storage temperature	T _{STG}		-40 to +125	°C

RECOMMENDED OPERATING CONDITIONS

				$(V_{SS}=0V)$
Parameter	Symbol	Condition	Range	Unit
Operating temperature	T _{OP}	-	-20 to +70	°C
Operating voltage	Vsc Vsc	Ti=-20°Cto 70°C	0.0 to 3.6	V
Operating voltage	V _{BAT}	IJ20 Cl0 70 C	0.0 to 3.2	V

DC CHARACTERISTICS (Input)


		(V _{BAT} =1.1 to 3.6V, V	ss=0V, Ta=	=-20 to +7	0°C unless	otherwise	e specified)
Deremeter	Currence al	Condition		Rating			Measuring
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
	DLV,SCLV)	V _{BAT} =1.3 to 3.6V	0.7 ×V _{BAT}	—	V_{BAT}		
Input voltage (BODLV SCLV)		V _{BAT} =1.1 to 3.6V	0.7 ×V _{BAT}	_	V _{BAT}	v	1
(SCOEN)		V _{BAT} =1.3 to 3.6V	0	—	0.3 ×V _{BAT}	v	
		V _{BAT} =1.1 to 3.6V	0	—	0.2 ×V _{BAT}		
Input current	IIH	VIH=V _{BAT}	—	_	0.1	۸	2
(SCOEN)	IIL	VIL=0V	-0.1	—	_	μA	

DC CHARACTERISTICS (Charge control)

	(V _{BAT} =1.1 to 3.6V, V _{SS} =0V, 1a=-20 to +/0 ⁻ C unless otherwise specified)							e specified)
		Condition			Rating			Measuring
Parameter	ameter Symbol Condition		on	Min. Typ.		Max.	Unit	circuit
Overcharge non-prevention * ¹ (V _{BAT})	VSCL	I _{SC} ≦150nA,Ta=-20 to +70°C		1.05	_	_		
Overcharge prevention voltage (V _{BAT})	VLD	I _{SC} =0.15uA~ 6mA	SCLV="H"	3.0	_	3.2	v	
(Rechargeable battery clamp voltage)	VLD	Ta=25°C	SCLV="L"	2.5	_	2.7		1
Overcharge prevention voltage Temperature characteristics	T_{VLD}	Ta=-20°C to 70°C		-1.2	_	1.2	mV/ °C	
Supply current (V_{SC})	IDD _{SC}	V _{BAT} =VLD(min),V _{SC} =V _{BAT} -0.05V Ta=25℃		_	_	80	nA	
Potential difference	Δ	V_{SC} >2.0V, ISC \leq 1mA		—	—	0.1	v	
(V _{SC} -V _{BAT})	V_{SC} - V_{BAT}	$V_{SC} \leq 2.0V, ISC \leq 1mA$		—	—	2	v	

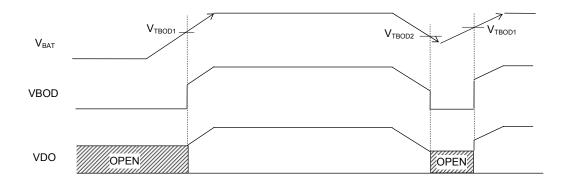
(V_{BAT}=1.1 to 3.6V, V_{SS}=0V, Ta=-20 to +70°C unless otherwise specified)

 $*^1$: The overcharge prevention circuit does not work when the solar panel voltage (V_{SC}) is less than 1.05V even if the rechargeable battery becomes FULL charge state.

DC CHARACTERISTICS (Solar current monitor)

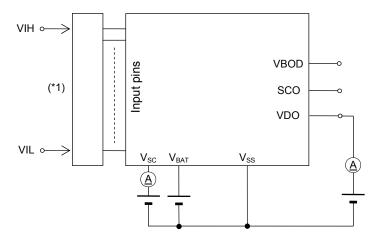
(V_BAT=1.1 to 3.6V, V_SS=0V, Ta=-20 to +70 $^{\circ}\text{C}$ unless otherwise specified)

Demonster	Or mark al	ymbol Condition Min.		Rating			Measuring
Parameter	Symbol			Тур.	Max.	Unit	circuit
Output current	ISCO1	V _{SC} =1.2V, SCO=1.1V, SCOEN="H"	—	—	-10	μA	2
(SCO)	ISCO2	V _{SC} =3.4V, SCO=0V, SCOEN="L"	-0.05	—	_	,, C	

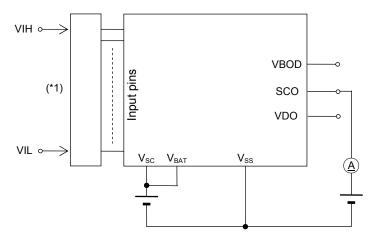

ML9077

DC CHARACTERISTICS (Brown-out detection)

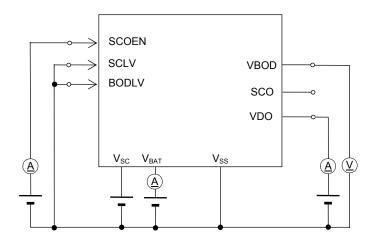
			33 00, 14	Rating			Measuring circuit	
Parameter	Symbol	Condition		Min.	Тур.	Max.		Unit
	V _{TBOD1}	V _{BAT} ="L"⇒"H"	BODLV="L"	1.0	1.15	1.25		
Reversal voltage	V IBOD1		BODLV="H"	1.7	1.8	1.9	v	
(BOD) * ¹	V_{TBOD2}	V _{BAT} ="H"⇒"L"		V _{TBOD1} -0.25	_	V _{TBOD1} -0.1	v	
Temperature characteristics (BOD)	T_{BOD}	In the state of revers Ta=-20°C~60°C	-1.5	_	1.5	mV/ °C		
Supply current (V _{BAT})	IDD BAT	-			80	nA		
	VOH1	IOH1=-0.5mA, V _{BAT} =1.8~3.6V		V _{BAT} -0.5	_	_		
Output voltage		IOH1=-0.1mA, V _{BAT} =1.3~3.6V		V _{BAT} -0.3	_	_		3
Output voltage (VBOD)		IOH1=-0.03mA, V _{BAT} =1.1 to 3.6V		V _{BAT} -0.3			V	
		IOL1=+0.5mA, V _{BAT} =1.8 to 3.6V		—	—	0.5		
	VOL1	IOL1=+0.1mA, V _{BAT} =1.3 to 3.6V		—	—	0.5		
		IOL1=+0.03mA, V _{BA}			0.3			
Output current	IVDO1	V _{BAT} =V _{TBOD1} ~1.8V, VDO=V _{BAT} -0.05V		_	—	-5	mA	
(VDO)	IVDO2	V _{BAT} =1.8~3.6V, VDC	0=V _{BAT} -0.05V		_	-20		
	IVDO3	V _{BAT} =0.0~V _{TBOD1} , VE	DO=0.0~V _{BAT}	-0.05	—	—	μA	


(V_{BAT}=1.1 to 3.6V, V_{SS}=0V, Ta=-20 to +70 $^{\circ}$ C unless otherwise specified)

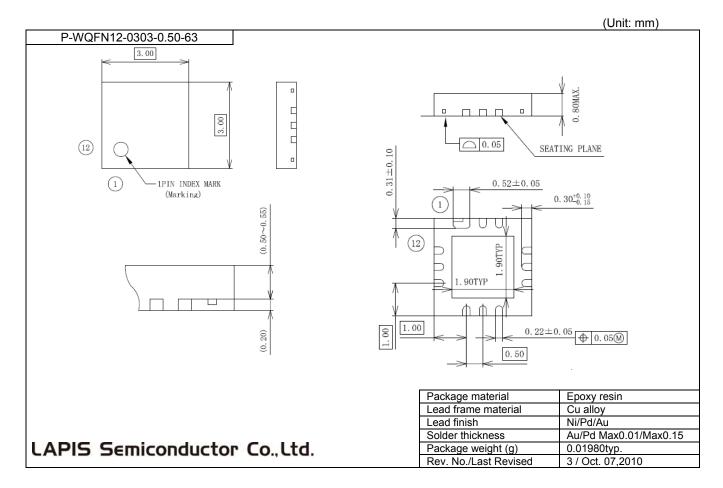
*¹: If VBAT voltage turns into below BOD reversal voltage, a VBOD output will serve as a VSS level, if a VDO terminal will be in an open state and VBAT voltage becomes more than BOD reversal voltage, a VBOD output will serve as a VBAT level and a VBAT level will be outputted from a VDO terminal.


MEASURING CIRCUITS

MEASURING CIRCUIT 1


(*1) Input logic circuit to determine the specified measuring conditions.

MEASURING CIRCUIT 2



(*1) Input logic circuit to determine the specified measuring conditions.

MEASURING CIRCUIT 3

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact our responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Page		
Document No.	Date	Previous	Current	Description
		Edition	Edition	
FEDL9077-01	Jan.30,2012	-	-	First edition
FEDL9077-02	Feb.20,2013	6	6	Min value "1.5 5" of Overcharge non- prevention is corrected to "1.05".

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2012-2013 LAPIS Semiconductor Co., Ltd.