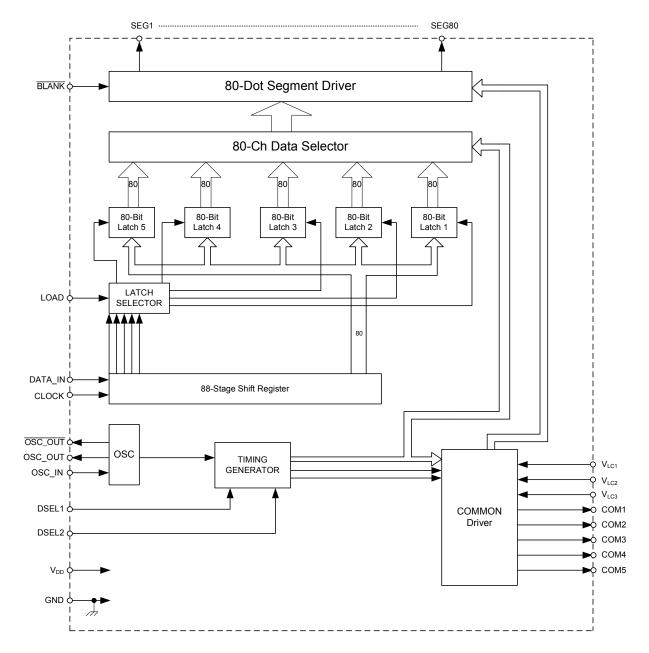
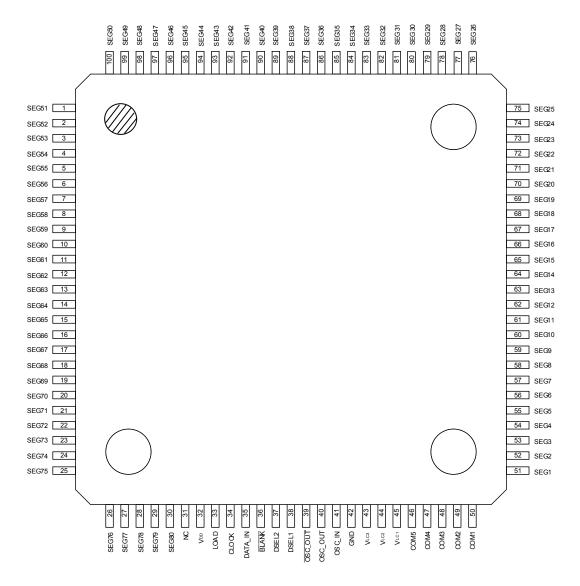


Semiconductor

1/3, 1/4, 1/5 Duty 80 Output LCD Driver


GENERAL DESCRIPTION

The ML9471 is a LCD driver for dynamic display providing 3-duty-switchable pins (1/3, 1/4, 1/5 duty). It can directly drive LCDs of up to 400, 320 and 240 segments when 1/5, 1/4 and 1/3 duty are selected respectively.


FEATURES

• Operatin g range					
Supply voltage	: 3.0 to 5.5 V				
Operating temperature range	$: -40 \text{ to} + 105^{\circ}\text{C}$				
Segment output	: 80 pins				
1/5 duty	: Up to 400 segments can be displayed.				
1/4 duty	: Up to 320 segments can be displayed.				
1/3 duty	: Up to 240 segments can be displayed.				
 Serial transfer clock frequency 	: 4 MHz				
 Serical interface with CPU 	:Through three input pins (DATA_IN, LOAD, and CLOCK)				
Built-in oscillator circuit for COMMC	ON signals				
One-to-one correspondence between i					
When input data is at "H" level	: Display goes on.				
When input data is at "L" level	: Display goes off.				
• The entire display can be turned off. (BLANK pin)					
• P ackage options					
100-pin plastic TQFP (TQFP100-P-14	414-0.50-K) (Product name: ML9471TB)				

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

100-Pin Plastic TQFP

PIN DESCRIPTION

Symbol T	уре		Description					
OSC_IN OSC_OUT OSC_OUT	 0 0	resistors and a capa the resistor connect	Pins for oscillation. The oscillator circuit is configured by externally connecting two resistors and a capacitor. Make the wiring length as short as possible, because the resistor connected to the OSC_IN pin has a higher value and the circuit is susceptible to external noise.					
DATA_IN	Ι	Serial data input pir goes off when input		-	n input data is at a	"H" level, and it		
CLOCK	Ι	Shift clock input pin with the rising edge		_	pin is transferred ir	n synchronization		
LOAD	Ι		Load signal input pin. Serially input data is transferred to the 80-bit latch at "H" level of this load signal, then held at "L" level.					
BLANK	I	Input pin that turns off all segments. The entire display goes off when "L" level is applied to this pin. The display returns to the previous state when "H" level is applied.						
DSEL1 DSEL2	1	Input pins to select selected.	1/3, 1/4, or 1, DSEL2 D L L H	5 duty. Follo SEL1 L H X	wing shows how ea Duty selected 1/3 1/4 1/5 X: Don't ca			
COM1 to COM5	0	Display output pins the LCD panel.	Display output pins for LCD. These pins are connected to the COMMON side of the LCD panel.					
SEG1 to SEG80	0	Display output pins for LCD. Theses pins are connected to the SEGMENT side of the LCD panel. For the correspondence between the output of these pins and input data, see the "Data Structure" Section.						
V _{LC1} , V _{LC2,} V _{LC3}	_	-	Bias pins for LCD driver. Through these pins, bias voltages for the LCD are externally supplied. The bias potential must meet the following condition: $V_{DD} > V_{LC1} \ge V_{LC2} > V_{LC3} = GND$					
V_{DD}, GND		Supply voltage pin a	and ground p	in.				

Note: Built-in schmitt circuit is used for all input pins.

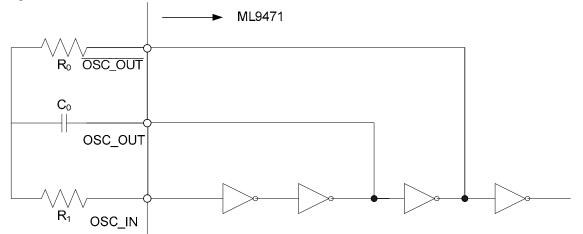
ABSOLUTE MAXIMUM RATINGS

Parameter S	ymbol	Condition	Rating	Unit
Supply Voltage	V _{DD}	Ta = 25°C	-0.3 to 6.5	V
Input Voltage	Vi	Ta = 25°C	–0.3 to V _{DD} +0.3 V	
Storage Temperature	T _{STG}	_	–55 to 150	°C
Power Dissipation	PD	Ta < 105°C	700	mW
Output Current	lo	_	-2.0 to 2.0	mA

RECOMMENDED OPERATING CONDITIONS

Parameter S	ymbol	Condition	Range	Unit
Supply Voltage	V_{DD}	V _{LC3} = GND	3.0 to 5.5	V
CLOCK Frequency	f _{CP}	_	1 to 4	MHz
Operating Temperature	Та	—	-40 to 105	°C

Oscillator Circuit


Parameter S	ymbol	Applicable pin	Condition	Min.	Max.	Unit
Oscillator Resistance	R₀	OSC_OUT	_	20	120	kΩ
Oscillator Capacitance	Co	OSC_OUT	—	0.00047	0.01	μF
Current Limiting Resistance	R₁	OSC_IN	—	62	360	kΩ
Common Signal Frequency	f _{сом}	COM1 to COM5	—	25	250	Hz

Note: See Section, "Reference Data", for the resistor and capacitor values in the table.

RC Values in Oscillator Circuit

Parameter	Symbol	Applicable pin	1/3 duty	1/4 duty	1/5 duty	Unit
Oscillator Resistance	R_0	OSC_OUT	68	51	43	kΩ
Oscillator Capacitance	C ₀	OSC_OUT	0.001	0.001	0.001	μF
Current Limiting Resistance	R ₁	OSC_IN	220	160	130	kΩ

Example of an oscillator circuit:

ELECTRICAL CHARACTERISTICS

DC Characteristics

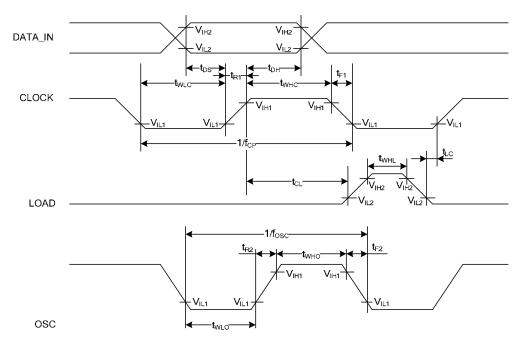
DC Characteristics		(V _{DI}	₀ = 3.0 to 5.5 \	/, Ta = -40 to +105°	C, unless ot	herwise spe	cified)
Parameter S	ymbol	Applicable pin	Condition		Min.	Max.	Unit
"H" Input Voltage 1	V _{IH1}	CLOCK, OSC_IN		— 0.85	V_{DD}	V _{DD} V	
"L" Input Voltage 1	VIL1	CLOCK, OSC_IN	— G		ND	0.15 V _{DD}	v
"H" Input Voltage 2	V _{IH2}	*1		—	0.8 V _{DD}	V _{DD}	V
"L" Input Voltage 2	V_{IL2}	*1		—	GND	$0.2 V_{\text{DD}}$	V
"H" Input Current	IIH	All input pins	V _{DD} = 5	.5 V, V _I = V _{DD}		10	μA
"L" Input Current	Ι _{ΙL}	All input pins	$V_{DD} = 5$	5.5 V, VI = 0 V	-10	—	μA
COMMON Output	V_{OC0a}		V _{DD} = 3.0 V	I _O = −100 μA	V_{DD} –1	_	V
	V _{OC1}	COM1 - COM5		I _O = ±100 μA *3	$V_{LC1} - 1$	V _{LC1} +1	V
Voltage	V _{OC2}			I _O = ±100 μA *4	V_{LC2} –1	V _{LC2} +1	V
	V_{OC3}			I _O = +100 μA *5	_	V _{LC3} +1	V
	V _{OS0}			I _O = −10 μA	V_{DD} –1	—	V
Segment Output	V _{OS1}	SEG ₁ - SEG _{80.}	V _{DD} = 3.0 V	I _O = ±10 μA *3	$V_{LC1} - 1$	V _{LC1} +1	V
Voltage	V _{OS2}		VDD 0.0 V	I_O = ±10 μ A *4	V_{LC2} –1	V _{LC2} +1	V
	V_{OS3}			I _O = +10 μA *5	_	V _{LC3} +1	V
Supply Current	I _{DD}	V _{DD}	V _{DD} = 5.0) V, no load. *2	_	0.5	mA

*1 Applies to all input pins excluding CLOCK and OSC_IN.

*2 R $_0 = 51 \text{ k}\Omega \text{ R}_1 = 160 \text{ k}\Omega \text{ C}_0 = 0.001 \text{ }\mu\text{F}$

 $*3 V _{LC1} = 2.0V$

*4 V $_{LC2} = 1.0V$

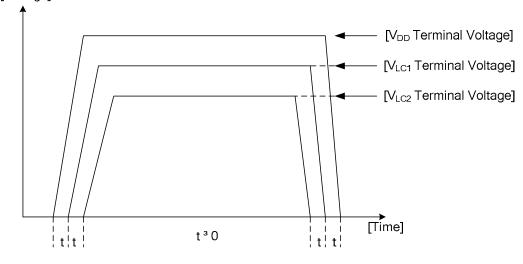

*5 V = 0V

FEDL9471-01

LAPIS Semiconductor

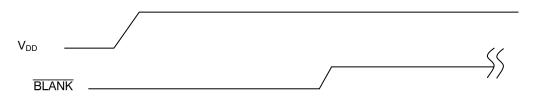
AC Characteristics

		(V _{DD} =3.0 to 5.5V,	Ta = -40 to +	105°C, unless	s otherwise s	pecified)
Parameter S	ymbol	Condition	Min.	Тур.	Max.	Unit
Clock "H" Time	t _{wнc} —		70	_	_	ns
Clock "L" Time	t _{wLC} —		70	_	_	ns
Data Set-up Time	t _{DS} —		50	_		ns
Data Hold Time	t _{DH} —		50		_	ns
Load "H" Time	t _{WHL} —		100	—	_	ns
Clock-to-load Time	t _{CL} —		100	_	_	ns
Load-to-Clock Time	t _{LC} —		100	_		ns
Clock Rise time, Fall time	t _{R1} , t _{F1} —		_	_	50	ns
OSC_IN Input Frequency	fosc —		_		20	kHz
OSC_IN "H" Time	t _{wнo} —		20		_	μS
OSC_IN "L" Time	t _{wLO} —		20	_		μS
OSC_IN Rise time, Fall time	t _{R2} , t _{F2} —		_	_	100	ns



 $\begin{array}{l} (V_{IH1} = 0.85 V_{DD} \ \ V_{IL1} = 0.15 V_{DD}) \\ (V_{IH2} = 0.8 V_{DD} \ \ V_{IL2} = 0.2 V_{DD}) \end{array}$

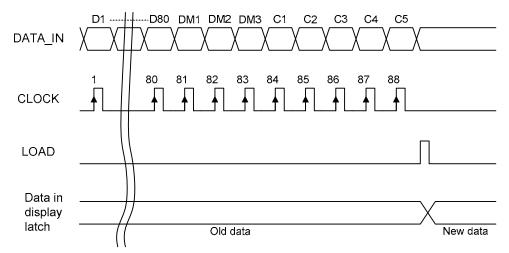
ML9471


POWER-ON/OFF TIMING

[Voltage]

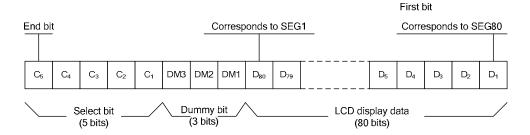
* $V_{\text{LC1}}, V_{\text{LC2}}$ are applied when V_{DD} is applied to external bias resistor.

INITIAL SIGNAL TIMING



* On ce V_{DD} is applied, <u>BLANK</u> should be applied to 'L' level to make all SEGMENTs off until first group of display data is latched.

FUNCTIONAL DESCRIPTION


Operation

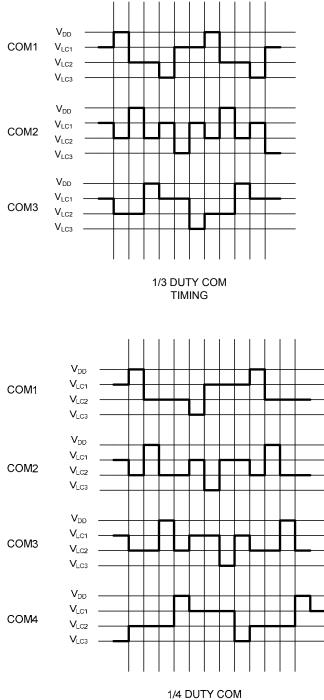
As shown in "Data Structure", the display data consists of the data field corresponding to the output for turning the segments on or off and the select field that selects field that selects the input block of data. Data input to the DATA_IN pin is loaded into the 88-bit shift register, transferred to the 80-bit latch while the load signal is at "H" level, and then output via the 80-dot segment driver.

Data Structure

Input data

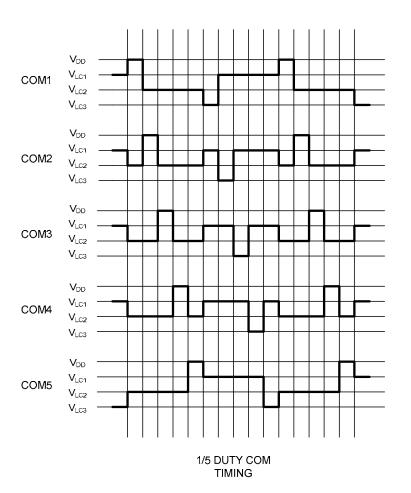
Correspondence between select bits and COM1 to COM5

C5 C	4	C3 C	2	C1	Description
0 0		0 0		1	Display data corresponding to COM1
0 0		0 1		0	Display data corresponding to COM2
0 0		10		0	Display data corresponding to COM3
0 1		0 0		0	Display data corresponding to COM4
10		0 0		0	Display data corresponding to COM5

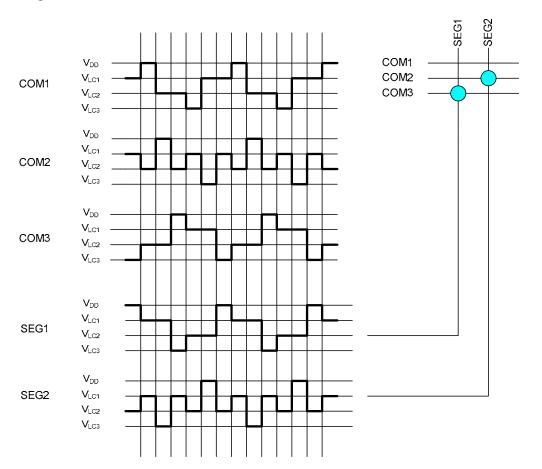

Notes: 1. Arbitrary data can be set for the dummy bits.

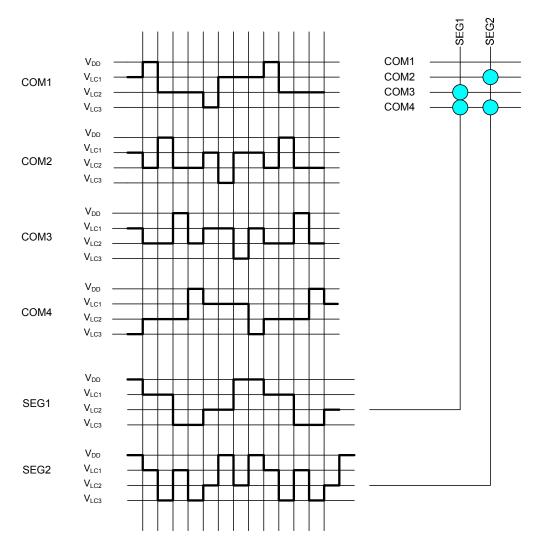
2. Select b it, C_1 to C_5 , se lects 8 0-bit latch es t hat co rrespond to COM1 to COM5, res pectively. Therefore, if "1" is set for more than one select bit, data is set to all the corresponding 80-bit latches.

Example:

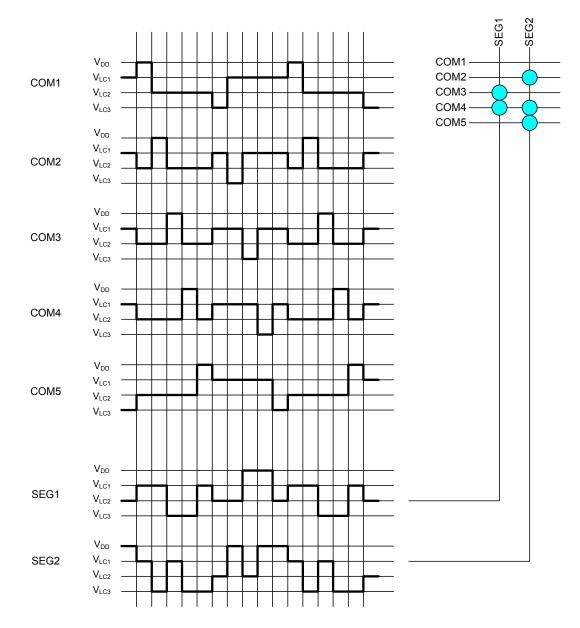

If "1" is set to all the select bits C_1 to C_5 , the display data of D_1 to D_{80} is set to all the 80-bit latches that correspond to COM1 to COM5.

COM1 – COM5 Timing Chart:

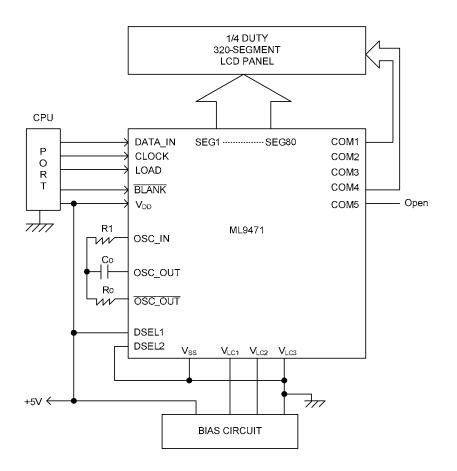

LAPIS Semiconductor


SEGn True Value Table:

LATCH1 L	. ATCH2 L	ATCH3 L	ATCH4	LATCH5	COM1	COM2	COM3	COM4	COM5	SEGn
0000) 1				"H"	"M2" "N	1 2"	"M2" "N	I 2" "N	1 1"
					"L"	"M1" "N	1 1"	"M1" "N	l 1""N	1 2"
					"M2"	"H"	"M2"	"M2" "N	I 2""N	1 1"
					"M1"	"L"	"M1"	"M1" "N	l 1""N	1 2"
					"M2" "N	1 2"	"H"	"M2" "N	I 2""N	1 1"
					"M1" "N	1 1"	"L"	"M1" "N	l 1""N	1 2"
					"M2" "N	1 2" "N	1 2"	"H"	"M2" "N	1 1"
					"M1" "N	1 1""N	1 1"	"L"	"M1" "N	1 2"
					"M2" "N	1 2" "N	12"	"M2"	"H"	"L"
					"M1" "N	1 1""N	1 1"	"M1"	"L"	"H"


*Note: "H" = V_{DD} ; "M1" = V_{LC1} ; "M2" = V_{LC2} ; "L" = V_{LC3} =GND

Timing Chart FOR 1/3 DUTY DRIVE MODE:


Timing Chart FOR 1/4 DUTY DRIVE MODE:

Timing Chart FOR 1/5 DUTY DRIVE MODE:

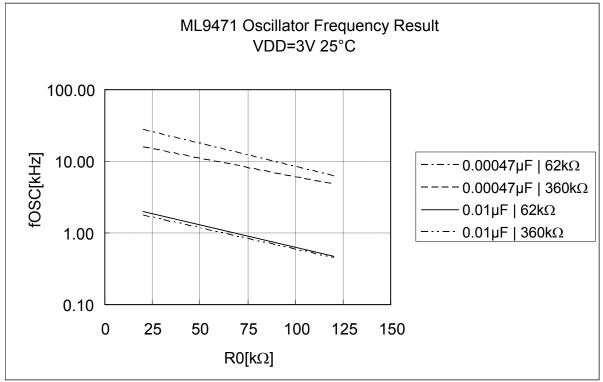
APPLICATION CIRCUITS

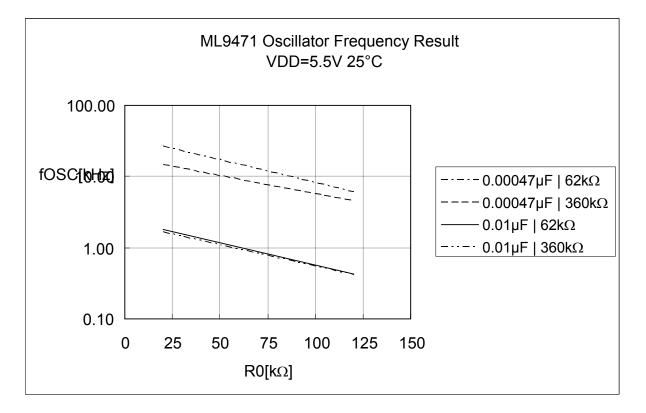
(For 1/4 duty)


REFERENCE DATA

The data shown in this section is for reference (a metal film resistor and a film capacitor are u sed). Resistor and capacitor values must be determined based on experiments.

Use the following expression to convert oscillation frequency to COMMON frame frequency (or vice versa):


f	COM	: COMMON frame frequency
f	OSC	: Oscillation frequency
	Duty	: e.g., 1/4 for 1/4 duty


For example, if f_{COM} =100Hz at 1/5 duty, the oscillation frequency is f_{OSC} =8000Hz.

ML9471

PACKAGE DIMENSIONS

TQFP100-P-1414-0.50-K \Box 16, 00 \pm 0, 20 $\Box 14.00\pm0.10$ 1.00 ± 0.20 (26) 1. 20MAX. 00±0. INDEX MARK Mirror finish 0.22±0.05 1.00TYP. 0.50 ∄ 0~8' 0.145 ± 0.05 $0, 05 \sim 0, 15$ 0.50TYP. 0.60 ± 0.15 0.08 SEATING PLANE Package material Epoxy resin Lead frame material 42 alloy Sn-2Bi (Bi 2% typ.) Lead finish LAPIS Semiconductor Co., Ltd. Pin treatment Solder plating (≥5µm) Package weight (g) Rev. No./Last Revised 0.55 TYP. 1/Jul. 18, 2007

Notes for Mounting the Surface Mount Type Package

The surface mount type packag es are v ery susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before y ou perform reflow mounting, contact R OHM's responsible s ales pers on for the product n ame, pack age n ame, pin num ber, pack age code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

REVISION HISTORY

		Page		
Document No.	Date	Previous	Current	Description
		Edition	Edition	
PEDL9471-01	Dec. 15, 2006	-	-	Preliminary edition 1
PEDL9471-02	Jan. 15, 2007	-	-	Preliminary edition 2
PEDL9471-03	Jan. 9, 2008	-	Ι	Preliminary edition 3
FEDL9471-01	Aug. 21, 2008	-	_	Final edition 1

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The P roducts specified in this document are in tended to be u sed with general-use electronic equipment or devices (such as a udio v isual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be s ure to implement in your equipment using the P roducts safety measures to g uard ag ainst the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever f or your use of any P roduct ou tside of the prescribed s cope or n ot in accordance with the instruction manual.

The Products are not designed or manufactured to be u sed with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to h uman life or create a ris k of hum an injury (s uch as a medical instrument, tran sportation equipment, aerospace m achinery, nuclear-reactor con troller, f uel-controller or oth er s afety device). LA PIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a P roduct is intended to be u sed for any such special purpose, pleas e contact a R OHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a licen se or permit under the Law.

Copyright 2008 - 2011 LAPIS Semiconductor Co., Ltd.