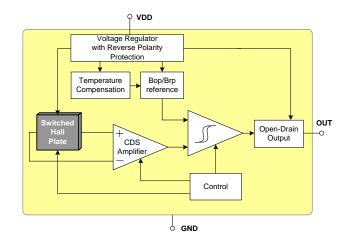
MLX92215

3-Wire Hall Effect Latch

Features and Benefits

- Wide operating voltage range : from 2.7V to 24V
- Chopper-stabilized amplifier stage
- Built-in negative temperature coefficient
- Reverse Supply Voltage Protection
- High ESD rating / Excellent EMC performance


Applications

- Consumer and Industrial
- Solid-state switch
- E-Bike
- Motorcycles
- 3-phase BLDC motor commutation

Ordering information

Part No.	Temperature Code	Package Code	Comment
MLX92215LUA-AAA-000-BU	L (-40°C to 150°C)	UA (TO92-3L)	$B_{OP}/B_{RP} = \pm 3mT$, TC = -1100 ppm/°C
MLX92215LSE-AAA-000-RE	L (-40°C to 150°C)	SE (TSOT-23)	$B_{OP}/B_{RP} = \pm 3mT$, $TC = -1100 \text{ ppm/}^{\circ}C$
MLX92215LSE-ACA-000-RE	L (-40°C to 150°C)	SE (TSOT-23)	Inverted output $B_{OP}/B_{RP} = \pm 3 \text{mT}$, TC = -2000 ppm/°C

1. Functional Diagram

2. General Description

The Melexis MLX92215 is the second generation Hall-effect latch designed in mixed signal CMOS technology.

The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and an open-drain output driver, all in a single package. Based on the existing platform, the magnetic core is using an improved offset cancellation system allowing faster and more accurate processing while being temperature insensitive and stress independent. In addition is implemented a negative temperature coefficient to compensate the natural behaviour of magnets becoming weaker with rise in temperature.

The included voltage regulator operates from 2.7V to 24V, hence covering a wide range of applications. With the built-in reverse voltage protection, a serial resistor or diode on the supply line is not required so that even remote sensors can be specified for low voltage operation down to 2.7V while being reverse voltage tolerant.

With latching magnetic characteristics, the output is turned low or high respectively with a sufficiently strong South or North pole facing the package top side. When removing the magnetic field, the device keeps its previous state.

MLX92215-AAA

3-Wire Hall Effect Latch

Contents

1. Functional Diagram	1
2. General Description	1
3. Glossary of Terms	3
4. Absolute Maximum Ratings	3
5. General Electrical Specifications	4
6. Magnetic Specifications	5
6.1. MLX92215LSE-AAA-000	5
6.2. MLX92215LUA-AAA-000	5
6.3. MLX92215LSE-ACA-000	5
7. Output Behaviour versus Magnetic Pole	6
7.1. South Pole Active	6
8. Performance Graphs	7
8.1. Magnetic parameters vs. TA	7
8.2. Magnetic parameters vs. VDD	7
8.3. VDSon vs. TA	7
8.4. VDSon vs. VDD	7
8.5. IDD vs. TA	7
8.6. IDD vs. VDD	7
8.7. IOFF vs. TA	8
8.8. IOFF vs. VOUT	8
8.9. SE Power Derating vs. TA	8
8.10. UA Power Derating vs. TA	8
9. Application Information	9
9.1. Typical Three-Wire Application Circuit	9
10. Standard information regarding manufacturability of Melexis products with processes	_
11. ESD Precautions	10
12. Packages	11
12.1. SE Package (TSOT-23)	11
12.2. UA (TO92 - 3L)	12
13. Contact	13
14. Disclaimer	13

3. Glossary of Terms

MilliTesla (mT), Gauss Units of magnetic flux density: 1mT = 10 Gauss

RoHS Restriction of Hazardous Substances

TSOT Thin Small Outline Transistor (TSOT package) – also referred with the Melexis package

code "SE"

ESD Electro-Static Discharge

4. Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage (1, 2)	V_{DD}	+27	V
Supply Voltage (Load dump) (1, 3)	V_{DD}	+32	V
Supply Current (1, 2, 4)	I _{DD}	+20	mA
Supply Current (1, 3, 4)	I _{DD}	+50	mA
Reverse Supply Voltage (1, 2)	V_{DDREV}	-24	V
Reverse Supply Voltage (Load dump) ^(1, 3)	V_{DDREV}	-30	V
Reverse Supply Current (1, 2, 5)	I _{DDREV}	-20	mA
Reverse Supply Current (1, 3, 5)	I _{DDREV}	-50	mA
Output Voltage (1, 2)	V _{OUT}	+27	V
Output Current (1, 2, 5)	I _{OUT}	+20	mA
Output Current (1, 3, 6)	I _{OUT}	+75	mA
Reverse Output Voltage (1)	V _{OUTREV}	-0.5	V
Reverse Output Current (1, 2)	I _{OUTREV}	-50	mA
Operating Temperature Range	T _A	-40 to +150	°C
Storage Temperature Range	Ts	-55 to +165	°C
Maximum Junction Temperature (7)	TJ	+165	°C
ESD Sensitivity – HBM ⁽⁸⁾	-	4000	V
ESD Sensitivity – MM ⁽⁹⁾	-	500	V
ESD Sensitivity – CDM ⁽¹⁰⁾	-	1000	V
Magnetic Flux Density	В	Unlimited	mT

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

¹ The maximum junction temperature should not be exceeded

² For maximum 1 hour

³ For maximum 0.5 s

⁴ Including current through protection device

⁵ Through protection device

⁶ For V_{OUT} ≤ 27V

⁷ For 1000 hours

⁸ Human Model according AEC-Q100-002 standard

⁹ Machine Model according AEC-Q100-003 standard

¹⁰ Charged Device Model according AEC-Q100-011 standard REVISION 003 – JAN 17, 2018APRIL 20, 2018

5. General Electrical Specifications

DC Operating Parameters $T_A = -40$ °C to 150°C, $V_{DD} = 2.7$ V to 24V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Supply Voltage	V _{DD}	Operating	2.7	-	24	V
Supply Current	I _{DD}		1.5	3.0	4.5	mA
Reverse Supply Current	I _{DDREV}	V _{DD} = -18V			1	mA
Output Leakage Current	I _{OFF}	V _{OUT} = 12V, V _{DD} = 12V, B < Brp		0.1	10	μΑ
Output Saturation Voltage	V _{DSon}	B > B _{OP} , V _{DD} = 3.8 to 18V, I _{OUT} = 20mA		0.2	0.5	V
Output Rise Time ⁽²⁾ (R _{PU} dependent)	t _R	$V_{DD} = 12V, V_{PU}^{(3)} = 5V, R_{PU} = 1k\Omega$ $C_{LOAD} = 50pF \text{ to GND}$	0.1	0.3	1	μs
Output Fall Time ⁽²⁾ (On-chip controlled)	t _F	V_{DD} = 12V, V_{PU} = 5V, R_{PU} = 1k Ω C_{LOAD} = 50pF to GND	0.1	0.3	1	μs
Chopping Frequency	f _{CHOP}			340		kHz
Output Refresh Period (2)	t _{PER}			6		μs
Delay time ^(2,4)	t _D	Average over 1000 successive switching events @10kHz, square wave with B≥30mT, t _{RISE} =t _{FALL} ≤20µs		6		μs
Output Jitter (p-p) (2, 5)	t _{JITTER}	Over 1000 successive switching events @1kHz, square wave with B≥30mT, t _{RISE} =t _{FALL} ≤100μs		±3		μs
Maximum Switching Frequency (2,6)	f _{sw}	B≥30mT and square wave magnetic field	30	50		kHz
Power-On Time (7,8)	t _{on}	$V_{DD} = 5V$, $dV_{DD}/dt > 2V/us$		16	35	μs
SE Package Thermal Resistance	R _{TH}	Single layer (1S) Jedec board		300		°C/W
UA Package Thermal Resistance	R _{TH}	Single layer (1S) Jedec board		200		°C/W

Table 1: Electrical specifications

¹ Typical values are defined at $T_A = +25$ °C and $V_{DD} = 12V$

² Guaranteed by design and verified by characterization, not production tested

 $^{^{3}}$ R_{PU} and V_{PU} are respectively the external pull-up resistor and pull-up power supply

⁴ The Delay Time is the time from magnetic threshold reached to the start of the output switching

⁵ Output jitter is the unpredictable deviation of the Delay time

⁶ Maximum switching frequency corresponds to the maximum frequency of the applied magnetic field which is detected without loss of pulses

⁷ The Power-On Time represents the time from reaching $V_{DD} = V_{POR}$ to the first refresh of the output (first valid output state)

⁸ Power-On Slew Rate is not critical for the proper device start-up

6. Magnetic Specifications

6.1. MLX92215LSE-AAA-000

DC Operating Parameters V_{DD} = 3.8 to 24V, T_A = -40°C to 150°C

Test Condition		Operating Poi B _{OP} (mT)	nt	Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole		
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾			
T _J = -40°C	1	3.2	5	-5	-3.2	-1		South Pole		
T _J = 25°C	1	3	5	-5	-3.0	-1	-1100			
T _J = 150°C	0.5	2.6	5	-5	-2.6	-0.5				

6.2. MLX92215LUA-AAA-000

DC Operating Parameters V_{DD} = 3.8 to 24V, T_A = -40°C to 150°C

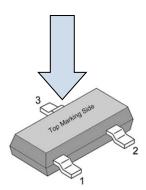
Test Condition	Operating Point B _{OP} (mT)			Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole		
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Typ ⁽¹⁾			
T _J = -40°C	1	3.2	5	-5	-3.2	-1				
T _J = 25°C	1	3	5	-5	-3.0	-1	-1100	South Pole		
T _J = 150°C	0.5	2.6	5	-5	-2.6	-0.5				

6.3. MLX92215LSE-ACA-000

DC Operating Parameters V_{DD} = 3.8 to 24V, T_A = -40°C to 150°C

Test Condition		Operating Poi B _{OP} (mT)	nt	Release Point B _{RP} (mT)			TC (ppm/°C)	Active Pole		
	Min	Typ ⁽¹⁾	Max	Min	Typ ⁽¹⁾	Max	Тур ⁽¹⁾			
T _J = -40°C	1.2	3.2	5.5	-5.5	-3.2	-1.2				
T _J = 25°C	1.0	2.8	4.7	-4.7	-2.8	-1.0	-2000	North Pole		
T _J = 150°C	0.5	2.1	4.2	-4.2	-2.1	-0.5				

Note: $TC = \frac{B_{T_2} - B_{T_1}}{B_{25\%} \times (T_2 - T_1)} \times 10^6, \left[\frac{ppm}{\circ C}\right]; T_1 = -40 \circ C; T_2 = 150 \circ C$

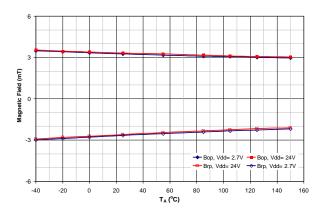

7. Output Behavior versus Magnetic Pole

7.1. South Pole Active

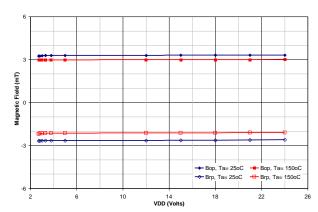
DC Operating Parameters $T_A = -40^{\circ}$ C to 150° C, $V_{DD} = 2.7$ V to 24V (unless otherwise specified)

Parameter	Test Conditions	OUT
South pole	B > B _{OP}	Low (V _{DSon})
North pole	B < B _{RP}	High (V _{PU}) (1)

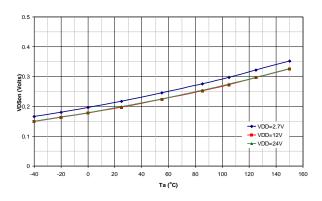
Table 2: Output behavior versus magnetic pole (2)

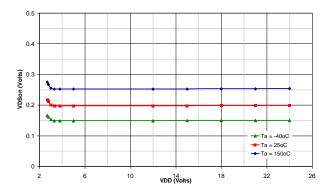

¹ Default Output state during power-up

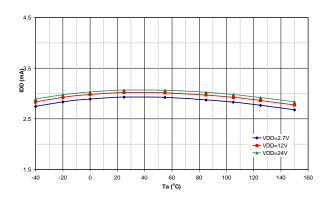
² Magnetic pole facing the branded/top side of the package REVISION 003 – JAN 17, 2018APRIL 20, 2018

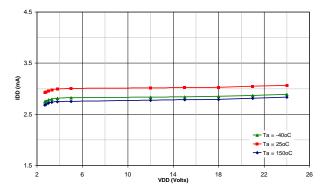


8. Performance Graphs


8.1. Magnetic parameters vs. T_A

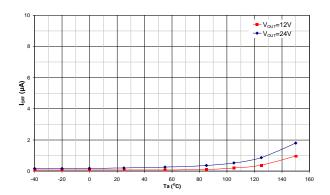

8.2. Magnetic parameters vs. V_{DD}


8.3. V_{DSon} vs. T_A

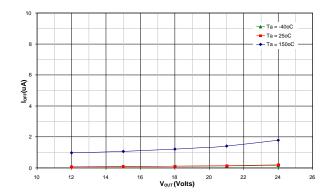

8.4. V_{DSon} vs. V_{DD}

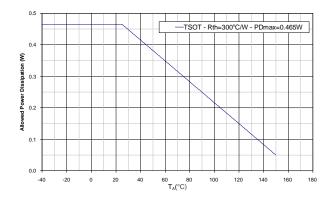
8.5. I_{DD} vs. T_A

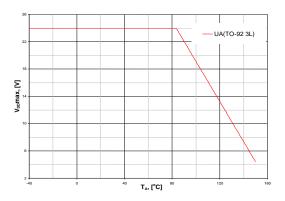
8.6. I_{DD} vs. V_{DD}



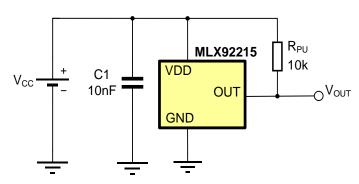
MLX92215-AAA


3-Wire Hall Effect Latch


8.7. I_{OFF} vs. T_A


8.8. I_{OFF} vs. V_{OUT}

8.9. SE Power Derating vs. T_A


8.10. UA Power Derating vs. T_A

9. Application Information

9.1. Typical Three-Wire Application Circuit

Notes:

- 1. For proper operation, a 10nF to 100nF bypass capacitor should be placed as close as possible to the V_{DD} and ground pin.
- 2. The pull-up resistor R_{PU} value should be chosen in to limit the current through the output pin below the maximum allowed continuous current for the device.
- 3. A capacitor connected to the output is not obligatory, because the output slope is generated internally.

10. Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 - Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability

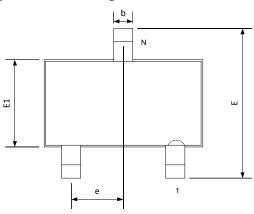
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

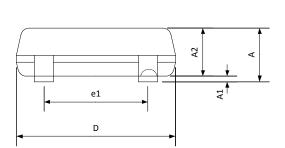
The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

11. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).

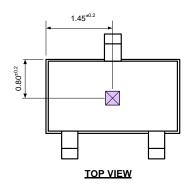

Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

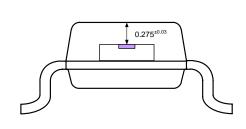



12. Packages

12.1. SE Package (TSOT-23)

Package Outline Drawing & Hall Plate Position

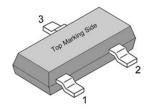

Notes:


- Dimension "D" and "E1" do not include mold flash or protrusions. Mold flash or protrusion shall not exceed 0.15mm on "D" and 0.25mm on "E" per side.
- 2. Dimension "b" does not include dambar protrusion.

Marking:

Top side :15YY; YY: Year (last 2 digits))

Bottom side: XXXX (XXXX: Lot Number (last 4 digits)


END VIEW

This table and all dimensions are in millimeters

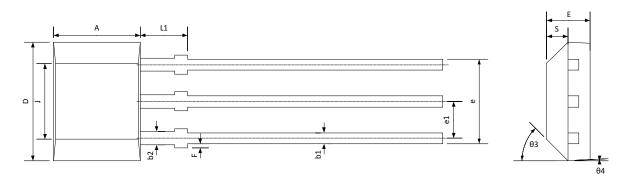
N		Α	A1	A2	D	E	E1	L	b	С	е	e1	α
2	min	-	0.025	0.85	2.80	2.60	1.50	0.30	0.30	0.10	0.95	1.90	0°
3	max	1.00	0.10	0.90	3.00	3.00	1.70	0.50	0.45	0.20	BSC	BSC	8°

Hall plate location

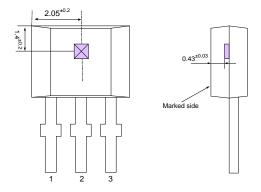
Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	OUT	Output	Open Drain output pin
3	GND	Ground	Ground pin

Melexis

12.2. UA (TO92 - 3L)


Notes:

- 1. All dimensions are in millimeters
- 2. Mold flashes and protrusion are not included.
- 3.Gate burrs shall not exceed 0.127um on the top side.


Marking:

1st Line : 15EY; Y - last digit of year

2nd Line: LLLL; LLLL- last four digits from lot number

Hall plate location

Pin №	Name	Туре	Function
1	VDD	Supply	Supply Voltage pin
2	GND	Ground	Ground pin
3	TEST	1/0	Analog & Digital I/O

This table in mm

	Α	D	E	F	J	L	L1	S	b1	b2	С	е	e1
min	2.80	3.90	1.40	0.00	2.51	14.0	0.90	0.63	0.35	0.43	0.35	2.51	1.24
max	3.20	4.30	1.60	0.20	2.72	15.0	1.10	0.84	0.44	0.52	0.44	2.57	1.30
	θ1	θ2	θ3	θ4									
min	7° REF	7° REF	45°	7° REF									
max	X / REF / REF RE	REF	/ NEF										

13. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email : sales_usa@melexis.com
Asia	Email: sales_asia@melexis.com

14. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified