Lithium-Ion Battery Charge Control (with timers) Monolithic IC MM1639

Outline

This is a lithium-ion battery charge control IC. It incorporates constant-voltage and constant-current circuits for easy implementation of lithium-ion battery charge. It includes functions to disable charging to overdischarged batteries, disable charging due to abnormal temperature, etc., and timer functions. It is also equipped with a 2-channel LED driver to allow the charge status to be displayed.

Features

1. Operating supply voltage	2.7~5.9V

- 2. Operating ambient temperature -20~70°C
- 3. Current consumption
- 4. Low voltage detection voltage
- 5. BAT pin output voltage 4.20±0.03V (Ta=0~50°C)
- 6. Recharge detection voltage 3.90V typ.
- 7. Precharge detection voltage 2.90V typ.
- 8. Fast-charge current setting Rsense=0.22V/IgCHG Example: For 0.70A, 0.22V/0.70A=0.31Ω (Rsence) Precharge current 0.026V/Rsence=0.026/0.31Ω=0.084A

5.0mA typ.

2.0V typ.

Full-charge current

Example: 0.018V/0.31Ω=0.058A Adjustable full-charge: normally fixed at 0.103V. Full-charge current can be varied by adjusting the ADJ pin voltage.

Example: For 0.2A, the ADJ2 pin voltage is $0.062 \times 4 = 0.248V$.

(Adjustable by placing $50k\Omega$ between ADJ2 and VREF) 0 04 F

9. Total timer (C=0.01 μ F, for R = 130k	I=1.//ms)
Precharge timer T $ imes$ 2 ¹⁹	Overvoltage detect delay time $T \times 2^8$
Full-charge timer T $ imes$ 2 ²³	Recharge detection delay time T $\times 2^5$
1mA charge timer T $ imes$ 2 ¹³	LED R blinking cycle T $ imes$ 2 ¹⁰
Full-charge delay time T $ imes$ 2 9	
Overcurrent detection delay time T × 28	8
10. During timeout, abnormal charge, 1mA charge	ge MM1639E LED-R=blinking
	MM1639F LED-B=off

Package

VSOP-16A

Pin Assignment

16	□ 15	<u> </u>	□ 13	 12	 11	 10	9	
1	2	3 □ VS	4 □ SOF	5 □ P-16	6 □ 5A	7	8	

1	SW	9	CS
2	TP1	10	CFB
3	TP2	11	CNT
4	Vref	12	Vcc
5	GND	13	LED G
6	ADJ2	14	LED R
7	Tdet	15	OSC OUT
8	BAT	16	OSC FB-

Internal Equivalent Circuit Diagram

Pin Description

Pin no.	Pin name	I/O	Function
1	SW	INPUT	Forced charging OFF pin. L : Forced charging circuit ON. H : Forced charging circuit OFF. Charging stop is forced.
2	TP1	INPUT/ OUTPUT	Test pin 1. Pre-charge timer test Pin. Inverts while counting (the middle stage of the several FF stages) and output to TP1, to permit monitoring. Also, TP1 output signal is inverted again inside the IC and inputs to the next stage FF. (Timer Setting is done by binary counter.)
3	TP2	INPUT/ OUTPUT	Test pin 2. Full charge timer test pin. Sane structure as TP1.
4	VREF	OUTPUT	Reference power supply output pin. Outputs 1.2V typ. reference voltage. Used for temperature detection reference power supply and ADJ2 adjustment.
5	GND	INPUT	GND pin.
6	ADJ2	INPUT	Full charge detection adjustment pin. Pin voltage is set at 103mV typ Full charge detection value can be changed by adjusting pin voltage with an external resistor, etc. Full charge detection is done by comparing ADJ2 pin voltage and 12dB voltage drop value between CS and BAT.
7	TDET	INPUT	Temperature detection input pin. Apply potential resistance divided by external resistor and thermistor from reference voltage When using. Reset state will exist if TDET pin does not reach the specified potential.
8	BAT	INPUT	Battery voltage input pins. Detect battery voltage and control charging.
9	CS	INPUT	Current detection pin. Detects current by external resistor (between CS and BAT) Voltage drop and controls charging current.
10	CFB	INPUT	Rated current control phase compensation pin. Oscillation is improved by connecting an external capacitor (around 100pF) between CFB and CNT for phase compensation.
11	CNT	OUTPUT	Charging control output pin. Controls external PNP-Tr base for rated current rated voltage charging.
12	Vcc	INPUT	Power supply input pin.
13	LED G	OUTPUT	LED G control output pin. NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
14	LED R	OUTPUT	LED R control output pin. NPN-Tr open collector output. Refer to the flow chart for ON/OFF.
15	OSC OUT	OUTPUT	Oscillator output pin. Timer setting time changes according to oscillation frequency. Oscillation frequency is determined by an external resistor (connected between OSC OUT and OSC FB) and capacitor (connected between OSC FB and GND). For example, the full charge timer setting is 4h for external resistor of l30kΩ and capacitor 0.01µF
16	OSC FB-	INPUT	Oscillator inverted input pin.

Pin no.	Pin name	Internal equivalent circuit diagram	Pin no.	Pin name	Internal equivalent circuit diagram
1	SW	100k 100k 100k	9	CS	
2	TP1		10	CFB	
3	TP2		12		
4	Vref	Vcc Vcc	13		
6	ADJ2	-1.2V 114.3k 10.7k	14	LED K	
7	Tdet	Vcc Vcc		050 001	
8	BAT		16	OSC FB-	

Pin Description 2 The value of components below is typical one.

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Supply voltage	Vccmax.	-0.3~+15	V
Allowable loss	PD	250	mW

Recommended Operating Conditions (Ta=25°C)

Item	Symbol	Ratings	Units	
Operating temperature	Topr	-20~+70	°C	
Charging control operating voltage	Vopr	2.7~5.9	V	

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5V) (Models listed MM1639E)

Item	Symbol	Measurement conditions	Measurement pin	Min.	Тур.	Max.	Units
Current consumption	Icc		12		5.0	7.0	mA
Reference voltage	VREF		4		1.207		V
ADP detection voltage L	VADPL	Vcc: H→L	14	2.35	2.45	2.55	V
ADP detection voltage L	VADPLW		14	50	100	150	mV
hysteresis voltage width	VIDILW			00	100	100	
ADP detection voltage H	VADPH	Vcc: L→H	14	6.1	6.3	6.5	V
ADP detection voltage H	VADPHW		14	50	100	150	mV
hysteresis voltage width	V ADI IIW		14	50	100	150	111 V
BAT pin leak current	Ibat		8.9			1	μA
BAT pin output voltage	VBAT	Ta=0~+50°C	8	4.170	4.200	4.230	V
CNT pin output voltage	VCNT	ICNT=20mA	11			0.5	V
SW pin input current	Isw		1	80	120	160	μA
SW pin input voltage H	Vswh	Charging control circuit: OFF	1	0.6		1.20	V
SW pin input voltage L	VSWL	Charging control circuit: ON	1			0.25	V
Current limit 1	VL1	Full charge	8, 9	0.20	0.22	0.24	V
Current limit 2	VL2	Pro-charge	8, 9	21	26	31	mV
Full charge detection	V_{F}		8, 9	13	18	23	mV
Overcurrent detection			8.9	0.26	0.29	0.31	V
Low voltage detection	VLV	Vват: L→H	8	1.90	2.00	2.10	V
Low voltage detection	Vinn		8	25	50	100	mV
hysteresis voltage width	V LVW		0	20	50	100	111 V
Pre-charge detection voltage	V_{P}	VBAT: L→H	8	2.80	2.90	3.00	V
Pro-charge detection	$\mathbf{V}_{\mathbf{DW}}$		8	25	50	100	mV
hysteresis voltage width	V F VV		0	20	50	100	111 V
Re-charge detection voltage	VR	VBAT: H→L	8	3.85	3.90	3.95	V

Item Symbol		Measurement conditions	Measurement pin	Min.	Тур.	Max.	Units
Overvoltage detection voltage	Vov	VBAT: L→H	8	4.30	4.35	4.40	V
Battery temperature	VTH	Low temperature	7	0.835	0.860	0.885	V
detection voltage H	VIH	$3^{\circ}C \pm 3^{\circ}C$ detection	1	0.000	0.000	0.005	v
Battery temperature	W _{TT} 1	High temperature 43°C ± 3°C	7	0.200	0.413	0.435	v
detection voltage L1	VILI	detection (Charging start)	1	0.550			
Battery temperature	Vara	High temperature 50°C ± 3°C	7	0.335	0.353	0.370	v
detection voltage L2	V 1L2	detection (during charging)	1				
TDET input bias current	Iт		7		30	150	nA
LED R pin output voltage	VLEDR	ILEDR=10mA	14			0.4	V
LED G pin output voltage	VLEDG	ILEDG=10mA	13			0.4	V
Timer error time	⊿T	Not including external deviation	13, 14	-10		10	%

*Current limits 1 and 2 and full charge detection are specified art current detection resistor voltage drop.

*If the IC is damaged and control is no longer possible. its safety can not be guaranteed. Please protect with something other than this IC.

*Temperature detection is the setting value at B constant 3435 (10KC15-1 608 made by Ishizuka Denshi).

*Use a capacitor with good temperature characteristics in the oscillator. Capacitor deviation will contribute to timer error.

*When the battery overdischarge condition. a charge 1 mA for 14 seconds. and then it does not switch to pro-charging during that interval. it means the IC has identified a battery abnormality.

Electrical Characteristics 2 OSC CR Setting Reference Note

OSC CR-Oscillation Cycle Examples

R C	75k	100k	120k	130k	150k	200k
0.0047µ	0.47ms	0.63ms	0.75ms	0.82ms	0.94ms	1.26ms
0.0082µ	0.83ms	1.10ms	1.32ms	1.43ms	1.65ms	2.20ms
0.01µ	1.03ms	1.37ms	1.63ms	1.77ms	2.04ms	2.73ms
0.015µ	1.48ms	1.98ms	2.38ms	2.58ms	2.97ms	3.95ms
0.022µ	2.16ms	2.87ms	3.44ms	3.73ms	4.30ms	5.76ms

Time of Each Times

Itom	Calculation	Examples of calculation
item	formula	(for C=0.01μF,R=I 30kΩ)
Pre-charge timer	T×219	15min. 28s
Full charge timer	T×2 ²³	4h 7min.
1mA charge time	T×2 ¹³	14.5s
Full charge detection delay time	T×29	0.90s
Overcurrent detection delay time	T×2 ⁸	0.45s
Overvoltage detection delay time	T×2 ⁸	0.45s
Re-charge detection delay time	$T \times 2^5$	56.6ms
LED R blinking cycle	T×2 ¹⁰	1.8s

T: OSC oscillation cycle

Measuring Circuit

Measuring Procedures (Except where noted otherwise, Ta=25°C, Vcc=5V, V1=0V, V8=4.27V, SW7 ,11, 13, 14, 16: A, I9=0mA)

Item	Measuring procedures
Current consumption	V1=1.2V. Measure A12 current value Icc.
Reference voltage	Measure T4 potential VREF.
ADP detection voltage L	Gradually lower Vcc from 5V; Vcc-potential is VADPL when T14 potential goes over Vcc-0.5V.
ADP detection voltage L	Gradually lower Vcc-from 2V. Vcc-potential is VADPL2 when T14 potential drops
hysteresis voltage width	below 0.5V. Vadplw=Vadpl2–Vadpl
ADP detection voltage H	Gradually increase Vcc from 5V. Vcc potential is VADPH when T14 potential goes over Vcc-0.5V
ADP detection voltage H	Gradually lower Vcc from 7V Vcc-potential is VADPH2 when T14 potential drops
hysteresis voltage width	below 0.5V. Vadphw=Vadph-Vadph2
BAT pin leak current	Vcc=0V. SW11: B, V11=0V, Measure A8 current value IBAT.
BAT pin output voltage	Gradually lower V8 from 3.5V. T8 potential is VBAT when T9-T8 potential difference falls to less than 20mV.
CNT pin output voltage	V8=3.5V. SW1 1: B. Gradually raise V11 from 0V. T11 potential is VCNT When
	A11 current value 20mA.
SW pin input current	Measure Al current value Tsw.
SW pin input current voltage H	V8=3.5V. Raise V1 from 0V to 12V. SW: ON when A8 is bigger than 500mA.
CHGSW pin input current voltage L	SW; OFF when A8 is smaller than 1 mA. Measure Vsw-
Current limit 1	V8=3.5V. T9–T8 potential difference is VL1.
Current limit 2	V8=2.5V. T9–T8 potential difference is V12.
Full charge detection	SW1 6: B. I9=100mA. Gradually reduce I9 current value after reset. T9-T8
	potential difference is V _F when T13 potential goes under 0.5V.
Overcurrent detection	I9=500mA. Gradually increase I9 current value after reset. T9-T8 potential
	difference is Voc when T14 potent; al starts to repeat HI/LOW.
Low voltage detection voltage	Gradually raise V8 from 0V. T8 potential is VLV when A8 current value goes
Low voltage detection	radially lower V8 from 2.5V. T8 potential is Viv2 when A8 current goes over
Hystorosis voltago Width	$10 \text{ m} \Lambda$ V_{MM} V_{M} V_{M} V_{M}
Tysteresis voltage width	Credually roise V8 from 2 5V. T8 potential is Va when A8 current value goes
Pre-charge detection voltage	over 500m A
Bro obargo datastian	Credually Bower V8 from 2.5V T8 potential is Vp2 when A8 current value goes
	under 150m Å Vrw-Vr Vr 2
Tysteresis voltage width	$\frac{1}{100}$
Re-charge detection voltage	wait about 1 see at $v_{0}=4$. $2/v_{1}$ in run charge detection state,
	gradually lower v8 potential to lower 113 potential to under $0.5V$. 18 potential
	1 IS VR When 113 potential is more than VCC-0.5V.

Item	Measuring procedures
Overvoltage detection voltage	Gradually raise V8 from 4V. T8 potential is Vov when T14 potential starts to
	repeat HL/LOW.
Battery temperature	V8=3.5V, SW7: B, Gradually raise V7 from 0.6V. T7 potential is VTH when A8
detection voltage H	current value goes under 1mA.
Battery temperature	V8=3.5V, SW7: B, Gradually raise V7 from 0V. T7 potential is VTL1 when A8
detection voltage L1	current value goes over 500mA.
Battery temperature	V8=3.5V, SW7: B, Gradually lower V7 from 0.6V. T7 potential is VTL2 when A8
detection voltage L2	current value goes over 1mA.
TDET input bias current	SW7: B, V7=0V. Measure A7 current value IT.
LED R pin output voltage	V8=3.5V, SW14: B, Gradually raise V14 from 0V. T14 potential is VLEDR when
	A14 current value is 10mA.
LED G pin output voltage	Wait about 1s at V8=4.27V: in full charge detection state, make
	T13 potential 0.5V or less. Next at SW13: B, gradually raise V13 from 0V. T13
	potential is VLEDG when A13 current value is 10mA.

Timing Chart (Models listed MM1639E)

When battery setting error (temperature detection pin open)

When connecting abnormal adapter

When overcharged battery setting

When setting overdischarged battery

When overcurrent detection

When times up for pre-charge

When setting full charge battery

When recharge detecting

Flow Chart

Application Circuit

50

75

75

100

3.5

4 4.5

3

Ta=25°C

50

