February 1984 Revised May 2005

MM74HCT273 Octal D-Type Flip-Flop with Clear

General Description

FAIRCHILD

SEMICONDUCTOR

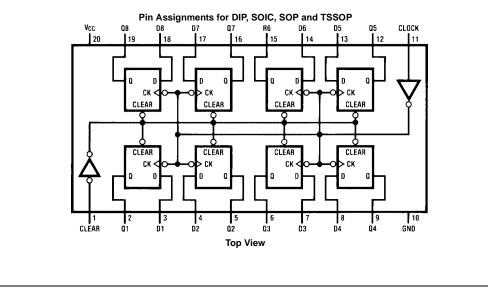
The MM74HCT273 utilizes advanced silicon-gate CMOS technology. It has an input threshold and output drive similar to LS-TTL with the low standby power of CMOS.

These positive edge-triggered flip-flops have a common clock and clear-independent Q outputs. Data on a D input, having the specified set-up and hold time, is transferred to the corresponding Q output on the positive-going transition of the clock pulse. The asynchronous clear forces all outputs LOW when it is LOW.

All inputs to this device are protected from damage due to electrostatic discharge by diodes to $\rm V_{CC}$ and ground.

MM74HCT devices are intended to interface TTL and NMOS components to CMOS components. These parts can be used as plug-in replacements to reduce system power consumption in existing designs.

Features


- Typical propagation delay: 20 ns
- Low quiescent current: 80 µA maximum (74HCT series)
- Fanout of 10 LS-TTL loads

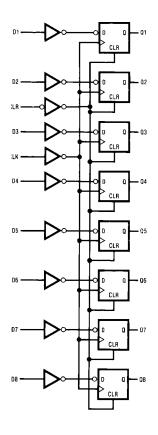
Ordering Code:

Order Number	Package Number	Package Description
MM74HCT273WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT273N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

MM74HCT273


(Each Flip-Flop)

	Outputs		
Clear	Clock	D	Q
L	Х	Х	L
н	↑	н	н
н	↑	L	L
н	L	Х	Q0

Truth Table

H = HIGH Level (steady-state) L = LOW Level (steady-state) X = Don't Care ↑ = Transition from LOW-to-HIGH level Q0 = The level of Q before the indicated steady-state input conditions were established.

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5V to + 7.0V
DC Input Voltage (VIN)	–1.5V to V _{CC} + 1.5V
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per Pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per Pin (I $_{CC})$	±50 mA
Storage Temperature Range (T _{STG})	-65°C to + 150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

	Min	Max	Units		
Supply Voltage (V _{CC})	4.5	5.5	V		
DC Input or Output Voltage					
(V _{IN} , V _{OUT})	0	V _{CC}	V		
Operating Temperature Range (T _A)	-40	+85	°C		
Input Rise or Fall Times					
(t _r , t _f)		500	ns		
Note 1: Absolute Maximum Ratings are those values beyond which dam- age to the device may occur.					
Note 2: Uplace otherwise energified all voltages are referenced to ground					

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power dissipation temperature derating-plastic "N" package: -12 mW/°C from 65°C to 85°C.

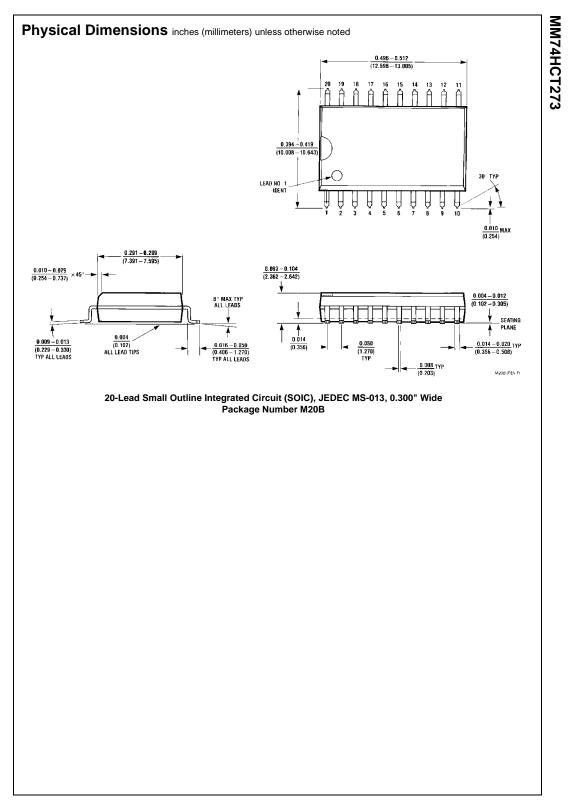
DC Electrical Characteristics

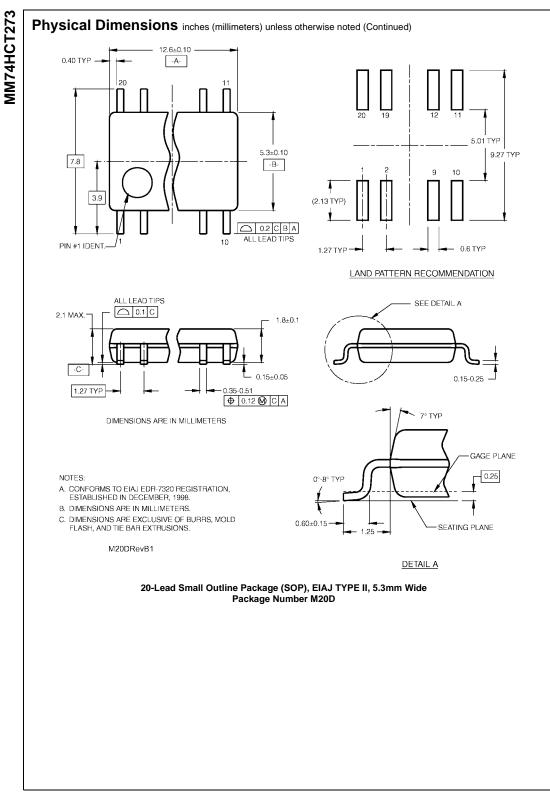
Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40^{\circ}C$ to $85^{\circ}C$	T _A = -55°C to 125°C	5°C Units
			Тур		imits		
VIH	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
VIL	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8$ mA, $V_{CC} = 5.5$ V	5.2	4.98	4.84	4.7	V
V _{OL}	Minimum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μA
	Current	V _{IH} or V _{IL}					
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		8	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)		0.6	0.8	0.9	mA

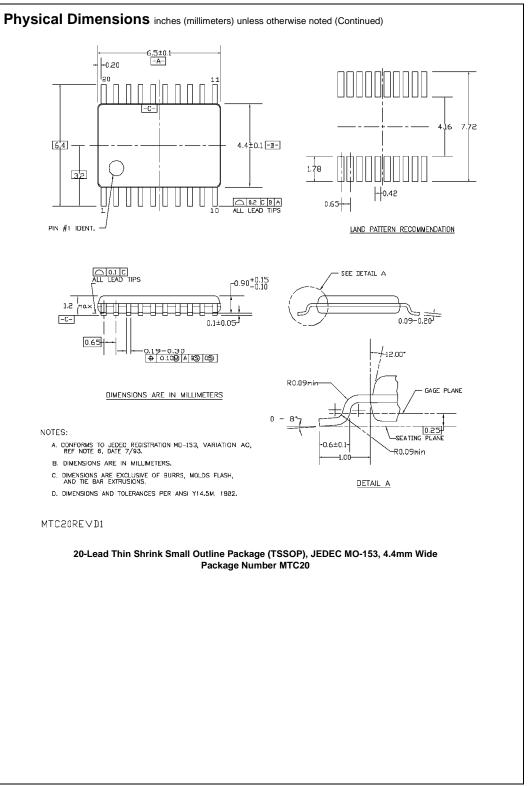
Note 4: Measured per pin, all other inputs held at V_{CC} or GND.

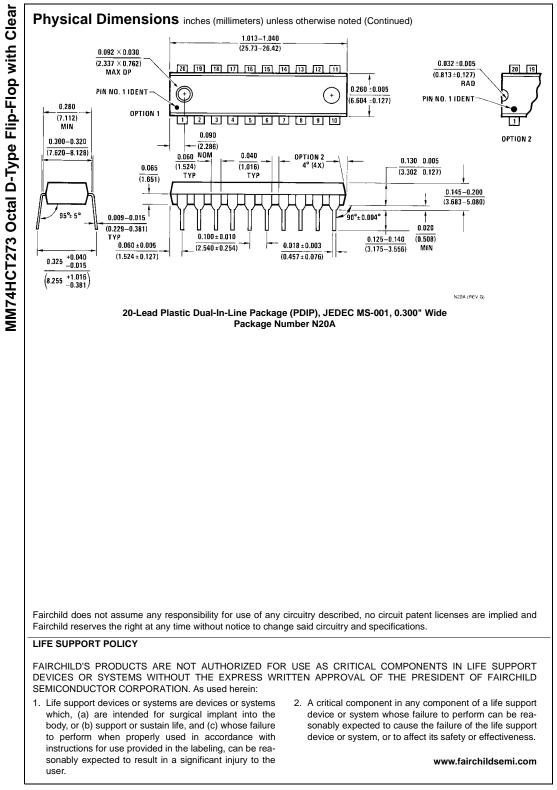
MM74HCT273

AC Electrical Characteristics $V_{CC} = 5V, T_A = 25^{\circ}C, C_L = 15 \text{ pF}, t_r = t_f = 6 \text{ ns}$


Symbol	Parameter	Conditions	Тур	Guaranteed Limits	Units
f _{MAX}	Maximum Operating Frequency		68	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clock to Q		18	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clear to Q		21	30	ns
t _{REM}	Minimum Removal Time, Clear to Clock		-1	5	ns
t _S	Minimum Set-Up Time D to Clock		6	20	ns
t _H	Minimum Hold Time Clock to D		-3	5	ns
t _W	Minimum Pulse Width Clock or Clear		10	16	ns


AC Electrical Characteristics


 V_{CC} = 5.0V \pm 10%, C_L = 50 pF, t_r = t_f = 6 ns unless otherwise specified


Symbol	Parameter	Conditions	T _A =	25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	$T_{A}=-55^{\circ}C$ to $125^{\circ}C$	Units
			Тур		Guaranteed Limits		
f _{MAX}	Maximum Operating		68	27	21	18	MHz
	Frequency						
t _{PHL} , t _{PLH}	Maximum Propagation		22	37	46	56	ns
	Delay from Clock to Q						
t _{PHL} , t _{PLH}	Maximum Propagation		25	35	44	52	ns
	Delay from Clear to Q						
t _{REM}	Minimum Removal		-1	5	6	7	ns
	Time Clear to Clock						
t _S	Minimum Set-Up Time		6	20	25	30	ns
	D to Clock						
t _H	Minimum Hold Time		-3	5	5	5	ns
	Clock to D						
t _W	Minimum Pulse Width		10	16	25	30	ns
	Clock or Clear						
t _r , t _f	Maximum Input Rise			500	500	500	ns
	and Fall Time, Clock						
t _{THL} , t _{TLH}	Maximum Output Rise		11	15	19	22	ns
	and Fall Time						
C _{PD}	Power Dissipation	(Per Flip-Flop)	50				pF
	Capacitance (Note 5)						
CIN	Maximum Input		6	10	10	10	pF
	Capacitance						

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_{S} = C_{PD} V_{CC}^{2} f + I_{CC}.$

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC