1.1 Product Summary

Outline

This is a MOS-type sensor of 1/3 type offering 2.1 mega pixels. This product consists of embedded photodiode, pixel block by MOS transistor, column AD converter, built-in timing generator (TG), high speed serial output I/F and functional circuits of various kinds. High definition 12-bit digital image signals offering 2.1 mega pixels are obtained with high speed of 60 fps and with low power consumption.

Feature

Features of this MOS type image sensor are follows.

Item	Description
Scan mode	progressive scan
Optical size	1/3 type (inch)
Number of active pixels	1944 (H) × 1092 (V) = 2,122,848 (pixel)
Total number of pixels	2010 (H) × 1108 (V) = 2,227,080 (pixel)
Pixel size	2.75 (H)μm × 2.75 (V)μm
Number of pins	104 Pins (including pins of "NC")
Actual imaging area dimensions (active pixel area)	5.346 (H)mm × 3.003 (V)mm
Color filter arrangement	Bayer arrangement of primary colors: R, G, B
Power supply voltage	3.3V / 1.8V / 1.2V
Master clock	27 MHz / 37.125MHz
Bit number of internal ADC	12 bit
Output signal type	subLVDS DDR method 486Mbps(MCLK=27MHz) 445.5Mbps (MCLK=37.125MHz)
Register I / F	3-lines Serial I/F
Output frame rate per second (Full scan)	2ch 2port 12bit : 60fps
	2ch 2port 16bit : 30fps ※1
Electronic shutter (Full scan)	60fps: 1 / 60s ~ 1 / 67500s (1 / 67500s step)
Variable gain (Column amplifier)	Full scan : Standard +0/+6/+12dB
Variable gain (Analog)	Full scan : 0dB/6dB
Variable digital gain (Digital processing)	0dB ~ 12dB
	Full scan mode:2.1Mpixel output
Functions	Flip %2
	Long exposure mode

Table 1.1.1 List of Features

1 This drive mode is available in chip set with Panasonic DSP (MN2PS00003RF) only.
2 Apply mirror function in DSP.

Application

This product is ideal for the field of security camera, network camera, broadcasting camera and industrial camera.

Element Configuration

The block configuration and pixel array of this product are described below.

Block configuration

This product consists of pixel block, high speed serial I/F, LVDS output, PLL, Timing generator (TG), Parallel column AD converter and functional circuits of various kinds.

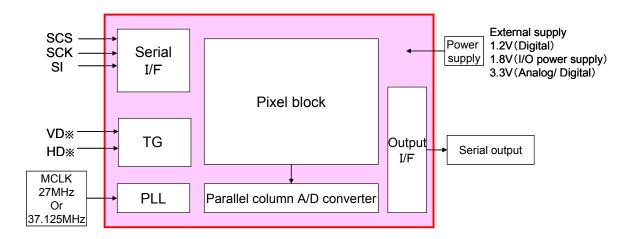


Figure 1.1.1 Block Diagram

In sensor slave mode, VD and HD are external input.
In sensor master mode, make these terminals open.

Pixel Array Format

Pixel array format is described below.

A1 pin (Upper left)

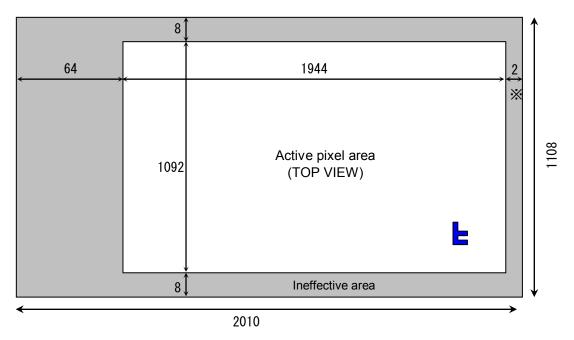
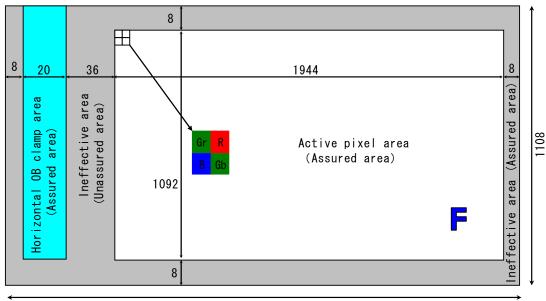



Figure 1.1.2 Pixel Array Configuration

X In physical pixel array configuration (2010H), 2 lines of right side are ineffective area.

In LVDS output (2016H), it includes dummy (6 lines) as ineffective data. Totally 8 lines of ineffective data is output. (Refer to the following figure)

<Reference>

2016

Figure 1.1.3 Pixel Array Configuration (LVDS output)

Panasonic ___

Pins

j												
۲	A1		RSTN	TOUT3	TOUT4	TOUT5	GND	AGND	AGNDSH	тезтю		
2			so	PSV	MSSEL	MCLK	VDD	AVDD	GND	GND		
3	NC	SI	DDV	GND	VDD18	VDD18	VDD18	VDD33	DDV	SDODBOP	SDODBOM	GND
4	sos	sck	VDD33	(MRK)						SDOCBP	SDOCBM	GND
5	дн	d	GND		l	2				VDD33	VDD33	VDD33
9	AVDD	AGND	AGNDSH	•			MN34041PL (BUITOM VIEW)			SDODB1P	SD ODB 1M	DDV
7	ТМ	GND	DD	•						SDODB2P	SDODB2M	GND
8	TB	GND	VDD	•		č Z	чг В			SDODA2P	SD OD A 2 M	VREFRES1
6	AVDD	AGND	AGNDSH	•			134041			SDODA1P	SDODA1M	DDV
10	TBS0	GND	GND	•			ž			VDD33	VDD33	VDD33
11	TBS1	VDD33	VDD33	•						SDOCAP	SDOCAM	GND
12	TBS2	VDDCELL0	VDD	AGND	N_NIQA	S'NIQA	VDD18	VDD33	VDD	SDODA0P	SDODA0M	GND
13			VREFRES2	AVDD	VREFRES3	VCHP2	DDV	AVDD	GND	GND		
14			TBS3	TOUTO	τουτι	VCHP1	GND	AGND	AGNDSH	TOUT2		
	۷	ш	Ö	۵	ш	Ŀ	g	т	J	¥	L	Σ

Figure 1.1.4 Pin Connection (BOTTOM VIEW)

Do not connect to the unused pin "NC". Make it OPEN electrically.

D4 (MRK) is a recognition mark of package and it is not a pin.

Pin specifications, process and functions list Specifications and functions of pins showed in Figure 1.1.4 are the following. Explanation of symbols: I: INPUT, O: OUT, P: POWER, G: GND

Pin No.	Pin name	I/O	Process	Functions
A3	NC	-	OPEN	None(Not connected to device)
A4	SCS	Ι	Input chip select signal (Low : Select)	Serial chip select
A5	HD I		Sensor master : OPEN	Horizontal synchronous signal input
		I/O	Sensor slave : Horizontal synchronous signal input	
A6	AVDD	Р	Connect analog 3.3V power supply	Analog 3.3V power supply
A7	ТМ	Ι	Connect DGND	Test
A8	ТВ	0	OPEN	Test
A9	AVDD	Р	Connect analog 3.3V power supply	Analog 3.3V power supply
A10	TBS0	0	OPEN	Test
A11	TBS1	0	OPEN	Test
A12	TBS2	0	OPEN	Test
B3	SI	Ι	Input serial data	Serial data input
B4	SCK	Ι	Input serial clock	Serial clock input
B5	VD	I/O	Sensor master : OPEN Sensor slave : Vertical synchronous signal input	Vertical synchronous signal
B6	AGND	G	Connect AGND	AGND
B7	GND	G	Connect DGND	DGND
B8	GND	G	Connect DGND	DGND
B9	AGND	G	Connect AGND	AGND
B10	GND	G	Connect DGND	DGND
B11	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply
B12	VDDCELL0	I/O	OPEN	Test
C1	RSTN	I	Input reset signal (Low: Reset)	Reset signal
C2	SO	I/O	Connect 10kΩ between DGND	Serial signal output(Not guaranteed) Register read : output, Others:Hi-z
C3	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
C4	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply
C5	GND	G	Connect DGND	DGND
C6	AGNDSH	G	Connect AGND	AGND
C7	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
C8	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
C9	AGNDSH	G	Connect AGND	AGND
C10	GND	G	Connect DGND	DGND
C11	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply
C12	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
C13	VREFRES2	I	Connect 12kΩ between AGND *1	Reference resistance for internal circuit
C14	TBS3	0	OPEN	Test

Table 1.1.2	List of Pin Specifications, Process and Functions
-------------	---

Panasonic _____

Pin No.	Pin name	I/O	Process	Functions
D1	TOUT3	0	OPEN	Test
D 0		1	Input power save signal	Devuer eque signal
D2	PSV		(Low: Power save)	Power save signal
D3	GND	G	Connect DGND	DGND
D4	(MRK)	-	OPEN(This is not a pin)	Package recognition mark
D12	AGND	G	Connect AGND	AGND
D13	AVDD	Р	Connect analog 3.3V power supply	Analog 3.3V power supply
D14	TOUT0	0	OPEN	Test
E1	TOUT4	0	OPEN	Test
50			Sensor mode	
E2	MSSEL		(High:Slave, Low:Master)	Sensor mode select signal
E3	VDD18	Р	Connect 1.8V power supply	Digital 1.8V power supply
E12	ADIN_N	0	OPEN	Test
E13	VREFRES3		Connect 12kΩ between AGND *1	Reference resistance for internal circuit
E14	TOUT1	0	OPEN	Test
F1	TOUT5	0	OPEN	Test
F2	MCLK		Input master clock	Master clock input
F3	VDD18	Р	Connect 1.8V power supply	Digital 1.8V power supply
F12	ADIN_S	0	OPEN	Test
F13	VCHP2	Р	Connect 2.2µF bypath capacitance	Down converter
1 10	VOIII 2	<u>'</u>	Connect 2.2µ1 bypath capacitance	(Voltage is generated internally)
F14	VCHP1	Р	Connect 2.2µF bypath capacitance	Power supply for pixel
G1	GND	G	Connect DGND	(Voltage is generated internally) DGND
G1 G2	VDD	P	Connect 1.2V power supply	Digital core 1.2V power supply
G2 G3	VDD VDD18	P	Connect 1.2V power supply Connect 1.8V power supply	Digital 1.8V power supply
G3 G12	VDD18 VDD18	P	Connect 1.8V power supply	Digital 1.8V power supply Digital 1.8V power supply
G12 G13	VDD18	P	Connect 1.2V power supply	Digital core 1.2V power supply
G13 G14	GND	G	Connect DGND	Digital core 1.2V power supply DGND
H1	AGND	G	Connect AGND	AGND
H2	AGND	P	Connect analog 3.3V power supply	Analog 3.3V power supply
HZ H3	VDD33	P	Connect analog 3.3V power supply Connect digital 3.3V power supply	Digital 3.3V power supply
нз H12	VDD33	P	Connect digital 3.3V power supply Connect digital 3.3V power supply	Digital 3.3V power supply Digital 3.3V power supply
H12 H13	AVDD	P	Connect analog 3.3V power supply	Analog 3.3V power supply
H13 H14	AVDD	Р G	Connect analog 3.3V power supply Connect AGND	Analog 3.3V power supply
H14 J1	AGND	-	Connect AGND Connect AGND	
		G		AGND
J2 J3	GND	G P	Connect DGND	DGND
J3 J12	VDD VDD	P	Connect 1.2V power supply	Digital core 1.2V power supply
-		Р G	Connect 1.2V power supply	Digital core 1.2V power supply
J13	GND	G	Connect DGND	
J14	AGNDSH	G	Connect AGND	AGND

Panasonic _____

Pin No.	Pin name	I/O	Process	Functions
K1	TESTIO	I/O	OPEN	Test
K2	GND	G	Connect DGND	DGND
K3	SDODB0P	0	Connect latter device	LVDS output(ch2 port0 data+)
K4	SDOCBP	0	Connect latter device	LVDS output(ch2 clock data+)
K5	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
K6	SDODB1P	0	Connect latter device	LVDS output(ch2 port1 data+)
K7	SDODB2P	0	OPEN	LVDS output(ch2 port2 data+)
K8	SDODA2P	0	OPEN	LVDS output(ch1 port2 data+)
K9	SDODA1P	0	Connect latter device	LVDS output(ch1 port1 data+)
K10	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
K11	SDOCAP	0	Connect latter device	LVDS output(ch1 clock data+)
K12	SDODA0P	0	Connect latter device	LVDS output(ch1 port0 data+)
K13	GND	G	Connect DGND	DGND
K14	TOUT2	0	OPEN	Test
L3	SDODB0M	0	Connect latter device	LVDS output(ch2 port0 data-)
L4	SDOCBM	0	Connect latter device	LVDS output(ch2 clock data-)
L5	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
L6	SDODB1M	0	Connect latter device	LVDS output(ch2 port1 data-)
L7	SDODB2M	0	OPEN	LVDS output(ch2 port2 data-)
L8	SDODA2M	0	OPEN	LVDS output(ch1 port2 data-)
L9	SDODA1M	0	Connect latter device	LVDS output(ch1 port1 data-)
L10	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
L11	SDOCAM	0	Connect latter device	LVDS output(ch1 clock data-)
L12	SDODA0M	0	Connect latter device	LVDS output(ch1 port0 data-)
M3	GND	G	Connect DGND	DGND
M4	GND	G	Connect DGND	DGND
M5	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
M6	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
M7	GND	G	Connect DGND	DGND
M8	VREFRES1	Ι	Connect 12kΩ between DGND *1	Reference resistance for internal circuit
M9	VDD	Р	Connect 1.2V power supply	Digital core 1.2V power supply
M10	VDD33	Р	Connect digital 3.3V power supply	Digital 3.3V power supply (LVDS)
M11	GND	G	Connect DGND	DGND
M12	GND	G	Connect DGND	DGND

*1) Connect resistive element ($12 \text{ k}\Omega \pm 0.5 \text{ \%}$) between VREFRES 1, 2, 3 pin and GND shown as Figure 1.2.1.

Name	Unit	Absolute Maximum Ratings		Operati	Remarks		
		Lower limit	Upper limit	Minimum	Standard	Maximum	
AVDD	V	- 0.3	4.5	3.15	3.3	3.45	-
VDD33	V	- 0.3	4.5	3.15	3.3	3.45	-
VDD18	V	- 0.3	2.5	1.62	1.8	1.98	-
VDD	V	- 0.3	1.6	1.08	1.2	1.32	-
VCHP1	v	-	-	-	-	-	Voltage is internally generated.
VCHP2	v	-	-	-	-	-	Voltage is internally generated.
AGND GND	V	GND		-	0	-	-

Absolute Maximum Ratings and Operating Voltage Condition

Table 1.1.3 Values for Absolute Maximum Ratings and Operating Voltage Condition

• The absolute maximum ratings are the limit values applied to the chip, which do not lead to damage.

They shall not guarantee proper operation.

• Connect bypath ceramic capacitance $(0.1\mu F)$ between all of power supply pins and GND nearby these pins. Connect also bypath ceramic capacitance (2.2 μ F or more) together.

Drive current

Table 1.1.4	Power supply current
-------------	----------------------

Item	Unit	Lower limit	Standard	Upper limit	Remarks
AVDD current	mA	-	64	87	VDD33 = AVDD = 3.3V、
VDD33 current	mA	-	20	22	VDD18 = 1.8V、VDD=1.2V、
VDD18 current	mA	-	0.1	1	Full scan, 60fps, 25°C,
VDD current	mA	-	143	153	Column amplifier gain = Standard, Analog gain = 0dB, Digital gain = 0dB, MCLK=27MHz, Saturating illuminance, Measured by tester of Panasonic

Temperature Conditions

Item	Unit	Lower limit	Standard	Upper limit	Remarks
Operating temperature	°C	-10	25	75	(*1)
Performance assurance temperature	°C	0	25	60	(*2)
Storage temperature	°C	-30	25	85	(*3)

Table 1.1.5 Temperature Conditions

*1 Operating temperature and storage temperature are defined by the temperature around the sensor. Operating temperature shall not guarantee the characteristics.

*2 Performance assurance temperature is defined by the temperature of wafer. Characteristics are measured in 60°C (Wafer inspection), standard (Room temperature), 25°C (Final inspection). Other temperatures are assured as design guarantee.

*3 Storage temperature is defined by the temperature of around the sensor.

1.2 Operation

1.2.1 List of Drive Mode

Drive Mode

		Outp	ut		Frame Number of active Frame					rame format	
Mode	MCLK	ICLK Data rate(MHz)		Number of ADC output bit	rate (fps)	H pix	V line	H clock	V line	HCYCLE (MCLK)	
Full acon	27	162	12bit 2ch 2port	12	60p	1944	1092	2400	1125	400	
Full scan	37.125	148.5	12bit 2ch 2port	12	60p	1944	1092	2200	1125	550	

Table 1.2.1 Drive Mode (General)

X LVDS output data rate 486Mbps (MCLK:27MHz), 445.5Mbps (MCLK:37.125MHz)

* HCYCLE in frame format shows the number of clock in pixel rate.

1.2.2 Reference Circuit

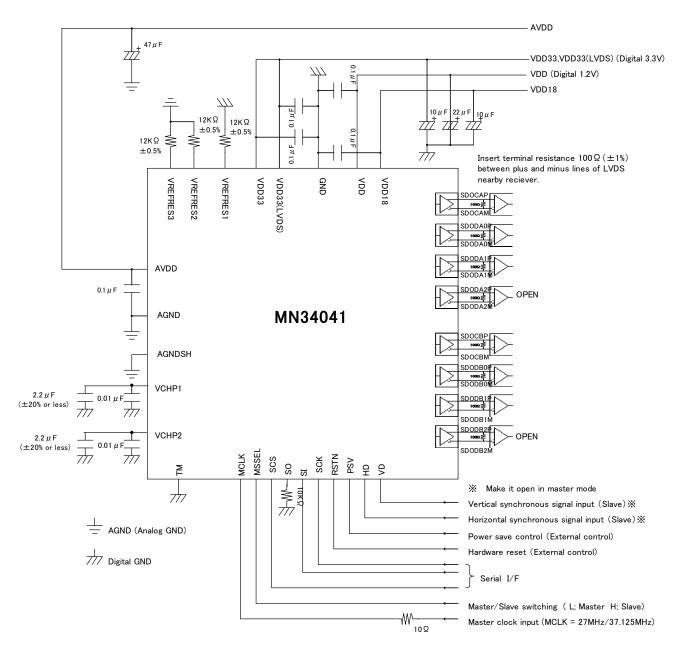


Figure 1.2.1 Reference circuit

Recommended Coupling Parts for Each Power Supply Pin (decoupling capacitor)

Apply decoupling capacitance (about 0.1μ F) with small parasitic series inductance to a pair of power supply and GND near the pin as possible to cut high-frequency noise.

For example, decoupling capacitances in four corners of the chip in each four pairs of AVDD and AGND are recommended.

Connect SO pin if need to read registers though it is not guaranteed.

1.3 Package

1.3.1 Dimensions

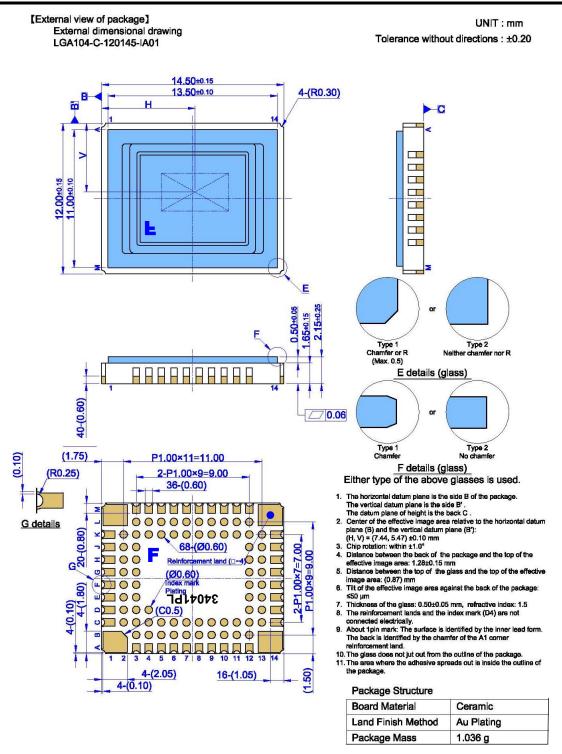


Figure 1.3.1 Package Dimensions (LGA104-C-120145-IA01)

Documents

Panasonic

This product has documents of data sheet, product detail specifications, specification of registers, and application notes necessary to set design.

If you need more information, please download documents from the web page or request it from semiconductor support system.

Title	Explanation	MN34041
Datasheet	Product overview, application circuit, package outline, etc.	Download
Product specifications	Detailed specifications, function, characteristic	Contact Us (For Registered Users)
Register specifications	Detailed specifications of registers	Contact Us (For Registered Users)
Application note	Notes on the design for applications, etc.	Contact Us (For Registered Users)

Contact Us

Technical Inquiry

If you want to ask about technical information in this document, please request from the contact with user registration.

Semiconductor Support (For Registered Users)

If you are not registered yet or access the page at first time, please click here.

Sales Inquiry

As for the purchase, our worldwide sales companies are responsible for your support individually. (Such as delivery, last order, custom OEM business, quality, and environment, so on)

Sales Offices

If you want to learn more information, please visit to

Panasonic Imagesensor Homepage

About Registration for Semiconductor Support Page

User ID (e-mail address) registration is needed for inquiry.

You are prohibited from using the products and the technical information on this Web site for development, production, use and storage of the Weapons of Mass Destruction (the nuclear weapons, the biological weapons, the chemical weapons and the missiles).

This Page...

...is for exclusive use by partners who trade in the OEM products described on "www.semicon.panasonic.co.jp", customer production facilities, and all related businesses.

Scope of Inquiries and Replies

On your first visit, register customer information and organizational affiliation so that we can supply better-tailored advice on customer design and development. Your personal information will never be divulged outside of the relevant industry group.

Replies are valid only for the customer and company concerned.

Passing the replies in whole or in part to a third party or for secondary use is strictly prohibited by copyright.

After you confirm the description of the above, please proceed to the user registration link below.

Click here to become a registered user

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:

• Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202