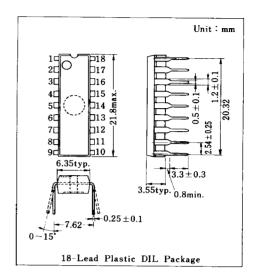
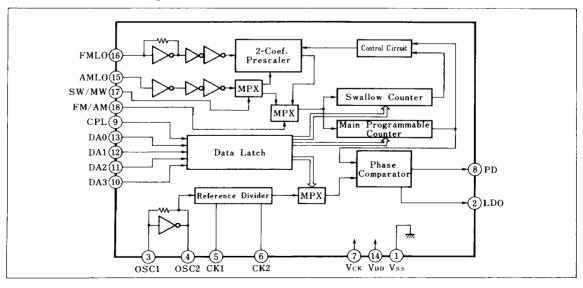
MN6147

CMOS FM-AM ステレオチューナ用 PLL 周波数シンセサイザ CMOS PLL Frequency Synthesizer for FM-AM Stereo Tuners


■ 概 要/Description

MN6147 は、FM-AM ステレオチューナの PLL 周波数シンセサ イザシステム用に設計された高性能 LSI です。FM 信号を直接処 理でき、Hi-Fi 用としての諸機能を具備しており、SW、LW 信 号も処理可能な広範囲な用途を有しています。 +5V単一電源で動作しますが、クロック回路は、別電源のバッ テリバックアップが可能です。


The MN6147 is a CMOS PLL frequency synthesizer designed for use in high performance FM-AM stereo tuners. The device is capable of directly processing FM signal and having various functions for Hi-Fi stereo tuners, and SW and LW signal processing.

■特 徴

- ●6 種類の基準周波数が選択可能
- 25, 10, 9, 5, 2.5, 1 kHz
- ●FM フィルタ用周波数シフト ±25 kHz, 分解能 25 kHz,
- IF フィルタ用周波数シフト ±25 kHz, ±50 kHz, ±75 kHz が 可能
- ●4ビット並列データ入力,データ入力クロック1入力,データ 入力用端子数5本

- プログラマブル分周器の入力端子2本,FM用
 とSW,MW,LW用
- コントローラ用出力として、562.5 kHz と 250 Hz の出力端子付

■ ブロック図/Block Diagram

--- 621 ---

Panasonic

メモリ,マイコン周辺LSI

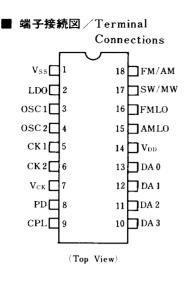
■ 絶対最大定格/Absolute Maximum Ratings (Vss=0V, Ta=25°C)

Item	Symbol	Rating	Unit
電源電圧	V _{DD}	$-0.3 \sim +10$	v
入力電圧	VI	$-0.3 \sim V_{DD} + 0.3$	v
出力電圧	Vo	$-0.3 \sim V_{DD} + 0.3$	v
許容損失	PD PD	250	mW
動作周囲温度	Торг	-30~+70	°C
保存温度	Tstg	$-55 \sim +100$	°C

■ 動作条件 ($V_{SS} = 0 V, Ta = -30 \sim +70^{\circ}C$)

Item	Symbol	Condition	min.	typ.	max.	Unit
電源電 圧(1)	VDD		4.5	5	5.5	<u>v</u>
電源電圧(2)	V(CK)	Clock Supply	3.5	5	5.5	<u>v</u>

■ 電気的特性 (V_{DD} =+4.5~6.0V, V_{SS} =0V, Ta=-30~+70°C)

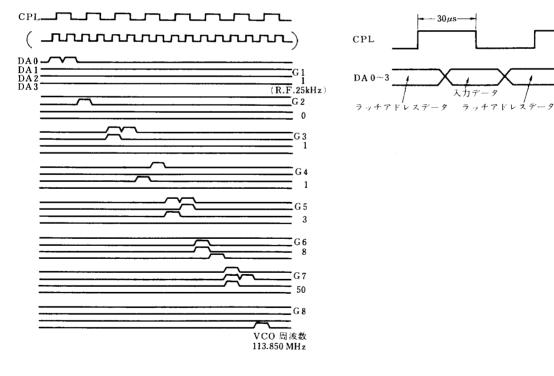

Item	Symbol	Condition	min.	typ.	max.	Unit
電源電流	IDD			20	30	mA
全消費電力	Ptot	$V_{DD} = 5V, Ta = 25^{\circ}C$		100	150	mW
電源電流	I(CK)	Clock current, $V_{(CK)} = +5V$, Ta = 25°C		0.6	1.5	mA
、 、 力端子(DA0~DA3, CP	L, FM·AM, S	W·MW)				
入力電圧ハイレベル	VIH(1)		2.4		v_{dd}	V
入力電圧ローレベル		$V_{DD} = 5V$	Vss		0.8	V
入力電流	II(1)	$V_i = V_S S \sim V_{DD}$			±10	μA
 入力端子 (FMLO)				_		
入力電圧	V I(1)		1.0			V _{p-}
	I1(2)	$V_{I(1)} = 0 \ V \ \sharp \ t c \ i \ 5 \ V$	±10	±50	± 250	µA
入力周波数 (max.)	fi(FM)	$V_{DD} = 4.5 \sim 5.5 V$	120			MH
入力端子 (AMLO)						
入力電圧	V1(2)		1.0			V _p -
入力電流	I1(3)	V ₁₍₂₎ =0または5V	±1	± 5	± 25	μI
入力周波数(max.)	fi(AM)	$V_{DD} = 4.5 - 5.5 V$	30			MH
発振回路端子(OSC1, OS	C2)					
	fosc	· · · · · · · · · · · · · · · · · · ·		4.5		MH
 出力端子(PD)						
出力電流ハイレベル	Іон(1)	$V_{DD} = 5V, V_0 = 3V$	-0.8			m
出力電流ローレベル	IoL(1)	$V_{DD} = 5V, V_O = 2V$	0.8			m
出力電流 (Open)	Io	$V_{DD} = 5V, V_O = V_{SS} \sim V_{DD}$			+0.1	n/
出力電圧ハイレベル	Voh(1)	$V_{DD} = 5V, I_{OH(1)} = 100 \mu A$	4.0			
出力電圧ローレベル	Volu	$V_{DD} = 5V, I_{OL(1)} = 100 \mu A$			0.4	L'
出力端子(LDO)						
	V0H(2)	$V_{\rm DD} = 5 V, I_{\rm OH} = -200 \mu A$	4.0			
出力電圧ローレベル		$V_{\rm DD} = 5 V, I_{\rm OL} = 200 \mu {\rm A}$			0.4	

注) VDD, V_{CK}), Vss の各電源端子にコンデンサを接続して使用すること。入力容量(FMLO, AMLO)= 3pF typ.

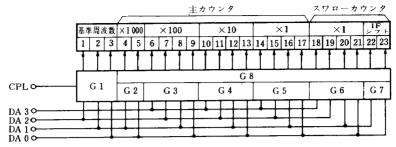
 [1	 —↓● 0.033µF
	7 14	₽ 0.47µF

Panasonic

— 622 —



■ 端子説明/Terminal Assignments


		0
端子番号	記 号	端 子 の 説 明
1	Vss	接地
2	LDO(QO)	ロックディテクタ出力(発振回路出力)
3	OSC1	
4	OSC2	4.5 MHz 水晶発振
5	CK1	クロック出力1(562.5kHz*)
6	CK2	クロック出力2(250Hz)
7	Vck	時計用分周回路バッテリバックアップ(5V)
8	PD	位相検波器出力(スリーステート)
9	CPL	ラッチクロック
10	DA3	データおよびアドレス入力 (MSB)
11	DA2	データおよびアドレス入力
12	DA1) ― シ ねよび / トレベス/]
13	DA0	データおよびアドレス入力 (LSB)
14	V_{DD}	主電源 (5 V)
15	AMLO	AM 局部発振信号入力
16	FMLO	FM 局部発振信号入力
17	SW/MW	SW/MW 切換
18	FM/AM	FM/AM 切換

*クロック周波数は配線変更により、次の3種類の取出しが可能,187.5 kHz, 375 kHz, 1.125 MHz.

■ データ入力タイミング図/Data Input Timing Diagrams

■ データ入力端子とプログラマブルカウンタの関係

ラッチグループ選択コード表

スカ スカード	G1	G2	G3	G4	G5	G6	G7	G8
DA3	L	L	L	L	L	L	L	Н
DA2	L	L	L	H	Н	Н	Н	×
DA1	L	Н	Н	L	L	Н	Н	\times
DA0	Н	L	Н	L	Н	L	Н	\times

基準周波数(ri)選択コード表

入力 コード	2.5	25	9	10	5	1
DA2	L	L	L	L	Н	Н
DA1	L	L	Н	Н	L	H
DA0	L	н	L	Н	×	×

■ データ入力案

		~ ~ ~				
	1 2 3	4 5 6	7 8 9	10 11 12 13	14 15 16 17	18 19 20 21 22 23
		(21) (8	4 2 1)	(8 4 2 1)	(8 4 2 1)	(8 4 2 1) (21)
					× 1	
	101 1/2 82	·		ー		スワローカウンタ
			. 1. '			
[例1] ビット	FM時 123	4 5 6	789	10 11 12 13	14 15,16 17	18 19 20 21 22 23
データ	(0.0.1)	(0.0) (0	0 0 0	(1001)	0101	(0 0 1 0: (0 0)
, ,			0		5	2 0
	rI 25 kHz	分周比 VCO	N=9; 周波数	$52 \times 4 + 0$ f = 3808	= 3808 ×25 kHz	= 95.200 MHz
[多]2] ビット	FM時 123	456	789	10 11 12 13	14 15 16 17	18 19 20 21 22 23
データ	(0 0 1)	0 0 0 0 0 0				$\begin{array}{ccc} (1 & 0 & 0 & 0 & (1 & 0) \\ & 8 & & 2 \\ \end{array}$
				$268 \times 4 + 268 \times 4 \times $		= 126.850 MH
(例3) ビット	SW 時 1 2 3	4 5 6	789	10 11 12 13	14 15 16 17	18 19 20 21 22 23
データ	(1 0 ×)	(0.0) (0 0	0 1 0 2	1001 9	(0101 5	8
	rl	分数	比 N =	2958		=14.790 MHz

IF	シ	フ	٢	表
----	---	---	---	---

入力 スカ コード	0	25	50	75
DA1	L	L	Н	Н
DA0	L	н	L	Н

FM, SW, MW(LW)信号処理切換表

入力信		切換端子コード			
信号名	端子	FM/AM [®]	SW/MWD		
FM	16	Н	×		
SW	15	L	н		
MW(LW)	15	L	L		

[例4]	SW 時
ビット	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
データ	$ \begin{array}{c} (1 \ 1 \times) \ (0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$
	rI 分周比 N = 16957 1 kHz VCO 周波数 f = 16957×1 kHz = 16.957 MHz
[例5]	MW 時
ビット	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
データ	$ \begin{array}{c} (0 \ 1 \ 1) \ (0 \ 0) \ (0 \ 0 \ 0 \ 1) \ (0 \ 0 \ 1 \ 0) \ (0 \ 1 \ 1 \ 0) \ (0 \ 0 \ 0 \ 0 \ 0 \ 0) \\ 0 \ 1 \ 2 \ 6 \end{array} $
	rI 分周比 N=126 10 kHz VCO 周波数 f=126×10 kHz=1260 kHz
[例6]	M₩ 時
ビット	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
データ	$ \begin{smallmatrix} (0 \ .1 \ 0) \ (0 \ 0) \ (0 \ 0 \ 0 \ 1) \ (0 \ 0 \ 0 \ 1) \ (1 \ 0 \ 0 \ 1) \ (0 \ 0 \ 0 \ 0 \ 0) \\ 0 \ 1 \ 1 \ 9 \\ [1.5ex] $
	rI 分周比 N=119 9 kHz VCO 周波数 f=119×9 kHz=1071 kHz

Panasonic

- 624 ---

■ 受信周波数一例

FM バンド

地	域		数 帯 域 1Hz)	チャン ネル幅 (kHz)	基 準 周 波 数 (kHz)		引 周 波 (MHz)	数
B	本	76.1	89.9	100	25	-10.700,	-10.675,	-10.650
アメリ	カ1	87.9	107.9	200	25		10.725,	10.750
アメリ	力2	87.9	107.9	100	25			
3 — D	· · · · ·	87.50	108.00	50	25	10.700,	10.725,	10.750

AMバンド

地	域	周波	数带域	チャン ネル幅 (kHz)	基 準 周 波 数 (kHz)	中 間 周 波 数 (kHz)	
Н	本	522	1611	9	9	450	
7 1	リカ1	530	1620	10	10	450	
アメリ	リカ2	522	1611	9	9	450	
9 — D	ッパ1	522	1611	9	9	450	
9 — D	ッパ2	530	1620	10	10	450	

LWバンド

地	域	周波	数 帯	域	チャン ネル幅 (kHz)	基 準 周 波 数 (kHz)	中間周波数 (kHz)
• . <u></u>		146	353		9	1	450

