

MICROCIRCUIT DATA SHEET

MNCLC501A-X REV 0A0

Original Creation Date: 08/06/98 Last Update Date: 03/09/99 Last Major Revision Date: 02/26/99

HIGH-SPEED OUTPUT CLAMPING OP AMP

General Description

The CLC501 is a high-speed current-feedback op amp with the unique feature of output voltage clamping. This feature allows both the maximum positive (Vhigh) and negative (Vlow) output voltage levels to be established. This is useful in a number of applications in which "downstream" circuitry must be protected from overdriving input signals. Not only can this prevent damage to downstream circuitry, but can also reduce time delays since saturation is avoided. The CLC501's very fast lns overload/clamping recovery time is useful in applications in which information-containing signals follow overdriving signals.

Engineers designing high-resolution, subranging A/D systems have long sought an amplifier capable of meeting the demanding requirements of the residue amplifier function. Amplifiers providing the residue function must not only settle quickly, but recover from overdrive quickly, protect the second stage A/D, and provide high fidelity at relatively high gain settings. The CLC501, which excels in these areas, is the ideal design solution in this onerous application. To further support this application, the CLC501 is both characterized and tested at a gain setting of +32, the most common gain setting for residue amplifier applications.

The CLC501's other features provide a quick, high-performance design solution. Since the CLC501's current feedback design requires no external compensation, designers need not spend their time designing compensation networks. The small 8-pin package and low, 180mW power consumption make the CLC501 ideal in numerous applications having small power and size budgets.

Industry Part Number

NS Part Numbers

CLC501AJ-MLS CLC501AJ-QML* CLC501AWG-MLS CLC501AWG-QML**

CLC501A

Prime Die

UB1148C

Controlling Document

5962-8997401PA*,MXA**

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1 2 3 4 5 6 7 8 8 8 8 9 10 11	Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 -55 +25 +125 -55 +25 +125 -55	

Features

- Output clamping (Vhigh and Vlow)
- lns recovery from clamping/overdrive
- 0.05% settling in 12ns
- Characterized and guaranteed at Av = +32
- Low power, 180mW

Applications

- Residue amplifier in high-accuracy, subranging A/D systems
- High-speed communications
- Output clamping applications
- Pulse amplitude modulation systems

(Absolute	Maximum	Ratings)
-----------	---------	----------

(Note 1)

	-)		
Supply voltage (v	S)		<u>+</u> 7V dc
Output Current (I	out)		70mA
Junction Temperat	ure (Tj)		
-			+175 C
Storage Temperatu	re		-65 C to +150 C
Lead Temperature	(soldering, 10 seco	onds)	+300 C
Power Dissipation (Note 2)	(Pd)		
			TBD
Common Mode Input	Voltage (Vcm)		Vs
Thermal Resistanc	e		
ThetaJA (Junc CERAMIC DIP	tion to Ambient) (Still Air)		TBD
SOIC	(500LFPM) (Still Air) (500LFPM)		TBD TBD TBD
ThetaJC (Junt	ion to Case)		IBD
CERAMIC DIP SOIC			TBD TBD
Package Weight			
CERAMIC DIP SOIC			TBD TBD
ESD Tolerance (Note 3)			
ESD Rating			<1000V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. Human body model, 100pF discharged through 1.5K Ohms.
- Note 2:
- Note 3: Human body model, 100pF discharged through 1.5K Ohms.

Recommended Operating Conditions

Supply Voltage (Vs)	
Supply Voltage (VS)	<u>+</u> 5V dc
Gain Range (Av)	
	+7 to +50 and -1 to -50
Ambient Operating Temperature Range (Ta)	
	-55 C to +125 C

DC PARAMETERS: Open Loop Characteristics

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, feedback resistance (Rf) = 1.5k0hms, and
gain setting resistance (Rg) = 48.30hms. -55 C ≤ Ta ≤ +125 C (note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iin	Input Bias	Rs = 500hms				<u>+</u> 25	uA	1
	(noninverting)					<u>+</u> 35	uA	2
						<u>+</u> 37	uA	3
-Iin	Input Bias	Rs = 500hms				<u>+</u> 30	uA	1
	(inverting)					<u>+</u> 40	uA	2
						<u>+</u> 46	uA	3
Vio	Input Offset	Rs = 500hms				<u>+</u> 3.0	mV	1
	vortage					<u>+</u> 5.0	mV	2
						<u>+</u> 4.6	mV	3
Tc (+Iin)	Average +Input	Rs = 500hms	1			<u>+</u> 100	nA/C	2
	Drift		1			<u>+</u> 150	nA/C	3
Tc (-Iin)	Average -Input	Rs = 500hms	1			<u>+</u> 100	nA/C	2
	Drift		1			<u>+</u> 200	nA/C	3
Tc (Vio)	Average Offset Voltage Drift	Rs = 500hms	1			<u>+</u> 20	uV/C	1, 2, 3
Is	Supply Current	No Load				24	mA	1, 2
						25	mA	3
PSRR	Power Supply	+Vs = +4.5V to $+5.0V$, $-Vs = -4.5V$ to $-5.0V$			60		dB	1, 2
		5.00			55		dB	3
CMRR	Common Mode	Vcm = ±1V	1		60		dB	1, 2
	Rejection Ratio	$Vcm = \pm 1V$	1		55		dB	3
<u>+</u> Iout	Output Current	Rl = 1000hms	1		<u>+</u> 50		mA	1, 2
<u>+</u> Iout	Output Current	Rl = 1000hms	1		<u>+</u> 30		mA	3
Rout	Output Impedance at dc	Rl = 1000hms	1			0.3	Ohms	1, 2, 3
+Rin	Input Resistance		1		100		kOhms	31, 2
			1		50		kOhms	3
Cin	Input Capacitance	Ta = +25 C	1			7	pF	4
<u>+</u> Vout	Output Voltage Swing	Rl = 1000hms			<u>+</u> 2.4		v	4, 5, 6

DC PARAMETERS: CLAMPING CHARACTERISTICS

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, feedback resistance (Rf) = 1.5kOhms, and
gain setting resistance (Rg) = 48.30hms. -55 C ≤ Ta ≤ +125 C (note 3)

SYMBOL	PARAMETER		CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Voc	Clamp Accuracy						<u>+</u> 0.2	V	1, 2, 3
ICL	Input Bias Current on Vhigh			1			<u>+</u> 50	uA	1, 2
	and Vlow			1			<u>+</u> 100	uA	3
CDR	Input Offset Voltage Drift After Recovery			1			200	uV	1, 2, 3
OVC	Overshoot in Clamp			1			15	%	4
CMC	Clamping Range	At Vhigh or	Vlow	1		<u>+</u> 3.3		V	4, 5
				1		<u>+</u> 3.0		V	6
TSO	Overload Recovery from Clamp			1			3	ns	9, 10, 11

AC PARAMETERS: FREQUENCY DOMAIN CHARCTERISTICS

(The following conditions apply to all the following parameters, unless otherwise specified.)
AC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, feedback resistance (Rf) = 1.5kOhms, and
gain setting resistance (Rg) = 48.30hms. -55 C ≤ Ta ≤ +125 C (note 3)

SSBW	Small Signal Bandwidth	-3dB bandwidth, Vout < 5Vpp		60		MHz	4
			2	45		MHz	5
			2	60		MHz	6
		-3dB bandwidth, Av = +20, Vout < 2Vpp	1	85		MHz	4
			1	55		MHz	5
			1	85		MHz	6
GFPL	Gain Flatness, Peaking Low	0.1MHz to 15MHz, Vout < 5Vpp			0.1	dB	4
	1000000		2		0.1	dB	5,6
GFPH	Gain Flatness, Peaking High	> 15MHz, Vout < 5Vpp			0.2	dB	4
	reaking migh		2		0.2	dB	5,6
GFR	Gain Flatness, Rolloff	0.1MHz to 30MHz, Vout < 5Vpp			1.0	dB	4
			2		1.3	dB	5
			2		1.0	dB	6
LPD	Linear Phase Deviation	0.1MHz to 30MHz, Vout < 5Vpp	1		1.0	Deg	4, 5, 6

AC PARAMETERS: Distortion and Noise Characteristics

(The following conditions apply to all the following parameters, unless otherwise specified.)
AC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, feedback resistance (Rf) = 1.5kOhms, and
gain setting resistance (Rg) = 48.30hms. -55 C ≤ Ta ≤ +125 C (note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
HD2	2nd Harmonic Distortion	2Vpp at 20MHz			-33		dBc	4
			2		-30		dBc	5,6
HD3	3rd Harmonic Distortion	2Vpp at 20MHz			-50		dBc	4
			2		-50		dBc	5
			2		-45		dBc	6
SNF	Noise Floor	> 1MHz	1			-156	dBm 1Hz	4, б
			1			-155	dBm 1Hz	5
INV	Integrated Noise	1MHz to 100MHz	1			35	uV	4, б
			1			40	uV	5

AC PARAMETERS: Timing Domain Characteristics

(The following conditions apply to all the following parameters, unless otherwise specified.)
AC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, feedback resistance (Rf) = 1.5kOhms, and
gain setting resistance (Rg) = 48.30hms. -55 C ≤ Ta ≤ +125 C (note 3)

SR	Slew Rate	Cl < 10pF, measured at \pm 1V with 3V step	1	800		V/uS	4,6
		Cl < 10pF, measured at \pm 1V with 3V step	1	700		V/uS	5
Tr	Rise and Fall Time	2V step, Cl < 10pF	1		5.8	nS	9, 11
			1		7.8	nS	10
Tf	Rise and Fall Time	5V step, Cl < 10pF	1		6.5	nS	9, 11
	11		1		8	nS	10
Ts	Settling Time	2V step at ± 0.05 % of the fixed value, Cl < 10pF	1		18	nS	9, 11
		2V step at ± 0.05 % of the fixed value, Cl < 10pF	1		24	nS	10
OS	Overshoot	2V step, Cl < 10pF	1		5	00	9, 10, 11

DC PARAMETERS: DRIFT LIMITS

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 1000hms, Vs = ±5V dc, Vhigh = +3V, Vlow = -3V, Av = +32, (Rf) = 1.5k0hms, (Rg) = 48.30hms.
 "Deltas not required on B-level product. Deltas required for S-level (-MLS) product as specified on
 Internal Processing Instructions (IPI)." (note 3)

SYMBOL	PARAMETER	CONDIT	TONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iin	Input Bias Current (noninverting)	Rs = 50 Ohms					<u>+</u> 2.5	uA	1
-Iin	Input Bias Current (inverting)	Rs = 50 Ohms					<u>+</u> 3.0	uA	1
Vio	Input Offset Voltage	Rs = 50 Ohms					<u>+</u> 0.3	mV	1
Is	Supply Current	No Load					<u>+</u> 2.4	mA	1

If not tested, shall be guaranteed to the limits specified in table I herein. Note 1:

Note 2: Note 3:

Group A testing only. The limiting terms, "Min" (minimum) and "Max" (maximum) shall be considered to apply to magnitudes only. Negative current shall be defined as conventional current flow out of a device terminal.

GRAPHICS#	DESCRIPTION
07070HRA2	CERAMIC SOIC (WG), 10 LEAD (B/I CKT)
07081HRA3	CERDIP (J), 8 LEAD (B/I CKT)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000409A	CERDIP (J), 8 LEAD (PINOUT)
P000448A	CERAMIC SOIC (WG), 10 LEAD (PINOUT)
WG10ARB	CERAMIC SOIC (WG), 10 LEAD (P/P DWG)

Graphics and Diagrams

See attached graphics following this page.

CLC501J 8 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000409A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

CLC501AWG 10 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000448A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003288	03/09/99	Shaw Mead	Initial MDS Release