CODE No.				Total pages	88	Page	1
		=)		Total pa separate	nges of e sheets		
		-)					
		r					
		SPE	CIFICATIONS				
		PART No. :	MNF8931BK-C				
				V <i>*</i>	1.05		
				v	1.00		
	,	The products and specificate Please ask for the latest Specificate	tions are subject to change withou	t any notic	e.		
		your product requirements.					
		SYS	TEM LSI DIVISION				
		SEMICO	ONDUCTOR COMPANY				
		MATSUSHITA EI	LECTRIC INDUSTRIAL CO)., LTD.			
	_				-		

ESTABLISHED BY	CHECKED BY	CHECKED BY	PREPARED BY

DATE PREPARED	DATE ESTABLISHED		
Mar. 12, 2003			

	M				MNF8931BK-C		
Date Prepared :03/12/'03		SPECIFICATIO	DNS	Total pages		Page	2
Table of Contents							
			7 Command Function				
1. Type			7.1 List of Comr	nand			
2. Overview 3. Features			7.1.1 Memory 7.1.2 Display	y Control	Command		
4. Block Diagr	am		7.1.3 LCD Di	river Cont	rol Comman	d	
5. Pins 5.1 Host Inte	orface Pins		7.1.4 Image (Quality Ad	justment Co	mmand	1
5.2 Source D	Driver Outp	ut Pins	7.1.5 Power S 7.1.6 Details	of Gate D	river/Power	Supply IC	1
5.3 Gate Dri	ver/Power S	Supply IC Control Pins	(MN863	3480) Con	mand Trans	fer	
5.5 Test Pins	appiy and r S	CD Drive vonage input i ins	7.1.7 Other C	ommands	(Test and O	ther Regist	ters)
6. Functions	mfaaa						
6.1.1 Inte	erface Mode	e Selection					
6.1.2 Ser	ial Interface						
6.1.4 Reg	gister Write	Mode					
6.1.5 Dat	a Format						
6.1.6 Sec	luence Graphic R /	(M)					
6.2.1 GR	Complete Re RAM Config	guration					
6.2.2 GR	AM Addre	SS C LE C					
6.2.4 GR	AM Addre	s Control Function					
6.2.5 GR	AM Data N	Mask Function (WDMSK Pin)					
6.2.6 GF 6.2.7 Dis	splav Read	Function					
6.2.8 Gr	adation LSI	3 Generation Function					
6.2.9 Dis	splay Data I GB Swan F	Reverse Function					
6.2.11 D	isplay Data	Processing Block Diagram					
6.3 Display	Control Fu	nction					
6.3.1 Dis	splay Mode	Control Eurotion					
6.3.3 Par	tial Scroll	Function					
6.3.4 Dig	gital Bright	ness Adjustment Function					
6.3.6 Bu	ilt-in Oscill	ation Circuit					
6.3.7 Co	ntrol of Ho	rizontal Cycle and Vertical Cycl	e				
6.4 LCD Di	Tive Control	anal Conception					
6.5 Source	D Driver One	ration Sotting					
6.5.1 Gra	adation/Bin	arv Drive Mode					
6.5.2 Sej	paration of	VREF Resistor					
6.4.3 So	urce Driver	Driving Output					
6.5.4 Ga	mma Corre	ction Function					
6.6 Gate Dr	iver Setting	S C C C C C C C C C C C C C C C C C C C					
6.6.1 Set 6.6.2 Ga	ting Numb te Driver So	er of Gate Driver Outputs can Operation Settings					
6.7 Power	Supply IC S	Settings					
6.7.1 Vo	ltage Step-	ap Clock Control					
6.7.2 Po	wer Supply	Circuit Operation/Stop Control					
6.7.3 Ea 6.8 Comma	nd Transfer	to MN863480 (Gate Driver/Pov	wer Supply IC)				
		SYSTEM	I LSI DIVISION,	SEMIC	ONDUCT	OR CO	MPANY
ESTABLISHED REV	ISED	MA	ATSUSHITA ELI	ECTRIC	INDUST	RIAL CO)., LTD.

			MNF8931BK-C							
Date Prepared :03/12/'03		SPECIFICATIONS	Total pages		Page	3				
1. Type CMOS IC Contr	1. Type CMOS IC Controller Driver for LCD Panel Source Driving									
2. Overview This product is a TFT LCD drivin IC power supply constructed.	single-c g. By usi , a 26000	hip IC incorporating a RAM controller source danged ing this IC in combination with the MN863480, 00-color TFT display system with a maximum of	river that which is f 176 (H)	displays 20 a gate drive × 240 (V)	50000 col er with a l pixels wi	ors for ouilt-in ll be				
3. Features										
1) Display capacity	• 170 con	6 pixels max. × RGB × 240 lines (528 output sound trol)	arce drive	er/240 outp	ut gate dr	iver				
2) Display colors	• 260	0000 colors (18 bits/pixel, RGB: 6 bits each)								
3) Interface	• Suj into \rightarrow \rightarrow	 Supports 80-/68-series (8-, 9-, 16-, or 18-bit) CPU interface, serial interface, or RGB A The CPU interface and RGB interface are different from each other in port. These ports are selected by command settings. A The RGB interface is for writing GRAM (graphic RAM) data only. Commands are transferred through the CPU interface or serial interface. A The serial interface allows data writing only. 								
4) GRAM (graphic R	AM)									
[Capacity]	• 1/($5 \times 18 (6 + 6 + 6) \times 240 \text{ bits} (760320 \text{ bits})$								
[Operation speed	 [Operation speed] • Host write speed: 10 MHz [GRAM control] • RAM access range setting (A rectangular area specifies a GRAM access range.) → Two modes of range setting are available (to specify the start and end points or start point and access width) • RAM address automatic count (with count direction control) → The RAM write direction (vertically and horizontally) is variable, and so is the screen display size (vertically and horizontally). • Generates addresses according to the mounting direction of the source driver. (X a reverse command) • Access byte order variable (16-bit bus with 260000-color data × 2-time transfer/pi: • Window mask function (Write data mask specified inside and outside the window • Pixel mask function (Bit mask command) • RAM clear function (Data specified for R, G, and B independently) • Direction and commentation (Model for experimentation of the source) 									
5) Display mode con	trol • Dis • Dis • Gra • Dis	splay control (Display OFF, all white display, no splay data reverse display function adation LSB function (Automatic generation of gital brightness adjustment function (in R, G, and	ormal disp R and B's d B indep	blay, and pa LSB in 65 bendent cor	artial disp 000-color atrol)	lay) r mode)				
 6) Display timing control Oscillation circuit built in (206.6-kHz display clock with no external CR circuit required) 1H period variable (8 to 24 clocks in 1-clock increments) 1V period variable (up to 1024H in 4H increments, the specified range of which varies with the number of gate outputs) Supports external synchronization (enabling animated picture data to be written) Alternation control (1H line/Frame reverse) 										
This document is	based o	n an equivalent Japanese document that wa	is prepai	ed on Jun	. 3, 2002	2.				
ESTABLISHED REVIS	SED	SYSTEM LSI DIVISION, MATSUSHITA ELI	SEMIC	ONDUCT INDUST	FOR CO RIAL C	MPANY O., LTD.				

		MNF8931BK-C							
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	4				
7) Partial display	 Possible to display up to two non-display areas Sets the refresh cycle of non-display areas 								
8) Partial scroll	• Allows partial area specification for scrolling (settir of scrolls)	• Allows partial area specification for scrolling (setting the start/end point and the number of scrolls)							
9) Source driver	 9) Source driver Supports a maximum of 176 pixels Supports gradation/binary driving (with reduced power consumption by binary driving) Allows automatic drive interruption settings for blanking periods Analog gamma correction with VREF resistance adjustments (allowing independent positive and negative polarity settings) 								
10) Gate driver/Powe ★ Controls t [Gate driver con [Power supply I	r supply IC control he MN863480 gate driver with the built-in power supply : • Automatic serial transfer of set values to the MN863 trol] • Supports gate driver 192, 220, and 240 outputs • Shift direction control • Output prohibit period control (Timing variable with • Gate all ON control (XDON pin) C control] • Power supply IC ON/OFF • Power supply IC drive control • Voltage adjustments to drive a variety of LCDs	IC to be u 3480 by s hin 1H in	ised in com et value tra 1-clock ind	lbination. nsfer con	nmands.				

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Date Prepared :03/12/'03

Total pages

MNF8931BK-C

Page

6

5. Pins

5.1 Host Interface Pins

Signal name	I/O	Function	Description								
NRST	Input	Reset	A reset pi	A reset pin. The IC will be reset with the pin set low.							
IFMODE[1:0]	Input	Interface mode	Used to se	et th	e data bus width o	f the	interfac	ce.			
		selection	IFMODE		Description		IFMC	DDE		Descriptio	n
			00		18-bit mode		10)		9-bit mod	le
			01		16-bit mode		11			8-bit mod	le
HOSTYP[1:0]	Input	Host type	Used to sel	lect	host CPU types.						
		selection	HOSTYF)	Description	но	STYP	Descript	tion	HOSTYP	Description
			00		80-series interface		01	68-ser interfa	ries ace	1x	Serial interface
D[17:0]	I/O	Data I/O	Data I/O pi settings (8, used. (The	ins f 9, 1 leve	For the host interfaction of the host interfaction of the host interfaction of the host of	ce. Pi the p IC o	ins are o oin at lo output.)	enabled ow or hig	by IF gh lev	FMODE pin vel if the pi	n n is not
NCS	Input	Chip select	A chip sele	ect i	nput pin. The pin s	set lo	w will l	be active	e.		
NRD (E)	Input	Access control	 Used for (D[17:0]) Used for The pin set 	read wil enał et hi	l signal input if the l be in the status o ble clock (E) input igh will be enabled	e 80-s f outj if th l.	series C put witl e 68-se	CPU is co h this pin ries MP	onneo n set U is o	cted. The d low. connected.	ata pin
NWR (R/W)	Input	Access control	 Used for write signal input if the 80-series CPU is connected. The data pin will be in the status of input with this pin set low, and data will be latched at the rising edge of the write signal. Used for read/write control input if the 68-series MPU is connected. The pin set high will be in read control. The pin set low will be in write control. 								
SICK	Input	Serial interface clock input	Used for se the input. F	rial ˈix tł	interface clock inp ne pin at low level	out. E if no	Data wil serial i	ll be retr interface	rievec e is us	l at the risinsed.	ng edge of
SIDA	Input	Serial interface data input	Used for d The first da (Low: Add Fix the pin	ata i ata i lress at l	nput into the seria s used to discrimin transfer; High: D ow level if no seria	l inte nate a ata tr al int	erface. address ansfer) erface i	transfer is used.	and	data transfe	er.
RGBENA	Input	RGB interface selection	An enable this pin set	pin : hig	for the RGB interf h.	ace.	The RC	GBD[17:	:0] pi	n will be ei	nabled with
RGBCK	Input	RGB interface clock input	Used for cl edge of the	ock clo	input for the RGB ck when the RGBI	inte ENA	rface. I signal	face. Data will be retrieved at the falling signal is at high level.			
RGBD[17:0]	Input	Data input	Used for da Image data RGBENA level when	ata i inp is se the	nput for the RGB ut will be retrieved et high and the RM pin is not used.	interf d at tl IWR	face. he fallin bit is se	ng edge et to 1. F	of the Fix th	e RGBCK le pin at lov	when the v or high
NADS	Input	Data discrimination signal	Used for d	iscri	minating addresse	s and	l data. I	Low: Ad	dress	ses; High: l	Data
REGMODE	Input	Register write mode selection	Used to spe mode. The is set low. REGMOI specified REGMO register au	cify follo DE s by t DE s t a s	the register acces owing operation w set high: The addre he lower 8 bits. set low: Only the l pecified address an	s mo ill be ess is ower nd cy	de whil possib specifi 8 bits cle of c	le the IC le with t led by th are enab data tran	C is in this p ne upp oled to nsfer.	18-/16-bit bin set when per 8 bits a o gain acce	interface 1 the NADS nd data is ss to the
WDMSK	Input	Write data mask signal	Used to spe When this There will	ecify sign be a	y write masks in G al is at high level, GRAM address in	RAN GRA	/I data p AM data nent wh	pixels. a written nile the r	ı will mask	be masked is enabled.	
NVSYNCI	Input	External vertical sync signal input	Used for ex This pin en with vertic Fix this pir	teri able al sy at l	hal vertical sync si es the internal disp onc input provided high or low level it	gnal lay o by tl f no s	input. peratio he host. synchro	n of the	IC in 1 is re	n synchroni equired.	zation
NVSYNCO	Output	Internal vertical sync signal output	Used for in regardless writes data	tern of se in s	al vertical sync sig ettings during clock ynchronization wi	gnal o k osc th the	output. illation e intern	The out This pi al vertic	put is in is u cal cy	turned on used when cle of the I	the host C.
			SYS	STI	EM LSI DIVIS	ION	I, SEN	/ICON	VD U	CTOR C	OMPAN
BLISHED	REVISI	ED		N	MATSUSHITA	EL	ECTF	RIC IN	DU:	STRIAL	CO., LTE

MNF8931BK-C

Total pages

5.2 Source Driver Output Pins

Signal name	I/O	Function	Description
YR[175:0]	Output	Source driver output	Source driver output of R pixels
YG[175:0]	Output	Source driver output	Source driver output of G pixels
YB[175:0]	Output	Source driver output	Source driver output of B pixels

5.3 Gate Driver/Power Supply IC Control Pins (GDIOSEL is input into TOP_LCDC; other signals are CORE outputs)

Signal name	I/O	Function	Description			
GDIOSEL	Input	Gate driver or power supply	Used to ena explained b	ble output pins for the MN863480 (i.e., all the pins elow will be enabled.)		
		IC output	GDIOSEL	Enabled pins		
		selection	High	CKVL, STVR, NOEVL, XDONL, DDCKL, POLL, VCOMENL, NDDCSL, NDDCSKL, NDDSDAL		
			Low	CKVR, STVR, NOEVR, XDONR, DDCKR, POLR, VCOMENR, NDDCSR, NDDCSKR, NDDSDAR		
			Any signal i located on the chip bump so Disabled pin when using	name ending with L (or R) means that the pin is he left-hand side (right-hand side), provided that the ide is upside with all the driver output pins are upsi ns are fixed at low-level output. Keep them open the IC.		
CKVL CKVR	Output	Gate driver shift clock	A shift cloc	k output pin for the gate driver to MN863480.		
STVL STVR	Output	Gate driver start pulse	A start pulse	e output pin for the gate driver to MN863480.		
NOEVL NOVER	Output	Gate driver output control	An output control pin (active at low level) for MN863480. The assert period is controlled according to the register OEVA and OEVN set values.			
XDONL XDONR	Output	Gate driver all ON control	An all ON c be ON with output as it	control pin for MN863480. All gate driver outputs w the pins set high. The register XDON set value is is.		
DDCKL DDCKR	Output	Clock output for power supply IC	A voltage st frequency d register.	ep-up clock output pin for MN863480. The ividing ratio can be set to the set value in the DDCI		
POLL POLR	Output	Alternation control	Alternation of the opposite reversion ac	control pin (MN863480). Used for the toggle control site electrode. The pin supports line and frame ecording to the register FRPOL set value.		
VCOMENL VCOMENR	Output	Common electrode operation control	 reversion according to the register FRPOL set value. Common electrode operation control pin to MN863480. Use toggle the opposite electrode ON and OFF at the time of line reversed alternation driving (MN863480). Toggle is OFF if the LCD is not driven during the V blankin period or partially not driven at the time of partial display. Toutput is always active at the time of frame-reversed alternation. 			
NDDCSL NDDCSR	Output	Chip select for power supply IC	A chip select level)	et for command transfer to MN863480. (Active at le		
DDSCKL DDSCKR	Output	Serial clock for power supply IC	Serial clock output for command transfer to MN863480. Command transfer will be performed with the register DTRN to 1. A signal at the cycle of the built-in oscillation clock. The clock signal will be output only at the time of command transf			
		Serial data for	Serial data	output for command transfer to MN863480.		

SPECIFICATIONS

MNF8931BK-C

Total pages

Page 8

5.4 Power Supply and LCD Drive Voltage Input Pins

Signal name	I/O	Function	Description
DV _{DD}	Input	Logic power supply	A logic power supply pin. Supply 2.35 V to 3.6 V.
DVss	Input	Logic ground	A logic ground pin.
AVDD	Input	Source driver power supply	A source driver power supply pin. Supply 3.5 V to 5.5 V. Connect this pin to the AVDD of the MN863480.
AVss	Input	Source driver ground	A source driver ground pin.
Vrefh	Input	Gradation reference voltage high-level input	Used for the reference voltage input on the high-level side at the time of the gradation voltage generation for the source driver. Supply 3.0 V to 5.0 V (AVDD – 0.5 V). Connect this pin to the VREFH of the MN863480.
Vrefl	Input	Gradation reference voltage low-level input	Used for the reference voltage input on the low-level side at the time of the gradation voltage generation for the source driver. Normally ground this pin.
ODV _{DD}	Output	Logic power supply output	Use this pin for input pins fixed at high level.
ODVss	Output	Logic ground output	Use this pin for input pins fixed at low level.

5.5 Test Pins

Signal name	I/O	Function	Description
TEST1	Input	Test control	Test pin. Fix this pin at low level.
TEST2	Input	Test control	Test pin. Fix this pin at low level.
TEST3	Input	Test control	Test pin. Fix this pin at low level.
TEST4	Input	Test control	Test pin. Fix this pin at low level.
TEST5	Input	Test control	Test pin. Fix this pin at low level.
CKIN	Input	Clock input	A test clock input pin. Fix this pin at low level.
MONITOR1	Output	Output monitoring	A test pin to monitor internal signal. Keep this pin open. (Power supply output for oscillation circuit)
MONITOR2	Output	Output monitoring	A test pin to monitor internal signal. Keep this pin open. (Monitor output for NOEH)

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

			MNF893	31BK-C				
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	9			
6. Functions 6.1 Host Interface 6.1.1 Interface Mode S (1) RGB Interface The IC has 80- and 68 and RGB interface has a The RGB interface or The CPU interface is s The RGB interface is s	election -series parallel and serial CPU and RGB interfaces as h in independent port each. CPU interface's GRAM access is selected by the RMWF selected with the RMWR bit set to 0. selected with the RMWR bit set to 1.	nost inter R bit.	faces. The	CPU inte	erface			
80-series CPU ir	nterface selected							
NCS								
NWR -								
Dxx								
Fig. 6.1	RMWR bit is set to 0 at the time of GRAM access Fig. 6.1.1 (1) CPU interface (80 series)							
68-series CPU ir	nterface selected							
NCS								
Dry								
	RMWR bit is set to 0 at the time of G	RAM acces	8					
Fig. 6.1	.1 (2) CPU interface (68 series)							
RGB interface s	selected							
RGBENA								
RGBCK								
RGBDxx								
	RMWR bit is set to 1							
Fig. 6.1.1 The RGB interfa As shown in figu RGBD [17:0] at t	(3) RGB interface ce is a GRAM-write-dedicated interface. re 6.1.1 (3), when the RGBENA is set high and the RMWR bit i he falling edge of the RGBCK and only GRAM write access wi	s set to 1, ll be imple	data will be r emented.	retrieved fr	om the			
	CVCTEM I CI DIVICION	SEMIC	ONDUCT					

ESTABLISHED	REVISED

SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

				MNF893	31 BK- C	
Date Prepar	red :03/12/'03	SPECIFICATIONS	Total pages		Page	10
The Cor relate be gu To show	e RGB interface mmands are tra ed to GRAM co aranteed. In the switch from the n below.	e is not available to command transfer or read access. nsferred through the parallel or serial CPU interface. If th ntrol is transferred while RGB interface has GRAM acces at case, finish the RGB interface's access first. e CPU interface to the RGB interface or vice versa, compl	e commai ss, GRAM lete the pr	nd (with ad A data to be resent acces	dress 0xh e written v ss cycle as) vill not
_		CPU I/F RGB I/F	•	CPU I/	′F	
RGBENA						
RGBCK			Min. 10 Access of	00 ns cycle must be	completed	
RGBDxx	Access	cycle must be completed				
NCS						
NWR						
Dxx 🗸	GRAM	write RMWR=1 RMWR	=0 G_W specif	R R fied (0Eh write	GRAM wri e)	k ►
Fig	7. 6.1.1 (4) Selec	tion of CPU interface or RGB interface (Example: 80-series CPU	U interface	2)		

Supplement explanation

- The CPU interface's command access is always acceptable without being influenced by the RGBENA pin or RMWR bit. During the RGB interface's GRAM access, however, the transfer of commands related to GRAM control through the CPU interface is prohibited.
- The RGB interface's GRAM access is accepted when the RGBENA is set high and the RMWR bit is set to 1.

At that time, the setting of the GRAM write specify command (with address 0Eh) is not required.

• The GRAM access from the CPU interface will be accepted when the RMWR bit is set to 0 and the GRAM write specify command (with address 0Eh) is set. At that time, the status of the RGBENA pin will be ignored.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Date Prepared :03/12/'03

MNF8931BK-C

Total pages

Page 11

(2) CPU Interface

The IC has 80- and 68-series parallel and serial interfaces as host CPU interfaces. Make the following settings in HOSTYP[1:0] pin.

HOSTYP[1:0]	CPU type	NRD pin	NWR pin	SICK pin	SIDA pin
LL	80-series CPU interface	Read signal (/ RD)	Write signal (/ WR)	Disabled	Disabled
LH	68-series CPU interface	Enable signal (E)	Read/Write specification (R/W)		
HL or HH	Serial interface	Disabled	Disabled	Serial clock	Serial data

(3) Data Bus Width and Interface Settings for GRAM

1) CPU Interface (Parallel Interface only)

- The data pin to be used will be determined by IFMODE[1:0] pin setting.
- The method of data transfer to GRAM is determined by the IFMODE[1:0] pin and GRAM interface setting command RMIF bit in combination.

(Refer to Section 6.1.5 for the data format in detail.)

IFMODE[1:0]	Mode name	RMIF bit	Data pin used	Number of bits of GRAM transfer da		
LL	18-bit mode	0	D[17:0]	18 bits \times 1	260000-color data	
	16 hit mode	0	D[15.0]	16 bits \times 2	260000-color data	
LH	16-bit mode [1]		D[13:0]	16 bits × 1	65000-color data	
HL	9-bit mode	0	D[8:0]	9 bits \times 2	260000-color data	
НН	8-bit mode	1	D[7:0]	8 bits \times 2	65000-color data	

Notes: • Setting of IFMODE [1:0] and REGMODE would be disabled at serial interface.

2) RGB Interface

• The following settings are made with the RGBIF and RMIF bits of the GRAM interface setting command.

(Refer to Section 6.1.5 for the data format in detail.)

RGBIF bit	RMIF bit	Mode name	Data pin used	Number of bits of GRAM transfer data			
	0	18-bit mode	RGBD[17:0]	18 bits × 1	260000-color data		
0	1	16-bit mode	RGBD[15:0]	16 bits \times 1	65000-color data		
1	0	6-bit mode	RGBD[5:0]	6 bits \times 3	260000-color data		
1	1	8-bit mode	RGBD[7:0]	8 bits \times 2	65000-color data		

Notes: • Fix the unused data pins (D** and RGBD**) at low or high level.

• The serial interface with the GRAM is possible only in 65000-color format of 16 bits.

* Refer to the information in Section 6.1.2 Serial Interface and Section 6.1.5 (5) Data Format in detail.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
FABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Date Prepared :03	8/12/'03	SPECIFICATION	IS	Total pages		Page	12
(100.11)				1.0		U	
6.1.2 Serial The serial The serial is accessib Data is tra with the R (1) Register Register	Interface interface will be interface uses th le with the NCS nsferred in units EGMODE set hi er Access access is implen	enabled with the HOSTYP [1] set e SICK pin for serial clock transfe set low, and SIDA data will be ret of 17 clocks. The first data is used gh).	high. r and SIDA pin rieved at the risi l for data discrin	for data t ing edge hination (lata discr	ransfer. Th of the SICk i.e., NADS imination s	e serial in C clock si in parall et low.	nterface gnal. el mode
NCS	_	Access enabled (NCS set low)			Access di	sabled (NC	S set high)
SICK							
SIDA		4 5 6 7 8 9 10 11 12 13	14 15 16 17				
Dat	a discrimination low	8-bit address	8-bit data		:		
Fig. 6.1.2	(1) Serial Interfac	e Register Access					
(2) GRAM (2) GRAM At the tim data discr At the tim	Access a of GRAM acc imination high a of GRAM acc	Is set high at the time of serial acd d then. At that time, the upper 8-b written. ess, set the GRAM write comman s shown below. ess through the serial interface, or	d (with the addre ty the 65k-color	nored, an ess 0Eh) :	and set the data format	first data	e data in item of used.
NCS —	Set address	0Eh GRAM write				_	
SICK							
SIDA	1/2<	16/17/1/2/3/4/5/6/7/8	9 10 1 12 1	3 14 15		2	
	Data discrimination set low	Data discrimination 16-bi set High	v t GRAM data				
Fig. 6.1	.2 (2) Serial Interfa	ace GRAM Access					
ESTABLISHED	REVISED	SYSTEM L MAT	SI DIVISION, SUSHITA ELI	SEMIC ECTRIC	ONDUCT	COR CO	MPANY O., LTD.
·I							

MNF8931BK-C

		MNF8931BK-C				
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	13	

6.1.3 Data Discrimination

At the time of access to the internal registers and GRAM through the CPU parallel interface, execute the write command with the NADS set low, and specify the address (at the address set cycle). Execute the write command with the NADS set high next and write the data (at the data cycle). Written data is discriminated by the NADS pin as follows:

As explained in 6.1.2, the first data item in serial interface mode is used to discriminate between data of address-set type and that of data-set type.

6.1.4 Register Write Mode

In CPU interface mode, data write accesses to registers are classified into two types

(address-set and data-set cycles) as specified in section 6.1.3.

In 18- or 16-bit interface mode, an address uses the upper 8 bits and data uses the lower 8 bits to be transferred per cycle.

This mode (hereafter called batch write mode) will be enabled with the REGMODE pin set high. Batch write will be executed at the address set cycle (with the NADS set low).

Note 1) Fix the REGMODE pin at high or low level.

Note 2) In 8- or 9-bit interface mode, set the REGMODE to low.

Note 3) This mode will be enabled only at the time of register access. When GRAM write is specified (with the address 0Eh), the lower 8-bit data will not be written to the GRAM.

No data will be written in the case of addresses (0Eh and 0Fh) specifying access to the GRAM.

Fig. 6.1.4 Register Batch Write Mode

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

											Μ	NF89	931B	K-C	
Date Prepared :03/12/'03		SPEC	CIF	ICA	TI	ON:	S		,]	Total pages			Pa	age	14
6.1.5 Data Format (1) CPU Interface: 18-bit Mode (HOTYP[1] Set to 0, IFMODE[1:0] Set to 00, and RMWR Bit Set to 0)															
1) Image Data				1						-					
D17 D16	D15 D14 R3 R2	D13 D12	D11	D10	D9 G3	D8 ▼ G2	D7	D6 G 0	D5	D4	D3	D2 B2	D1 ▼ B1	D0 ▼ B0	
2) Command Data	i Andr (DE)	CMODE	-4 TT:-	- L)											
• Batch Write P	D15 D14	D13 D12	D11	gh) D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
	<u>↓</u> ↓		•	•	V	↓	¥	•	V	•	V	•	•	V	
	A7 A6	A5 A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	
• 8-bit Write M	lode (REG	MODE Se	t Low	7)								·			
D17 D16	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Address cycle			▼	▼	-	-	A7	A6	A5	A4	A3	A2	► A1	A0	
Data cycle			-	-	-	-	D7	D6	D5	D4	D3	D2	D1	D0	
3) GRAM Write v	vith REGN	MODE Set	High												
D17 D16	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Address cycle $-$	★ ★ A7 A6	★ ★ A5 A4	A3	▼ A2	▼ A1	▼ A0	-	▼		 	<u>▼</u>		-	-	
Data cycle R5 R4	R3 R2	R1 R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0	
Note: Set 0 to the for R0/B0	ne RMIF v) display v	vhen this m vill be in re	node i everse	s usec contr	l. If th	ne RM cordin	11F is ng to 1	set to RLSB	0 1, re	ad dat: B bit s	a settin	gs.			
I	Г			SY	STEN	MLS		<u>/ISIC</u>)N S	SEMIC	CON	DUC	TOR	COM	IPANY

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
BLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

ESTA

											N	1NF8	3931	BK-C	
Date Prepared :03/12/'03		SPE	CIF	FIC	AT]	[ON	IS			Tota page	ıl es		F	Page	15
(2) CPU Interface: 16 1) Image Data [RMIF=0]	5-bit Mode	e (HOTYP	[1] Se	et to 0	, IFM	IODE	[1:0]	Set to	01, a	and RM	MWR	Bit Se	et to ())	
• BODR=0	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
1st cycle	<u>↓</u> ↓ - ↓ - ↓		-	-	-	-	-	-	-		-	-	R5	R4	
2nd cycle	R3 R2	R1 R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0	
• BODR=1	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
1st cycle 2nd cycle	R5 R4 B1 B0	R3 R2 	R1 -	R0	G5 -	G4	G3	G2 -	G1	G0 -	B5 -	► B4 -	B3 -	B2 -	
[RMIF=1]	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
-															
L	R5 R4	R3 R2	RI	R0	GS	G4	G3	G2	GI	GO	B2	B4	B3	B2 .	B1 B0
2) Command Dat	a														
• Batch Write N	Mode (RE	GMODE S	let Hig	gh)											
I	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
-			•												
• 8 bit Write M	A/ A0	AS A4	A3	A2	AI	AU	D7	D6	D5	D4	D3	D2	DI	D0	
	D15 D14		D11	7) D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Ĺ			DII		2,	20	27	20			23			20	
Address cycle	<u>♥ ♥</u>	<u>▼</u> ▼	_ ▼	▼	_ ▼	V	A 7	16	↓		▼		A 1		
Data cycle			-	-	-	-	D7	D6	D5	D4	D3	D2	D1	D0	
3) GRAM Write	with REG	MODE Se	t Higł	1											
I	D15 D14	D13 D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
<u>а 11</u> г. Г	A7 A6		V	↓			↓	↓	_	<mark>, ↓</mark>	•	_ _	<u> </u>	•	
Address cycle	A/ A0	AJ A4	AJ	A2	AI	AU	-	-	-	-	-	-	-	-	
Data cycle [RMIF=0]															
• BODR=0 1st cycle			-	-	-	-	-	-	-	-	-	-	R5	R4	
2nd cycle	R3 R2	R1 R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0	
• BODR=1	D5 D4	D2 D2	D 1	D0	C5	C1	C 2	C 2	CI	CO	D5	D 4	D2	D 2	
1st cycle 2nd cycle	ко K4 B1 B0	ко К2 	кі -	КU -	-	-	-	-	-	-	- С	<u>в</u> 4 -	- -	<u>в</u> 2 -	
[RMIF=1]	R5 R4	R3 R2	R1	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	
				SY	/STE	EM L	SI D	[VIS]	ON,	SEM	ICOI	NDU	CTO	R CO	MPANY
ESTABLISHED REV	ISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTI									J., LTD.				

N		MNF8931BK-C
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages — Page 16
(3) CPU Interface: 9-	bit Mode (HOTYP[1] Set to 0, IFMODE[1:0] Set to 10, a	nd RMWR Bit Set to 0)
1) Image Data		
▲	1st transfer	nd transfer
D8 D7	D6 D5 D4 D3 D2 D1 D0 D8 D7 D6 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0	D5 D4 D3 D2 D1 D0 Image: state sta
2) Command Data • Batch Write Use j	a e Mode (REGMODE Set High) prohibited	
• 8-bit Write Address cycle	Mode (REGMODE Set Low) D8 D7 D6 D5 D4 D3 D2 D1 D0 - A7 A6 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0 - A7 A6 A5 A4 A3 A2 A1 A0	
Note: Set 0 t displa	to the RMIF when this mode is used. If the RMIF is set to y will be in reverse control according to RLSB/BLSB bit	1, read data for R0/B0 settings.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

.

			MNF893	31BK-C	i •
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	17
(4) CPU Interface: 8- 1) Image Data	bit Mode (HOTYP[1] Set to 0, IFMODE[1:0] Set to 11, a	nd RMW	R Bit Set to	o 0)	
D7	1st transfer 2 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1	2nd transf	er D2 D1 B4 B3	D0 B2 B	1 B0
2) Command Dat • Batch Write Use	n Mode (REGMODE Set High) prohibited				
• 8-bit Write I Address cycle Data cycle Note: Set 1 t bit set (If RM setting	Adde (REGMODE Set Low) T T T T T T T T T T T T T) display w lisplay wi	vith RLSB/ th RLSB/B	/BLSB SLSB bit	
ESTABLISHED REVI	SYSTEM LSI DIVISION SED MATSUSHITA ELI	, SEMIC ECTRIC	ONDUCT	'OR CON RIAL C(MPANY D., LTD.

Date Prepared :03/12/03 SPECIFICATIONS Total pages page 18 (1) Serial Interface (HOSTYP[1] Set to 1 and RMWR Bit Set to 0) 1) Image Data (1) Image Data
(\$) Serial Interface (HOSTYP[1] Set to 1 and RMWR Bit Set to 0) 1) Image Dan 1 Unge Dan 1 Unge Dan 1 Octomend Data 2 Octomend Data 1 Other than GRAM Write Specification Command 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A G A S A 4 A 3 A 2 A 1 A 0 D 7 D G D S D 4 D 3 D 2 D 1 D 0 1 A Z A 1 A 0 D 7 D 1 B 1 B 1 B 1 B
1) Image Data Set al data 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 →
Serial data 1 Command Data 1 Command Data 1 Other than GRAM Write Specification Command Serial data 1 Serial data 1 Ser

 2) Command Data Other than GRAM Write Specification Command Serial data 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 1 th 12th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 1 3th 14th 15th 16th 17th 1 th 1 2th 13th 14th 15th 16th 17th 1 th 1 2th 1 3th 14th 15th 16th 1 th 1 2th 1 3th 14th 1 5th 16th 1 th 1 th 1 1 th 1 3th 14th 1 th 1 5th 16
 2) Command Data • Other than GRAM Write Specification Command Serial data Seri
Serial data 1st 2nd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th L A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 • GRAM Write Specification Command Serial data 1st 2nd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th L A7 A6 A5 A4 A3 A2 A1 A0 -
• GRAM Write Specification Command Serial data 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th U A7 A6 A5 A4 A3 A2 A1 A0
• GRAM Write Specification Command Serial data 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th • GRAM Write Specification (0Eh) Disabled Data Note: Set 1 to the RMIF for the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings in this mode. (If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
• GRAM Write Specification Command Serial data
Serial data 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th L A7 A6 A5 A4 A3 A2 A1 A0
Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constem Image: Constraint of the system
GRAM Write Specification (0Eh) Disabled Data Note: Set 1 to the RMIF for the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings in this mode. (If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
GRAM Write Specification (0Eh) Disabled Data Note: Set 1 to the RMIF for the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings in this mode. (If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
Note: Set 1 to the RMIF for the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings in this mode. (If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
Note: Set 1 to the RMIF for the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings in this mode. (If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
(If RMIF is set to 0, the reverse control of read data for R0/B0 display with RLSB/BLSB bit settings will not be possible.)
settings will not be possible.)
SYSTEM LSI DIVISION. SEMICONDUCTOR COMPANY

												MNF89	31BK-C	
Date Prepared :03/12/'03		SPECIFICATIONSTotal pages—Page19											19	
(6) RGB Interface (RMWR Bit Set to 1)														
1) RGB Interface	: 18-bit N	Iode (I	RGBI	F Bit	Set to	o 0 ar	nd RM	1IF B	it Set	to 0)				
D17 D16	D15 D1	4 D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D	3 D2 D	01 D0	
		, L		↓ ↓										
R5 R4	R3 R	2 R1	R0	G5	G4	G3	G2	G1	G0	В5	B4 B	3 B2 B	1 B0	
2) RGB Interface	16-bit N	Iode (I	2GBI	F Bit	Set to	0.0 ar	d RM	11F B	it Set	to 1)				
	D15 D1	4 D13	D12	D11	D10	D9		D7	D6	D5	D4 D3	D2 D1	D0	
					_\									_
	\downarrow \downarrow					Z)	Z)	Z)						
	R5 R	4 R3	R2	R1	R0	G5	G4	G3	G2	G1	G0 B	5 B4 B	3 B2 I	B1 B0
3) RGB Interface	6-bit M	ode (R	GBIF	Bit S	let to	1 and	I RM	lF Bit	Set t	o 0)				
		st tran	sfer				2nd t	ransf	er			3rd tran	sfer	
		3 D2	D1			D4	D3	D2	D1			4 03 0		
			V		▼ C5						D 5 D			
		3 K2	KI	KU	05	04	03	02	01	00	D 3 D 4	+ DJ D	2 D1 1	50
4) RGB Interface	: 8-bit Me	ode (R	GBIF	Bit S	let to	1 and	I RM	lF Bit	Set t	o 1)				
		1st	t trans	fer					2	2nd tra	ansfer			
D7	D6 D	5 D4	D3	D2	D1	D0	D7	D6	D5	D4	D3 D	2 01 0		
													<u> </u>	
				Ţ,			Γ,	$ \) $) Ì					-
R5	R4 R	3 R2	R1	R0	G5	G4	G3	G2	G 1	G0	B5 B4	4 B3 B	2 B1 I	30
					SY	STE	MLS	SI DI	VISI	ON,	SEMIC	ONDUC'	TOR CO	MPANY
[ESTABLISHED] REVI	SED	1				N	IATS	USH	ПA	ELE	UTRIC	INDUST	KIAL C	U., LTD.

								MNF8	8931BK-	С
Date Prepared :03/12/'03		SPE	CIFI	CATI	ONS		Total pages		Page	20
 6.1.6 Sequence (1) GRAM Write As shown in figspecification) a [Explanation of 1) First, spectrike (Explanation of 1) First, spectrike (Explanation of 1) First, spectrike (2) Execute Of 1) First, spectrike (2) Execute Of 1) First, spectrike (3) Hereafter, access. (4) If the address of 1) Hereafter, access. (4) If the address of 1) Hereafter, access. (4) If the address of 1) Hereafter, access. (5) Hereafter, access. (4) If the address of 1) Hereafter, access. (5) Hereafter, access. (6) Hereafter, access. (7) Hereafter, access. (8) Hereafter, access. (8) Hereafter, access. (9) Hereafter, access. (1) If the address of 1) Hereafter, access of 1) Hereafter, access. (1) If the address of 1) Hereafter, access of 1) Hereafter, a	Access gure 6.1.6 (1) nd the data c f Write Oper tify GRAM w ss counter wi iRAM write a ill be execute addresses w ress set cycle oted. To exec ve is an expla with Interface lress manage 60000-color sses are requi-), GRAN ycle. ation] vrite (Of ill be ini at the da d at the ill be au is exec ute GR. anation e Mode] ment is mode, 8 ired to t rite will	M write a Eh) at the itialized ata cycle rising e itomatica uted wit AM writ of the 80 perform 3-bit mod ransfer e	access is e address at the ris with the dge of the ally coun h the NA te again, to D-series C ned in uni de, or 9-b each pixe executed.	set cycle ing edge NADS s e NWR s ted and v DS set lo take step CPU inter ts of pixe it mode, l, do not	ed at the a e with the of the NV set high. signal. Sin write will ow during 1) and sp face at th els (18 bit a single p interrupt	Address set NADS set VR signal. nultaneous be execute continuou ecify GRA e rate of si s). bixel is tran the access	cycle (for low. ly, addres d in the ca s access, 0 .M write a ngle trans	GRAM w s count will ase of cont GRAM acc again. afer cycle p vith two acc pixel is be	rite 1 be inuous :ess will er :eesses. ing
GRAM write s	Decification	1				i Dati	a cycle	i	i	I
NCS \	•••									
NADS										
NWR										
NRD a) Single transfer/ one pixel	AM write ation address									
D**)Eh				+ 1	\N	+ 2	N + 3	((N+4)
Internal GRAM write data		{	N		<u>N+1</u>	{	N+2		1+3	<u></u> <u>N+4</u>
GRAM address		n	Χ	n + 1	Χ	n + 2	X n -	+ 3	n + 4	
b) Two-time transfer/one pixel D**	AM write ation address	{ N (1	st)	······\{ N (2	2nd)	······\{N+1	(1st)	\(N+1)(2n)	ıd))(N+2 (1st)
Internal GRAM write data					(<u>N</u>)				<u></u>	
GRAM address	X		n		Х		n + 1	χ	<u></u>	2
Fig. 6.1.6 (1)	GRAM Wri	te								
	ISED			SYSTE	M LSI I	DIVISIO	N, SEMI		CTOR CO	MPANY
ESTABLISHED REV	VISED MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.									

									MNF	8931BF	K-C	
Date Prepared :03/12/	/'03		SPE	CIFIC	CATIO	ONS		Total pages		- Pag	ge 2	21
 (2) GRAM Refacts As shown specificating The first refines the executed. [Explanating 1]) First, The area 2) Exects Atter 2) Exects Atter 1 The end 2) Exects Atter 1 The end 3) Herea 1 Continue 4) If the GRAM again. A The International Atternation Atternat	 As shown in figure 6.1.6 (2), GRAM read access is performed at the address set cycle (for GRAM read specification) and the data read cycle. The first read data is dummy read data. The desired data will be read at and after the second read command executed. [Explanation of Read Operation] 1) First, specify GRAM read (0Fh) at the address set cycle with the NADS set low. The address counter will be initialized at the rising edge of the NWR signal. 2) Execute GRAM read with the NADS set high and the NRD signal asserted. At the falling edge of the NRD signal at the first data cycle, dummy data will be read. The IC will internally execute the read command from the GRAM to the internal bus at the rising edge of the NRD signal. The desired data will be read at the falling edge of the NRD signal at and after the second read command executed. 3) Hereafter, addresses will be automatically counted and read will be executed repeatedly in the case of continuous access. 4) If the address set cycle is executed as a write access with the NADS set low during continuous access, GRAM access will be interrupted. To execute GRAM read again, take step 1) and specify GRAM read again. * The above is an explanation of the 80-series CPU interface at the rate of single transfer cycle per pixel. [Relationship with Interface Mode] GRAM address management is performed in units of pixels (18 bits). In 16-bit, 260000-color mode, 8-bit mode, or 9-bit mode, a single pixel is transferred with two accesses. a) If two accesses are required to transfer each pixel, do not interrupt the access while the pixel is being transferred. 											
• If two transfer	rred.		uired to t			, do not n	nterrupt tr	ie access	while th	e pixel is	being	1
_ •	GRAN	I read speci	fication				Data	cycle				
NCS												
NADS												
NWR	·											
NRD a) Single transfer/ one pixel	GI specifi	RAM read cation addre	ess			N					\ 	
Internal GRAM read data		Dummy	<u>(CEG</u>			х/ (N	+ 1	- <u>1</u> /N	+ 2	+ 2)	+ 3	
GRAM		Т <u>х</u>	n	Υ	n + 1	Υ	n + 2	X	1+3	V n	+ 4	
b) Two-time transfer/one pixel	GR. pecific	AM read ation addres	s	<u>بر المحمد الم</u>		J \		/\		J\	· •	<u> </u>
D**		0Fh	Ru	nny	N (1	st)	······ (N (2	nd)		l (1st)		1 (2nd)
Internal GRAM read data		Dummy	Dummer N+1 N-									X <u>N+2</u>
GRAM address		×		n		Х		n + 1		Х	n + 2	
Fig. 6.1.6 ((2) GF	RAM Read	l									
	SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY											

ESTABLISHED	REVISED

SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

		MNF8931BK-C					
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	23		
[REGMODE set hi	gh]						

If the REGMODE is fixed at high level, data will be simultaneously written when the target register is specified at the address set cycle.

Therefore, the address register (80h) is prepared for address setting. Execute the following steps.

1) Specify the address 80h with the NADS set low. Then write data on the address of the register to be specified to the address register.

2) Assert the NRD signal and execute the read command at the data cycle.

Fig. 6.1.6 (5) Register Read (REGMODE set high) (80 series)

Fig. 6.1.6 (5) Register Read (REGMODE set high) (68 series)

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

			MNF892	31BK-C	2
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	24
6.2 GRAM (Graph 6.2.1 GRAM Co	nic RAM)				

This IC has a built-in 760320-bit (176×18 -bit RGB $\times 240$) GRAM to store LCD data. Each bit of the GRAM corresponds to each dot of the LCD to display data in a bitmap format. Each pixel consists of 18 bits (6 bits each for RGB). The host specifies X and Y addresses to gain access pixel by pixel.

The source driver that drives the LCD panel reads data line by line at the horizontal cycle independent from the host's access to the GRAM. This is called display read. Display read is controlled by line addresses. The GRAM physically fully corresponds to the source driver output circuit. Therefore, the enabled range of the GRAM as shown below will be enabled by the output pins of the source driver in use. Access to areas outside the GRAM's enabled range will be executed but not reflected on the output of the source driver. The line address maximum value to be read will vary with the number of set outputs (GSL[2:0] bits) of the gate driver.

Fig. 6.2.1 GRAM Configuration

6.2.2 GRAM Address

X and Y addresses will specify each pixel when the host gains access to the GRAM.

When the read command is executed, line addresses specify each line.

The following graph shows the relationship of the X and Y addresses of the GRAM, source driver outputs, and line addresses with display read executed.

									X address									
		CDID	0	0	1	2	3	4		170	171	172	173	174	175			
		SDIR	1	175	174	173	172	171	• • •	5	4	3	2	1	0			
			0													0		
			1													1		
			2													2	_	
	dress		•													•	ine	
	addr															•	addi	
		•													•	es s		
	2	237													237			
	2	238													238			
		2	-39													239		
	ce	/er put	YR			_	_											
	Sou	Out	YG	0	1	2	3	4		170	1/1	172	173	174	175			
			ТВ	()Ea	ach add	ress is	describ	l bed in d	ecimal for convenience.									
		Fig.	6.2.2	GRA	M Ad	dresse	es											
									SYSTEM LSI DI	VISI	ON, S	SEM	ICON	NDU	CTO	R CO	MPA	٧Y
ESTABL	ISH	ED	REV	ISEI)				MATSUSH	ITA	ELE	CTR	IC IN	IDUS	TRL	AL C)., LT	ď

SPECIFICATIONS

Total

pages

Page

6.2.3 GRAM Address Control Function

The IC has the following address control functions. It achieves display according to mounting direction of the LCD panel and variety of display in which, vertically and horizontally, upside down, or right and left reverse. Settings are made on each bit of the memory operation mode register.

Function	Control bit	Setting
Address count direction control (Within access assignment area)	ADIR	0: Address count in the direction of X 1: Address count in the direction of Y
X address increment direction (Within access assignment area)	XDIR	0: Normal (address increase from start point) 1: reverse (address decrease from end point)
Y address increment direction (Within access assignment area)	YDIR	0: Normal (address increase from start point)1: Reverse (address decrease from end point)
Source driver shift direction (Driver output pin at X address at 0 to 175)	SDIR	0: Normal (Driver output shift direction Y[R,G,B]00 to 175) 1:Reverse (Driver output shift direction Y[R,G,B]175 to 00)

Notice This function is used when the data is written to the GRAM. Therefore it should be set before the GRAM is written. Otherwise the setting will not become effective.

Address Increment control function : XDIR, YDIR, ADIR

The following table shows each setting and the condition of GRAM address count.

The dot (\bullet) in each diagram shows the start point.

Fig. 6.2.3 (1) GRAM Address Count

Source driver shift direction control (Control relations X address and driver output) : SDIR To assign source driver output and GRAM X address relations.

· At "0", GRAM (X address "0" to "175") correspond to source driver output ("0" to "175").

· At "1", GRAM (X address "0" to "175") correspond to source driver output ("175" to "0").

Herewith, it can set address "00h" (X direction) position depending on driver packaging direction.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

ESTABLISHED

REVISED

(XAE, YAE)

EFh

Fig. 6.2.4 (2) AEMODE=1

(XAS+XAE, YAS+YAE)

				MNF893	31BK-C	
Date Prepared :03/12/'03	SPECIFIC	CATIONS	Total pages	—	Page	27
6.2.5 GRAM Data M This IC has a function (1) Write Data Mask Write data maski count will be p If multiple data a including the fina Write mask is no Note: The function of th During RAM c	Task Function (WDMSK Pin) n to mask GRAM write data in ur Function in Units of Pixels (WDP ng is possible with the WDMSK erformed normally. access modes (including the serial al access cycle needs to be masked t executed if only a cycle other th is pin is available while execute F lear execution, WDMSK pin = L	hits of pixels or bits and a windo MSK Pin) pin set high at the time of GRA interface mode) are used to exe d. an the final access is masked. (3 RAM clear, too. is required.	ow area car M write ac ecute GRA See figure (n be specifie cess. In this M write, the 6.2.5 (2) and	d. case, addr whole dat l (3))	ess a area
	Specify GRAM write	GRAM write				_
NCS	Mask cycle		Mask cycle	→		
NADS					·	
WDMSK	0Eh	N + 1 N + 2	Mask	N ·	+ 4	
Fig. 6.2.5 (1) Write D	Data Mask 1 Addresse	es increase normally.				
NADS						
WDMSK		The mask signal	must be inp	out within this	s range. — – –	
D** OEH GRAM address	n <u>1st 2nd</u> 2000	1st 2nd 1st 2nd n+2 n+3	$\frac{1 \text{ st}}{n+4}$	nd 1st	× 2nd ×	
Fig. 6.2.5 (2) Write D	Data Mask 2 Mask cycle					
NADS						
NWR						
WDMSK		Not masked	with this sig	gnal.		
	1 St 2nd 1st 2nd	1st 2nd 1st 2nd	<u>1st</u> 2	nd 1st	2nd X	
address	n <u>n+1</u>	n+2 n+3	(<u>n+4</u>	Xn	+ 5	
Fig. 6.2.5 (3) Not writ	e data masked	VOTEM I OL DUNGLON	GENAG			4D 4 N137
ESTABLISHED REV	ISED	MATSUSHITA ELI	SEMICO ECTRIC	INDUCT	OK CON	mpany)., LTD.

D	REVISED	
וע	KEVISED	

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

					MNF893	31BK-C	
Date Prepared :03/12/'03	SPECIFI	CATIONS	S	Total pages		Page	28
(2) Bit Mask Fu By setting th masked in ur Bit mask cor The followin 18 bits × sing Data bus D17 RGB R5 BMSKR[5:0] 0 BMSKG[5:0] BMSKB[5:0]	nction e command register BMSK ² nits of bits. ntrol can be set in units of R, ng example is a bit mask exa gle access) D16 D15 D14 D13 D12 D1 R4 R3 R2 R1 R0 G Masked 1 Masked 1 Masked 1	* bit when writing G , and B bits in mple with the II 11 D10 D9 D8 5 G4 G3 G2 5 G4 G3 G2 6 G4 G3 G2	ng GRAM data ndependently. FMODE[1:0] s 3 D7 D6 D 2 G1 G0 B 4 0 1	a, the GR set to 00 (5 D4 1 5 B4 1 4 1	AM write c at the time D3 D2 D B3 B2 B B3 B2 B C 1 C	lata will b of 26000 1 D0 1 B0 1 B0	oe 0-color,
GRAM Write	$\downarrow \downarrow \downarrow$	\downarrow \downarrow	Mas	ked Masked	Masked	,	
is set to 1. Fig. 6.2.5 (4) Bit (3) Window Ma When writin masked. The window (WMXE an With the WI register is se Note 1) The Note 2) Do	Mask Mask sk Function ag data to the GRAM, the wind is specified by the mask are d WMYE). MMODE register is set to 0, et to 1, the area outside the w window mask area needs to not reverse the magnitude re start area SWMXS \leq WMXE \leq YAS \leq WMYS \leq WMYE \leq	the data within a constraint of the RAM relation to the RAM relation to the relation x and y statistical the set inside the set inside the station between $\leq XAE$ (AEMO $\leq YAE$ (AEMO)	and outside the and outside the urt addresses (V the window w nasked. le GRAM acce the start and e DE is set to 0 i DE is set to 0 i	e specifie VMXS ar vill be ma ss area. S nd addres n this exa n this exa	d window o nd WMYS) sked. With see Section ses. ample) ample)	on the LC and end the WMN 6.2.4 (2).	nd D will be addresses MODE
Note 3) The	borderline of the specified	window will be	masked only v	when the	WMMODE	is set to	0.
00h XAS 00h (2	XAE X (AS, YAS)	.max 0 00h	Oh XAS	, YAS)			
YAS (W	MXS , WMYS) (WMXE , WMYE)	YAS	(WMX:	S , WMYS) O	O WMXE , WMYE)		
YAE	×	YAE			×)	
EFh	(XAE, YAE)	EFh		(X	AE, YAE)		
WMMOL	DE is set to 0		WMMODE i	s set to 1			
	Area data is written to	0					
Fig. 6.2.5 (5) V	Area data is not written to Vindow Mask	0					
* The write c can be used	lata mask function (WDMS) l together. Each mask functi	K pin), the bit m on will be in Ol	nask function, a R-process.	and wind	ow mask fu	nction	
			DUUGLON	OF MO	ONDUCT		

		SISTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

			MNF8931BK-C
Prepared :03/12/'03	SPECIFICATI	IONS	Total Page 29
6.2.8 Gradation LS This IC displays B bits). In 65000-color i 16 bits (five R b generated with t (1) Write Data to D15 D14 D13 R5 R4 R3	B Generation Function (in 6 gradation with pixels, each of with the RMIF bits, six G bits, and five B bits). The R5 MSB data and B5 MSB data of GRAM D12 D11 D10 D9 D8 R2 R1 R0 G5 G4 G	65000 Colors) hich has 18 bits (consists) it set to 1), data from the LSB of the R signates that used. See below. D7 D6 D5 D7 D6 D5 G3 G2 G1 G0	pages Page 25 sisting of six R bits, six G bits, and the host will be provided in blocks al and that of the B signal are D4 D3 D2 D1 D0 B5 B4 B3 B2 B1 F
(2) Display Rea The followin The followin the data writ ●: GR O: GF	ad Data Control ng diagrams show the status of the ng display data will appear accord then to the RAM in 1). CAM data is output as it is. RAM data is reversed and output. 2) * LSB[1:0]: 01	e RLSB or BLSB. ding to RLSB[1:0] an Note: 1. Data p RMIF 2. Data p alterna process 3) * LSB[1:0]: 10	nd BLSB[1:0] bit settings based on processing is enabled when the bit is set to 1. processing is executed before titon. Data after alternation shows sed alternation data. 4) * LSB[1:0]: 11
First frame	First frame	First frame	First frame
For each pixel: R[5] = RLSB B[5] = BLSB ALL			· · · · · · · · · · · · · · · · · · ·
Second frame	Second frame	Second frame	Second frame
For each pixel: R[5] = RLSB B[5] = BLSB ALL	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
			•: GRAM data is output as it is.
6.2.9 Display Data With a comman GRAM. With the DISPIN of the source dri	Reverse Function d register DISPINV bit setting, d NV set to 1, data reversion will b	isplayed read data wi e executed. This will	O: GRAM data is reversed and ou ill be reversed and output from the be processed at the final output sta

The function supports negative and positive reversed display and LCD display modes (normally white and

In normally black modes). In normally black mode, the black and white polarities will be completely reversed. Therefore, the LCD panel will be displayed all black at the time of whole screen white display or refresh white display. With the DISPINV set to 0, the LCD display will be in normally white mode.

with the DISPINV set to 0, the LCD display will be in normally white mode.						
		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY				
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.				

		MNF8931BK-C					
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	30		

6.2.6 GRAM Clear Function

The IC has a GRAM clear function. RAM data will be automatically set to 1 and 0 by setting the RAMCLR bit to 1.

At that time, RGB data can be all set to 1 or 0 by the CLR_COL bit setting.

Furthermore, the access area specification, window mask function, and bit mask function can be used together.

The RAM is cleared by using the clock of the built-in oscillation circuit (at 206.6 kHz). It required at maximum approx. 200 ms (i.e., $176 \times 240 \times 1/206.6$ kHz) to clear the whole screen.

This RAM clear time is determined by the GRAM access specification range.

After clearing the RAM, the RAM_CLR bit will be automatically cleared and set to 0.

The operation in process will be canceled if the host sets 0 to the bit during clearing.

Note 1: Do not execute GRAM access while the RAM is being cleared, otherwise the GRAM value will not be guaranteed.

Note 2: During RAM clear execution, WDMSK pin = L is required. In this case, if WDMSK = H, Data mask function will active and content of GRAM are not updated.

6.2.7 Display Read Function

(1) Display Data Latch

The stored display data in the GRAM is transferred to the latch circuit at the rate of one line per horizontal cycle and provided to the source driver. The display read operation is independent from the Host's access. Therefore, there will be no access limits imposed on the host.

(2) Display Line Address

The GRAM display read operation is managed by line addresses.

The first line on the LCD and the address of the display start line are set by the command setting. Line addresses are counted from the address of the display start line and the count automatically increases at 1H intervals.

The number of displayed lines in the Y direction can be set to 192, 220, or 240 (with the GSL[2:0] bit to set the number of gate driver outputs).

The line address count will return to 00h (i.e., the display start line) when all the addresses corresponding to the number of displayed lines are counted.

Fig. 6.2.7 (1) Line Addresses and LCD

By controlling the address of the display start line, the vertical scroll function, for example, will be available.

(The address of the display start line is refreshed in synchronization with the vertical sync signal after the command is set.)

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

					MNF89	31BK-0	C	
Date Prepared :03/12/'03	SPECIF	SPECIFICATIONS				Page	31	
6.2.10 RGB Swap function								
By setting command re is swapped at writing to The function in combin In addition, when GRA Notice This Other	gister RGBSW bit (address 0) o GRAM. ation of SDIR function make M read, the data which swapp function is used when the data is rwise the setting will not become	Dh, D[3]), driver output use of driver packaging bed at writing time retur written to the GRAM. The effective.	t of R and B g direction ar rn to its norm prefore it shoul	is counter ad color fi aal state a d be set be	rchanged wh ilter alignme s it is swapp fore the GRA	en pixel o nt possibl ed reverse M is writte	of R and B e. ely. n.	
R G B R G B	····· R G B	RGB alignment	BGRBG	R		E	3 G R	
00h 01h ····	··· AEh AFh	X address	AFh AF ◀	Eh ···		•• 01h	00h	
GRAM Output Pin B A YGO B YGO B	R G B X16175 B X16175 R H		GRAM Output Pin	G R 09) G R	B (R 4115 B		
R G B	RGBSW = 0 (Without Swap (Ex: When SDIR is 0))	R	G B	RGBSW = (Ex : When	1 (With Syn SDIR is 1	wap)	

				MNF8931BK-C				
Date Prepared :03/12/'03	SPECIFI	CATIONS	Total pages		Page	32		
 6.3 Display Control Function 6.3.1 Display Mode Control The following four display conditions are controlled with command register DISP [1:0] settings. The commands explained below are executed in synchronization with the vertical sync signal after the commands are set. (1) Display OFF (DISP: 00) The IC stops driving the LCD. Turn off the LCD when overwriting the GRAM, in order not to reflect setting changes such as power supply setting changes on the display, or for a shutdown sequence. When the display off command is executed, the IC operates as explained below. • The source driver will have high-impedance output. • The source driver will have high-impedance output. • The high-level output of the gate driver will stop with the NOEV* set high. (If the MN863480 is used in combination, the MN863480 will have VOFF- or VEE-level output.) • With the VCOMEN* set low, the AC of the opposite electrode will stop, and VCOMLvoltage will be output. If the MN863480 is used in combination, the MN863480 will have output, the potential level of which will be intermediate VCOML potential. Note: The oscillation circuit or power supply IC will not be stopped only by executing this command. The operational amplifier of the source driver will, however, stop. (2) Display Whole White (DISP: 01) The LCD will be driven so that the whole screen will be white regardless of the contents of the GRAM. This function is used to let the LCD discharge electricity before turning the display on or off during the setup or shutdown sequence. The LCD displays white regardless of DISPINV bit settings. The LCD displays white regardless of DISPINV bit settings. The LCD displays white heyel (corresponding to 3F GRAM data). Specified alternation driving is								
• The gat (3) Normal I In norma (4) Partial Di In this m By reduc With an J For detai	 Performed. The gate driver is in normal operation, so is the alternative driving of the VCOM. (3) Normal Display (DISP: 10) In normal display mode, the whole screen will be displayed normally. (4) Partial Display (DISP: 11) In this mode, the screen is partially displayed. By reducing the drive area, the power consumption of the IC will be saved. The non-display area will be white. With an RFR bit setting, the non-display period will be regularly refreshed, when the display will be white. 							
6.3.2 Partial Di When the IC suppress the The followin In the non-dis operation wi The non-disp The partial d MASKS1 an specified wit Note 1) Satis Note 2) The acco Note 3) MAS set, a Note 4) The relat Note 5) To set	splay Function is in partial display mode, the securent consumption. g display patterns are available. splay area, the output of the gate 1 stop. lay area is regularly refreshed, v splay function will be set by spi 1 MASKS2 and the end point w n RFR (to be refreshed per fram fy the following conditions. MA MASK* setting must be less that ding to the GSL[2:0] setting). KS1 and MASKE1 are used tog Il the other settings will be refree display read operation will stop, ionship between GRAM data are et a single non-display area, set	creen will be partially displayed e driver, the driving operation of when the display will be white. ecifying the start point of a maxi ith MASKE1 and MASKE2. The e, or not refreshed, or refreshed ASKS1 <maske1<masks2<m in the number of displayed lines gether and so are MASKS2 and I shed. but line addresses will be counted d LCD display is the same as the both MASKS2 and MASKE2 to</maske1<masks2<m 	(driven) in the source mum of tw e refresh cy at any time (ASKE2 (i.e., 240, 2 MASKE2. ed normally at in norma FFh.	the Y directi driver, and the o non-display yele of the not by 220, or 192 li When MASH y. Therefore, al display mo	ion, which he display y areas wit on-display nes KE1 is the de.	will read h area is		
MASKS1 non-display MASKE1 display MASKS2 non-displa	MASKS1 non-displ MASKE1 display	ay displa MASKS1 non-dis	y	MASKS1 MASKE1	display non-disp	y lay		
MASKE2 Fig. 6.3.2 Partial	MASKS2=FFh Display MASKE2=FFh	MASKE1 MASKS2=FFh MASKE2=FFh	r J	MASKS2= MASKE2=	FFh FFh	,		

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

		MNF8931BK-C					
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	33		

6.3.3 Partial Scroll Function

By the control of the address of display start line as explained in Section 6.2.7, the vertical scroll function is available. In that case, the whole area of the GRAM will be the subject of scroll control.

By using the partial scroll function, the display area will be scrolled except some portions (such as the antenna mark portion), which will remain unchanged.

The following partial scroll settings are possible.

If the partial scroll specify bit SCRON is set to 0:

When the scroll area start specify bit SCRS, scroll area end bit SCRE, and scroll number bit SCRN are set, the settings will be reflected and executed at the vertical cycle after the SCRON bit is set to 1. If the partial scroll specify bit SCRON is set to 1:

When the scroll area start specify bit SCRS or scroll area end bit SCRE or scroll number bit SCRN is set, the setting will be reflected and executed at the next vertical cycle.

When setting SCRS, SCRE, and SCRN bits in sequence over the vertical sync period, any bits executed after the vertical sync period (i.e., at the falling of the NVSYNCO) will not be reflected until the next vertical sync period is over.

Note 1) Make GSL[2:0] settings for the number of displayed lines (240, 220, or 192) to satisfy the following conditions.

SCRS < SCRE

 $SCRE - SCRS \ge SCRN > Number of display lines$

The display of the LCD will not be guaranteed unless the following condition is satisfied. Display start line address LAS \leq Scroll start address SCRS

- Note 2) This function is used to control display line addresses. Therefore, the status of LCD display varies with the setting for the address of display start line.
- Note 3) The partial display function explained in the previous section is not in any control of line addresses. The partial display function can be used together with the partial scroll function. As for display, the partial display function will take precedence. Therefore, the non-display area will be white.

		MNF8931BK-C					
Date Prepared :03/12/'03	SPECIFICATIONS			Page	34		
6.3.4 Digital Brig With the color a data, G image d The set values i read data from t The result of ad actual value is I This command	ntness Adjustment Function djustment commands executed by addresses 28h to 2Ah, ata, and B image data can be made digitally respectively. In the RADJ[5:0], GADJ[5:0], and BADJ[5:0] registers an he GRAM and the data will be provided to the source dri dition or subtraction will be a maximum of 00h or a mini- arger than 3Fh or smaller than 00h. enables brightness and white balance adjustments to disp	brightnes re added to ver. mum of 3 layed ima	ss adjustmen o or subtrac Fh regardle ges.	nts to R in sted from sss of whe	mage display ether the		

6.3.5 Sync Control with Host

This IC supports moving images. Therefore, the IC has an external vertical sync mode, where the operation of the IC is in synchronization with the VSYNC supplied externally.

(1) Switching to External Vertical Sync

The IC will be set to external vertical sync mode by setting 1 to the VSYMODE.

After the command is set, the switching of the mode is detected by the internal vertical sync signal. Then the mode will be switched.

After the mode is switched, external VSYNC input will reset the vertical counter and the IC operates in new mode.

Therefore, as shown below, it is necessary to wait for two frames to go to external vertical sync mode. While the IC is in external vertical sync mode, the blanking period will continue and the LCD will not be driven unless the external VSYNC signal is input.

Fig. 6.3.5 Vertical Sync Switching (from Internal to External Vertical Sync)

(2) Switching to Internal Vertical Sync

Again, it is necessary to wait for two frames to go to internal vertical sync mode from external mode. Note) After the command is set, it is necessary to provide the external vertical sync single for a minimum of 1V period, otherwise the switching of the vertical sync mode will not be detected. Therefore, the display on the panel will stop.

VSYMO	DE			1V .	each max.			
NCSYNC	CI							
Internal vo	ertical sync							
Vertical sy signal used	nc							
CKV								
STV	[[[
		Fig. 6.3.5	Vertical Sync	Switching	(from Extern	al to Internal	Vertical Sync)	
			SYSTEM	M LSI DIV	VISION, SE	MICONDU	CTOR COMP	ANY
ESTABLISHED	REVISED		Μ	ATSUSH	ITA ELECT	RIC INDUS	STRIAL CO.,	LTD.

					MNF8931BK-C			
Date Prepared :03/12/'03		SPECIFICATION	NS	Total pages		Page	35	
(3) Relations When the satisfy th moving it	thip between L IC is in exter e following co mages will be	CD (Display Read) and RA nal vertical sync mode, set nditions in consideration o displayed.	AM Write the following lov f the built-in osci	ver limit o llator freq	f RAM wi uency so t	rite speed hat smoo	to th	
• RAM Write Com (A time margin o	pletion Time - f two display	< Display Read Completion read lines is required.)	n Time – Time m	argin				
• RAM write co	mpletion time	= Write start time + Numb	er of written line	$s \times 1$ -line	write time	•		
		Number of written pixels per l	ine \times (1/RAM write s	speed) + Hor	izontal write	blanking pe	eriod	
• Display read c	ompletion tim	he - Margin time = (240 + H)	$3\underline{ack porch} - 2) >$	< <u>1-line dis</u>	splay read	time		
		2 lines	16 Number	of 1H clock	pulses \times (1/0	Oscillator fr	equency)	
A calculation exam • Write start time: • Number of write • Number of write • Horizontal write • Number of 1H cl • Oscillator frequent RAM write speed >	ple is shown be ines: n pixels per line blanking period: ocks: ncy: 240 × 176 pixels/	 low under the following condition 20 μs after external sync 240 240 176 0 12 clocks (with HCNT set t 206.6 kHz ± 10% 	o 0B) ulses × (1/206.6 kHz	× 1.1) – 0.01	2 ms} = App	rox. 3.15 M	Hz	
					Oscilla	tor frequenc		
240				+1()% 206.6 k	<u>Hz -10%</u>		
RAN at 10	M write speed	/	RAM write speed a 3.15 MHz	ıt				
200								
불 160	_/							
120	/		/					
80								
40				12.41	14.87	16.52		
0.00	4.0	00 8.00	12	13.41 13.41 13.00	3.52	16.00		
External vertical sync		Time [ms]						
ļ								
ESTABLISHED REV	ISED	SYSTEM I MAT	LSI DIVISION, SUSHITA ELI	SEMICO	INDUCT	OR CON	MPANY D., LTD.	

Date Prepared :03/12/'03

Page

6.3.6 Built-in Oscillation Circuit

This IC has a built-in oscillation circuit that generates display clock pulses as reference for the display control system and voltage step-up clock pulses for the power supply IC.

This oscillation circuit does not require any external parts, such as capacitors or resistors. The standard oscillator frequency is 206.6 kHz.

The oscillation is under ON/OFF (1: ON; 0: OFF) control by the command register OSCON bit. The oscillation is by default turned off.

6.3.7 Control of Horizontal Cycle and Vertical Cycle

The above display clock is used to control the horizontal cycle (H cycle) and vertical cycle (V cycle). The H cycle and V cycle are adjustable with the command register HCNT[4:0] and VCNT[9:2].

(1) H Cycle Settings

By making H cycle adjustments, the driving period (i.e., LCD panel charging period) of the source driver will be adjusted.

The period is adjustable between a period of 8 clock pulses and 24 clock pulses in 1-clock-pulse increments. The initial value is 12 clock pulses (with the HCNT set to 0B).

Therefore, 1H period is adjustable between 38.7 μ s and 116.2 μ s. The initial value is 58.1 μ s, provided that the standard oscillator frequency is applied.

In external sync mode, the following time conditions must be kept.

Desired H cycle × (Preset number of gate driver output pins + 8H) < V cycle period

[Calculation example ; H cycle setting]

Use external V sync mode with V cycle : 60 Hz, Gate Driver output : 240 line,

(i.e., oscillator frequency variation 10%)

- In 1 H clock value < $(206.6 \text{ kHz} \times 0.9) / [60 \text{ Hz} \times (240 + 8) \text{ line}] = 12.5$
 - therefore, it requires under 12 clock setting.

Make an optimum H cycle period setting in consideration of the LCD's pixel load characteristics and the source driver's current capacity setting.

(2) V Cycle Settings

By making V cycle adjustments, the frame frequency will be adjusted. If the display quality of the LCD is kept, the power consumption of the system can be saved by reducing the frame frequency. If the frame frequency is reduced, however, the image quality will be adversely affected. Therefore, fully evaluate the circuit design.

sThe V cycle set bit VCNT will be enabled only in internal sync mode. The VCNT set value will be ignored when the IC is in external sync mode.

In internal sync mode, the fol lowing condition must be kept.

(VCNT [9:1] + 1) \times 4 ; as line value in 1 V cycle.

It is possible to set the V cycle to a maximum of 1024H in 4H increments. It is, however, necessary to set the preset number of gate driver output pins plus a minimum of 8H lines. The value is by default set to 300H (i.e., the VCNT[9:2] set to 4Ah).

[Calculation example ; V cycle setting]

Use internal V sync mode, set H cycle = $12 \operatorname{clock} (\operatorname{HCNT} = \operatorname{OB})$ and V cycle = $60 \operatorname{Hz}$.

(i.e., calculate oscillator frequency = 206.6kHz)

In 1 V line value = (206.6 kHz / 12 clock) / 60 Hz = 286.9 line.

- It is able to choose 284 line case or 288 line, as setting is per 4 line.
- 284 line case, VCNT set to 284 / 4 1 = 70, VCNT = 46 h.

SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANYESTABLISHEDREVISEDMATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
MNF8931BK-C

GTYP/MASK**

/RFR

FRPOL

VCOMON /VCOME

Total pages

(): Internal signal

37 Page

6.4 LCD Drive Control

driver output prohibit timing

AC control of

opposite electrode (VCOM)

6.4.1 LCD Drive Signal Generation

The following signals are generated to drive the LCD. Figures 6.4.1 (1) to (4) show the generation timing of each drive signal.

		0	
Function	Control signal	Description of control	Command set bit
Transfer of source driver data	(LD)	Used to transfer display read data from the GRAM to the source driver.	_
Control of drive/stop	(NOEH)	Used to control the drive/stop timing of the source driver within a 1H period.	OEHA/OEHN
unning of source driver		Used to control the drive/stop timing of the source driver at the V cycle.1) Starts the source driver 1H before the display period.2) Controls the extension of the drive period after the display period completes in order to stabilize the potential of the source line during vertical blanking.	OEHON/OEHE GSL/MASK** /RFR
		The impedance of the output pin will be high while the source driver is not in driving operation.	AMPON
Generation of gate	STV *	Used to output the display start position of the gate driver start pulse.	-
driver drive signal	CKV*	Used to generate the gate driver shift clock. The clock will be continuously output during the vertical period.	CKVPW
Control of gate	NOEV *	Used to control the output prohibit timing of the gate driver within a 1H period.	OEVA/OEVN
unver output		Used to control the output prohibit timing of the gate driver	

Note) The STV*, CKV*, and POL* signals are continuously output without interruption simultaneously with the oscillation of the internal oscillation circuit. These signals will stop when the internal oscillation circuit stops operating.

1) Stops output from lines other than that for the

display period.2) Prohibits the output of the non-display period according to the partial display setting.

Used to specify the alternation polarity of the VCOM.

Used to control the drive/stop timing of the VCOM at the V

cycle.
1) Starts driving the VCOM 1H before the display period.
2) Controls the extension of the drive period after the display period completes.

at the V cycle.

POL*

VCOMEN *

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

										MNF893	31BK-C	
Date Prepared :03	/12/'03		SPE	SPECIFICATIONS					Total pages		Page	38
6.4.1 Relatio	nship bet	ween disp	olay timing	and ho	ost writin	ig at RC	3B inte	erface				
External v signal from VS	vertical s YNCI.	ync signa	al input (cmd_11	h=80h) lisplay s	should	d be u	used at I	RGB interfa	ice and sup	ply vertica	al sync
external vertica sync signal. H-signal is With followi	created l	gnal input	at RGB ir	d resiste	, writing	from h	ost ca	1H-clock	, so extern	al H-signal	external v	ertical d.
Condition :	1H =12 c	slock (cm	J_1Eh=0B	5h) / 240) line dis	splay (c	cmd_2	20h[7:5] =	= "111")			
<u>Display timimin</u>	g tpwvsyl	(= min 2H) 1	V = 16.67 m	s (f = 60) Hz)							
VSYNCI						<u>-</u>						
CKV(output)								teod ►				JUL
	display	_VBP (=16	or 17H)	numbe	er of disp	lay lines	(220_0	<u>r 240)</u>				
display data(outp	ut) 図6.4	.2				_ · · _)				<
<u>Host writing tin</u>	n <mark>ing for</mark> 1	<u>l-frame</u>										
RGBCK						•••						
	τ≞	OWFL				Lt						
DODENIA	host		_number_of	il writing l	lines (max	x 220 or	240) 🔸	host (= tH				
RGBENA						••						
Dxx											X	
	図6.4.2						-					
<u>Host writing tin</u>	ning for 1	I-Line										
	 ↓		ho	st cycle o	of writing	1-line						
nost nsync		卢卢				····						
RGBCK _	bost HB							[[]				
RGBENA	4	-				· · · ·		<u> </u>	· - • -			
Dxx	******	1/2/	3 4 5 1	6 \ 7 \ 8	×9×10>	••• < -	χ.χ.		·X ·X176	*****		$\langle \rangle$
_	: /		·····	····						×		
RCBCK	É				, 					Ì		
KODOK								_t				
RGBENA			tspn tu	RD	<u> </u>							
Dxx				2	<u>+</u>		175	176			XX	
	図6.4.2				i	·				i		
ESTABLISHED	REVI	SED			SYST	TEM L MATS	SI DI SUSH	IVISION HITA EI	N, SEMIC LECTRIC	ONDUCT	OR CON	MPANY D., LTD.

	MNF8931BK-C						7	
Date	Prepared :03/	12/'03		SPECIFICATIONS	Total pages		Page	39
	Following con Condition : 1F Limitation i sync signal. Pulse Relati	dition (I =12 clo n order t width o t _P ion of ex ts) sh ock (cmd_ co complete f external \v wvsyL :nee cternal vert vvsyN : over 	ould be satisfy at RGB interface. 1Eh=0Bh) / 240 line display (cmd_20h[7:5] = e initialize GRAM address and V-timing of LCI vertical sync signal. d over 2H period MIN should be 0.13 ms ical sync signal and host writing start / comple 15 μs	"111") D display b te time.	y external v	vertical	
	Limitation i Set to Start comp Comp	t⊣ n order t o YDIR = writing b lete writ t blete writ t c n order to	vsvn : over : ADIR = 0 efore displing before owFL : Ope ing before owLL : Ope o display a	10 μs display distarbance by collision of Host-write-t lay and the first line on the LCD display. rate within 0.84 ms (MIN) the last line on the LCD display rate within 13.46 ms (MIN) [when oscillate clock has Il lines within 1V period of the external vertical	iming and s + 10%] sync.	display-rea	d-timig.	
	Keep freque	1 vertica ency. t ⊧	al period th	nat enable to display all lines, in consideration more than 8H period (16.1ms [MIN])	of variatior	n of the osc	illation	
	NOTE) A by in A can a (This W (Ex, ' When	fter LCD ternal oso fter writin automatic operation /hen intern vertical bl n RGBCK	vertical cycl cillator clock ig address fr ally count ev n is unrelate rupting GRAI anking provid is supplied a	e action initialized by external vertical sync signal, the based on 1 H clock. Therefore there is no need to pro om host to GRAM initialized by external vertical sync very accesses according to the indicated writing addre d LCD display) M-write, RGBENA should be once inactivated (RGBEN de in line unit at writing) as RGBENA = H, the data will be accepted and updated	control of L ovide horizon signal, writin ss area. IA = L) d GRAM data	CD horizonta tal sync signa g address fro a and address	Il cycle is o al. m host to C s.	perated ≩RAM
	Description of Figure 6.4.2	symbols	in figure 6.4	4.2]				
	t _{PWVSYL} (en teod (end o	d of displ f display)	ay): "L" puls of minim Minimun : End of c When 24	se width which need to External vertical sync signal "N hum display. n value : 0.129 ms (Oscillator clock = -10%) display time from Vertical sync signal 40 line display sets, 1H period x (16 or 17 line + 240 line m value : 16.596 ms (Oscillator clock = -10%)	IVSYNCI" sig ne)	ınal. This requ	uire 2 H per	iod out
	display_VBI	D	A period to 17 H	d from vertical sync signal to display start. The horizor	ntal cycle co	ntrolled at Os	scillator cloo	ck is 16
	Figure 6.4.2							
	teowru (end	of writing	1st line)	:Writing completed time at the first HOST line. Comp Minimum value : 0.84 ms (Oscillator clock = +10%) :Writing completed time at the last HOST line Comp	lete before d	lisplay first li	ne drives.	
	tsvsyn (VS) thvsyn (VSI	/NC set-u NC hold t	ıp time) ime)	Minimum value : 13.46 ms (Oscillator clock = +10%) :VSYNC input set up time for starting data transfer. :VSYNC input hold time for ending data transfer to V	Keep more t /SYNC input	han 15 μs. Keep more ti	han 10 μs.	
	Figure 6.4.2 tser (Enable tHER (Enable tsrd (Data tHRD (Data Host_HBP : Host_HFP :	e set-up e hold tim set-up tir hold time;	time): RGBE e): RGBN ne): Data): Data Back Front	ENA signal set up time for RGBCK Keep the regulati IA sygnal hold time for RGBCK Keep the regulation Input set up time for RGBCK Keep the regulation va- hold time for RGBCK Keep the regulation value in the porch period of H cycle that writing into HOST. There porch period of H cycle that writing into HOST. There	on value in t value in the alue in the pr he product s e is no regula e is no regula	he product st product stand oduct standa tandards ttion tion	andards dards rds	
ESTA	BLISHED	REVI	SED	SYSTEM LSI DIVISION MATSUSHITA EI	N, SEMIC LECTRIC	CONDUCT	FOR CO RIAL C	MPANY O., LTD.

Total pages

6.5 Source Driver Operation Setting

6.5.1 Gradation/Binary Drive Mode

The source driver has a 6-bit DAC for 64-step RGB gradation drive control. If gradation display is not required, binary driving will be possible. At the time of binary driving, the static current flowing to the operational amplifier of the DAC circuit of the above source driver and the internal resistor (i.e., VREF resistor) for gradation voltage generation will be stopped, which will save the power consumption of the system.

By setting the COL bit of the driver operation setting 2 register to 0, the IC will be in binary drive mode. The IC will use only R5, G5, and B5 data for display, and any other data will be ignored when the IC is in binary mode. The source driver will drive the LCD by using only MSB bit of each RGB pixel of the GRAM while the IC is in binary drive mode. After this command is set, the command will be executed in synchronization with the V sync signal.

6.5.2 Separation of VREF Resistor

As explained above, when the IC is in binary drive mode, the VREF resistor for gradation voltage generation is separated for static current suppression. At the time of gradation driving, VREF resistor separation during the V blanking period will be possible. The VREF resistor will be separated by setting 0 to the RSWON bit of the driver operation setting 2 register. The VREF resistor will be automatically connected before the LCD starts display. When using this mode, the panel load will influence the quality of display. Check the quality of display on the actual panel before applying the IC to the products.

6.5.3 Source Driver Driving Output

1) Source Driver Driving Capacity Adjustments

The driving capacity of the source driver is adjusted by the SAMP[2:0] bits of the driver operation setting 2 register. (See table below.) When the bits are set to 000, the source driver will stop driving. (The value is by default set to 011.)

The necessary drive capacity is influenced by the panel load. Check the display quality on the actual panel before applying the IC to the products.

SAMP[2:0]	Capacity			
000	Stop			
001	Low			
010	Between low and medium			
011	Medium			
100	Between medium and high			
101	High			
110	Prohibited			
111	Prohibited			

2) Polarity of Source Driver Output, Obtaining Gamma Characteristics, and Polarity Based on VCOM Stored data in the GRAM will be reversed in the polarity reverse circuit so that the polarity will be opposite to the polarity of POL*signals.

At the time of normal display with DISPINV set to 0,

when POL* is set low, normal output will be turned on: No GRAM data bit change (i.e., the 3Fh bit will be output as 3Fh bit and the 00h bit will be output as the 00h bit);

when the POL* is set high, reversed output will be turned on: GRAM data will be reversed and output so that the 3Fh bit will be the 00h bit and the 00h bit will be the 3Fh bit.

At the time of reverse display with DISPINV set to 1,

when POL* is set low, reversed output will be turned on: GRAM data will be reversed and output so that the 3Fh bit will be the 00h bit and the 00h bit will be the 3Fh bit;

when the POL* is set high, normal output will be turned on: No GRAM data bit change (i.e., the 3Fh bit will be output as 3Fh bit and the 00h bit will be output as the 00h bit).

Gamma characteristics will not be influenced by the DISPINV.

When the POL polarity is normal (i.e., POL* is set low), signals will be converted into analog values in the gamma circuit (D/A conversion circuit) according to the gamma characteristics of the GMPn (n is set between 1 and 62) and output from the source driver.

When the POL polarity is reversed (i.e., POL* is set high), the signals are output from the source driver according to the gamma characteristics of the GMNn (n is set between 1 and 62).

As for gamma characteristics, refer to Section 6.5.4.

The information here is provided on condition that the POL* is the same as the VCOM in polarity.

If the DISPINV is set to 0 and host input data is 00h (black), the GRAM data will be displayed as follows when the polarity is normal:

GRAM data 00h => After conversion: 00h => With VREFH selected, VCOM: Displayed black on the LCD at the VCOML potential.

When the polarity is reversed,

GRAM data 00h => After conversion: 3Fh => With VREFL selected, VCOM: Displayed black on the LCD at the VCOMH potential.

With the DISPINV set to 1,

At the time of normal operation after conversion: 3Fh => With VREFL selected, VCOM: Displayed white on the LCD at the VCOML potential.

When the polarity is reversed,

At the time of reverse operation after conversion: 00h => With VREFH selected, VCOM: Displayed white on the LCD at the VCOMH potential.

The DISPINV is disabled for refresh white display while in partial display mode.

The Dist new is disabled for ferresh while display while in partial display mode.						
		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY				
ESTABLISHED REVI	SED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.				

			MNF893	31BK-C	
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	45

6.5.4 Gamma Correction Function

(1) Gamma Adjustment Command

The 62 gamma adjustment commands in addresses 31h to 6Eh make it possible to make gamma adjustments to the 1- to 62-step gradation voltages. (Here, gradation 0 and gradation 63 are fixed at the VREFH or VREFL.)

Eight gamma adjustments are possible for the positive drive and negative drive of each gradation step. (2) Built-in Resistor for Gamma Correction

The output voltage of the IC is determined by the externally input VREFH, VREFL, gamma selector value, and input data value in the following gamma adjustment circuit.

MNF8931BK-C

Total pages

Page 46

(3) Relationship of Gamma Selector Value, Input Data, and Output Voltage Table 6.5.4 Relationship of Gamma Selector Value, Input Data, and Output Voltage

Input	Grada				Output voltag	e calculation formula			-
Data	Poten			Gamma	Selector Value (C	GMPn[2:0], GMNn[2:0] n=1	1 to 62)		
	tiai	0	1	2	3	4 (criterion)	5	6	7
00h	V0					VREFH			
01h	V1	V_{R01} - V_{RHL} × 4/100	$V_{R01} - V_{RHL} \times 3/10$	0 V _{R01} -V _{RHL} × 2/100	V_{R01} - V_{RHL} × 1/100	$V_{R01}=V_{REFL}+V_{RHL} \times 0.96539$	$V_{R01*}V_{RHL} \thickapprox 1/100$	$V_{R01*}V_{RHL}\textbf{x}2/100$	$V_{R01+}V_{RHL} \times 3/100$
02h	V2	$V_{R02}\text{-}V_{RHL} \times 4/70$	VR02-VRHL × 3/70	VR02-VRHL × 2/70	VR02-VRHL × 1/70	VR02=VREFL+VRHL × 0.93180	VR02+VRHL × 1/70	$V_{R02+}V_{RHL} \times 2/70$	$V_{R02+}V_{RHL} \times 3/70$
03h	V3	VR03-VRHL × 4/60	VR03-VRHL × 3/60	VR03-VRHL × 2/60	VR03-VRHL × 1/60	VR03=VREFL+VRHL × 0.90285	VR03+VRHL × 1/60	VR03+VRHL × 2/60	VR03+VRHL × 3/60
04h	V4	VR04-VRHL × 4/55	VR04-VRHL × 3/55	VR04-VRHL × 2/55	VR04-VRHL × 1/55	VR04=VREFL+VRHL × 0.87212	VR04+VRHL × 1/55	VR04+VRHL × 2/55	VR04+VRHL × 3/55
05h	V5	VR05-VRHL × 4/55	VR05-VRHL × 3/55	VR05-VRHL × 2/55	VR05-VRHL × 1/55	VR05=VREFL+VRHL × 0.84357	VR05+VRHL × 1/55	VR05+VRHL × 2/55	VR05+VRHL × 3/55
06h 07h	V6	VR06-VRHL × 4/55	VR06-VRHL × 3/55	VR06-VRHL × 2/55	VR06-VRHL × 1/55	VR06=VREFL+VRHL × 0.81978	VR06+VRHL × 1/55	VR06+VRHL × 2/55	VR06+VRHL × 3/55
07h 08h	V7 Ve	VR07-VRHL × 4/60	VR07-VRHL × 3/60	VR07- VRHL × 2/60	VR07- VRHL × 1/60	VR0/=VREFL+VRHL × 0.79502	VR07+VRHL × 1/60	VR07+VRHL × 2/60	VR07+VRHL × 3/60
09h	V9 V9	VR09-VRHI × 4/80	VR09-VRHI × 3/80	VR09-VRHL × 2/80	VR09-VRHL × 1/80	VR09=VREFL+VRHL × 0.75426	VR09+VRHL × 1/80	VR09+VRHL × 2/80	VR09+VRHL × 3/80
0Ah	V10	VR10-VRHL × 4/90	VR10-VRHL × 3/90	VR10-VRHL × 2/90	VR10-VRHL × 1/90	VR10=VREFL+VRHL × 0.73785	VR10+VRHL × 1/90	VR10+VRHL × 2/90	VR10+VRHL × 3/90
0Bh	V11	VR11-VRHL × 4/95	VR11-VRHL × 3/95	VR11-VRHL × 2/95	VR11-VRHL × 1/95	VR11=VREFL+VRHL × 0.72244	VR11+VRHL × 1/95	VR11+VRHL × 2/95	VR11+VRHL × 3/95
0Ch	V12	V_{R12} - $V_{RHL} \times 4/100$	V_{R12} - $V_{RHL} \times 3/10$	0 V _{R12} -V _{RHL} × 2/100	V_{R12} - $V_{RHL} \times 1/100$	$V_{R12} = V_{REFL} + V_{RHL} \times 0.70671$	$V_{R12*}V_{RHL} \textbf{x} 1/100$	$V_{R12+}V_{RHL}\textbf{x}2/100$	$V_{R12*}V_{RHL} \times 3/100$
0Dh	V13	VR13-VRHL × 4/110	VR13-VRHL × 3/11	0 VR13-VRHL × 2/110	VR13-VRHL × 1/110	VR13=VREFL+VRHL × 0.69345	Vr13+Vrhl × 1/110	VR13+VRHL × 2/110	VR13+VRHL × 3/110
0Eh	V14	VR14-VRHL × 4/110	VR14-VRHL × 3/11	0 VR14-VRHL × 2/110	VR14-VRHL × 1/110	VR14=VREFL+VRHL × 0.68186	Vr14+Vrhl × 1/110	VR14+VRHL × 2/110	VR14+VRHL × 3/110
0Fh	V15	VR15-VRHL × 4/120	VR15-VRHL × 3/12	0 VR15-VRHL × 2/120	VR15-VRHL × 1/120	VR15=VREFL+VRHL × 0.66979	VR15+VRHL × 1/120	VR15+VRHL × 2/120	VR15+VRHL × 3/120
10h	V16	VR16-VRHL × 4/120	VR16-VRHL × 3/12	0 VR16-VRHL × 2/120	VR16-VRHL × 1/120	VR16=VREFL+VRHL × 0.65847	VR16+VRHL × 1/120	VR16+VRHL × 2/120	VR16+VRHL × 3/120
11h 125	V17	VR17-VRHL × 4/130	VR17-VRHL × 3/13	VR17-VRHL × 2/130	VR17-VRHL × 1/130	VR17=VREFL+VRHL × 0.64742	VR17+VRHL × 1/130	VR17+VRHL × 2/130	VR17+VRHL × 3/130
12N 13h	V18	VR18-VRHL × 4/140	VR18-VRHL × 3/14	VR18-VRHL × 2/140	VR18-VRHL × 1/140	VR18=VREFL+VRHL × 0.63/91	VR18+VRHL × 1/140	VR18+VRHL × 2/140	
14h	V 19 V 20	VR19-VRH ¥4/160	VR19-VRHL × 3/15) VR20-VRUI ¥ 2/150	VR20-VRHL x 1/150	VR20=VREFL+VRHL × 0.02910	VR204VRHL ¥ 1/160	VR204VRHI ¥ 2/160	
15h	V21	VR21-VRHI × 4/160	VR21-VRHI ¥ 3/16) VR21-VRHI x 2/160	VR21-VRHI × 1/160	VR21=VREFI+VRHI × 0.61281	VR21+VRHI × 1/160	VR21+VRHI x 2/160	VR21+VRHL x 3/160
16h	V22	VR22-VRHL × 4/160	VR22-VRHL × 3/16	0 VR22-VRHL × 2/160	VR22-VRHL × 1/160	VR22=VREFL+VRHL × 0.60476	VR22+VRHL × 1/160	VR22+VRHL × 2/160	VR22+VRHL × 3/160
17h	V23	VR23-VRHL × 4/160	VR23-VRHL × 3/16	0 VR23-VRHL × 2/160	VR23-VRHL × 1/160	VR23=VREFL+VRHL × 0.59755	VR23+VRHL × 1/160	VR23+VRHL × 2/160	VR23+VRHL × 3/160
18h	V24	VR24-VRHL × 4/170	VR24-VRHL × 3/17	0 VR24-VRHL × 2/170	VR24-VRHL × 1/170	VR24=VREFL+VRHL × 0.59029	VR24+VRHL × 1/170	VR24+VRHL × 2/170	VR24+VRHL × 3/170
19h	V25	VR25-VRHL × 4/180	VR25-VRHL × 3/18	0 VR25-VRHL × 2/180	VR25-VRHL × 1/180	VR25=VREFL+VRHL × 0.58331	VR25+VRHL × 1/180	VR25+VRHL × 2/180	VR25+VRHL × 3/180
1Ah	V26	VR26-VRHL × 4/190	VR26-VRHL × 3/19	0 VR26-VRHL × 2/190	VR26-VRHL × 1/190	VR26=VREFL+VRHL × 0.57643	VR26+VRHL × 1/190	VR26+VRHL × 2/190	VR26+VRHL × 3/190
1Bh	V27	VR27-VRHL × 4/190	VR27-VRHL × 3/19	0 VR27-VRHL × 2/190	VR27-VRHL × 1/190	VR27=VREFL+VRHL × 0.57074	VR27+VRHL × 1/190	VR27+VRHL × 2/190	VR27+VRHL × 3/190
1Ch	V28	VR28-VRHL × 4/190	VR28-VRHL × 3/19	0 VR28-VRHL × 2/190	VR28-VRHL × 1/190	VR28=VREFL+VRHL × 0.56439	VR28+VRHL × 1/190	VR28+VRHL × 2/190	VR28+VRHL × 3/190
1Dh	V29	VR29-VRHL × 4/200	VR29-VRHL × 3/20	0 VR29-VRHL × 2/200	VR29-VRHL × 1/200	VR29=VREFL+VRHL × 0.55778	VR29+VRHL × 1/200	VR29+VRHL × 2/200	VR29+VRHL × 3/200
1Eh	V30	VR30-VRHL × 4/210	VR30-VRHL × 3/21	0 VR30-VRHL × 2/210	VR30-VRHL × 1/210	VR30=VREFL+VRHL × 0.55127	VR30+VRHL × 1/210	VR30+VRHL × 2/210	VR30+VRHL × 3/210
1Fh	V31	VR31-VRHL × 4/210	VR31-VRHL × 3/21	0 VR31-VRHL × 2/210	VR31-VRHL × 1/210	VR31=VREFL+VRHL × 0.54623	VR31+VRHL × 1/210	VR31+VRHL × 2/210	VR31+VRHL × 3/210
20h	V32	VR32-VRHL × 4/210	VR32-VRHL × 3/21	0 VR32-VRHL × 2/210	VR32-VRHL × 1/210	VR32=VREFL+VRHL × 0.54103	VR32+VRHL × 1/210	VR32+VRHL × 2/210	VR32+VRHL × 3/210
21h	V33	VR33-VRHL × 4/210	VR33-VRHL × 3/21	0 VR33-VRHL × 2/210	VR33-VRHL × 1/210	VR33=VREFL+VRHL × 0.53432	VR33+VRHL × 1/210	VR33+VRHL × 2/210	VR33+VRHL × 3/210
22h	V34	VR34-VRHL × 4/210	VR34-VRHL × 3/210	0 VR34-VRHL × 2/210	VR34-VRHL × 1/210	VR34=VREFL+VRHL × 0.52788	VR34+VRHL × 1/210	VR34+VRHL × 2/210	VR34+VRHL × 3/210
23N	V35	VR35-VRHL × 4/210	VR35 - VRHL × 3/21	U VR35-VRHL × 2/210	VR35-VRHL × 1/210	VR35=VREFL+VRHL × 0.52134	VR35+VRHL × 1/210	VR35+VRHL × 2/210	VR35+VRHL × 3/210
2411 25h	V36	VR36- VRHL × 4/210	VR36- VRHL × 3/21	0 VR36- VRHL × 2/210	VR36- VRHL × 1/210	VR36= VREFL+ VRHL × 0.51506	VR36+VRHL × 1/210	VR36+VRHL × 2/210	VR36+ VRHL × 3/210
2011 26h	V37 V38	VR38-VRHL × 4/210	VR37- VRHL × 3/210	0 VR38-VRHL × 2/210	VR38-VRHL × 1/210	VR38=VREFL+VRHL × 0.50376	VR37+VRHL × 1/210	VR38+VRHL × 2/210	VR3/+ VRHL × 3/210
27h	V39	VR39-VRHI × 4/220	VR39-VRHL × 3/221	0 VR39-VRHL × 2/220	VR39-VRHI × 1/220	VR39=VREFL+VRHL × 0.49815	VR39+VRHI × 1/220	VR39+VRHI × 2/220	VR39+VRHI × 3/220
28h	V40	VR40-VRHL × 4/220	VR40-VRHL × 3/22	0 VR40-VRHL × 2/220	VR40-VRHL × 1/220	VR40=VREFL+VRHL × 0.49316	VR40+VRHL × 1/220	VR40+VRHL × 2/220	VR40+VRHL × 3/220
29h	V41	VR41-VRHL × 4/210	VR41-VRHL × 3/21	0 VR41-VRHL × 2/210	VR41-VRHL × 1/210	VR41=VREFL+VRHL × 0.48798	VR41+VRHL × 1/210	VR41+VRHL × 2/210	VR41+VRHL × 3/210
2Ah	V42	VR42-VRHL × 4/200	VR42-VRHL × 3/20	0 VR42-VRHL × 2/200	VR42-VRHL × 1/200	VR42=VREFL+VRHL × 0.48255	VR42+VRHL × 1/200	VR42+VRHL × 2/200	VR42+VRHL × 3/200
2Bh	V43	V_{R43} - V_{RHL} × 4/200	V _{R43} -V _{RHL} × 3/20	0 V _{R43} -V _{RHL} × 2/200	V_{R43} - V_{RHL} × 1/200	$V_{R43}=V_{REFL}+V_{RHL} \times 0.47716$	$V_{R43+}V_{RHL} \times 1/200$	$V_{R43+}V_{RHL} \times 2/200$	$V_{R43+}V_{RHL} \times 3/200$
2Ch	V44	VR44-VRHL × 4/200	VR44-VRHL × 3/20	0 VR44-VRHL × 2/200	VR44-VRHL × 1/200	VR44=VREFL+VRHL × 0.47143	VR44+VRHL × 1/200	VR44+VRHL × 2/200	VR44+VRHL × 3/200
2Dh	V45	VR45-VRHL × 4/200	VR45-VRHL × 3/20	0 VR45-VRHL × 2/200	VR45-VRHL × 1/200	VR45=VREFL+VRHL × 0.46609	VR45+VRHL × 1/200	$V_{R45+}V_{RHL} \times 2/200$	VR45+VRHL × 3/200
2Eh	V46	VR46-VRHL × 4/200	VR46-VRHL × 3/20	0 VR46-VRHL × 2/200	VR46-VRHL × 1/200	VR46=VREFL+VRHL × 0.46060	VR46+VRHL × 1/200	VR46+VRHL × 2/200	VR46+VRHL × 3/200
2Fh	V47	VR47-VRHL × 4/200	VR47-VRHL × 3/20	0 VR47-VRHL × 2/200	VR47-VRHL x 1/200	VR47=VREFL+VRHL × 0.45484	VR47+VRHL × 1/200	VR47+VRHL × 2/200	VR47+VRHL × 3/200
30h	V48	VR48-VRHL × 4/200	VR48-VRHL × 3/20	0 VR48-VRHL × 2/200	VR48-VRHL × 1/200	VR48=VREFL+VRHL × 0.44927	VR48+VRHL × 1/200	VR48+VRHL × 2/200	VR48+VRHL × 3/200
31h	V49	VR49-VRHL × 4/200	VR49-VRHL × 3/20	U VR49-VRHL × 2/200	VR49-VRHL × 1/200	VR49=VREFL+VRHL × 0.44382	VR49+VRHL × 1/200	VR49+VRHL × 2/200	VR49+VRHL × 3/200
32h 225	V50	VR50 - VRHL × 4/190	VR50 - VRHL × 3/19	VR50- VRHL × 2/190	VR50-VRHL × 1/190	VR50=VREFL+VRHL × 0.43807	VR50+VRHL × 1/190	VR50+VRHL × 2/190	VR50+VRHL × 3/190
33N 346	V51	VR51 - VRHL × 4/190	VR51 - VRHL × 3/19	VK51-VRHL × 2/190	VR51 - VRHL × 1/190	VR51=VREFL+VRHL × 0.43216	VR51+VRHL × 1/190	VR51+VRHL × 2/190	VR51+VRHL × 3/190
35h	V 52 V 52	VR52-VRHL × 4/ 160	VR52-VRHL × 3/18	VR52-VRHL × 2/180	VR52-VRHL × 1/160	VR53=VREFL+VRHL × 0.42006	VR52+VRHL × 1/160	VR52+VKHL × 2/100	VR52+VRHL × 3/ 180
36h	V 53 V 54	VR54-VRHI × 4/170	VR54-VRHI x 3/17	0 VR54-VRHI x 2/170	VR54-VRHI × 1/170	VR54=VREE + VRHL × 0.41224	VR54+VRHI × 1/170	VR54+VRHI × 2/170	VR54+VRHI x 3/170
37h	V55	VR55-VRHI × 4/170	VR55-VRHI x 3/17	0 VR55-VRHI x 2/170	VR55-VRHI × 1/170	VR55=VREFL+VRHI × 0.40605	VR55+VRHI × 1/170	VR55+VRHI × 2/170	VR55+VRHI x 3/170
38h	V56	VR56-VRHL × 4/160	VR56-VRHL x 3/16	0 VR56-VRHL × 2/160	VR56-VRHL × 1/160	VR56=VREFL+VRHL × 0.39911	VR56+VRHL × 1/160	VR56+VRHL × 2/160	VR56+VRHL × 3/160
39h	V57	VR57-VRHL × 4/150	VR57-VRHL × 3/15	0 VR57-VRHL × 2/150	VR57-VRHL × 1/150	VR57=VREFL+VRHL × 0.39145	VR57+VRHL × 1/150	VR57+VRHL × 2/150	VR57+VRHL × 3/150
3Ah	V58	VR58-VRHL × 4/140	VR58-VRHL × 3/14	0 VR58-VRHL × 2/140	VR58-VRHL × 1/140	VR58=VREFL+VRHL × 0.38271	VR58+VRHL × 1/140	VR58+VRHL × 2/140	VR58+VRHL × 3/140
3Bh	V59	VR59-VRHL × 4/130	VR59-VRHL × 3/13	0 VR59-VRHL × 2/130	VR59-VRHL × 1/130	VR59=VREFL+VRHL × 0.37224	VR59+VRHL × 1/130	VR59+VRHL × 2/130	VR59+VRHL × 3/130
3Ch	V60	VR60-VRHL × 4/120	VR60-VRHL × 3/12	0 VR60-VRHL × 2/120	VR60-VRHL × 1/120	VR60=VREFL+VRHL × 0.36042	VR60+VRHL × 1/120	VR60+VRHL × 2/120	VR60+VRHL × 3/120
3Dh	V61	VR61 - VRHL × 4/100	VR61 - VRHL × 3/10	0 VR61-VRHL × 2/100	VR61 - VRHL × 1/100	VR61=VREFL+VRHL × 0.34276	VR61+VRHL × 1/100	VR61+VRHL × 2/100	VR61+VRHL × 3/100
3Eh	V62	VR62-VRHL × 4/80	VR62-VRHL × 3/80	VR62-VRHL × 2/80	VR62-VRHL × 1/80	VR62=VREFL+VRHL × 0.31375	VR62+VRHL × 1/80	VR62+VRHL × 2/80	VR62+VRHL × 3/80
3Fh	V63					VREFL			
	V	RHL value s Vrhi =Vi	shown in tl REFH-VRFFI	he above is :	specified as	s tollows:			
				-	0370		HOLON C	EN HOOL	DUCTO
					SYS	TEM LSI DIV	ISION, S	EMICON	DUCTOF
IS	HEĪ	D REVI	SED			MATSUSH	ITA ELEC	CTRIC IN	DUSTRIA

			MNF89	31BK-C	
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	48
6.6 Gate Driver Se	ttings				

6.6.1 Setting Number of Gate Driver Outputs

The IC has a GRAM that supports a maximum of 176 pixels (\times RGB) \times 240 lines to be displayed. On the other hand, the MN863480 gate driver used in combination supports 160-, 176-, 192-, 220-, or 240-line output.

The IC generates drive signals supporting 192, 220, or 240 lines.

The settings are made in the GSL (gate driver scan line) [2:0] bits of the driver setting 1 register.

Note1) Gate driver (MN863480) settings will be reflected by specifying the transfer of corresponding commands to the gate driver.

Refer to Section 6.7.2 for the specifications of command transfer.

Note2) For MN838893, GSL[2] set to 1

	MN863480	MN838892	MN838893	
GSL[2:0]	Gate driver output	Controller setting	Controller setting	
00x	160 outputs	160 outputs		
01x	176 outputs	176 outputs	Setting prohibited	
10x	192 outputs		192 outputs	
110	220 outputs	Setting prohibited	220 outputs	
111	240 outputs		240 outputs	

* Initial value: GSL[2:0] = 110 (220-line output)

6.6.2 Gate Driver Scan Operation Settings

The gate driver shift direction is set in the GDIR bit of the driver setting 1 register.

The scan method of the output pins of the gate driver is set according to the mounting method in the GSCN and GCHS[1:0] bits.

Note) Gate driver (MN863480) settings will be reflected by specifying the transfer of corresponding commands to the gate driver.

Refer to Section 6.7.2 for the specifications of command transfer.

	MN863480				
GDIR	Shift direction				
0	1→240				
1	240→1				

GSCN	MN863480
	Scan mode
0	Single-side connection mode
1	Both-side connection mode

* Initial value: GDIR=0 (1 \rightarrow 240 shift)

* Initial value: GSCN=0

GCHS [1:0]	MN863480						
	Disabled output channel						
	Mode	240 output	220 output	192 output	176 output	160 output	
00	Center output disabled	All enabled	X111 to X130	X97 to X144	X89 to X152	X81 to X160	
01	X240-side output disabled	Setting prohibited	X221 to X240	X193 to X240	X177 to X240	X161 to X240	
10	X1-side output disabled	Setting prohibited	X1 to X20	X1 to X48	X1 to X64	X1 to X80	
11	Setting prohibited						

* Initial value: GCHS=00

• The GCHS bit is enabled when the GSCN is set to 0. When the GSCN is set to 1, set the GCHS[1:0] to 00.

• See the Specifications of the MN863480 for the detailed operation of the gate driver in the above combinations.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
STABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

					MNF893	31BK-C	
Date Prepared :03/12/'	03	SPECIFICATIONS		Total pages		Page	49
 6.7 Power Supply IC Settings The power supply circuit of the MN863480, which is used together, will be set by executing command transfer to the MN863480 after command register settings are made in this IC. The following section describes the outline of the settings. For details, see Section 7 Command Function and the Specifications of the MN863480. 6.7.1 Voltage Step-up Clock Control (1) Generation of Voltage Step-up Clock Pulses Voltage step-up clock DDCK pulses are generated from the internal oscillation circuit. The frequency of the clock is adjustable by the operating mode set command DDCKF[1:0] for the power supply system. 						ansfer and the e power	
T - -	able 6.7.1 Fre DDCKF[1:0] 00 01	equency Settings for Voltage Step-o DDCK cycle (1H: 11 clock pulses) 1H (18.8 kHz) Standard value × 1/4 (51.7 kHz)	-up Clock <reference> If the standard oscillator frequency (206.6 kHz) is used and 1H is 11 clock pulses according to the HCNT bit, the following frequency will be obtained.</reference>				
ŀ	10 11	Standard value $\times 1/2$ (103.3 kHz)Standard value $\times 1$ (206.6 kHz)	1H = 206 kHz -	I = 206 kHz ÷ 11 = 18.78 kHz			
If the DDCKF is set to 00 and the number of clock pulses for each 1H period is an odd number $(2n + 1)$, the high-level duty period of the DDCK clock toggles between $(n + 1)$ and (n) clock pulses between lines. Both the high- and low-level periods will have n clock pulses when the number of clock pulses for a 1H period is an even number $(2n)$.							
(2) Voltage Step-up Clock Adjustments in Power Supply IC The voltage step-up clock DDCK is adjusted by making usage settings in the DDC[2:0] bits in power supply IC.					ower		
6.7.2 Power (1) Power (1) Power The p	6.7.2 Power Supply Circuit Operation/Stop Control (1) Power Control Register The power supply IC operation/adjustment command is executed to change the voltage step-up rate and						

operational amplifier capability adjustment along with the start and stop of the four-line power supply circuits.

Table 6.7.2 (1) Power Supply Circuit Start Control

Control bit	DDCK cycle
CPA[1:0]	Voltage step-up circuit 1
CPB[1:0]	Voltage step-up circuits 2 to 5
AMP[3:0]	Operational amplifier capability settings

If each control bit is set to 0, the power supply circuit will stop. For details, refer to Section 7 Command Function and the Specifications of the MN863480.

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

(2) Stop Control Commands for Power Supply Circuit

ESTABLISHED

REVISED

The bits explained below are prepared in the MN863480 command transfer register in address 71h to control the power supply after the operation of the power supply is interrupted. The following control is possible by using the bits in combination while executing command transfer.

Control bit	Explanation
SLP	Used to transfer commands while the power supply circuit is not operating. The DDCK will stop with the SLP set to 1. Command transfer is possible with a single register access. The register value will be kept on hold.
DSCG	Used to perform command transfer to stop the operation of the power supply circuit and discharge electricity from the output pin of the power supply IC. The DDCK will stop with the DSCG set to 1.
XDON	Used to turn on the whole gate driver. After register settings, the command will be issued from the XDON pin. The DDCK will stop with the XDON set to 1. The electricity of the LCD panel will be instantaneously discharged. Therefore, this bit may be used to take immediate countermeasures against the dropping out of the battery.

SPECIFICATIONS	

Total pages

MNF8931BK-C

Page

50

6.7.3 Each Voltage Setting

The following voltage settings are made for the MN863480.

Table 6.7.3 (1) Each Voltage Setting 1

Name	Explanation	Control bit		Possible voltage range	
4 Tinn	Power source for source driver LCD drive	CPA[1:0]	Used to set the voltage step-up rate for AVDD generation	3.5 V to 5.5 V	
AVDD	system	AVD[3:0]	Fine voltage adjustment for AVDD generation		
VREFH	Reference voltage to drive source driver gradation	VRFH[4:0]	VREFH voltage adjustment	3.0 V to AVDD - 0.5 V	
	Opposite electrode	VCMH[5:0]	VCOMH voltage adjustment	<vcomh></vcomh>	
VCOM	(set high-level voltage and amplitude because the current alternates)	VCMPL[4:0]	VCOM amplitude adjustment	<pre>1.0 V to VREFH <amplitude> 2.0 V to 6.0 V</amplitude></pre>	
	Gate driver OFF potential (set intermediate voltage and amplitude	VOFFL[4:0]	VOFFL voltage adjustment	<voffl> -4 V to VEE + 0.5 V</voffl>	
VOFF	because the current alternates)	VOFFPL[5:0]	VOFF amplitude adjustment	<amplitude> 2.0 V to 9.0 V Provided, VOFFH ≤ −2 V</amplitude>	
VGG	VGG/VEE potential of gate driver	CPB[1:0]	VGG/VEE step-up voltage multiplication rate setting	± 9.4 V to 17.5 V	

Table 6.7.3 (2) Each Voltage Setting 2

Name	Explanation	Control bit		Possible voltage range
VCOM	Opposite electrode	LICE IC	NCOMMORE	Both fixed at ground level when both
VOFF	Gate driver OFF potential	VCMG	settings	VCOM and VOFF set to 0.
VCOM VOFF	Amplifier capability specifications	LPM[2:0]	Capability adjustments	See the specifications of the gate driver.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

		MNF8931BK-C							
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages—Page							
6.8 Command Trans	er to MN863480 (Gate Driver/Power Supply IC)								
The MN863480 (g as specified below	The MN863480 (gate driver/power supply IC), which is used in combination with this IC, is controlled as specified below.								
(1) Set the gate d (2) Set 1 to the D	 (1) Set the gate driver/power supply IC control register of the IC. (2) Set 1 to the DTRN bit for serial transfer of commands. 								
Command transfer The completion of the DTRN bit will	Command transfer is performed with the clock of the built-in oscillation circuit as explained below. The completion of command transfer requires a maximum of 18 clock pulses. On completion of command transfer, the DTRN bit will be automatically cleared and set to 0.								
Note: The next comma transferred. If the DTRN bit	nd can be transferred after a minimum interval of 110 μ s, c s set to 0 while in transfer, nothing will be transferred.	otherwise	the comma	and will n	ot be				
<command, except="" inde<="" td=""><td>(100)></td><td></td><td></td><td></td><td></td></command,>	(100)>								
	An interval of 110 µs is required after transfer of a comr	mand	Next comm	and transfer	accentable				
	Transfer period: 18 clock pulses max	→							
	1 2 3 4 15 16 17	7 18	1 :	2					
Oscillation clock —									
DTRN command —									
DDSCK —			<u> </u>	\frown					
DDSDA	D15 D14 D13 D2 D1 D0	<u>}</u>		\mathbf{X}					
DDSCS	······	\checkmark							
	Command determined = Command executed	*							
<command for="" index(100<="" td=""/> <td>)> An interval of 110 μs is required after transfer of a com</td> <td>mand</td> <td></td> <td></td> <td></td>)> An interval of 110 μs is required after transfer of a com	mand							
	•		•						
	Transfer period: 18 clock pulses max. 1 2 3 4 15 16 17	▶ 7 18							
Oscillation	└ <u>╷</u> ╷╷ _╋ ╷╴╷╷╷╷╷╴╴╴╴╴╷╴╷╷╷╷	╻							
DTRN									
DDSCK -	Transfer accepted			\frown					
DDSDA	D15 \ D14 \ D13 \ D2 \ D1 \ D0			\					
DDSCS]							
	/	7							
	Command determined Com	nmand exe	cuted						
	SYSTEM LSI DIVISION,	SEMIC	ONDUCT	OR CON	MPANY				
ESTABLISHED REV	ISED MATSUSHITA ELE	ECTRIC	INDUST	RIAL CO)., LTD.				

SPECIFICATIONS

MNF8931BK-C

Total pages

Page 52

7. Command Function

7.1 List of Command

7.1.1 Memory Control Command

Memory Control Command (1)

Address	Function	RW		Data	De	scrip	ription I		
			D7		Address increment	0	X direction	0	
			D7	ADIR	direction	1	Y direction	0	
			D /		X 11 F C		Non-reverse	0	
			D6	XDIR	X address direction	1	Reverse	0	
							Non-reverse		
			D5	YDIR	Y address direction	1	Reverse	0	
	Momory operation		D4	BODR	Used to specify GRAM write data in 16-bit.	0	16 bits \times 2: Right aligned	0	
00h	mode	RW			260000-color mode.	1	16 bits \times 2: Left aligned	-	
			D3	AEMODE	Access range end-point	0	Specify end address	0	
			05	MEMIODE	specification mode	1	Specify access width less 1	0	
			D2	SDIR	Source driver direction (in correspondence of GRAM X address "0" to	0	0 175	0	
					"175" to driver output pin)	1	175 0		
			D[1:0]		Not	t used	1	-	
			D7	WM	Used to execute window	0	Normal	0	
			27		mask write	1	Window mask mode		
			D6	WMMODE	Window mask mode	0	Inside window mask	0	
			20	WINNODE	w mask mode	1	Outside window mask	0	
	M		D[5:4]	Not used					
01h	command	RW		RAMCLR	Used to clear the RAM	0	Normal		
	command		D3		This bit will be automatically			0	
					cleared after the RAM is cleared.	1	Used to clear the RAM.		
			D[2:0]	CLR_COL [2:0]	Used to specify RAM	D[2	D[2]: R data		
						D[1	7h		
					clear color.	D[0			
02h	X start point of memory access range	RW	D[7:0]	XAS[7:0]	X start point	<ai The r</ai 	EMODE set to 0> rectangular range of access to the	00h	
03h	Y start point of memory access range	RW	D[7:0]	YAS[7:0]	Y start point	speci point The f XAS	Field by XAE and YAE and the end- specified by XAE and YAE. 'ollowing conditions must be satisfied. < XAE	00h	
04h	X end point of memory access range	RW	D[7:0]	XAE[7:0]	X end point	<pre>YAS <ai gra="" pre="" r="" speci<="" the=""></ai></pre>	CHAE Control	FEh	
05h	Y end point of memory access range	RW	D[7:0]	YAE[7:0]	Y end point	width In an effec	specified by XAE and YAE. y case, the range must be within the tive range of the GRAM.	FEh	

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

MNF8931BK-C

Total pages

Page 53

Date Prepared :03/12/'03

Memory Control Command (2)

Address	Function	RW		Data	Des	scripti	on	Default	
O6h	X start point of window mask range	RW	D[7:0]	WMXS[7:0]	X start address of window mask	The re the sta	ctangular mask range of the GRAM is designated by art point specified by the WMXS and WMYS and	FFh	
O7h	Y start point of window mask range	RW	D[7:0]	WMYS[7:0]	Y start address of window mask	the en WMX follow	d-point specified by the WMXE and WMYE. The S, WMXE, WMYS, and WMYE must satisfy the ting conditions	FFh	
O8h	X end point of window mask range	RW	D[7:0]	WMXE[7:0]	X end address of window mask	WMX WMY	S < WMXE S < WMYE	FFh	
O9h	Y end point of window mask range	RW	D[7:0]	WMYE[7:0]	Y end address of window mask	The ra otherv	nge must be within the GRAM access range, wise the GRAM will not be masked correctly.	FFh	
			D[7:6]		Not	used			
OAh	Bit mask function 1	RW	D[5:0]	BMSKR[5:0]	Bit mask setting R	0	Not masked Masked	00h	
			D[7:6]		Not	used			
OBh	Bit mask function 2	RW	D[5:0]	BMSKG[5:0]	Bit mask setting G	0	Not masked	00h	
			D[7.6]		Niste	1	Masked		
OCh	Dit most function 2	DW	D[7:0]		Nöt	used	NI-4 modes d		
OCII	Bit mask function 5	K W	D[5:0]	BMSKB[5:0]	Bit mask setting B		Modrad	00h	
			D(7.41		Not	1 used	Masked		
			D[7:4]		This bit assigns alignment swap for writing	uscu	ura a		
				3 RGBSW		(correspondence of R,G,B YR.YG.YI			
			D3		data from Host and RGB of source driver output.	1	With swap (correspondence of R,G,B YB,YG,YR)	U	
		-	D2	DMWD	GRAM write port selection.	0	CPU interface mode	0	
			02	KW WK	a write port to the GRAM	1	RGB interface mode	U	
ODh		RW	DI	RGBIF	Used to set the bus width of the data pin for GRAM access when the RGB interface	0	18-/16-bit mode	0	
				KODI	is used.	1 8-/6-bit mode		0	
	GRAM interface mode		D0	RMIE	GRAM transfer mode setting. Used to specify the number of bits of GRAM transfer data from the host. The method of data transfer from the host	0	18 bits (260,000 colors)	0	
			50	INIT II.	to the GRAM will be determined by this bit in combination with the IFMODE[1:0] pin or RGBIF bit setting.	1 16 bits (65,000 colors)		v	
OEh	Memory write	W	Display RA	M write	-				
OFh	Memory read	RW	Display RA	M read					

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

MNF8931BK-C

Total pages

Page 54

7.1.2 Display Control Command

Display mode control	RW	D[1:0]	DIGD		00	Display OFF (stop)		
Display mode control	RW	D[1:0]				00 Display OFF (stop)		
Display system V			DISP	Display mode	01	All white display	0	
Display system V				1	10	Normal display	2	
Display system V					11	Partial display		
	RW	D7	VSYMODE	Display system V sync mode	0	Internal V sync (self-running)	0	
sync mode					1	External V sync		
•	-	D[6:0]		Not	used			
D' 1 1.	-	D[7:1]		Not	used	NT 1		
Display data reversion	RW	D0	DISPINV	Display data reversion	0	Normal	0	
		DIE 11		N. c		Display data reversed		
Destal exactly disarbase	-	D[7:1]		Not	used	N1		
Partial scroll display	RW	D0	SCRON	Partial scroll display ON	0	Normal Destial coroll display	0	
		D[7:4]		Not	I	Partial scroll display		
	-	D[7:4]		1001				
					00	RM SB is used		
					<u> </u>		{	
					01	Non-reverse/reverse pattern phase fixed		
		D[3:2]	RLSB[1:0]	RLSB control			0	
					10	Reverse/non-reverse pattern phase fixed	-	
						Reverse/non-reverse pattern		
	DT				11	: Phase reversed frame by frame		
Gradation LSB control	RW							
						BM SB 1s used		
					A1	New groups for the 1 cm		
		DITO	DI (D[1.0]		01	ivon-reverse/reverse pattern phase fixed	0	
		D[1:0]	DT2R[1:0]	DLSB CONTROL	10	Davarsa/non reverse nottern - has f - 1	0	
					10	Reverse/non-reverse partern phase fixed		
					11	Reverse/non-reverse pattern		
						: Phase reversed frame by frame		
Display start line address	RW	D[7:0]	LAS[7:0]	Display start line address			00h	
Partial scroll setting 1	RW	D[7:0]	SCRN[7:0]	Number of scrolled lines setting			00h	
Partial scroll setting 2	RW	D[7:0]	SCRS[7:0]	Scroll area start point setting	Not e	enabled in FF mode	FFh	
Partial scroll setting 3	RW	D[7:0]	SCRE[7:0]	Scroll area end point setting			FFh	
Partial display setting 1	RW	D[7:0]	MASKS1[7:0]	Non-display area start point 1	Outs	ide display area disabled	FFh	
Partial display setting 2	RW	D[7:0]	MASKE1[7:0]	Non-display area end point 1	Outs	ide display area disabled	FFh	
Partial display setting 3	RW	D[7:0]	MASKS2[7:0]	Non-display area start point 2	Outs	ide display area disabled	FFh	
Partial display setting 4	RŴ	D[7:0]	MASKE2[7:0]	Non-display area end point 2	Outs	ide display area disabled	FFh	
Domiol dimber of	DW 7	D[7:0]	DED[7-0]	Dantial diambar	Cycle	e - 1 15 set	051	
Fartial display setting 5	ĸw	ע[/:0]	Kf'K[/:0]	Partial display refresh cycle	Initia	ii value: 15 Irames	UEh	
		D[7.5]			I'FII:	ואס וכווכאו		
H-cycle setting	- pw	D[7:0]	HCNT[4:0]	NOL Setting number of 1H clock pulses 1	useu Defoi	ult value: (18h -> 12 clock nulses	0Rb	
	ĸ₩	J[4.0]	110111[4.0]	Corresponde to the upper Q hits of the	Dera	un value. 001 -> 12 clock puises	UDII	
				V count	1V-	$(VCNT + 1) \times 4H$		
V-cycle setting	RW	D[7:0]	VCNT[9:2]	•00h to FFh settings correspond to 4 to	Defa	ult value: $1V = 300$ lines	4Ah	
				1024 lines.	2010			
	Display data reversion Partial scroll display Gradation LSB control Display start line address Partial scroll setting 1 Partial scroll setting 2 Partial scroll setting 3 Partial display setting 4 Partial display setting 5 H-cycle setting V-cycle setting	Display data reversion.Partial scroll display.Partial scroll display.Gradation LSB controlRWGradation LSB controlRWDisplay start line addressRWPartial scroll setting 1RWPartial scroll setting 2RWPartial display setting 3RWPartial display setting 3RWPartial display setting 4RWPartial display setting 5RWPartial display setting 5RW	.D[7:1]Display data reversionRWD0Partial scroll displayRWD0Partial scroll display.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Ruin.D[7:4]Partial scroll setting 1RWD[7:0]Partial scroll setting 2RWD[7:0]Partial display setting 1RWD[7:0]Partial display setting 3RWD[7:0]Partial display setting 4RWD[7:0]Partial display setting 5RWD[7:0]Partial display setting 5RWD[7:0]Par	.D(7:1)IDisplay data reversionRWD0DISPINVPartial scroll display.D(7:1)IPartial scroll display.D(7:4)IPartial scroll display.D(7:4)IPartial scroll display.D(7:4)IRWD(3:2)RLSB[1:0].Gradation LSB controlRWD(3:2)RLSB[1:0]Display start line addresRWD(7:0)LAS[7:0]Partial scroll settingRWD(7:0)SCRN[7:0]Partial scroll settingRWD(7:0)SCRS[7:0]Partial display settingRWD(7:0)MASKS1[7:0]Partial display settingRWD(7:0)MASKE1[7:0]Partial display settingRWD(7:0)MASKE2[7:0]Partial display settingRWD(7:0)MASKE2[7:0] <td>D[7:1].Not iDisplay data reversionRWD0DISPINVDisplay data reversionPartial scroll display.D[7:1]Partial scroll display ONRWD0SCRONPartial scroll display OND[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4].<</td> <td>.D[7:1]$\begin{tabular}{ c$</td> <td>Image: biase of the sector of the s</td>	D[7:1].Not iDisplay data reversionRWD0DISPINVDisplay data reversionPartial scroll display.D[7:1]Partial scroll display ONRWD0SCRONPartial scroll display OND[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[7:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4]D[1:4].<	.D[7:1] $\begin{tabular}{ c $	Image: biase of the sector of the s	

SPECIFICATIONS

MNF8931BK-C

Total pages

Page 55

7.1.3 LCD Driver Control Command

		RW	D[7:5]	CST [2:0]		10.	102 outputs	
				OSL[2.0]	Used to set the number of	10×	192 Outputs	
					output points of the gate	110	220 outputs	110
					driver. Set I to the GSL[2].	111	240 outputs	
		RW	D4	GDIR	Gate driver shift direction	0	Non-reverse (1 to 240)	0
	Driver setting 1 (Usually used for initialization)					1	Reverse (240 to 1)	
20h		RW	D[3]	GSCN	Used to set the scan mode of the gate driver according to the mounting method.	0	Panel single-side connection scan Panel both-side connection	0
		initialization)	RW	D[2:1]	GCHS[1:0]		00	Center output disabled
					Used to set the output channel point of the gate driver according to the mounting	01	X240-side output disabled	
					method. • Enabled when the GSCN is set to 0	10	X1-side output disabled	00
					Set the value to 00 when the GSCN is set to 1.	11	Setting prohibited	
		-	D[0]		Not used			1
		RW	D7	FRPOL	Used to set the alternation	0	1H line alternation drive	0
					drive mode.	1	Frame alternation drive	
		RW	D[6:4]	SAMP[2:0]	Used to set the drive capability	000	: Stop	
					of the operation amplifier of the source driver.	001 (Settin	lowest) to 101 (highest) g to 110 or 111 is prohibited.	011
	Driver setting 2	DW	D[2]	AMPSWON	Used to control the output timing of the	0	1H before display	0
	(Used to set the	ĸw	נטע		source driver at the time of gradation driving	1	4H before display	0
21h	desired drive mode)	RW	D2	AMPON	Used to control amplifier drive	0	Drive according to the OEH*	0
					within a period of 1H.	1	Normally driven	0
		DW	DI	001	Used to select gradation drive	0	Binary drive	1
		RW	DI	COL	or binary drive.	1	Gradation drive	1
		RW	D0	RSWON	Used to turn on the connection of VREF resistor to the source driver during blanking periods	0	Off	1
					while in gradation drive mode.	1	On	
	OEV assertion	-	D[7:5]	Not used		Asset	0.01	
22h	timing	RW	D[4:0]	OEVA[4:0]	OEV assertion timing (Number of CKs)		ble if any set value is larger	00h
	OEV negation	-	D[7:5]		Not used	than t value	(i.e., the number of clocks for	
23h	timing	RW	D[4:0]	OEVN[4:0]	OEV negation timing (Number of CKs)	a per	od of 1H).	00h
	OEH assertion	-	D[7:5]		Not used	0Bh,	the set value must be 0Bh or	
24h	timing	RW	D[4:0]	OEHA[4:0]	Source drive timing(Number of CKs)	less.) If OE	$A > OE^*N$, the waveform	00h
	OEH negation	-	D[7:5]		Not used	will b	e inverted.	
25h	timing	RW	D[4:01	OEHN[4:0]	Source stop timing(Number of CKs)	OE*A	A = CE*N.	00h
			[]		Used to set drive data in continuous courses	0	VREFH level	
		RW	D7	BLKSD	driving during vertical blanking.	1	V _{REFL} level	1
S	ource driver drive				Used to control the source driver	0	Driven according to OEHE.	
26h	(NOEH)	RW	D6	OEHON	drive during vertical blanking.	1	NOEH: Always ON	0
e	expansion timing				Number of continuous sources drive lists (0.4-		(V) during vorticel blanking	
		RW	D[5:0]	OEHE[5:0]	The initial value is 2 lines.	, 03 Cł	•) during verucai Dianking.	02h
		-	D7		Not used			
	VCOM drive	RW	D6	VCOMON	Used to control the VCOM	0	Driven according to the VCOME.	0
27h	(VCOMEN)	17.44	00	*CONON	drive during vertical blanking.	1 Normally driven		0
6	expansion timing	RW	D[5:0]	VCOME[5:0]	Number of continuous VCOM drive lines duri The initial value is 1 line.	ing vei	tical blanking (0 to 63 CKV)	01h

Date	Prepared :03/12/'03	
------	---------------------	--

MNF8931BK-C

Total pages

Page 56

7.1.4 Image Quality Adjustment Command

Address	Function	RW		Data	E	Descripti	on		Default	
		-	D[7:6]		No	ot used				
			D5	RADI(5)	Used to specify data addition or	1	Subtraction		0	
28h	R color adjustment	RW	55	KADJ[5]	subtraction.	0	Addition		0	
		KW	D[4:0]	RADJ[4:0]	Used to specify the quantity of data for re The data will be added to or subtracted fro	ed adjust om R_R/	ment. AM data R[5:0].		00h	
		-	D[7:6]		No	ot used				
			D5	GAD[[5]	Used to specify data addition or	1	Subtraction		Ob	
29h	29h G color adjustment	G color adjustment	PW	55	UADJ[5]	subtraction.	0	Addition		on
			D[4:0]	GADJ[4:0]	ADJ[4:0] Used to specify the quantity of data for green adjustment.					
			D[7:6]		The data will be added to of subtracted fits	ni O_K	Alvi data O[5.0].			
		-	D[7:0]		Used to specify data addition or	1 used	Subtraction			
2Ah	B color adjustment	DW	D5	BADJ[5]	subtraction.	0	Addition		Oh	
	ZAII B color adjustment	RW	D[4:0]	BADJ[4:0]	Used to specify the quantity of data for b		00h			
2Ph					The data will be added to or subtracted fro	/III D_R	ani data b[5.0].			
2BII to		-	D[7:0]		No	nt used				
30h										
		-	D7		No	ot used				
31h		w	D[6:4]	GMPn	Gamma correction control during positive	e driving	r.		04h	
to	Gamma adjustment				n: 1 to 62h corresponds to addresses 30h	+ n.				
		-	D3		No	ot used				
6Eh		w	D[2:0]	GMNn	n: 1 to 62n corresponds to addresses 30h	e drivin + n.	<u>g</u> .		04h	
6Fh		-	D[7:0]		No	ot used				

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

MNF8931BK-C

Total pages

57 Page

7.1.5 Power Supply System Control Command Power Supply System Control Command 1

Address	Function	RW		Data		Description		
		RW	D[7]	OSCON	Oscillation clock operation control	0	Stop Output	0
		RW	D[6]	DDCKON	Voltage step-up clock output control (Fixed at low level when the clock stops)		Stop Output	0
70h	Power supply	RW	D[5:4]	DDCKF[1:0]	Used to set the frequency dividing ratio of the step-up clock DDCK.	00 01 10	$\label{eq:1} \begin{array}{l} 1H \\ \mbox{Original oscillation } clock \times 1/4 \\ \mbox{Original oscillation } clock \times 1/2 \end{array}$	- 00
	operation mode	RW	D[3]	VCMG	Used to set VCOM output and VOFF output operation of the MN863480.	11 0 1	Original oscillation clock x 1 Both fixed at ground level	0
		RW	D[2:0]	DDC[2:0]	Used to set the method of using for the MN863480. Used to adjust the capability of Set the value between 000 and	the	voltage step-up clock voltage step-up circuit.	000
		-	D[7]		Not used			
			D[6:4]	DIDX[2:0]	Used to specify command trans	fer o	lata to the MN863480.	0h
			D[3]	XDON	Used to ON-control of the whole gate driver.	0	Normal Whole gate ON	0
71h	Command transfer to MN863480	nmand transfer MN863480 RW	D[2]	DSCG	Used to specify the discharging of the power supply IC.	0	Normal Discharge specified	0
			D[1]	SLP	Used to control the sleep mode.	0	Normal Sleep mode specified	0
			D[0]	DTRN	Used to transfer MN863480 control commands in series.	0	Standby	0
						1	Transfer	┞──┤
	MN863480	RW	D[7:6]	CPA[1:0]	Setting of voltage step-up circuit 1. See Specifications of MN863480.	00 01 10 11	Voltage step-up stop Voltage step-up stop See the Specifications of the MN863480. See the Specifications of the	00
	Power control (Adjustments to the multiplication ratio, capability,				Setting of voltage step-up		Voltage step-up stop See the Specifications of the MN863480.	
72h	operation/stop control of the voltage step-up circuit and	RW	D[5:4]	CPB[1:0]	See Specifications of MN863480.	10 11	See the Specifications of the MN863480. See the Specifications of the MN863480.	00
	operational amplifier)	<u> </u>			<u> </u>	(0000: Amplifier stop	
		RW	D[3:0]	AMP[3:0]	Used to specify the capability of the amplifier of the power supply IC.	Se	e the Specifications of the MN863480.	0000

ESTABLISHED	REVISED

SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

MNF8931BK-C

Total pages

Page 58

Power Supply System Control Command 2

Address	Function	RW		Data	Des	scription	Default		
	Power supply	RW	D[7:4]		Not used				
73h	setting 1	RW	D[3:0]	AVD[3:0]	AVDD voltage setting	A voltage of 3.5 V to 5.5 V Refer to the explanation about the command.	0h		
	D	RW	D[7:5]		· · ·				
74h	setting 2	RW	D[4:0]	VRFH[4:0]	V _{REFH} voltage setting (setting 18h to 1Fh prohibited)	A voltage of 3.0 V to 5.0 V Refer to the explanation about the command.	3h		
	Power supply	RW	D[7:6]		Not u	ised			
75h	setting 3	RW	D[5:0]	VCMH[5:0]	VCOMH voltage setting	A voltage of 1.0 V to 5.5 V Refer to the explanation about the command.	Oh		
	Douor supply	RW	D[7:5]		Not u	ised			
76h	setting 4	RW	D[4:0]	VCMPL[4:0]	VCOM amplitude setting	An amplitude of 2.0 V to 6.0 V Refer to the explanation about the command.	1 h		
	Dourn gunnlu	RW	D[7:5]		Not u	ised			
77h	setting 5	RW	D[4:0]	VOFFL[4:0]	VOFFL voltage setting	A voltage of VEE+0.5 V to -4 V Refer to the explanation about the command.	1 h		
		RW	D[7:6]		Not u	ised			
78h	Power supply setting 6	RW	D[5:0]	VOFFPL[5:0]	VOFF amplitude setting	An amplitude of 2.0 V to 9.0 V (Within the following range. VOFFL VEE + 0.5 V; VOFFH -2V) Refer to the explanation about the command.	1h		
	Power supply	RW	D[7:4]	CKVPW	Used to make CKV pulse width adjustments	1 to Fh settings will set the CKV's H width between 1 and 15 clocks. Set the value to 4h.	4h		
79h	circuit capability	-	D[3]		Not u	ised	•		
	adjustment	RW	D[2:0]	LPM	Used to make capability adjustments to the VOFF and VCOM power supply circuit.	See the Specifications of the MN863480.	Oh		
		-	D[7:1]		Not u	ised	-		
7Ah	Software reset	w	D[0]	SRESET	Used to initialize the register value. The OSCON bit will not be influenced.	The bit will be automatically cleared and set to 0 after the register is initialized. Enabled only when the clock is oscillating.	0		

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

ESTABLISHED

REVISED

Page

Total pages

7.1.6 Details of Gate Driver/Power Supply IC (MN863480) Command Transfer

After the control register of the gate driver/power supply IC (MN863480) is set, the command with the following details will be transferred with the transfer command specified by the DIDX[2:0] set value and the DTRN set to 1.

After the automatic transfer of the command, the DTRN bit will be cleared automatically. Then, by setting DIDX[2:0] to 111, the command to initialize the MN863480 will be transferred.

	Transfer data														
E	DIDX[2:	:0]						Command							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	CPA[1:0] CPB[1:0]					AMP[3:0] DDC[2:0]]	-	DSCG
0	0	1	VRFH[4:0]						AVD[3:0] LPM[2:				LPM[2:0]]	-
0	1	0			١	/CMH[5:0	0]			V	CMPL[4	:0]		-	VCMG
0	1	1	0	-		VC)FFL[4:0)]				VOFFP	L[5:0]		
1	0	0		GSL[2:0]	[2:0] GDIR GSCN			GCHS	5 [1:0]	-	-	-	-	-	-
1	1	1	1	1	0	-	-	-	-	-	-	-	-	-	-

The following bits can be set while the transfer command is transferred (with the DTRN set to 1).

SLP set to 1:	The DIDX[2:0] will be fixed at 000. Then, data on the CPA, CPB, and AMP bits all set to 0 will be transferred (i.e., the command to stop the power supply circuit will be transferred). Transfer data on the DSCG bit depends on the setting in the DSCG bit.
	In the above case, the voltage step-up clock DDCK will automatically stop.
DSCG set to 1:	The DIDX[2:0] will be fixed at 000. Then data on the CPA, CAPB, and AMP bits all set to 0 and the DSCG bit set to 1 will be transferred (i.e., when the power supply circuit stops, the electricity of the output voltage of the power supply circuit will be discharged).
VDON and the 1.	In the above case, the step-up clock DDCK will automatically stop.
ADON SET IO 1.	transferred. Transfer data on the DSCG bit depends on the setting in the DSCG bit. Simultaneously, the XDON pin will be active (set high), the gate will be all ON, and the electricity of the LCD panel will be
	discharged instantly.
	In the above case, the voltage step-up clock DDCK will automatically stop.
Notes:	(1) Command transfer will not be executed by just setting the above bits (SLP, DSCG, and XDON). Command transfer will be executed with the DTRN set to 1 as well.
	(2) The setting of each of the above bits will not refresh any bit of the power control register. Only the register value on the gate driver side will be refreshed.
	(3) After the power supply circuit is stopped by using the above setting, to start the power supply circuit again, set the value in the power control register as required and execute command transfer to start power supply circuit. At that time, when DTRN is set to 1, set 0 to the above bits and execute command transfer.
	At that time, when DTKIV is set to 1, set to to the above bits and execute command transfer.
Resetting Gate D	river/Power Supply IC (MN863480)
8	By transferring data on D12 and D11 set to 1 and D10 set to 0 with the DIDX[2:0] set to 111,
	the gate driver/power supply IC (M863480) will be reset and the resisters will be initialized.
	D15 to D11 will be all set to 1 (i.e., D [15:11] will be set to 11111) to rest. The reset state will be
	canceled by setting 0 to D10.
	SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

MNF8931BK-C

Total pages

Page 60

7.1.7 Other Commands (Test and Other Registers)

Address	Function	RW		Data	Descriptio	n		Default
80h	Read address register	RW	D[7:0] RADR[7:0]		Used to set the address of the de read.	sire	d register to be	00h
* The foll	owing addresses : 81h ~ 84	h , 90)h ~ 94h	are used for IC	tests.			·
81h	Oscillation circuit test 1	RW						00h
82h	Oscillation circuit test 2	RW						3Fh
83h	Operational amplifier test	RW						03h
84h	RAM test	RW						05h
		-	D[7:4]	Blank bit (vacant	bit)			
		DW	D[2]		Indicate previous line data	0	Ignore conflict	0
		ĸw	D[3]	AKB_LD	when conflict happen.	1	Refer to description	- 0
		pw	D[2]	ARB_AUTO	Indicate arbitration by delay circuit when conflict happen.	0	Ignore conflict	1
85h	Arbitration mode	K.	D[2]		This mode can access to limited frequency.	1	Refer to description	
		DW	D[1]	APR OFV	Indicate previous frame data	0	Ignore conflict	0
		K VV	D[1]	ARB_OEV	when conflict happen.	1	Refer to description	
		RW	D[0]	ARB RTRY	Extend H cycle when conflict		Ignore conflict	0
			-1.1		conflict.	1	Refer to description	-
90h	Internal counter test 1	R					1	-
91h	Internal counter test 2	R						-
92h	Internal counter test 3	R						-
93h	Internal counter test 4	R						-
94h	Internal counter test 5	R						-
F0h	Device ID read	R	Able to	read device ID				31h
F1h	Deveice REV read	R	Able to	read device REV				00h

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

			MNF893	31BK-C	
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	61

8. Commands

8.1 Memory Control Commands

8.1.1 Memory Operation Mode Specifications (00h)

Address	RW				Da	ta			
0.0 h	ъw	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0011	R W	ADIR	XDIR	YDIR	BODR	AEMODE	Unused	Unused	Unused
Initial v	/alue	0	0	0	0	0	-	-	-

• ADIR[D7]: Specifies Address Increment Direction

This bit is used to specify the direction of address increment at the time of writing data to the GRAM. With this bit set to 0, addresses will be counted in the X direction (i.e., the scan direction of the source driver). With this bit set to 1, addresses will be counted in the Y direction (i.e., the scan direction of the gate driver).

- XDIR[D6]: Specifies the Method of Address Count in the X Direction This bit is used to specify the method of address count in the X direction at the time of writing data to the GRAM. With this bit set to 0, addresses will increase in the X direction. With this bit set to 1, addresses will decrease in the X direction.
- YDIR[D5]: Specifies the Method of Address Count in the Y Direction

This bit is used to specify the method of address count in the Y direction at the time of writing data to the GRAM. With this bit set to 0, addresses will increase in the Y direction. With this bit set to 1, addresses will decrease in the Y direction.

The above ADIR, XDIR, and YDIR bits specified are valid for GRAM write access. These bits have no influence on any data written to the GRAM.

See Section 6.2.3 for details.

• BODR[D4]: Specifies GRAM Write Data Format in 16-bit, 260000-color Mode

This bit is used to specify the reception of image data when the 18-bit data from the host is received through the 16-bit bus.

With this bit set to 0, the data will be aligned to the right.

It will be possible to specify the reception of image data in 16-bit, two-time transfer aligned to the right. With this bit set to 1, the data will be aligned to the left.

It will be possible to specify the reception of image data in 16-bit, two-time transfer aligned to the left.

See Section 6.1.5 for information on the CPU interface in 16-bit mode.

• AEMOD[D3]: Specifies Access Range End-point Specification Mode

This bit is used to specify how to set address XAE data and address YAE data that specify the access range. With this bit set to 0, the GRAM access range will be specified by the start and end addresses.

The start address is specified by the XAS and YAS, and the end address is specified by XAE and YAE based on the start point.

With this bit set to 1, the access width will be specified.

Set the address values XAE and YAE to access width -1 to specify the access width in X direction and that in the Y direction. If 0 is set, a single dot will be overwritten.

By using this function, when GRAM data in a certain width needs to be overwritten continuously, for example, the GRAM data can be overwritten by just specifying the start address. This will reduce the number of address specifying times.

See Section 6.2.4.

• S DIR [D 2]: Assign shift direction of source driver Bit which assign driver output pin support G R A M X direction address "00" to "175".

SDIR is set to 0: Normal ; When X address set "00" to "175", driver output is "00" to "175". SDIR is set to 1: Reverse ; When X address set "00" to "175", driver output is "175" to "00".

See Section 6.2.3.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Total pages

Page 62

8.1.2 Memory Control Command (01h)

Address	RW		Data						
0.1 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
UTN	RW	WM	WMMODE	Unused	Unused	RAMCLR	CL	R_COL[2:	0]
Initial v	alue	0	0	-	-	0	1	1	1

• WM[D7]: Window Mask Function Enabled

This bit is used to enable or disable the window function.

This mask processing is valid for the whole bits of image data.

Specify a bit mask when masking each bit of image data.

With the bit set to 0, the window mask function will be disabled.

With the bit set to 1, the window mask function will be enabled.

Data to be written to the GRAM will be masked if the data is in the range specified by the window mask range registers (WMXS, WMXS, WMXE, and WMYE).

See Section 6.2.5.

• WMMODE[D6]: Specifies Window Mask Mode

This bit is used to switch the valid window mask range.

With the bit set to 0, the IC will be in inside-window mask mode.

Data to be written to the GRAM will be masked if the data is inside the range specified by the window mask range registers (WMXS, WMYS, WMXE, and WMYE) including the borderline.

With the bit set to 1, the IC will be in outside-window mask mode.

Data to be written to the GRAM will be masked if the data is outside the range specified by the window mask range registers (WMXS, WMYS, WMXE, and WMYE) including the borderline.

See Section 6.2.5 for information on the window mask function.

• RAMCLR[D3]: Specified GRAM Clear

This bit is used to specify GRAM clear.

With the bit set to 0, the IC will be in normal mode.

In this case, the GRAM will not be cleared.

With the bit set to 1, the GRAM will be cleared.

The bit specified by the CLR_COL[2:0] will clear the GRAM. When the GRAM is cleared, the bit will be cleared as well automatically and set to 0. While the GRAM is being cleared, the data in the GRAM will not be guaranteed if the host gains access to the GRAM. If the RAMCLR is set to 0 while the GRAM is being cleared, the GRAM clear operation will be interrupted. At that time, the contents of the display will not be guaranteed. The GRAM clear function is used together with the GRAM access area, window mask, and bit mask specification. The masked area will not be GRAM cleared.

See Section 6.2.6.

• CLR_COL[D2:D0]: Specifies GRAM Clear Color

This bit is used to specify which bit is used to clear the GRAM.

D[2]: Corresponds to R data.

When the bit is set to 0, R is OFF. When the bit is set to 1, R is ON.

D[1]: Corresponds to G data.

When the bit is set to 0, G is OFF. When the bit is set to 1, G is ON.

D[0]: Corresponds to B data.

When the bit is set to 0, B is OFF. When the bit is set to 1, B is ON.

[D2:D0] in combination: The GRAM clear function can be executed with white, black, R, G, B, yellow, magenta, or cyan.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Total pages

Page 63

8.1.3 Memory Access Range

Address	RW				Da	ta					
0.2 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
υzn	RW	X A S [7 : 0]									
Initial v	alue	0	0	0	0	0	0	0	0		
0.2 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0.511	K VV	YAS[7:0]									
Init t		0	0	0	0	0	0	0	0		
046	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0411	K VV				XAE[7:0]					
Initial v	alue	1	1	1	1	1	1	1	0		
0 E b	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
	K VV				YAE [7:0]					
Initial v	alue	1	1	1	1	1	1	1	0		

- Memory Access Range X Start Point Specification Command (02h) XAS[D7:D0]
- Memory Access Range Y Start Point Specification Command (03h) YAS[D7:D0]
- Memory Access Range X End Point Specification Command (04h) XAE[D7:D0]
- Memory Access Range Y End Point Specification Command (05h) YAE[D7:D0]

These bits are used to specify the write/read range in the GRAM from the host by the XAS, YAS, XAE, and YAE. Do not specify the range outside the effective display range, otherwise the displayed contents on the LCD will not be guaranteed. Be sure to specify the range inside the effective display range.

<AEMODE Set to 0>

The rectangular range of access to the GRAM is designated by the coordinate points XAS and YAS together with XAE and YAE.

The following conditions must be satisfied. $XAS \le XAE \le Valid$ display value in X direction $YAS \le YAE \le Valid$ display value in Y direction

<AEMODE Set to 1>

The rectangular range of access to the GRAM is designated by the start address specified by the XAS and YAS and the access width specified by the XAE and YAE.

The following conditions must be satisfied.

 $XAS + XAE \leq Valid \text{ display value in } X \text{ direction}$

 $YAS + YAE \le Valid display value in Y direction$

See Section 6.2.4.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

64 Page

Date Prepared :03/12/'03

Total pages

8.1.4 Window Mask Range

Address	RW	Data									
0.6 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0.011	K VV	WMX S [7 : 0]									
Initial v	alue	1	1	1	1	1	1	1	1		
0.7 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0711	K VV	WMYS [7:0]									
Initial v	alue	1	1	1	1	1	1	1	1		
0.9.6		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0 0 11	R VV	WMXE[7:0]									
Initial v	alue	1	1	1	1	1	1	1	1		
0.0 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0911	K VV				WMYE	[7:0]					
Initial v	alue	1	1	1	1	1	1	1	1		

- Window Mask X Start Point Specification Command (06h) WMXS[D7:D0]
- Window Mask Y Start Point Specification Command (07h) WMYS[D7:D0]
- Window Mask X End Point Specification Command (08h) WMXE[D7:D0]
- Window Mask Y End Point Specification Command (09h) WMYE[D7:D0]

Data to be written to the GRAM will be masked according to the rectangular mask range designated by the coordinate points WMXS and WMYS together with WMXE and WMYE.

- The mask specified range must be within the GRAM access range.
- The following conditions must be satisfied, otherwise the displayed contents on the LCD will not be guaranteed. $WMXS \le WMXE$

 $WMYS \leq WMYE$

See Section 6.2.5 for information on the window mask function.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Total pages

Page 65

8.1.5 Bit Mask Function

Address	RW		Data								
0.4.6	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
UAII	K VV	Unused	Unused	BMSKR[5:0]							
Initial v	alue	-	-	0	0	0	0	0	0		
0 R h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0.011	r vv	Unused	Unused	BMSKG[5:0]							
Initial v	alue	-	-	0	0	0	0	0	0		
0 C h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
001	L M	Unused	Unused	BMSKB[5:0]							
Initial v	alue	-	-	0	0	0	0	0	0		

• Bit Mask Function 1 (0Ah) BMSKR[D5:D0]: Specifies bit masks for 6-bit R.

• Bit Mask Function 2 (0Bh)

BMSKG[D5:D0]: Specifies bit masks for 6-bit G.

• Bit Mask Function 3 (0Ch)

BMSKB[D5:D0]: Specifies bit masks for 6-bit B.

The mask control of each bit used for 18-bit data is possible independently at the time of GRAM access, provided that the data is within the GRAM access range.

Respective RGB bits are processed as explained below.

Set to 0: Not masked.

The GRAM will be refreshed.

Set to 1: Masked

The GRAM will be masked and no data will be overwritten.

The bit mask processing is OR-processed with masking by the WDMSK input pin or window masking. The mask or window mask function to be executed through the WDMSK input pin is valid for all bits. In either one of the functions is executed, the bit mask function will not work on any bits.

The bit mask function is, however, valid for all the specified GRAM access area. Therefore, the bit mask function will work on bits in any part where the mask function through the WDMSK input pin or the window mask does not work in the specified GRAM access area.

See Section 6.2.5 for information on the bit mask function.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Total pages

Page 66

8.1.6 GRAM Interface Mode (0Dh)

Address	RW		Data								
0.0.6	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
0011	RW	Unused	Unused	Unused	Unused	Unused	RMWR	RGBIF	RMIF		
Initial v	alue	-	-	-	-	-	0	0	0		

• R G B S W [D 3] : Bit which assign writing data from Host and RGB alignment swap of source driver. When swap assigned, data is swap at writing time to GRAM. So this command is reflected after GRAM is written. When "0" is selected, "without swap" is assigned. R,G,B which are written from Host corresponds to source driver output ;YR, YG, YB. When "1" is selected, "with swap" is assigned. R,G,B which are written from Host is swapped to source driver output ; YB, YG, YR. When read active at swap assigned, it is swapped inversely and back into former writing data align. Then, it is read. See Section 6.2.10 for information on the RGB swap function • RMWR[D2]: Specifies GRAM Write Port This bit is used to control interface mode selection for image write data to the GRAM. With this bit set to 0, the IC will be in CPU interface input mode, thus allowing image data to be written to the GRAM from the I/O or serial port of the CPU interface. Make the following settings to select the I/O or serial port of the CPU Interface. HOSTYP[1:0] set to [0:*]: I/O port (Dxx pin) mode HOSTYP[1:0] set to [1:*]: Serial port (SIDA pin) mode With this bit set to 1, the IC will be in RGB interface mode, thus allowing image data to be written to the GRAM from the input port (RGBDxx pin) of the RGB interface. See Section 6.1.1 for information on the CPU interface. • RGBIF[D1]: Specifies bus width for RGB interface access This bit is used to select the access width of image data from the host while in RGB interface mode. The specifications of the RGB interface are determined in the combination with the RMIF bit. With the bit set to 0, the IC will be in 18-bit, 260000-color, single-time access mode or 16-bit, 65000-color, single-time access mode. With the bit set to 1, the IC will be in 8-bit, 65000-color, two-time access mode or 6-bit, 260000-color, three-time access mode. See Section 6.1.1 for information on the RGB interface. • RMIF[D0]: Specifies GRAM interface mode This bit is used to select 260000 or 65000 colors for the number of colors in transfer data to the GRAM from the host. When the IC is in CPU interface mode, the number of colors in transfer data to the GRAM will be determined by the setting in the IFMODE[1:0] pin. When the IC is in RGB interface mode, the number of colors in transfer data to the GRAM will be determined by the bit in combination with the RGBIF bit. With the bit set to 0, the IC will be in 18-bit, 260000-color mode. With the bit set to 1, the IC will be in 16-bit, 65000-color mode. While in 65000-color mode, the gradation LSB generation function (*LSB[1:0]) will be enabled and dither processing will be performed to get quasi 260000 colors.

In 260000-color mode, the gradation LSB generation function will be ignored.

See Section 6.1.1 for information on the data bus width, interfacing with the GRAM and RGB.

See Section 6.2.8 for information on the gradation LSB function.

Binary display is valid only for R5, G5, and B5 GRAM data with no relationship to display color modes.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

			MNF8931BK-C							
Date Prepared :03/12/'03	SPECIFICATIONS	Total pages		Page	67					
8.1.7 Memory Wri	te (0Eh)		-							
0 E h W D 7	D 6 D 5 D 4 D 3 Display RAM write	D 2	D 1		D 0					
This register is used to write the display RAM data.										
The register specifies GRAM write from the host in the CPU interface mode. Added data will be written to GRAM.										
See Section 6.1.6 for	information on the GRAM write access.									
8.1.8 Memory Rea	d (0Fh)									
0 F h R D 7	D6 D5 D4 D3	D 2	D 1		D 0					
The added data will I Read operation throu Format of read data of The first read data is See Section 6.1.6 for See Section 6.1.5 for	be the read data from GRAM. gh the RGB interface pin and serial interface pin is not p conforms to the bit configuration specifications like spect dummy read data. The valid data will be read at and after information on the GRAM read access. the information on the data format for details of the data set the information on the data format for details of the data the information on the data format for details of the data	possible. ifications of er the seco a format us	of bus widt nd read cor sed.	h. nmand e:	cecuted.					

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

0

SPECIFICATIONS

Page

Total

pages

68

8.2 Display Control Command

8.2.1 Display Mode Control (10h)

Address	RW	Data								
1 0 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
	K VV	Unused	Unused	Unused	Unused	Unused	Unused	DISP	[1:0]	
Initial va	alue	-	-	-	-	-	-	0	0	

• DISP[D1:D0]: Specifies display mode

This bit is used to control the display mode of the LCD.

- D1 D0 Display mode
- 0 0 Display interruption: Stops control signals to the LCD driver block and LCD panel.
 - 1 Whole screen white display: The whole screen of the LCD will be white (i.e., alternation is performed) regardless of GRAM data, partial display specification, or the GRAM access range. In this case, the LCD will always display white with DISPINV specification ignored.
- 1 0 Whole screen display: The whole screen will be displayed according to GRAM data.
- 0 0 Partial display: The designated range set by the MASK* will not be displayed. Any part other than the designated range will be displayed according to the GRAM data.

Precautions for Display Interruption

- NOEV* output from the gate driver block will be always set high and output from the gate driver will be at VOFF center voltage or VEE voltage.
- Output from the source driver block will be in Hi-Z output state with the NOEH set high.
- The output signal pin to the DC/DC block operates with valid register set value. If power supply is provided, there will be no power stoppage. The CKV*, POL*, and STV* signals are continuously output. The VCOMEN* output is fixed at low level.
- The NVSYNCO signal will be output continuously in internal or external sync mode specified.

All bit settings are reflected to the operation of the IC in V sync mode.

8.2.2 Display V Sync Mode Control (11h)

Address	RW		Data								
1 1 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
		VSYMODE	Unused								
Initial v	alue	0	-	-	-	-	-	-	-		

• VSYMODE[D7]: Specifies sync mode

This bit is used to select the sync mode of the LCD in display operation.

With the bit set to 0, the IC will be in internal sync mode and in self-running operation. With the bit set to 1, the IC will be in external sync mode and in synchronization with sync signal input through the NVSYNCI.

In external sync mode, the NVSYNCO will output the NVSYNCI sampled by the oscillation clock without any modification.

The bit must be set to 0 if the V sync signal is not provided from the external source.

If the V sync signal (NVSYNCI) is not provided while in external V sync mode, the vertical system counter will keep its status on hold and stop driving the LCD panel.

When setting this bit while the LCD is in display operation, the IC will stop driving the LCD panel temporarily for the reception of the V sync signal but not longer than a 1V period.

To set the IC operating in external sync mode to internal sync mode, this bit will reflect in synchronization with the V sync signal. Therefore, the bit must be set before the next V sync input is turned on. Stop the NVSYNCI after this bit is turned on and the V sync signal is input at least once.

See Section 6.3.5 for information on the control of synchronization with the host.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Total

pages

- | Page

69

8.2.3 Display Data Reverse Control (12h)

Address	RW		Data								
1 2 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
		Unused	DISPINV								
Initial v	alue	-	-	-	-	-	-	-	0		

• DISPINV[D0]: Specifies the reversion of display data

This bit is used to select the reverse control of display data written to the GRAM.

With the bit set to 0, the IC will be in normal mode with data output without being reversed.

When the POL polarity is high, the source driver block will read reversed RGB data from the GRAM. When the POL polarity is low, the data will be read as it is.

With the bit set to 1, the IC will be in reverse mode with reversed data output.

When the POL polarity is low, the source driver block will read reversed RGB data from the GRAM. When the POL polarity is high, the data will be read as it is.

This bit is valid only for the stored data in the GRAM, and not valid for whole screen white or refresh white display. That is, at the time of partial display, the control of this bit enables the negative-to-positive reversion in the effective display part, but the white display in the non-display part will remain unchanged. The source driver usually selects the LCD display of normally white.

When the source driver is in normally black mode, whole screen white display will change to whole screen black, while partial refresh white display will change to refresh black. The effective screen, however, enables negative-to-positive reversion, thus displaying correctly with proper settings.

The level of VCOM output will be low with the POL set low.

The level of VCOM output will be high with the POL set high.

Select VCOM output under these preconditions. The MN863480 abides by the preconditions .

8.2.4 Partial Scroll Display Control (13h)

Address	RW		Data							
1 3 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
		Unused	SCRON							
Initial v	alue	-	-	-	-	-	-	-	0	

• SCRON[D0]: Specifies partial scroll display

This bit is used to select partial scroll display.

With the bit set to 0, the IC will be in normal mode and no scroll is performed.

With the bit set to 1, the IC will be in partial scroll mode. Then the number of lines set in partial scroll setting 1 SCRN[7:0] will be scrolled.

If the number of SCRN lines is increased gradually per frame, the partial scroll area will look scrolled.

When this bit is cleared, the display will return to normal regardless of SCRN, SCRS, or SCRE settings. Bit settings will be reflected on the operation of the IC in synchronization with the V sync signal.

See Section 6.3.3 for the definitions of the validity, execution, and detailed operation of partial scrolling.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Total pages

Page 70

8.2.5 Gradation LSB Control (14h)

Address	RW		Data							
146	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
1411	RW	Unused	Unused	Unused	Unused	R L S B	[1:0]	BLSB	[1:0]	
Initial v	alue	-	-	-	-	0	0	0	0	

• RLSB[D3:D2]: Specifies R's LSB control

This bit is used to select the function of dither processing the R's LSB (R0) data while in 65000-color mode. The bit will be enabled with the RMIF bit set to 1 (while in 65000-color mode). The bit will be ignored when the RMIF bit is set to 0 (while in 260000-color mode).

D3 D2

- $0 \quad 0 \quad : \text{ The R0 value stored in the GRAM will be read as it is.}$
- 0 1 : The stored R0 data in the GRAM will be non-reversed and reversed by turns.
- 1 0 : The stored R0 data in the GRAM will be reversed and non-reversed by turns.
- 1 : R0 data based on R5 data is non-reversed and reversed or reversed and non-reversed frame by frame.

• BLSB[D1:D0]: Specifies B's LSB control

This bit is used to select the function of dither processing the B's LSB (B0) data while in 65000-color mode. The bit will be enabled with the RMIF bit set to 1 (while in 65000-color mode). The bit will be ignored when the RMIF bit is set to 0 (while in 260000-color mode).

D1 D0

- 0 0 : The B0 value stored in the GRAM will be read as it is.
- 0 1 : The stored B0 data in the GRAM will be non-reversed and reversed by turns.
- 1 0 : The stored B0 data in the GRAM will be reversed and non-reversed by turns.
- 1 1 : The stored B0 data in the GRAM will be non-reversed and reversed or reversed and non-reversed frame by frame.

See Section 6.2.8.

8.2.6 Specification of Display Start Line Address (15h)

Address	RW		Data							
1 5 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
			LAS[7:0]							
Initial v	alue	0	0	0	0	0	0	0	0	

• LAS[D7:D0]: Specifies display start line address

This bit is used to specify in which line on the LCD the 0th-line display data of the GRAM should be displayed. The count increases from the specified register value. When the count reaches the register value (GSL) of the number of specified lines in the Y direction, the display line of the LCD will be looped back to 0.

The following condition must be satisfied.

 $0 \leq LAS$ line position < Number of GSL lines

See Section 6.2.7.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Total pages

Page 71

8.2.7 Partial Scroll Specification

Address	RW		Data							
1 6 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
			S C R N [7 : 0]							
Initial v	alue	0	0	0	0	0	0	0	0	
476	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
1711		S C R S [7 : 0]								
Initial v	alue	1	1	1	1	1	1	1	1	
1 Q b	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
1011	R VV		S C R E [7 : 0]							
Initial v	alue	1	1	1	1	1	1	1	1	

• Partial Scroll Setting 1 (16h) SCRN[D7:D0]: Specifies number of scroll lines

Partial Scroll Setting 1 (17h) SCRS[D7:D0]: Specifies line of scroll start position
Partial Scroll Setting 1 (18h)

SCRE[D7:D0]: Specifies line of scroll end position

The SCRN bit is used to specify the number of lines to be scrolled, the SCRS bit is used to specify the base line i.e. start line, and the SCRE bit is used to specify the end line.

The GRAM is read from a base line position obtained by adding the number of lines specified by the SCRN to the display line position on the LCD specified by the SCRS. When the GRAM reading reaches to the end line specified by the SCRE, the display of the LCD will be looped back to the base line. The LCD will be scrolled in synchronization with the V sync signal when the SCRON is set.

If the SCRN is specified at certain frame intervals with the number of SCRN lines increased constantly, the screen will be displayed or scrolled between the SCRS and SCRE positions.

The following conditions must be satisfied. LSA < SCRS < SCRE SCRN \leq SCRE - SCRS < Number of GSL lines

See Section 6.3.3 for the definitions of the validity and execution of partial scrolling.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

MNF8931BK-C

Page

Total

pages

72

8.2.8 Specification of Partial Display

Address	RW				Da	ta						
1.0.6	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
I 9 II K	RW				MASKS	1[7:0]						
Initial v	alue	1	1	1	1	1	1	1	1			
1 A b	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
IAII	K VV		MASKE1[7:0]									
Initial v	alue	1	1	1	1	1	1	1	1			
1 P b	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
твп	R VV				MASKS	2[7:0]						
Initial v	alue	1	1	1	1	1	1	1	1			
1 C h	D.W/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
i C li	R VV	MASKE2[7:0]										
Initial v	alue	1	1	1	1	1	1	1	1			
1 D h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
TDT	R VV				RFR[7:0]						
Initial v	alue	0	0	0	0	1	1	1	0			

- Partial Display Specification 1 (19h) MASKS1[D7:D0]: Non-display start position 1
- Partial Display Specification 2 (1Ah) MASKE1[D7:D0]: Non-display end position 1
- Partial Display Specification 3 (1Bh) MASKS2[D7:D0]: Non-display start position 2
- Partial Display Specification 4 (1Ch) MASKE2[D7:D0]: Non-display end position 2
- Partial Display Specification 5 (1Dh) RFR[D7:D0]: Specifies refresh cycle of partial display
- 1) The MASKS1, MASKE1, MASKS2, and MASKE2 bits are used to specify the start and end points of the nondisplay area on the LCD.

Settings on these registers will be enabled in synchronization with the (internal or external) V sync signal, provided that the MASKE1 register has been set. Settings only in the other registers will not be reflected. After the other registers (i.e., MASKS1, MASKE1, MASKS2, and MASKE2) are set, make settings in the MASKE1 register

2) The RFR bits are used to set the refresh cycle of partial display. The refresh rate is set to 0 to FEh (254) + 1. The register set value must be always an even number. If odd numbers are used, the refresh portion will not be alternated.

Example: If the set value is 0Eh, refresh white (alternated white display) will be written to the non-display lines in the partial display at 15-frame intervals. (0Eh + 1 = 15 frames)
Like blanking periods, no data will be written to the LCD from the source or gate to the LCD during non-display periods, but the source and gate will operate according to the instructions of the OEHE and VCOME. Therefore, if even numbers are specified, the polarity of refresh white to be written will not be alternated between frames, which will result in the deterioration of image quality.

If partial display is selected in the display control bit DISP, the display will be performed in synchronization with the V sync signal. Then, the refresh white display of the effective display and non-display part will be reflected on the first frame. The effective display and non-display processing of data will be repeated from the second frame according to the specified number of frames and displayed at the RFR-specified refresh times.

FFh is a special value for LCD panel evaluation if it is set in the RFR bits. In that case, the LCD will not be refreshed in the partial display mode.

See Section 6.3.2.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
SPECIFICATIONS

Page

Total pages

8.2.9 H Cycle Specification (1Eh)

Address	RW		Data								
1 E h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
	K VV	Unused	Unused	Unused	HCNT[4:0]						
Initial value		-	-	-	0	1	0	1	1		

• HCNT[D4:D0]: Specifies number of 1H clock pulses

This bit is used to specify the number of clock pulses for every 1H period.

HCNT bit: Set to the number of desired 1H clock pulses - 1

To set 11 clock pulses (1/206.6 kHz \times 11 = 53.2 µs) for the 1H period, specify the HCNT to 0Ah.

Eight to 24 clock pulses can be specified.

While in external sync mode, however, the display of the LCD will not be guaranteed unless the number of

vertical lines specified by the HCNT is the same as or larger than the number of GSL-specified lines plus 8H.

Example: HCNT value while in external sync mode with GSL set to 240 lines at 60 Hz is determined as follows.

HCNT < $(206.6 \text{ kHz} \times 0.9) / \{60 \text{ Hz} \times (GSL: 240H + 8H)\}$ < 12.5

Therefore, the HCNT will be 13 clock pulses or less.

The above calculation does not take the fluctuation of clock pulses into consideration. For practical calculation, consider the fluctuation of clock pulses and temperature changes.

8.2.10 V Cycle Specification (1Fh)

Address	RW		Data									
1 F h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
	K VV		V C N T [9 : 2]									
Initial value		0	1	0	0	1	0	1	0			

• VCNT[D7:D0]: Specifies number of H's for 1V periods

This bit is used to specify the length of blanking during vertical periods while the IC is self-running.

While in external sync mode, the set value will be ignored. Instead, the V sync length will be specified by the external sync cycle. This counter is a 10-bit counter with the upper eight bits set.

 $1V = (VCNT + 1H) \times 4$

Specify between 00h and FFh with a variable range between 4H and 1024H.

The display of the LCD will not be guaranteed unless the number of lines specified is the same as or larger than the number of GSL-specified lines plus 8H.

VCNT values specified while in self-running mode

GSL specification VCNT specification V cycle

160 lines	29h min.	168H min.
176 lines	2Dh min.	184H min.
192 lines	31h min.	200H min.
220 lines	38h min.	228H min.
240 lines	3Dh min.	248H min.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Total pages

Page 74

8.3 LCD Driver Control Command

8.3.1 Driver Operation Setting 1 (20h)

Address	RW		Data									
20h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0			
2011			GSL[2:0]		GDIR	GSCN	GCHS	[1:0]	Unused			
Initial v	alue	1	1	0	0	0	0	0	1			

• GSL[D7:D5]: Sets number of output pins of gate driver

These bits are used to set the number of output pins of the gate driver according to the GSL bit setting.

Set 1 to the [D7] of GSL[2] of the MN838893.

MN	1838	8893		MN	1838	892	
D7	D6	D5		D7	D6	D5	
1	0	х	192 outputs	0	0	х	160 outputs
1	1	0	220 outputs	0	1	х	176 outputs
1	1	1	240 outputs				

• GDIR[D4]: Shift direction of gate driver

This bit is used to specify the scan direction of the gate driver of the MN863480 according to the GDIR bit setting.

With the bit set to 0, the shift direction in the normal scan direction of the gate driver will be specified.

The gate driver will shift in the direction of Channel 240 from Channel 1.

With the bit set to 1, the shift direction in the reverse scan direction of the gate driver will be specified.

The gate driver will shift in the direction of Channel 1 from Channel 240.

• GSCN[D3]: Specifies scan mode of gate driver

This bit is used to specify the scan method of the gate driver.

With the bit set to 0, the single-side of panel connection mode will be specified.

With the bit set to 1, the both-side of panel connection mode will be specified.

• GCHS[D2:D1]: Specifies output channel position of gate driver

These bits are used to specify the output channel position of the gate driver.

These bits are enabled only when the GSCN is set to 0. When the GSCN is set to 1, set these bits to 00.

The output pin of the gate varies with the GSL bit setting.

For details, see the output position settings for the gate driver.

D2 D1

- 0 0 Center output disabled
- 0 1 X240-side output disabled
- 1 0 X1-side output disabled
- 1 1 Setting prohibited (Disabled pins output VEE or VOFF according to the setting.)

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

ESTABLISHED

REVISED

SPECIFICATIONS

Total pages

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Page 75

8.3.2 Driver Operation Setting 2 (21h)

Address	RW					D	ata			
2 1 h	RW	D 7	D 6	[05	D 4	D 3	D 2	D 1	D 0
Initial v	alue	<u>FRPOL</u>	0	SAMP	1 2 : 0	1	AMPSWON	AMPON 0	<u> </u>	R S WON
				1				U		
• FRPOL	[D/]:	Specifies alte	rnation drive	e mode						
This bit	1s use	ed to set the L	CD drive me	ethod to I	rame re	version or 1H/	IF reversion.			
With t	he bi	t set to 0, the o	drive method	l will be	set to 1F	I/1F reversion	alternation driv	ve.		
With t	he bi	t set to 1, the o	lrive method	l will be	set to fra	ame reversion	alternation driv	ve. Alternation	driving at 1H	
interva	als wi	ll not be perfo	ormed.							
1H/	1F R	everse Alterna	ation Drive C	Operation	l					
•	The	POL* signal i	s a signal ou	tput that	alternate	es at 1H/1F in	tervals based or	n the POL pola	rity.	
•	The	VCOMEN* si	ignal operate	es accord	ing to th	e VCOMON a	and VCOME bi	it settings.		
Fra	ime R	eversion Alte	rnation Driv	e Operat	ion					
•	The	POL* signal i	s a signal ou	tput that	alternate	es based on th	e POL polarity	with a single fi	rame reversed	
•	The	VCOMEN* si	ignal operate	es accord	ing to th	e VCOMON	and VCOME bi	it settings.		
• SAMP[]	D6:D	41: Sets drive	canability of	operatio	n ampli	fier of source	driver	8		
These h	its are	used to speci	ify the canab	ility of th	ne opera	tion amplifier	of the source d	river		
	$15 \cdot \Gamma$	$4 - "000" \cdot S$	tons operatio	nal amp	lifier	and amplifier	of the source a			
D0.1	л. L	-4 = 000 . S	anability <i< td=""><td></td><td>linei</td><td></td><td></td><td></td><td></td><td></td></i<>		linei					
		001 C	apability <l< td=""><td>0w></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	0w>						
		010 :								
		"100"		•	G 1	1 0				
		"100" :			Standa	ird setting is 0	11.	_		
		"101" : C	apability <f< td=""><td>ligh></td><td>Setting</td><td>gs of 110 and 1</td><td>111 are prohibit</td><td>ted.</td><td></td><td></td></f<>	ligh>	Setting	gs of 110 and 1	111 are prohibit	ted.		
Selec	et the	best level acc	ording to the	e load of	the LCE).				
 AMPSV 	VON[D3]: Drive tir	ning control	of sourc	e driver	during gradati	on drive			
The driv	ve tim	ing of the LC	D panel is co	ontrolled	by the c	output amplifie	er circuit of the	source driver v	when starting	
display	in gra	dation drive c	ontrol.							
With t	he bi	t set to 0, the l	LCD will be	driven 1	H before	e the LCD star	ts displaying.			
With t	he bi	t set to 1, the l	LCD will be	driven 4	H before	e the LCD star	ts displaying.			
The or	utput	of the source	driver is in H	Ii-Z state	before	the source driv	ver comes into	drive operation	l .	
• AMPON	NID2	: Amplifier co	ontrol of sou	rce drive	r					
This bit	is use	ed to stop the	output ampli	fier circi	- uit of the	e source driver	while the NOF	EH signal is at l	high level or l	et the amplifier
operate	conti	mously regard	lless of the N	NOFH si	onal	source arres	while the root	in signal is at i		et une umphilier
With t	he hi	t set to 0 the	mplifier cir	wit of th	e source	driver will st	on according to	the NOFH sig	nal	
The o		of the source	drivor will k	o in Hi 7	Z state a	t that time	op according to	the NOET sig	1141.	
With t	ha hi	t set to 1 the		wit of th		t tilat tille.	t stop recordle	a of the NOEI	Laional Tha	mulifian
	ne bi	t set to 1, the a	ampiller ciro	cuit of th	e source	e driver will no	ot stop regardles	ss of the NOEF	i signal. The a	impillier
circuit	t will	operate contir	nuously.							
While	e the	NOEH is at hi	gh level, how	wever, or	ily the o	output of the so	ource driver wil	l be in Hi-Z sta	ite.	
• COL[D	$[]: S_{j}$	pecifies grada	tion of the so	ource driv	ver					
This bit	t is us	ed to set the o	output of the	source d	river to a	multi-valued g	radation drive	output or binar	y drive output	,
With	the b	it set to 0, the	binary drive	control o	of the so	urce driver wi	ll be performed	1.		
At th	at tin	ne, the image	data of only	the upper	rmost G	RAM bits (R5	, G5, and B5) v	vill be set to O	N (1) and OF	F (0).
At th	at tin	ne, the D/A co	nverter and	amplifier	circuit	of the source of	lriver will be st	opped.		
With	the b	it set to 1, the	multi-valued	l gradatio	on drive	control of the	source driver v	vith all GRAM	bits used will	be performed
for 6-	bit R	GB gradation	display.							
• RSWO	N[D0]: Specifies co	onnection of	VREF res	sistor of	source driver				
This bit	is use	ed to control the	he connectio	n of the s	source d	river to the VI	REF resistor dur	ing blanking pe	eriods while in	1 gradation
drive on	eratio	on. This bit wi	ll be ignored	l while in	n binarv	display mode	with the COL h	pit set to 0.		8
With t	he hi	t set to 0 the a	connection o	f the sou	rce driv	er to the VPEE	resistor will be	cut off during	blanking peri	ods with the
NOF	I cian	al set high	connection o	i uie sou				cut on during	blunking peri	ous with the
With t	ho bi	t set to 1 the	connection o	f the sou	roo driv	ar to the VREE	resistor will be	turned on whi	le in gradatio	display mode
vv 1111 l	.ne 01	i set to 1, the (Jonnee tion 0	i ine sou		or to the VKEF	resistor will be		ie in gradatiol	i dispidy mode.
		1	I			OVOTENAT	CI DIVICIO	NI CENTRA		
		1				SISTEML	SEDEVISIO	IN. SEMICC	πρυστο	K COMPAN

Page

Total pages

8.3.3 NOEV Control Settings

Address	RW		Data								
2 2 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
	RVV	Unused	Unused	Unused	OEVA[4:0]						
Initial v	alue	-	-	-	0 0 0 0						
2.2 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
2311	RVV	Unused	Unused	Unused	OEVN[4:0]						
Initial value				0	0	0	0	0			

• NOEV Assertion Timing Setting (22h)

OEVA[D4:D0]: Specifies NOEV assertion timing

• NOEV negation timing setting (23h)

OEVN[D4:D0]: Specifies NOEV negation timing

These bits are used to set the control signal timing in the ON periods of the gate driver.

The timing is set by the number of internal oscillation clock pulses. If the number of clock pulses is not set within the number

of clock pulses corresponding to a 1H period, no assertion or negation will be possible.

OEVA > OEVN: Waveform will be reversed.

OEVA = OEVN: Priority will be given to negation, and NOEV* will be high-level output.

 $OEVN \ge HCNT$ bit value + 1: Negation will not be possible. The NOEV* will be low-level output.

 $OEVA \ge HCNT$ bit value + 1: Assertion will not be possible. The NOEV* will be high-level output.

Both OEVA and OEVN \geq HCNT bit value + 1: Assertion or negation will not be possible. The NOEV* will keep the previous status on hold.

During the blanking periods, however, high-level output will be turned on regardless of the OEV* setting for the non-display periods of partial display (except for refresh white display periods).

8.3.4 NOEH Control Settings

Address	RW				Data						
2 4 h	ъw	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
	R W	Unused	Unused	Unused	OEHA[4:0]						
Initial v	/alue	-	-	-	0	0 0 0 0					
2 E b	D.W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
2 5 11	R VV	Unused	Unused	Unused	OEHN[4:0]						
Initial v	alue	-	-	-	0	0	0	0	0		

• NOEH Assertion Timing Setting (24h)

OEHA[D4:D0]: Specifies NOEH assertion timing

• NOEH negation timing setting (25h)

OEHN[D4:D0]: Specifies NOEH negation timing

These bits are used to set the control signal timing in the ON periods of the source driver.

The timing is set by the number of internal oscillation clock pulses.

If the number of clock pulses is not set within the number of clock pulses corresponding to a 1H period, no assertion or negation will be possible.

OEHA > OEHN: Waveform will be reversed.

OEHA = OEHN: Priority will be given to negation, and NOEH* will be high-level output.

 $OEHN \ge HCNT$ bit value + 1: Negation will not be possible. The NOEH* will be low-level output.

OEHA ≥ HCNT bit value + 1: Assertion will not be possible. The NOEH* will be high-level output.

Both OEHA and OEHN \geq HCNT bit value + 1: Assertion or negation will not be possible. The NOEH* will keep the previous status on hold.

During the blanking periods, however, NOEH control will be processed according to the OEHON/OEHE bit settings regardless of the OEH* setting for the non-display periods of partial display (except for refresh white display periods). During the extension period by the OEHE bit setting, NOEH control will be performed according to the above OEHA/OEHN settings. In other periods, high-level output will be obtained.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Page

Total

pages

77

8.3.5 Source Driver Drive Expansion Settings (26h)

Address	RW		Data								
2 6 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
	RW	BLKSD	OEHON		OEHE[5:0]						
Initial v	/alue	1	0	0	0	0	0	1	0		

• BLKSD[D7]: Drive data setting while in continuous source drive operation during V blanking periods (including non-display periods of partial display)

With the bit set to 0, the source driver will output drive data at VREFH level.

With the bit set to 1, the source driver will output drive data at VREFL level.

- OEHON[D6]: Specifies source driver driving during V blanking periods (including non-display periods of partial display)
 This bit is used to specify source driver driving during V blanking periods (including non-display periods of partial display).
 With the bit set to 0, during the transition from the effective display area to the V blanking period and to the non-display period, expansion processing is performed to drive the LCD according to the OEHE specification. After completion of expansion processing, the NOEH will be fixed at high-level output regardless of OEHA or OEHN bit settings.
 With the bit set to 1, output from the source driver will be always turned on. The NOEH will be output according to OEH* bit setting regardless of V blanking period setting or non-display area setting in partial display mode.
- OEHE[5:0]: Specifies number of continuous lines of source driving during V blanking periods

This bit is used to specify the number of continuous lines of source driving during the V blanking period (including the nondisplay period in partial display mode).

The extension of the drive period of source driver will be set between 0 and 63 lines after writing data in the last display line in whole screen display mode (or the refresh display period in partial display mode) or after writing data in the last display line in each display area when shifting from the display area to the non-display area in partial display mode. This specification will be ignored when the OEHON bit is turned on.

A single line is a 1H period specified by the number of CKV* clock pulses.

If drive extension by the OEHE, the display start point of the next frame, and the start of display from the state of non-display in partial display mode overlap due to V cycle condition, extension processing will be interrupted and image display will take precedence.

In the above explanation, non-display in partial display mode refers to any period of non-display or display interruption. There is no difference in IC control between the refresh operation and whole screen display operation of the IC.

8.3.6 VCOM Drive Expansion Settings (27h)

Address	RW		Data						
2 7 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
2711	RVV	Unused	VCOMON			VCOME	[5:0]		
Initial v	alue	-	0	0	0	0	0	0	1

• VCOMON[D6]: Specifies VCOM drive method during V blanking

This bit is used to select the VCOM center voltage output by specifying the VCOME for VCOM driving during the V blanking period or continuous VCOM driving with the VCOMEN* fixed at low-level output.

With the bit set to 0, the VCOM will be driven according to the VCOME setting.

With the bit set to 1, the VCOM will be driven continuously.

• VCOME[D5:D0]: Specifies number of continuous lines of VCOM driving during V blanking periods This bit is used to specify the number of continuous lines of VCOM driving during the V blanking period.

The extension of the VCOM drive period after writing data in the last display line can be set between 0 and 63 lines. That is, the VCOMEN* cancel line position after the end display line is written can be specified. A single line is a 1H period specified by the number of CKV* clock pulses.

If drive extension by the VCOME, the display start point of the next frame, and the start of display from the state of nondisplay in partial display mode overlap due to V cycle condition, extension processing will be interrupted and image display will take precedence.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

MNF8931BK-C

Total pages

Page 78

8.4 Image Quality Adjustment Command

8.4.1 RGB Brightness Adjustments

Address	RW		Data						
2 Q h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
2011	R VV	Unused	Unused			R A D J	[5:0]		
Initial v	alue	-	-	0	0	0	0	0	0
2 0 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
2911	R VV	Unused	Unused			GADJ	[5:0]		
Initial v	alue	-	-	0	0	0	0	0	0
2 A b	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
2 A 11	R VV	Unused	Unused			BADJ	[5:0]		
Initial v	alue	-	-	0	0	0	0	0	0

• R Adjustments (28h) RADJ[D5]: Specifies data addition and subtraction RADJ[D4:D0]: Specifies the quantity of data for R adjustments

- G Adjustments (29h) GADJ[D5]: Specifies data addition and subtraction GADJ[D4:D0]: Specifies the quantity of data for G adjustments
- B Adjustments (2Ah)

BADJ[D5]: Specifies data addition and subtraction BADJ[D4:D0]: Specifies the quantity of data for B adjustments

This bit is used to perform addition and subtraction processing of R, G, and B independently when reading RGB display data stored in the GRAM. Therefore, the contents of the GRAM will keep saved write values. This bit enables white balance adjustments and brightness adjustments to the LCD.

The D5 bit is specified as follows:

With the bit set to 1, the bit value specified by [D4:D0] will be subtracted from GRAM data and displayed. With the bit set to 0, the bit value specified by [D4:D0] will be added to GRAM data and displayed.

The result of addition or subtraction will be a maximum of 3Fh or a minimum of 00h regardless of whether the actual value is larger than 3Fh or smaller than 00h.

See Section 6.3.4.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Page

Total pages

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

8.4.2 RGB Gamma Adjustments

2 1 h	14/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
5111	vv	Unused	(GMP1[2:0]]	Unused	(GMN1[2:0]]
Initial v	/alue	-	1	0	0	-	1	0	0
2 2 h	\A/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
5211	vv	Unused	(GMP2[2:0]	Unused	(GMN2[2:0]]
Initial v	/alue	-	1	0	0	-	1	0	0
		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
^ ^ N	vv	Unused	GMPI	n [2:0] n='	1 to 62	Unused	GMNr	n [2:0] n=1	to 62
Initial v	/alue	-	1	0	0	-	1	0	0
					• • •				
	14/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
6 D N	vv	Unused	G	MP61[2:0]	Unused	G	MN61[2:0]
Initial v	/alue	-	1	0	0	-	1	0	0
6 E b	14/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0 E N	vv	Unused	G	MP62[2:0]	Unused	G	MN62[2:0]
Initial v	/alue	-	1	0	0	-	1	0	0

• Gamma Adjustments (31h to 6Eh)

GMPn [D6:D4]: Gamma correction control while in positive polarity drive operation (with the POL set low). GMNn [D2:D0]: Gamma correction control while in negative polarity drive operation (with the POL set high).

n: 1 to 62, corresponding to gamma adjustment address of 30h + n

This bit is used to make gamma adjustments to the source driver.

There are 63 gamma adjustments for the positive polarity and negative polarity use respectively, each of which is variable independently, which makes it possible to provide optimum gamma characteristics according to the display mode and characteristics of the LCD.

The gamma center value varies with the configuration of the LCD and material of the LCD while each bit value is 04h. The gamma characteristics are designed so that they will be close to 2.0, provided that standard LCD materials and configuration are used.

See Section 6.5.4.

ESTABLISHED

REVISED

Note)	Above "n" shows nur Number of scale : "V	nber of gray scale potential between VREFH – VREFL. REFH" = 0 (V_0), "n=1" = 1 (V_1), ••• "N=62" = 62 (V_{62}), "VREFL" = 0 (V_0)
	For the resister settin the potential is adjust	g value and gray scale potential, "100" as a standard, when set the value to "+", ed "+" side, when set the value to "-", adjusted "-" side.
Based on th	e above , to do and negative po potential) need t	adjustment, keeping the voltage which apply to Crystal Liquid at positive tential, if n scale of positive potential adjust to $+1$ from "100", 63-n scale(negative o adjust to -1 from "100".
Example C C) Adjust GRAM da bray scale potential of bray scale potential of G M P 3	ta "03" gray scale : positive electrode driving : 3rd scale (V_3), negative electrode driving : 63-n = 60th scale (V_{60}) ' 1 0 1 ", GMN 6 0 " 0 1 1 "
0	nly writing is available	e, and unable to read.
		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY

SPECIFICATIONS

Total

pages

Page

80

8.5 Commands for Power Supply System

8.5.1 Operation Mode Specification for Power Supply System (70h)

Address	RW				Da	ita			
706	ъw	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
7011	R VV	OSCON	DDCKON	DDCKF	[1:0]	VGMG		DDC[2:0]	
Initial v	/alue	0	0	0	0	0	0	0	0

• OSCON[D7]: Output control of original oscillation clock pulses

This bit is used to turn the original oscillation clock of the controller oscillation circuit on and off.

With the bit set to 0, the clock will stop oscillating.

With the bit set to 1, the clock will start oscillating.

The bit will be set to 0 by default after the IC is reset or the software reset is issued, in that case, the original oscillation clock will be interrupted.

It will take 3 ms for the stabilization of the clock after the bit is turned on.

Do not set registers that use the original oscillation clock until the oscillation is stabilized.

When the original oscillation clock starts oscillating, the CKV*, POL*, STV*, and NVSYNCO will be output continuously.

The expected waveform value will not be, however, guaranteed within 3 ms.

While the original oscillation clock is oscillating, the CKV*, POL*, STV, and NVSYNCO will not stop. The cycle of the NVSYNCO follows the VCNT and VSYMODE bit settings.

• DDCKON[D6]: Step-up voltage clock output control

This bit is used to control DC/DC clock output.

With the bit set to 0, the DC/DC clock output will stop while the DDCK* clock output pin will be fixed at low level. With the bit set to 1, DC/DC clock pulses will be output from the DDCK* pin according to the DDCKF bit setting.

• DDCKF[D5:D4]: Sets frequency dividing ratio of step-up voltage clock DDCK

These bits are used to control the output frequency of the DC/DC clock.

D5 D4

- 0 : 1H =206.6 kHz/(HCNT+1)=18.8 kHz (HCNT=0Ah) 0
- 0 : Original oscillation clock \times 1/4 =206.6 kHz/4=51.7 kHz 1
- 1 0 : Original oscillation clock \times 1/2=206.6 kHz/2=103.3 kHz
- : Original oscillation clock \times 1 =206.6 kHz/1=206.6 kHz 1 1

With these bit both set to 0, the frequency varies according to the HCNT bit settings.

No other set values will change because the frequency of original oscillation is directly divided.

• VCMG[D3]: Sets VCOM output and VOFF output of MN863480

This bit is used to control the VCOM output and VOFF output of the MN863480.

With the bit set to 0, the VCOM output and VOFF output are fixed at ground level regardless of POL* or VCOMEN* setting.

With the bit set to 1, the outputs will be normal according to each control register setting.

By setting this bit to 0 when the IC is turned on, unstable voltage will not be input into the LCD panel from the VCOM or VOFF line.

• DDC[D2:D0]: Sets usage of step-up voltage clock of MN863480

These bits are used to adjust the capability of the voltage step-up circuit by setting the usage of the voltage step-up clock of the MN863480.

Following frequency dividing modes are available by bit settings.

D2 D1 D0

- 0 0 0 : DDCK's input is used as it is. 0
 - 1 : Frequency dividing pattern 1 0
-
- 1 0 : Frequency dividing pattern 6 1 1
 - 1 : Frequency dividing pattern 7

See the Specifications of the MN863480 for frequency dividing pattern settings in detail.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Total pages

81 Page

8.5.2 Command Transfer to MN863480 (71h)

Address	RW		Data						
7 1 h	ъw	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
7 1 11	K VV	Unused	[DIDX[2:0]		XDON	DSCG	SLP	DTRN
Initial va	alue	-	0	0	0	0	0	0	0

• DIDX[D6:D4]: Specifies command transfer to MN863480

These bits are used to specify registers for command transfer to the MN863480.

The following transfer is available by bit settings.

D6 D5 D4 0

0	0	: Power control	

0	0	1	: Voltage	setting	1
~		~			-

0 1 0 : Voltage setting 2

- 1 : Voltage setting 3 0 1
- 0 0 : Display setting 1 1
- 1 : Test register 0 1
 - 1 1 : Reset register

When turning the IC on after resetting (hardware or software resetting), use the following sequence to ensure each register setting.

Voltage setting $1 \rightarrow$ Voltage setting $2 \rightarrow$ Voltage setting $3 \rightarrow$ Power control

See Section 7.1.6 or the Specifications of the MN863480.

• XDON[D3]: All-ON control of gate driver

This bit is used to set all the output pins (including the X0 and X241 pins) of the gate driver to VGG voltage or normal output.

With the bit set to 0, normal output will be obtained.

With the bit set to 1, all the gate pins will be turned on (fixed at VGG voltage).

The level is higher than the OEV* and this control takes precedence over all gate driver operations.

• DSCG[D2]: Specifies power supply IC discharge

This bit is used to discharge electricity from the power supply IC.

With the bit set to 0, the IC will be in normal operation.

With the bit set to 1, electricity will be discharged from the power supply IC.

With the bit set to 1, DIDX[000] (all zeros) will be issued to stop the operation of the DDCK. Then the DC/DC side will start discharging the electricity in the voltage step-up capacitance.

• SLP[D1]: Sleep mode control

This bit is used to set the IC to sleep mode.

With the bit set to 0, the IC will be in normal operation.

With the bit set to 1, the IC will be set to sleep mode.

With the bit set to 1, DIDX[000] (all zeros) will be issued to stop the operation of the DDCK. Simultaneously, DSCG bit setting will be possible.

While in sleep mode, the IC will operate as explained below.

- The DC/DC, source, and gate output blocks will stop operating.
- Unless software or hardware resetting is performed, registers set for the controller will be kept on hold.
- The original oscillation clock will oscillates (with the POL*, CKV*, and STV* output.)
- DTRN[D0]: Serial transfer control to the MN863480

This bit is used for the serial transfer of control commands to the MN863480.

With the bit set to 0, the IC will stand by.

With the bit set to 1, the transfer of control commands will start.

With the DTRN bit set to 1 and control commands are issued, serial transfer of the commands to the MN863480 will be performed. Approx. 110 µs after completion of serial transfer of the commands, the bit will be automatically cleared and set to 0.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Total pages

8.5.3 Power Control of MN863480 (72h)

(Run/Stop Control and Multiplication and Capability Adjustments of Voltage Step-up Circuit and Operational Amplifier)

Address	RW		Data						
7.2 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
720	RVV	CPA[1:0]	СРВ[1:0]		AMP[3:0]	
Initial v	/alue	0	0	0	0	0	0	0	0

• CPA[D7:D6]: Sets voltage step-up circuit 1

These bits are used to make settings for voltage step-up circuit 1.

D7 D6

- 0 0 : Voltage step-up circuit is not in operation.
- 0 1 : Voltage step-up circuit is not in operation.
- 1 0 : See Specifications of MN863480.
- 1 1 : See Specifications of MN863480.
- CPB[D5:D4]: Sets voltage step-up circuits 3 and 4

These bits are used to make settings for voltage step-up circuits 3 and 4.

D5 D4

- $0 \quad 0$: Voltage step-up circuit is not in operation.
- 0 1 : Voltage step-up circuit is not in operation.
- 1 0 : See Specifications of MN863480.
- 1 1 : See Specifications of MN863480.
- AMP[D3:D0]: Capability adjustments to operational amplifier of power supply IC.

These bits are used to stop or make capability adjustments to the operational amplifier of the power supply IC.

D3	D2	D1	D0
0	0	0	0 : Operational amplifier is not in operation.
0	0	0	1 : See Specifications of MN863480.
•	•	•	• : •••••
•	•	•	• : •••••
1	1	0	1 : Setting prohibited.
1	1	1	0 : Setting prohibited.
1	1	1	0 : Setting prohibited.

See the Specifications of the MN863480 for the details of the above register settings.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Page

Total pages

8.5.4 Power Supply Settings

Address	RW				Da	ta				
7.2.6	D.W/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
/ 3 N	RW	Unused	Unused	Unused	Unused		AVD[3:0]		
Initial v	value	-	-	-	-	0	0	0	0	
7.4 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
7411	K W	Unused	Unused	Unused			VRFH[4:0]]		
Initial v	value	-	-	-	0	0	0	1	1	
7 F b	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
7511	7511 RW	Unused	Unused		V C M H [5 : 0]					
Initial v	value	-	-	0	0	0	0	0	0	
7 6 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
7011	K W	Unused	Unused	Unused		V	'CMPL[4:0)]		
Initial v	value	-	-	-	0	0	0	0	1	
7 7 h	D W	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
7711	RW	Unused	Unused	Unused		V	'OFFL[4:0)]		
Initial v	value	-	-	-	0	0	0	0	1	
7 9 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
781	K W	Unused	Unused			VOFPL	[5:0]			
Initial v	value	_	-	0	0	0	0	0	1	

• Power Supply Setting 1 (73h)

AVD[D3:D0]: Sets AVDD voltage

These bits are used to set the AVDD voltage between 3.5 V and 5.5 V.

Pay utmost attention when making settings in order not to include prohibited bits in combination or prohibited setting areas.

• Power Supply Setting 2 (74h)

VRFH[D4:D0]: Sets VREFH voltage

These bits are used to set the VREF voltage between 3.0 V and 5.0 V (In $AV_{DD} - 0.5$ V).

Pay utmost attention when making settings in order not to include prohibited bits or prohibited setting areas, in consideration of the AVDD voltage. Do not make settings for 18h to 1Fh.

• Power Supply Setting 3 (75h)

VCMH[D5:D0]: Sets VCOMH voltage

These bits are used to set the VCOMH voltage between 1.0 V and 5.5 V (not more than the VREFH) or enable an external volume.

Pay utmost attention when making settings in order not to include prohibited bits. Do not make settings for 1h to 7h and 31h to 3Fh.

The external volume will be set with the value set to 00h, when the settings in the built-in volume will be ignored.

• Power Supply Setting 4 (76h)

VCMPL[D4:D0]: Sets VCOM amplitude

These bits are used to set the VCOM amplitude between 2.0 V and 6.0 V.

The following condition must be satisfied.

 $-(VCC \times 2 - 1) V \le VCOML \le 1 V$

Pay utmost attention when making settings in order not to include prohibited bits or prohibited setting areas, in consideration of the voltage set with the VCMH register. Do not make settings for 00h and 1Fh.

• Power Supply Setting 5 (77h)

VOFFL[D4:D0]: Sets VOFFL voltage

These bits are used to set the VOFFL voltage between VEE + 0.5 V and -4 V.

Pay utmost attention when making settings in order not to include prohibited bits or prohibited setting areas, in consideration of the VEE voltage. Do not make settings for 00h and 1Bh to 1Fh.

• Power Supply Setting 6 (78h)

VOFFPL[D5:D0]: Sets VOFF amplitude

These bits are used to set the VOFF amplitude between 2.0 V and 9.0 V.

The following condition must be satisfied.

 $VEE + 2 V \le VOFFH \le -2 V$

Pay utmost attention when making settings in order not to include prohibited bits or prohibited setting areas, in consideration of the VEE voltage and VOFFL voltage. Do not make settings for 00h and 37h to 3Fh.

See the Specifications of the MN863480 for the details of power supply setting register.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

SPECIFICATIONS

Page

Total

pages

8.5.5 Power Supply Circuit Capability Adjustment (79h)

Address	RW		Data							
70 h	D W/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	
7911	R VV		СКVРW	[3:0]		Unused		LPM[2:0]		
Initial	value	0	1	0	0	-	0	0	0	

• CKVPW[D7:D4]: Sets pulse width of CKV

These bits are used to adjust the pulse width of the CKV* while the signal level is high.

With the value set between 1h and Fh, the high-level width of the CKV will be within a range between 1 and 15 clock pulses. Usually set the value to 4h. Do not set the value to 0h or to HCNT+1 or over, otherwise the CKV* will be fixed at high level and the LCD will not display normally.

• LPM[D2:D0]: Adjusts capability of the VOFF and VCOM power supply circuit These bits are used to set the amplifier capability of the power supply circuit of the VOFF and VCOM.

With settings of these bits, the amplifier capability of the VOFF and VCOM will vary according to the signal timing of the POL*, CKV*, and DDCK*.

Therefore, the signal will not stop regardless of any display status.

See the Specifications of the MN863480 for the details of capability settings for each signal.

8.6 Other Commands

8.6.1 Software Reset (7Ah)

Address	RW		Data						
7 4 4	w	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
/ A n		Unused	SRESET						
Initial value		-	-	-	-	-	-	-	0

• SRESET[D0]: Specifies software resetting The bit is used to initialize register values.

The OSCON bit will not be, however, influenced.

After software resetting, only the clock oscillation status to be automatically cleared and set to 0 will be executed.

8.6.2 Read Address Register (80h)

Address	RW		Data						
0.0 h	DW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
8 U N	RVV		R A D R [7 : 0]						
Initial value		0	0	0	0	0	0	0	0

• RADR[D7:D0]: Sets address of read register

These bits are used to set the address of the read register when the REGMODE is set high.

When the REGMODE is set high, set the address of the register to be read as data, write the command, and read the data at the next cycle. Then a set of the address and data value will be read. The address returned is treated as invalid, but the address of the desired data will be returned.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

Page

Total pages

8.6.3 Conflict arbitration register (85h)

Address	RW		DATA						
0.5.6	D.14/	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
8 5 11	RVV		Bla	ank		ARB_LD	ARB_AUTO	ARB_OEV	ARB_RTRY
Default		-	-	-	-	0	1	0	0

Host access to GRAM and display read to Liquid Crystal are independent action.

When movie data (ex. camera image) transfer, following actions are suggested to control preventing writing and display read conflict (access same line).

Control display read timing to Liquid Crystal by external V SYNC mode.

Control writing from Host side by V SYNC output of this LSI.

If Host writing and display read conflict, picture may be distorted.

In case of conflict, Display data shows whiteness and picture will be distorted.

If there is possibility of conflict, following setting can control the action.

ARB_LD[D3] : a BIT which set previous line data display mode when the conflict occur.

 $\ensuremath{0}$: Normal mode. Not act specially.

1 Previous line data driving mode.

When conflict occur, drive a Display data of previous line.

NOTE) Please set $ARB_OEV = 0$; refer to below chart.

In ARB_OEV = 1, the setting described on the left of the chart is given priority over ARB_LD and enable to reflect on display.

'ARB_AUTO[D2] : a BIT which display data after renewed writing when the conflict occur.

0 : Normal mode. Not act specially.

1: Data Display mode after writing delay arbitration.

In LSI, automatically arbitrate, wait Host writing complete and indicate renewed data.

The mode is constraint on Host access cycle.

Please use over the following condition.

DV_{DD} supply voltage	Condition
2.7 V to 3.6 V	More than 210 ns (4.76 MHz and under)
from 2.5 V to less than 2.7 V	More than 250 ns (4.0 MHz and under)
from 2.35 V to less than 2.5 V	Prohibited

Note) Set ARB_OEV =0, ARB_RTRY =0 ; refer to below chart

In ARB_OEV = 1, the setting described on the left of the chart is given priority over ARB_AUTO and enable to reflect on display.

Renewed writing data drive in this mode. So re-driving does not need at ARB_RTRY = 1.

·ARB_OEV[D1] : a BIT which display previous frame data when the conflict occur.

- 0 : Normal mode. Not act specially
- 1 : Test mode. Don't use in this mode.

When conflict occur, this mode prohibit gate driver output and keep previous frame data on LCD.

NOTE) The mode is valid only set to OEVA =01h, 02h.

Please not to use except above setting.

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

a manada ka				MNF89	931BK-C				
Date Prepared :03/12/'03		SPECIFICATIONS	P Total P P						
•ARB_RTRY[D0] : a BIT 0 : Normal mode. N 1 : Re-driving at sar Extend H cycle a If conflict is rele If still on conflic If conflict does r If conflict does r If conflict occur, When the mode When the function shows. In consid OEH*(24h,25h)	set same l ot act spec ne line. t conflict. ased when t, re-try till ot occur by conflict pi use togethe on is on use eration of s with care.	ine re-driving mode when the conflict occur. ially. Re-drive same line after 40μs. driving re-start, driving continue properly. 7 times. If still on conflict until 7 times, drive prope y 8 times, the data that have completed HOST-write i xel at the 8th time become white data noise. er with ARB_LD = 1, previous line data surely drive e, please indicate LCD panel vertical pixel and GSL (setting VCNT (1Fh) and frame frequency, set HCNT	rly at 8th ti is drived. at the 8th t (20h) and V (1Eh), OE	imes. ime and mov VCNT (1Fh) V*(22h,23h	ve to next l as followi), and	line. ng table			
Vertical	pixel	GSL [1:0] (20h) set value VCNT [9	:2] (1Fh) set	t value					
192		"10 x" More tha	un "38 h" (22	28 H)					
220		"110" More tha	an "3Dh" (24	48 H)	1				
240		ARB, RTRY mode prohibit			1				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x x 2 3 x x 2 3 x x 2 3	When the conflict occur, x x x $x4$ 5 6 7 $8x$ x x previous line data 4 5 6 7 8	re-drive 4 ti When re-dri When the cc times (ARB proper displ When re-dri When it is s (ARB_LD =	mes ve 7 times beconflict is relea _LD = 0 set) a ay ive 7 times beconflic = 1), and on 81	cause of con sed after re- and 8th driv cause of cor t at re-drive th driving sh	flict. drive 7 ing shows nflict. 7 times nows			
1H as normal : drive properly : wait period if the conflict occur and re-drive									
When use the re-drive mode Re-driving mode is decide Host frequency.	n the conflic Combine d by host a	 still on conflict after re-drive 7 times, and on 8th driviert does not occur When the conflict occur with ARB_LD = 1] access speed when renewed data. Conflict should be a 	ng is previou	us line display 7th driving. I	Following	show the			
Host access cycle on 1H line > { (v ={ (This only happe Re-drive mode could cause Please make sure the result of e NOTE In each case	vaiting time //206.6 kHz n when Ho e for deteri evaluation the display	on conflict x waiting for re-drive (6 times)) – margin (2 clo x 110%) x (9CK x 6 times - 2CK) $\}$ / 176 = 1.30 µs set speed is slower than 0.769 MHz oration of image quality because the LCD frame freq on real panel. should be evaluated sufficiently.	ock)} / horiz uency depo	ontal writing	pixel	7 conflict.			
ESTABLISHED REVI	SED	SYSTEM LSI DIVISION MATSUSHITA EL	, SEMIC ECTRIC	ONDUCT INDUST	FOR CO RIAL CO	MPANY O., LTD.			

Г

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.

							MNF8931BK-C			
Date Prepared :03/12/'03		SPECIFICATIONS						Page	87	
[Recommended setting Recommended setting v by async writing, are show NOTE Host access	values for alues for vn as foll speed : w	for conflict a conflict arbitra ows. The displ hen GRAM acco	rbitration mod ation mode dep lay should be ev ess one time per a	le] end on the Host valuated sufficie pixel.	access spe ntly.	ed when	conflict occu	ır which is	caused	
DVDD = 2.7 V to	o 3.6 V									
•	85h=04h	n (delay arbitratio	on mode)		4.7	6 MHz				
		MHz	2 MHz	3 MHz	4 MHz	51	MHz			
	0.769 MH	z		85h=	09h (re-driv	ve arbitrat	ion + previous	line display	mode)	
DVDD = from 2.	.5 V to le	ess than 2.7 V								
	85h=04	h (delay arbitrati	ion mode)	4	MHz					
_			l				→			
	i	1 MHz	2 MHz	3 MHz	4 MHz	5	MHz	1)	
	0.769 MH	Z		85n=	=09h (re-dri	ve arbitra	tion + previous	line display	(mode)	
DVDD = from 2.	.35 V to 1	less than 2.5 V	T							
	Do not	use the condition	n, 85h=04h (delay	arbitration mode)					
_		1 MHz	2 MHz	3 MHz	4 MHz	5	MHz			
	0.769 MH	z		85h=	=09h (re-dri	ve arbitra	tion + previous	line display	(mode)	
NOTE As a rule Please us Conflict o Do not us	e, this is re se the re-d often occu se the vert	commended at o rive arbitration 1 r when writing r ical writing mod	delay arbitration r mode with due ca mode to GRAM is le when motion pi	node ution as LCD fran s set as vertical wr icture is transferre	ne frequency iting (ADIR d.	y would b R = 1).	e deterioration	if conflict o	ften occur	
ESTABLISHED REV	ISED	_	SYST	TEM LSI DIV MATSUSH	/ISION, ITA ELF	SEMI ECTRI	CONDUCT C INDUST	FOR CO RIAL C	MPANY D., LTD:	

	SPECIFICATIONS	MNF8931BK-C				
Date Prepared :03/12/'03		Total pages		Page	88	

8.6.4 Device ID read resister mode(F0h / F1h)

This mode can read LSI device ID (set each variety) and device REV. F0h is device ID. In the case of this LSI, 31h is read. F1h is device REV. when REV=0, 00h is read.

Disable to writing in the resister.

Address	RW	Data							
F0h	R	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
Defaul	t	0	0	1	1	0	0	0	1
F1h	R	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
Defaul	t	0	0	0	0	0	0	0	1

8.7 Test Register

The following registers are for test use.

Do not use them, because the operation of these registers is not guaranteed. Take this as a serious precaution.

Address	RW		Data								
81h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
Initial va	lue	0	0	0	0	0	0	0	0		
8 2 h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
Initial va	lue	Unused	Unused	1	1	1	1	1	1		
83h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
Initial va	lue	Unused	Unused	Unused	Unused	0	0	1	1		
84h	RW	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
Initial va	lue	Unused	Unused	Unused	0	0	1	0	1		
0.0 h		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
901	к		Read only								
0.1 h	D	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
9111	ĸ		Read only								
0.2 h		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
9211	ĸ	Unused	Unused	Unused			Read only				
0.2 h		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
9311	к		Read only								
0.4 h		D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
94h R	к	Read only									

		SYSTEM LSI DIVISION, SEMICONDUCTOR COMPANY
ESTABLISHED	REVISED	MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.