MP2700

1-Cell to 2-Cell, 26V Input, 1A Linear Charger with Configurable JEITA

DESCRIPTION

The MP2700 is a linear charger for 1-cell to 2cell Li-ion, Li-polymer, and LiFePO4 batteries, as well as 2-cell to 6-cell NiMH batteries. The device can sustain a voltage up to 26V.

The MP2700 measures V_{BATT} and automatically charges the battery in four phases: trickle charge, pre-charge, constant-current (CC) fast charge, and constant-voltage charge. When the battery is charged to full voltage, the charge current decreases slowly due to the internal battery resistance. The MP2700 automatically terminates the charging when the charge current drops below the termination current (I_{TERM}) threshold. After termination, the MP2700 can recharge the battery automatically once V_{BATT} drops below the recharge threshold.

Throughout the entire charge cycle, the MP2700 always monitors the chip junction temperature (T_J). When T_J exceeds a set threshold, an internal temperature regulation loop helps reduce the charge current to prevent T_J from rising further.

The MP2700 provides a dedicated ISET pin to set I_{CC} by connecting a resistor between ISET and ground. The MP2700 also provides a USBM pin to set input current limit (I_{IN_LIM}) prior to setting I_{CC} . In addition, the device also has a minimum input voltage limit (V_{IN_LIM}) to reduce I_{CC} when the input power is overloaded.

The MP2700 has robust protection features, including input over-voltage protection (OVP), battery OVP, a charge safety timer, and battery temperature protection compliant with the JEITA standard.

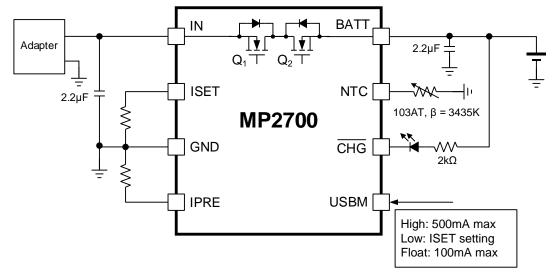
The MP2700 provides an open-drain pin to

indicate charge status. The CHG pin indicates several states of charging, including charging, termination, and fault events.

The MP2700 also has flexible one-time programmable (OTP) memory to configure a variety of charge parameters.

The MP2700 is available in a WLCSP-8 (1.05mmx1.6mm) package.

FEATURES


- Up to 26V of Sustainable Voltage
- Up to 1A of Charge Current Configurable via the ISET Pin
- ISET Pin Short-Circuit Protection (SCP)
- Additional Input Current Limit (I_{IN_LIM}) Setting via the USBM Pin
- Configurable Pre-Charge Current (I_{PRE})
- Configurable Termination Current (I_{TERM}) Threshold
- One-Time Programmable (OTP) Memory Selection for Three Levels of the Minimum Input Voltage Limit (VIN_LIM)
- OTP Selection for Battery-Full Voltage from 2.4V to 4.5V Per Cell
- 0.5% Battery Regulation Voltage Accuracy
- OTP Selection for 1-Cell or 2-Cell Battery
- Integrated Chip Junction Temperature (T_J) Regulation
- Battery Temperature Protection Compliant with JEITA Standard
- 100nA Battery Leakage Current in Shutdown Mode
- Down to 3mA ITERM
- Charge Status and Fault Indication
- Integrated Charge Safety Timer
- OTP for Miscellaneous Parameters
- Provides Option for Charging 2-Cell to 6-Cell NiMH Battery
- Compatible with LiFePO4 Battery
- Available in a Compact WLCSP-8 (1.05mmx1.6mm) Package

APPLICATIONS

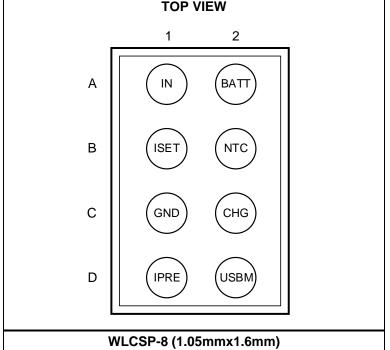
- Headphones
- Wearable Devices
- Emergency Calls

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MP2700GC-xxxx**	WLCSP-8 (1.05mmx1.6mm)	See Below	1


* For Tape & Reel, add suffix -Z (e.g. MP2700GC-xxxx-Z).

** "xxxx" is the register setting option. The factory default is "0000". This content can be viewed in the one-time programmable (OTP) memory register map. Contact an MPS FAE to obtain an "xxxx" value.

TOP MARKING LDY LLL

LD: Product code of MP2700GC-xxxx Y: Year code LLL: Lot number

PACKAGE REFERENCE **TOP VIEW**

Pin #	Name	Type ⁽¹⁾	Description
A1	IN	Р	Power input of the IC. Place a $1\mu F$ to $10\mu F$ bypass capacitor between the IN and GND pins.
A2	BATT	Ρ	Battery terminal. Place a $1\mu F$ to $10\mu F$ bypass capacitor between the BATT and GND pins.
B1	ISET	AI	Charging current setting. Connect a resistor between the ISET and GND pins to set the fast charge current (Icc), which should range between 20mA and 1A.
B2	NTC	AI	Temperature-sense input. Connect a negative temperature coefficient (NTC) thermistor between the NTC and GND pins. Pull the NTC pin to ground to disable charging.
C1	GND	Р	Ground terminal.
C2	CHG	DO	Charge status indication. If the CHG pin is pulled low, this indicates charging. If CHG is open drain, this indicates either no charging or charge complete.
D1	IPRE	AI	Pre-charge setting. Connect a resistor between the IPRE and GND pins to set the pre-charge current (I _{PRE}). IPRE also configures the termination current (I _{TERM}) threshold.
D2	USBM	DI	Input current limit setting . The USBM pin configures the input current limit (I_{IN_LIM}) for USB or adapter sources, where high = 500mA max, low = ISET setting, and floating = 100mA max. Do not pull USBM above 3.6V.

PIN FUNCTIONS

Note:

1) AI refers to analog input, DI refers to digital input, DO refers to digital output, and P refers to power.

ABSOLUTE MAXIMUM RATINGS (2)

IN, CHG to GND	0.3V to +26V
BATT to GND	0.3V to +26V
All other pins to GND	0.3V to +5V
Continuous power dissipation	(T _A = 25°C) ⁽³⁾
	0.5W
Junction temperature (T _J)	150°C
Lead temperature (solder)	260°C
Storage temperature	

ESD Ratings

Human body model (HBM) ⁽⁴⁾	1.5kV
Charged-device model (CDM) ⁽⁵⁾	.750V

Recommended Operating Conditions ⁽⁶⁾

Supply voltage (V _{IN})	Up to 13.5V
Input current (I _{IN})	Up to 1A
Constant-current fast charge cu	ırrent (I _{CC})
	Up to 1A
Battery voltage (V _{BATT})	Up to 9V
Operating junction temp (T_J)	-40°C to +125°C

Thermal Resistance ⁽⁷⁾ *θ_{JA} θ_{JC}* WLCSP-8 (1.05mmx1.6mm) ...99...... NA... °C/W

Notes:

- 2) Exceeding these ratings may damage the device.
- 3) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-toambient thermal resistance, θ_{JA} , and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 4) Per ANSI/ESDA/JEDEC JS-001, all pins.
- 5) Per ANSI/ESDA/JEDEC JS-002, all pins.
- 6) The device is not guaranteed to function outside of its operating conditions.
- 7) Measured on a JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = 5V$, $V_{BATT} = 3.7V$, $V_{BATT_{REG}} = 4.2V/cell$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Power Characteristic	S	•	•			
Input under-voltage lockout (UVLO) threshold	Vin_uvlo	V _{IN} falling	3.4	3.6	3.8	V
Input UVLO threshold hysteresis	VIN_UVLO_HYS	V _{IN} rising		340		mV
		V _{IN} rising, 1 cell		200		mV
Input voltage (V _{IN}) vs. battery voltage (V _{BATT})	Vhdrm	V _{IN} rising, 2 cells		240		mV
headroom threshold	VHDRM	V _{IN} falling, 1 cell	10	100	190	mV
		V _{IN} falling, 2 cells	20	130	240	mV
Input power good (PG) rising deglitch time	t _{∨IN_GD}	V _{IN} rising		30		ms
Input over-voltage	Maxim	V _{IN} rising, 1 cell	5.8	6	6.2	V
protection (OVP) threshold	VIN_OVP	V _{IN} rising, 2 cells	13.8	14.4	15	V
Input ()/D hystoresia		V _{IN} falling, 1 cell		220		mV
Input OVP hysteresis	VIN_OVP_HYS	V _{IN} falling, 2 cells		550		mV
Input OVP deglitch time	t _{VIN_OVP}	V _{IN} rising		100		μs
Input OVP recovery deglitch time		V _{IN} falling		30		ms
Input shutdown current	lin_q	$V_{IN} = 5V$, charge is disabled by pulling NTC to GND		260	350	μA
		$V_{IN} = 5V$, charge termination		460	550	μA
BATT leakage current in shutdown mode	IBATT_SHDN	$V_{BATT} = 4.2V (1 \text{ cell}) \text{ or } 8.4V (2 \text{ cells}), V_{IN} = GND$		0.1	1	μΑ
Battery quiescent current	Ibatt_q	$V_{IN} = 5V$, 1 cell, charge terminated		3.8	5	μA
after termination		V _{IN} = 9V, 2 cells, charge terminated		5.6	7.2	μA
Battery Charger (T _A = 0°C t	o 70ºC)					
IN to BATT on resistance	Ron_Q1+Q2			370		mΩ
Trickle charge to pre- charge threshold	VBATT_TC	VBATT rising	0.9	1	1.1	V/cell
Trickle charge to pre- charge threshold hysteresis	VBATT_TC_HYS	VBATT falling		100		mV/cell
T : 11 1 1		R _{ISET} = 550Ω	28	50	72	
Trickle charge current	Ітс	Minimum clamp	1	3	5.5	mA
		VBATT_PRE = 2.5V/cell	2.4	2.5	2.6	
Pre-charge to fast charge		VBATT_PRE = 2.8V/cell	2.7	2.8	2.9	V/cell
threshold	Vbatt_pre	VBATT_PRE = 3V/cell	2.9	3	3.1	
		VBATT_PRE = 3.2V/cell	3.1	3.2	3.3	

ELECTRICAL CHARACTERISTICS (continued)

 $V_{IN} = 5V$, $V_{BATT} = 3.7V$, $V_{BATT_{REG}} = 4.2V/cell$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Pre-charge to fast charge deglitch time	tpre_cc			30		ms
Fast charge to pre- charge deglitch time	t _{CC_PRE}			30		ms
		Float IPRE, $R_{ISET} = 1.1 k\Omega$	88	100	112	mA
		Float IPRE, $R_{ISET} = 550\Omega$	160	200	240	mA
		$R_{IPRE} = 2.26 k\Omega$, $R_{ISET} = 1.1 k\Omega$	75	100	125	mA
Pre-charge current	IPRE	$R_{IPRE} = 2.26 k\Omega$, $R_{ISET} = 550 \Omega$	145	202	258	mA
		$R_{IPRE} = 1.13 k\Omega$, $R_{ISET} = 1.1 k\Omega$	32	50	66	mA
		R _{IPRE} = 1.13kΩ, R _{ISET} = 550Ω	70	100	130	mA
		Minimum clamp	1	3	5.5	mA
		R _{ISET} = 786Ω	665	700	735	mA
Constant-current fast charge current	Icc	R _{ISET} = 11kΩ	45	50	55	mA
charge current		R _{ISET} = 27.5kΩ	15	20	25	mA
Over-charge (OC) current protection	loc	$R_{ISET} = 0\Omega$		1.25		А
	Vbatt_reg	VBATT_REG = 3.6V/cell	3.582	3.6	3.618	V/cell
		VBATT_REG = 4.1V/cell	4.080	4.1	4.121	
Battery charge regulation voltage		VBATT_REG = 4.2V/cell	4.179	4.2	4.221	
voltage		VBATT_REG = 4.35V/cell	4.328	4.35	4.372	
		VBATT_REG = 4.5V/cell	4.478	4.5	4.523	
		$R_{IPRE} = 2.26 k\Omega$, $R_{ISET} = 1.1 k\Omega$	38	50	62	mA
		Ripre = 2.26kΩ, Riset = 550Ω	74	100	126	mA
Battery charge termination threshold	ITERM	$R_{IPRE} = 1.13 k\Omega$, $R_{ISET} = 1.1 k\Omega$	12	22	31	mA
		Ripre = 1.13kΩ, Riset = 550Ω	32	48	64	mA
		Minimum clamp	1	3	5.5	mA
Charge termination deglitch time	tterm_dgl			30		ms
Automatic recharge voltage threshold	Vrech	Below VBATT_REG	135	200	265	mV/cell
Automatic recharge voltage deglitch time	trech_dgl			30		ms
Battery OVP threshold	Vbatt_ovp	Compared to VBATT_REG and VBATT rising	85	150	215	mV/cell
Battery OVP threshold hysteresis	VBATT_OVP_HYS	Compared to VBATT_OVP and VBATT falling		30		mV/cell

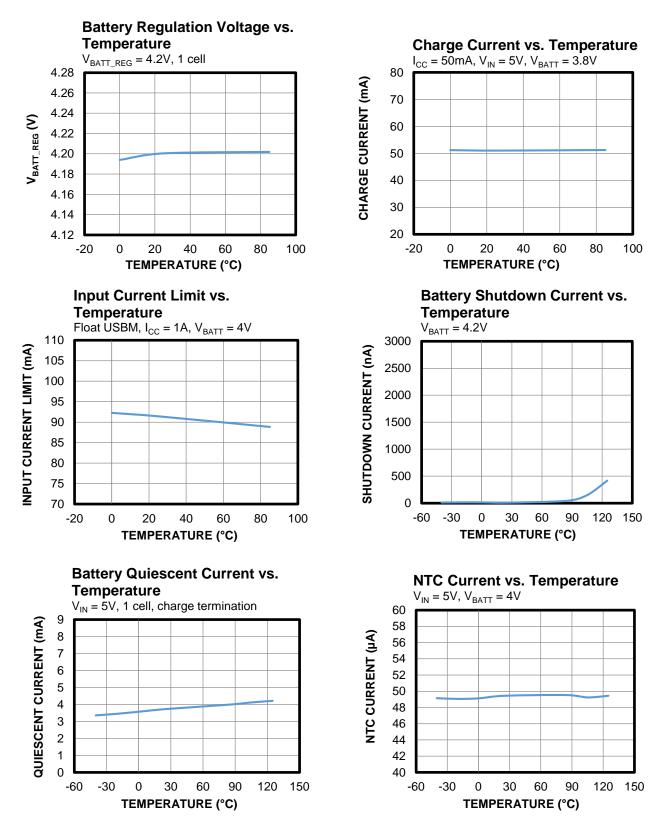
ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 5V$, $V_{BATT} = 3.7V$, $V_{BATT_{REG}} = 4.2V$ /cell, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units	
Input Voltage and Input C	urrent Regul	ation (T _A = 0°C to 70°C)					
longet egyment lingit		Float USBM	80	90	100		
Input current limit	IN_LIM	USBM = high	405	450	500	mA	
		VIN_LIM = 4.375V/cell	4.25	4.37	4.49		
Minimum input voltage limit	VIN_LIM	VIN_LIM = 4.5V/cell	4.37	4.5	4.6	V/cell	
		VIN_LIM = 4.75V/cell	4.63	4.75	4.87		
Thermal Protection							
Thermal shutdown rising threshold ⁽⁸⁾	T _{J_SHDN}	TJ rising		160		°C	
Thermal shutdown hysteresis ⁽⁸⁾	Tj_shdn_hys			20		°C	
Thermal regulation point (8)	T_{J_REG}			120		°C	
Battery Temperature Mon	itoring and F	Protection					
Negative temperature coefficient (NTC) bias current	I _{NTC}	$T_A = 0^{\circ}C$ to $70^{\circ}C$	47.5	50	52	μA	
Cold temperature threshold	Vcold	$V_{NTC} = 1V$ to 1.5V, VCOLD = 0°C	1363	1377	1391	mV	
Cold temperature threshold hysteresis	$V_{\text{COLD}_{\text{HYS}}}$	V_{NTC} = 1.5V to 1V, VCOLD = 0°C		90		mV	
Cool temperature threshold	Vcool	$V_{NTC} = 0.5V$ to 1V, VCOOL = 10°C	893	902	915	mV	
Cool temperature threshold hysteresis	V _{COOL_HYS}	$V_{NTC} = 1V \text{ to } 0.5V, VCOOL = 10^{\circ}C$		34		mV	
Warm temperature threshold	Vwarm	$V_{NTC} = 0.5V$ to 0.2V, VWARM = 45°C	239	245	251	mV	
Warm temperature threshold hysteresis	Vwarm_hys	$V_{NTC} = 0.2V$ to 0.5V, VWARM = 45°C		11		mV	
Hot temperature threshold	VHOT	$V_{NTC} = 0.2V$ to 0.1V, VHOT = 60°C	138	151	157	mV	
Hot temperature threshold hysteresis	Vhot_hys	$V_{NTC} = 0.1V$ to 0.2V, VHOT = 60°C		11		mV	
NTC enable charge threshold		V _{NTC} = 0V to 0.15V	75	90	105	mV	
NTC enable charge threshold hysteresis		V _{NTC} = 0.15V to 0V		15		mV	
NTC bias current when the charge is disabled by the NTC pin		V _{NTC} = 0V	20	30	40	μA	

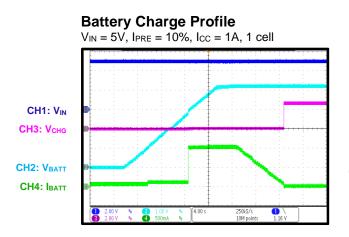
Note:

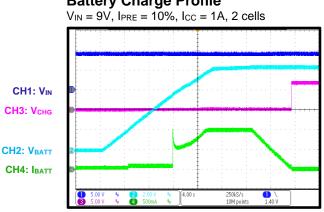
8) Guaranteed by design.

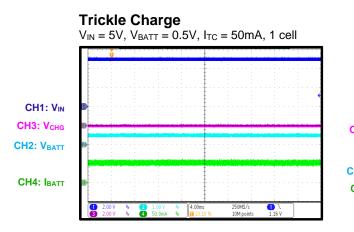

ELECTRICAL CHARACTERISTICS (continued)

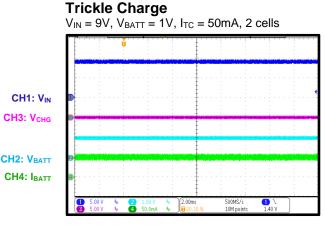
$V_{IN} = 5V$, $V_{BATT} = 3.7V$, $V_{BATT_{REG}} = 4.2V/cell$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.

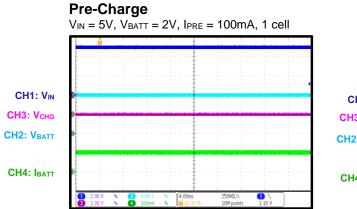
Parameter	Symbol	Condition	Min	Тур	Max	Units
NTC charge termination disable threshold		V _{NTC} rising	2.4	2.5	2.6	V
NTC charge termination disable threshold hysteresis		V _{NTC} falling		100		mV
NTC minimum bias current when NTC is floated	INTC_FLT	V _{NTC} = 3V	3	4.5	6	μA
Floated NTC voltage	VNTC_FLT			3.6		V
Open-Drain Pin Characte	ristic					
CHG pin output voltage		I _{SINK} = 5mA			0.4	V
Logic Levels on the USBI	M Pin				1	
Logic low input voltage	VIL				0.4	V
Logic high input voltage	Vih		1.4			
Floated USBM voltage	V _{FLT}		700	900	1100	mV
Timing Characteristic (TA	= 0°C to 70°	C)				
Charge timer	t _{TMR}	TMR_SET = 10 hours	8	10	12	hr
Trickle charge and pre- charge timer			0.8	1	1.2	hr

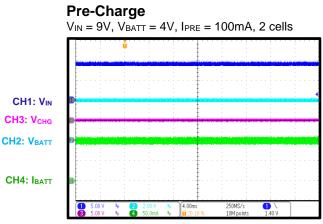

TYPICAL CHARACTERISTICS

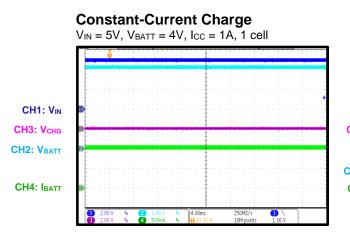

 $V_{IN} = 5V$, $I_{CC} = 1A$, $V_{BATT} =$ full range, 1 cell, $T_A = 25^{\circ}C$, unless otherwise noted.

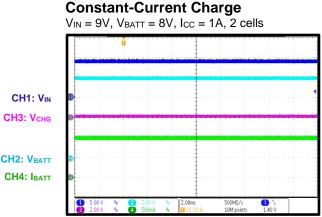



TYPICAL PERFORMANCE CHARACTERISTICS

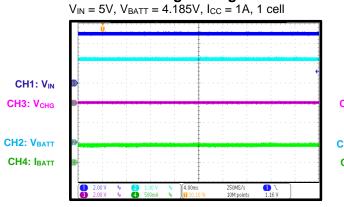

 $V_{IN} = 5V$, $I_{CC} = 1A$, $V_{BATT} =$ full range, 1 cell, $T_A = 25^{\circ}C$, unless otherwise noted.



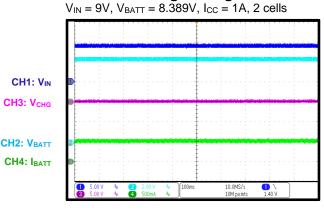


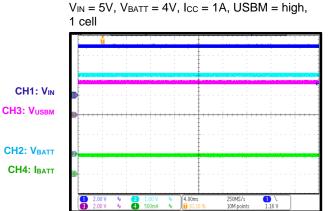


Battery Charge Profile

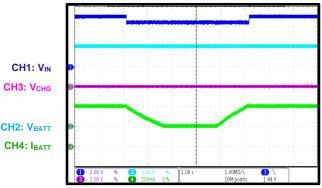

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} = 5V, I_{CC} = 1A, V_{BATT} = full range, 1 cell, T_A = 25°C, unless otherwise noted.



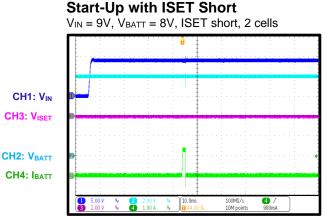

Constant-Voltage Charge

Constant-Voltage Charge



Input Current Limit

Input Voltage Limit


 $V_{\text{IN}} = 5V \; (1A \; to \; 0.5A \; to \; 1A), \; V_{\text{IN}_\text{LIM}} = 4.5V, \\ V_{\text{BATT}} = 4V, \; I_{\text{CC}} = 1A, \; 1 \; \text{cell}$

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{IN} = 5V$, $I_{CC} = 1A$, $V_{BATT} =$ full range, 1 cell, $T_A = 25^{\circ}C$, unless otherwise noted.

 Start-Up

 $V_{IN} = 5V, V_{BATT} = 4V, I_{CC} = 1A, 1 cell$

 CH1: V_IN

 CH3: V_{CHG}

 CH2: V_{BATT}

 CH4: I_{BATT}

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

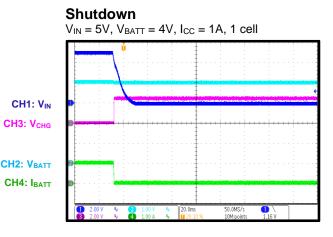
 0

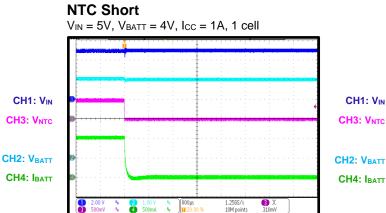
 0

 0

 0

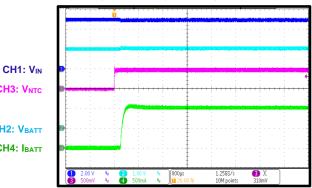
 0


 0


 0

 0

 0


 0

NTC Short Recovery

 $V_{IN} = 5V$, $V_{BATT} = 4V$, $I_{CC} = 1A$, 1 cell

FUNCTIONAL BLOCK DIAGRAM

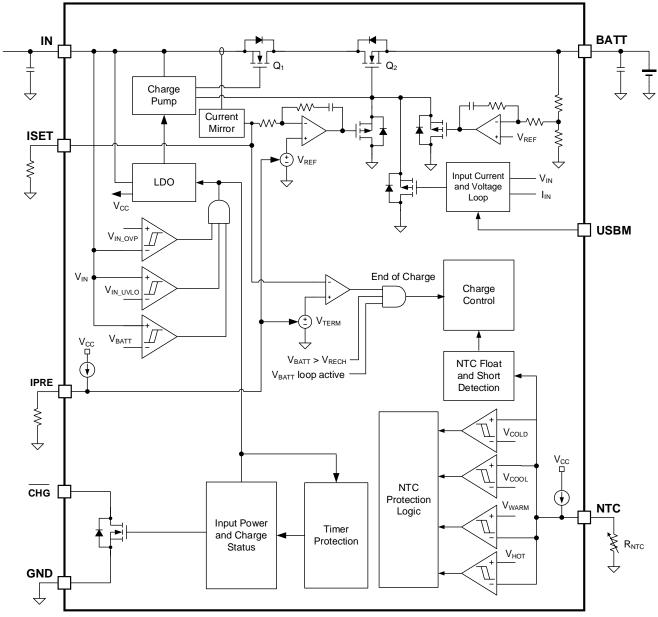
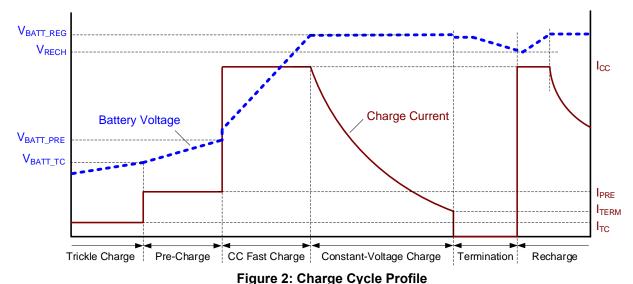


Figure 1: Functional Block Diagram

OPERATION Introduction

The MP2700 is a linear charger for 1-cell to 2-cell Li-ion, Li-polymer, and LiFePO4 battery applications, and 2-cell to 6-cell NiMH battery applications. The device can sustain an input voltage (V_{IN}) up to 26V and achieve up to 1A of charge current.


Power Supply

The IC is powered by the input. Once V_{IN} exceeds its under-voltage lockout (UVLO)

threshold (V_{IN_UVLO}) , the internal control and logic circuit start to operate.

Charge Cycle

When the input power is qualified as a good power supply, the IC checks the battery voltage (V_{BATT}) and provides four charging phases: trickle charge, pre-charge, constant-current fast charge, and constant-voltage charge (see Figure 2).

Phase 1 (Trickle Charge)

If V_{BATT} is below the trickle charge to pre-charge threshold (V_{BATT_TC}), a trickle charging current is applied on the battery to reset the protection circuit in the battery pack. The trickle charge current (I_{TC}) is 5% of the set fast charge current. Once the constant-current fast charge current (I_{CC}) x 5% is below 3mA, I_{TC} is clamped at 3mA.

Phase 2 (Pre-Charge)

If V_{BATT} exceeds V_{BATT_TC} but remains below the pre-charge to fast charge threshold (V_{BATT_PRE}), the IC charges the battery with the pre-charge current (I_{PRE}). There are four one-time programmable (OTP) memory options available for V_{BATT_PRE} .

 I_{PRE} is proportional to I_{CC} and can be configured via the IPRE pin.

Phase 3 (Constant-Current Fast Charge)

If V_{BATT} exceeds V_{BATT_PRE} , the IC enters constant-current fast charge phase. I_{CC} can be set via the ISET pin.

Phase 4 (Constant-Voltage Charge)

If V_{BATT} rises to the battery charge regulation voltage (V_{BATT_REG}), the charge current starts to decrease. Once the charge current reaches the battery termination threshold (I_{TERM}), the charge cycle is considered completed after the charge termination deglitch time (t_{TERM_DGL}). If I_{TERM} is not reached before the safety charge timer expires, then the charge cycle stops and the corresponding timeout fault signal asserts.

Charge Termination

If V_{BATT} reaches the full voltage regulation threshold and the charge current is below I_{TERM} , charging is terminated after a deglitch time of 30ms. The charge termination can be disabled by floating the NTC pin.

Automatic Recharge

Once the battery charge cycle completes, the IC remains off. During this time, the external load may consume battery power or the battery self-discharges. A new charge cycle automatically begins once V_{BATT} drops below the automatic recharge threshold (V_{RECH}) for a deglitch time (t_{RECH_DGL}) of 30ms. The safety charge timer resets when the automatic recharge cycle begins.

Input Current Limit

The MP2700 provides an USBM pin to set the input current limit (I_{IN_LIM}), which has higher priority than configuring the ISET pin. Table 1 shows the I_{IN_LIM} setting. If the charge current exceeds I_{IN_LIM} when USBM is floated or set high, then the charge current is limited by I_{IN_LIM} . The logic high voltage at USBM must be below 3.6V.

Table 1: Input Current Limit Setting

USBM Level	l _{in}	
High	500mA (max)	
Low	Depends on the ISET setting	
Float	100mA (max)	

Minimum Input Voltage Limit

The MP2700 includes a minimum input voltage limit (V_{IN_LIM}) regulation loop. If the charge current or I_{IN_LIM} exceeds the input power supply current rating, the MP2700 automatically reduces the charge current once V_{IN} reaches V_{IN_LIM} . There are three options for setting V_{IN_LIM} . See the One-Time Programmable (OTP) Memory Map section on page 19.

Cell Selection

The MP2700 can support 1-cell and 2-cell batteries. The battery cell counts can be set via the OTP. See the One-Time Programmable (OTP) Memory Map section on page 19.

For 2-cell applications, battery hot insertion or short is not allowed when V_{IN} is present and charge is enabled.

Battery Regulation Voltage

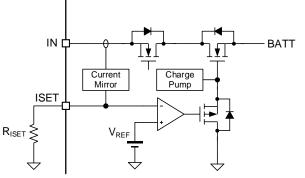
The MP2700 can support a variety of batteryfull voltages, ranging between 2.4V/cell to 4.5V/cell with a 50mV step, which are set via the OTP.

Setting the Fast Charge Current

An external resistor connected between the ISET and GND pins configures I_{CC} .

The relationship between I_{CC} and the ISET resistor (R_{ISET}) can be calculated with Equation (1):

$$V_{\text{REF}} = \mathbf{k} \times \mathbf{I}_{\text{CC}} \times \mathbf{R}_{\text{ISET}}$$
(1)


Where k is the sense gain of the current mirror.

 I_{CC} can be calculated with Equation (2):

$$I_{\rm CC} = \frac{V_{\rm REF}/k}{R_{\rm ISET}}$$
(2)

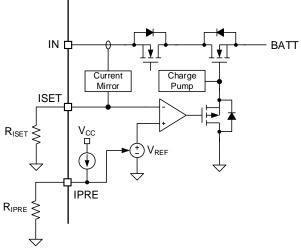
Where the reference voltage (V_{REF}) is 1.2V, and the k factor is 2.18 x 10^{-3} .

Figure 3 shows the functional diagram for setting I_{CC} via ISET.

Figure 3: Functional Diagram of Charge Current Setting via the ISET Pin

The actual fast charge current is the lower value between I_{IN_LIM} and I_{CC} . Table 2 on page 16 shows an example of the actual fast charge current at different ISET and USBM settings.

Table 2: Example of Actual Fast Charge Current at Different ISET and USBM Settings


Icc	USBM = High	USBM = Float	USBM = Low
80mA	80mA	80mA typical/	80mA
OUTTA	typical	100mA max	typical
300mA	300mA	100mA max	300mA
300IIIA	typical	TUUITIA Max	typical
600mA	500m / may	100mA max	600mA
OUUIIA	SUUMA Max	TUUMA Max	typical

Over-Current Protection (OCP)

If the charge current is set too high erroneously, the MP2700 provides over-current protection (OCP). For example, if ISET is shorted to GND, the charge current is clamped at 1.25A, and the part latches off after a deglitch time of 1ms. The fault can be reset by re-plugging the input power or pulling NTC to GND.

Setting the Pre-Charge Current

Connect a resistor between the IPRE and GND pins to configure the proportion of I_{PRE} to I_{CC} . Figure 4 shows the functional diagram for setting I_{PRE} .

Figure 4: Functional Diagram for Setting the Pre-Charge Current

The ratio of I_{PRE} to I_{CC} can be calculated with Equation (3):

$$I_{PRE} / I_{CC} = R_{IPRE} / K_{PRE_CC}$$
(3)

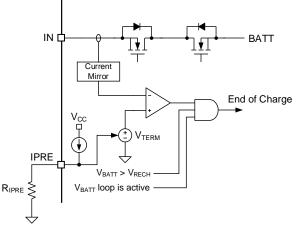
Where K_{PRE_CC} is 112.36 Ω /%.

For example, to set the proportion of I_{PRE} / I_{CC} to 10%, connect a 1.13k Ω resistor between the IPRE pin and ground.

When the IPRE pin is floated, I_{PRE} is fixed at 20% of the set I_{CC} .

Setting the Charge Termination Threshold

If V_{BATT} reaches the full voltage, the battery voltage loop is initiated and the charge current declines.


Charging terminates once the three conditions below are met:

- 1. V_{BATT} loop is active
- 2. $V_{BATT} > V_{RECH}$
- 3. I_{BATT} < I_{TERM}

 I_{TERM} is also proportional to I_{CC} . This threshold (I_{TERM} / I_{CC}) can be configured via the resistor placed between IPRE and ground, and can be calculated by Equation (4):

$$I_{\text{TERM}} / I_{\text{CC}} = R_{\text{IPRE}} / K_{\text{TERM}_{\text{CC}}}$$
(4)

Figure 5 shows the functional diagram of I_{TERM}.

Figure 5: Functional Diagram of Termination Current Threshold

Where K_{TERM_CC} is 224.72 Ω /%.

For example, if R_{IPRE} is 1.13k Ω , then the proportion of I_{TERM} to I_{CC} is 5%.

When the IPRE pin is floated, I_{TERM} is fixed at 10% of the set I_{CC} .

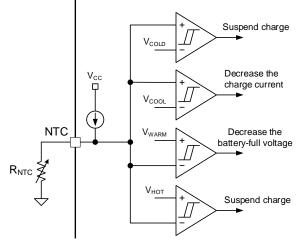
Battery Temperature Monitor via the Negative Thermal Coefficient (NTC) Thermistor

Thermistor is the generic name for thermally sensitive resistors. Negative temperature coefficient (NTC) thermistors are typically called thermistors. Depending on the manufacturing

MP2700 – 1-CELL TO 2-CELL, 1A LINEAR CHARGER WITH CONFIGURABLE JEITA

method and structure, there are many shapes and characteristic for various purposes. The thermistor resistances. unless otherwise specified. are classified at а standard 25°C. The temperature temperature of resistance is solely a function of its absolute temperature.

Refer to the thermistor datasheet for the mathematic expression that relates the resistance and absolute temperature of the thermistor. The resistance at absolute temperature T1 (R1) can be calculated with Equation (5):


$$R1 = R2 \times e^{\beta \times \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$
(5)

Where R2 is the resistance at absolute temperature T2, and β is a constant that depends on the material of the thermistor.

The MP2700 continuously monitors the battery's temperature by measuring the NTC pin voltage (V_{NTC}), which is generated by a precise current flowing from the NTC pin through the NTC resistor (R_{NTC}) to ground.

The MP2700 compares V_{NTC} to an internal threshold to determine the fault type that occurs and takes different actions accordingly. The current from the NTC pin is only active when V_{IN} is present.

Figure 6 shows the functional diagram of the NTC protection circuit.

Figure 6: Functional Diagram of the NTC Protection Circuit

To satisfy the JEITA requirement, the MP2700 has four temperature thresholds, cold (0°C by

default), cool (10°C by default), warm (45°C by default), and hot (60°C by default). For a given NTC thermistor, these temperatures correspond to V_{COLD}, V_{COOL}, V_{WARM}, and V_{HOT}. If V_{NTC} is below V_{HOT}, or V_{NTC} exceeds V_{COLD}, then charging and the timers are suspended. If V_{HOT} < V_{NTC} < V_{WARM} or if V_{COOL} < V_{NTC} < V_{COLD}, then the charging behavior is configured via the OTP. The preset thresholds are defined based on a thermistor where β = 3435K. Figure 7 shows the NTC JEITA profile.

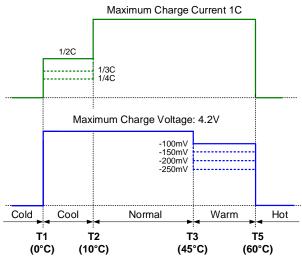
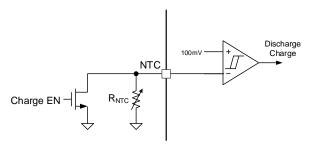



Figure 7: NTC JEITA Profile

Charge Enable Control

The NTC pin is reused to enable or disable charging. If V_{NTC} is pulled to GND, charging is suspended. The safety charge timer resets by pulling the NTC pin to ground and releasing again. Figure 8 shows charge enable control.

Figure 8: Charge Enable Control

Floated NTC Mode

When the NTC pin is floated, V_{NTC} is 3.6V. Since this exceeds the 2.5V charge termination disable threshold, the charge termination and safety timer are disabled.

To avoid overlap between the termination disable threshold and V_{COLD} , an internal loop decreases the NTC bias current when V_{NTC} exceeds 2V. This prevents a cold thermistor from setting V_{NTC} above 2.5V.

Input Over-Voltage Protection (OVP)

The MP2700 provides input over-voltage protection (OVP). When V_{IN} rises to the input OVP threshold (V_{IN_OVP}), the MP2700 stops charging. Once V_{IN} drops back to its normal range, the device starts charging automatically.

 V_{IN_OVP} is set to 6V for 1-cell applications and 14.4V for 2-cell applications.

Battery Over-Voltage Protection (OVP)

If V_{BATT} exceeds the battery OVP threshold (V_{BATT_OVP}), charging stops. If V_{BATT} is below the V_{BATT_OVP} falling threshold, the battery state transitions from battery OVP to charge termination.

Safety Charge Timer

The MP2700 provides a backup charge timer to ensure charge safety. When any new charge cycle starts, if the charging stays in trickle charge and pre-charge for 1 hour, or the entire charge process lasts for 10 hours (configurable via the OTP), charging automatically stops and the fault is reported. Once charging transitions from constant current charge to pre-charge, the pre-charge timer resets.

After the safety timer expires, it can be reset by one of the actions below:

- Re-plug V_{IN}
- Pull the NTC pin to GND

Operation Indication

The MP2700 has an open-drain indicators to report the charging status. The CHG pin is pulled low when charging is in progress. After charge termination, the CHG pin enters a highimpedance (Hi-Z) state. When charging is disabled by the NTC pin, the CHG pin also enters a Hi-Z state. In addition, the CHG pin can indicate fault events, including NTC faults, timer faults, and charge OCP. After the input power-on or charge enable, there is a deglitch time of 600ms for the CHG indicator, which remains Hi-Z during this blanking time. Table 3 shows the CHG pin indication.

Charging Status	CHG
Invalid input	Hi-Z
Charge disabled by pulling the NTC to ground	Hi-Z
Charge termination	Hi-Z
Charge in progress	Low
NTC fault, timer fault, and charge OCP	Blinking (1Hz)

Thermal Regulation and Thermal Shutdown

During the battery charging process, the MP2700 continuously monitors the internal junction temperature (T_J) to avoid overheating the chip. If the internal temperature reaches the thermal regulation threshold (T_{J_REG}) , the MP2700 starts to reduce the charge current to prevent higher power dissipation.

If T_J reaches thermal shutdown threshold (T_{J_SHDN}) , the MP2700 stops charging immediately. Once T_J drops below the T_{J_SHDN} falling threshold, the device resumes normal operation.

One-Time Programmable (OTP) Memory

The MP2700 provides OTP memory to configure the default value of several parameters. See the One-Time Programmable (OTP) Memory Map on page 19 for the configurable parameters. Contact MPS to obtain a custom OTP setting.

ONE-TIME PROGRAMMABLE (OTP) MEMORY MAP

BATTERY VOLTAGE THRESHOLD SETTING (00h)

The BATTERY VOLTAGE THRESHOLD SETTING command sets the battery cells' information and battery regulation voltage for each cell.

Bits	Bit Name	Default	Description
			Selects the battery cell.
7	CELLS	1'b0	0: 1 cell (default) 1: 2 cells
6	RESERVED	1'b0	Reserved.
5:0	VBATT_REG	6'b100100	Sets the battery regulation voltage. Range: 2.4V/cell (000000) to 4.5V/cell (101010) Offset: 2.4V/cell Step: 50mV/cell Default: 4.2V/cell (100100)

TIMER AND THERMAL SETTING (01h)

The TIMER AND THERMAL SETTING command sets the safety charge timer and internal junction temperature (T_J) regulation threshold.

Bits	Bit Name	Default	Description
			Sets the safety timer for trickle charge and pre-charge.
7	TMR_PRE	1'b1	0: Disabled 1: 1 hour (default)
			Sets the safety timer enable control.
6	TMR_EN	1'b1	0: Disabled 1: Enabled (default)
			Sets the safety timer for the entire charge process.
5:3	TMR_SET	3'b010	Range: 2 hours (000) to 30 hours (111) Offset: 2 hours Step: 4 hours Default: 10 hours (010)
2	RESERVED	1'b0	Reserved.
1	TJ_REG	1'b1	Sets the T _J regulation loop. 0: 100°C 1: 120°C
0	RESERVED	1'b0	Reserved.

INPUT VOLTAGE LIMIT SETTING (02h)

The INPUT VOLTAGE LIMIT SETTING command sets the input voltage (V_{IN}) limit loop threshold. If V_{IN} drops below this threshold, charge current decreases to prevent V_{IN} from dropping further.

Bits	Bit Name	Default	Description
7:6	RESERVED	2'b00	Reserved.
			Input voltage limit
5:4	VIN_LIM	2'b10	00: Reserved 01: 4.375V/cell 10: 4.5V/cell (default) 11: 4.75V/cell
3:0	RESERVED	4'b0000	Reserved.

JEITA TEMPERATURE THRESHOLD SETTING (03h)

The JEITA TEMPERATURE THRESHOLD SETTING command sets the JEITA hot, warm, cool, and cold temperature thresholds.

Bits	Bit Name	Default	Description			
			Sets the hot falling threshold.			
7:6	VHOT	2'b10	00: 0.208V (50°C) 01: 0.176V (55°C) 10: 0.151V (60°C, default) 11: 0.129V (65°C)			
			Sets the warm falling threshold.			
5:4	VWARM	2'b01	00: 0.291V (40°C) 01: 0.245V (45°C, default) 10: 0.205V (50°C) 11: 0.176V (55°C)			
			Sets the cool rising threshold.			
3:2	VCOOL	2'b10	00: 1.377V (0°C) 01: 1.111V (5°C) 10: 0.902V (10°C, default) 11: 0.737V (15°C)			
			Sets the cold rising threshold.			
1:0	VCOLD	2'b01	00: 1.732V (-5°C) 01: 1.377V (0°C, default) 10: 1.111V (5°C) 11: 0.902V (10°C)			

JEITA PROTECTION ACTION SETTING (04h)

The JEITA PROTECTION ACTION SETTING command sets the charge behavior during the JEITA warm and cool temperature windows.

Bits	Bit Name	Default	Description
			Sets the charge action when the NTC is warm.
7:6	WARM_ACT	2'b01	 00: No action. Charging stops when the NTC is hot 01: Reduce V_{BATT_REG} when the NTC is warm (default) 10: Reduce I_{CC} when the NTC is warm 11: Reduce both V_{BATT_REG} and I_{CC} when the NTC is warm
			Sets the charge action when the NTC is cool.
5:4	COOL_ACT	2'b10	00: No action. Charging stops when the NTC is cold 01: Reduce $V_{BATT_{REG}}$ when the NTC is cool 10: Reduce I _{CC} when the NTC is cool (default) 11: Reduce both $V_{BATT_{REG}}$ and I _{CC} when the NTC is cool
3:2	JEITA_VSET	2'b00	00: V _{BATT_REG} - 100mV/cell (default) 01: V _{BATT_REG} - 150mV/cell 10: V _{BATT_REG} - 200mV/cell 11: V _{BATT_REG} - 250mV/cell
1:0	JEITA_ISET	2'b00	00: 50% of Icc (default) 01: 33% of Icc 10: 25% of Icc 11: 0% of Icc (disable charge)

PRE-CHARGE THRESHOLD SETTING (05h)

The PRE-CHARGE THRESHOLD SETTING command sets the pre-charge threshold.

Bits	Bit Name	Default	Description			
7:2	RESERVED	6'b000000	Reserved.			
			Sets the pre-charge threshold.			
1:0	VBATT_PRE	2'b01	00: 2.5V/cell 01: 2.8V/cell (default) 10: 3.0V/cell 11: 3.2V/cell			

APPLICATION INFORMATION

Setting the Fast Charge Current

A resistor connected between the ISET and GND pins sets I_{CC} . The relationship between I_{CC} and R_{ISET} can be calculated with Equation (6):

$$I_{\rm CC} = \frac{V_{\rm REF}/k}{R_{\rm ISET}}$$
(6)

Where V_{REF} is 1.2V, and the k factor is 2.18 x $10^{\text{-3}}.$

For example, to set I_{CC} to 1A, R_{ISET} must be 550 Ω .

Setting the Pre-Charge Current and Termination Current

 I_{PRE} is set as a percentage of I_{CC} by connecting a resistor between the IPRE and GND pins.

The ratio of I_{PRE} to I_{CC} can be set by Equation (7):

$$I_{PRE} / I_{CC} = R_{IPRE} / K_{PRE_CC}$$
(7)

Where K_{PRE_CC} is 112.36 Ω /%.

For example, to set I_{PRE} / I_{CC} to 10%, connect a 1.13k Ω resistor between the IPRE and GND pins.

When IPRE pin is floated, I_{PRE} is fixed at 20% of the set $I_{\text{CC}}.$

The termination current is fixed as 50% of precharge current.

Setting the Battery Cell

The MP2700 supports 1-cell and 2-cell batteries, where the battery cell is configured via the OTP.

For 2-cell applications, battery hot insertion or short is not allowed when V_{IN} is present, and charge is enabled.

Selecting the Input Capacitor

An input capacitor (C_{IN}) is typically required for stable operation. In the MP2700, a minimum 1µF capacitor must be connected between the IN and GND pins to achieve stable operation across the full load current range. The capacitor's voltage rating must exceed the normal V_{IN} level. A low-ESR ceramic capacitor (X5R or X7R) is preferred.

Selecting the BATT to GND Capacitor

The capacitor connected between BATT and GND is also required for the MP2700. A minimum 1μ F ceramic capacitor (X5R or X7R) is suitable for most applications.

Selecting the NTC Resistor

The MP2700 supports configurable JEITA that is based on a precise 50 μ A current source flowing through the external NTC thermistor. To use this function, connect a 10k Ω NTC thermistor with β = 3435K between the NTC and GND pins.

The JEITA threshold can be configured via the OTP.

If NTC is not used, connect a fixed $10k\Omega$ resistor between the NTC and GND pins.

PCB Layout Guidelines

Place the external capacitors as close to the IC as possible to ensure the smallest input and output inductances and the ground impedance.

TYPICAL APPLICATION CIRCUIT

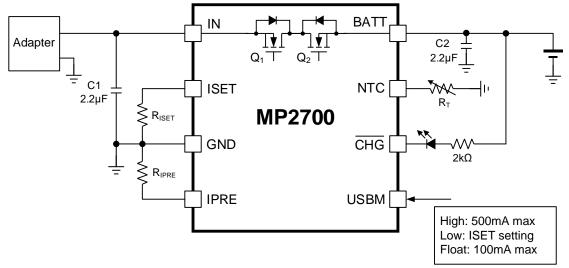


Figure 9: Typical Application Circuit

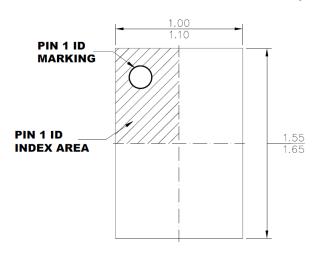
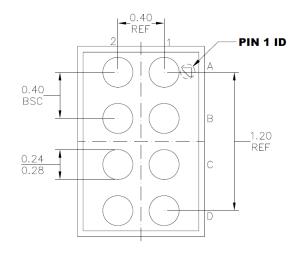
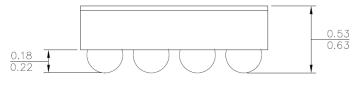
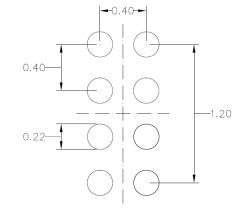

Table 4 shows the key bill of materials for Figure 9.

Table 4: Key Bill of Materials for Figure 9


Qty	Ref	Value	Description	Package	Manufacturer
1	C1	2.2µF	Ceramic capacitor, 25V, X5R or X7R	0603	Any
1	C2	2.2µF	Ceramic capacitor, 16V, X5R or X7R	0603	Any
1	R⊤	10kΩ	β = 3435K	Any	Any

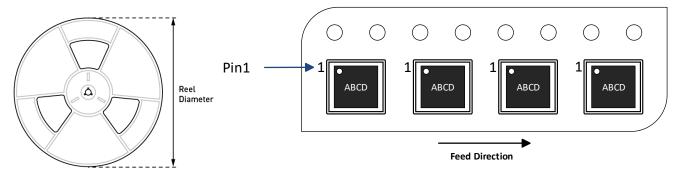
PACKAGE INFORMATION


WLCSP (1.05mmx1.6mm)


TOP VIEW

BOTTOM VIEW

SIDE VIEW



RECOMMENDED LAND PATTERN

NOTE:

 ALL DIMENSIONS ARE IN MILLIMETERS.
 BALL COPLANARITY SHALL BE 0.05 MILLIMETER MAX.
 JEDEC REFERENCE IS MO-211.
 DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package	Quantity/	Quantity/	Quantity/	Reel	Carrier	Carrier
	Description	Reel	Tube	Tray	Diameter	Tape Width	Tape Pitch
MP2700GC- xxxx-Z	WLCSP-8 (1.05mmx1.6mm)	3000	N/A	N/A	7in	8mm	4mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	11/14/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.