MP2710

500mA, 1-Cell, Li-Ion Battery Charger with Power-Path Management, 1mA Termination, <0.5µA Battery Leakage Current, I²C Interface

DESCRIPTION

The MP2710 is a highly integrated, single-cell, Li-ion/Li-polymer battery charger with system power-path management (PPM) for spacerestricted, portable applications. The MP2710 takes input power from either an AC adapter or a USB port to supply the system load and charge the battery simultaneously. The charger features pre-charge (PRE.C), fast current (CC) and constant voltage (CV) regulation, as well as charge termination, and auto-recharge.

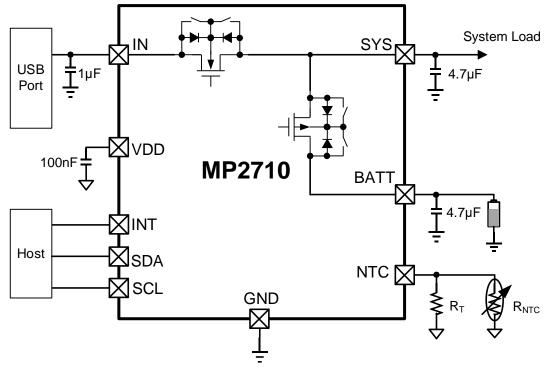
The PPM function ensures continuous power to the system by automatically selecting the input, battery, or both to power the system. This function features a low-dropout (LDO) regulator from the input to the system and a $100m\Omega$ switch from the battery to the system. PPM separates the charge current (I_{CHG}) from the system load, which allows for proper charge termination and keeps the battery in full-charge mode.

The MP2710 provides system short-circuit protection (SCP) by limiting the current from the input to the system and the battery to the system. This feature is especially critical for preventing the Li-ion battery from being damaged due to an exceedingly high current. On-chip battery under-voltage lockout (UVLO) cuts off the path between the battery and the system if the battery voltage (V_{BATT}) drops below the configurable battery UVLO threshold. This prevents the Li-ion battery from being over-discharged. An integrated I²C control interface allows the MP2710 to configure the charging parameters, such as the input current limit (I_{IN LIMIT}), minimum input voltage regulation (V_{IN MIN}), I_{CHG}, battery regulation voltage, safety timer, and battery UVLO.

The MP2710 is available in a WLCSP-9 (1.85mmx1.85mm) package.

FEATURES

- 4.35V to 5.5V Operating Input Voltage (V_IN) Range
- Up to 21V Sustainable VIN
- Configurable Charge Current (I_{CHG}) from 8mA to 456mA with 2mA/step
- 1mA Termination Current
- ±0.5% Charge Voltage Accuracy
- 700µA Input Quiescent Current (I_{IN_Q})
- Low-Power Mode to Reduce Battery Consumption
- Configurable JEITA Profile for Battery Temperature Protection
- No Negative Temperature Coefficient (NTC) Resistor Divider Requirement to Save Battery Current (I_{BATT})
- Dedicated Pin to Control Shipping Mode and System Reset
- Shipping Mode Entry via I²C or Analog Pin
- Shipping Mode Exit by V_{IN} Plug-In or Analog Pin
- <350nA Battery Leakage Current in Shipping Mode
- I²C Interface for Setting Charging Parameters and Status Reporting
 - Built-In Robust Charging Protection: • Battery Charging Safety Timer
 - Thermal Regulation and Thermal Shutdown
 - Watchdog Monitoring via the I²C
- Available in a WLCSP-9 (1.85mmx1.85mm) Package


APPLICATIONS

- TWS Earbuds
- Fitness Accessories
- Internet of Things (IoT)
- Smartwatches

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Part Number* Package		MSL Rating		
MP2710GC-xxxx**					
MP2710GC-0000***	WLCSP (1.85mmx1.85mm)	See Below	1		
MP2710GC-0001****		See Delow	1		
EVKT-MP2710	Evaluation kit				

* For Tape & Reel, add suffix -Z (e.g. MP2710GC-xxxx-Z).

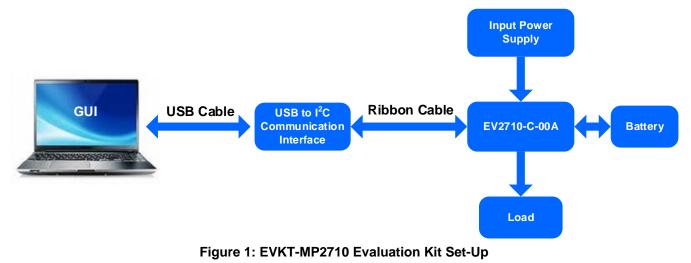
** "xxxx" is the register setting option. Contact an MPS FAE to obtain an "xxxx" value.

*** "0000" is the factory default for entering shipping mode by software. This content can be viewed in the I²C register map.

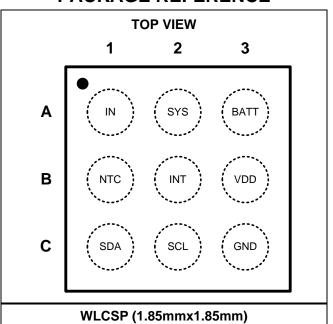
**** "0001" is the factory default for entering shipping mode by hardware.

TOP MARKING

MAY LLL


MA: Product code of MP2710GC Y: Year code LLL: Lot number

EVALUATION KIT EVKT-MP2710


EVKT-MP2710 kit contents (items below can be ordered separately):

#	Part Number	Item	Quantity
1	EV2710-C-00A	MP2710 evaluation board	1
2	EVKT-USBI2C-02-BAG	Includes one USB to I ² C communication interface, one USB cable, and one ribbon cable	1
3	Online resources	Include datasheet, user guide, product brief, and GUI	1

Order directly from MonolithicPower.com or our distributors.

PACKAGE REFERENCE

PIN FUNCTIONS

Pin #	Name	Description
A1	IN	Input power. Connect a ceramic capacitor from IN to GND, placed as close to the IC as possible.
A2	SYS	System power supply. Connect a ceramic capacitor from SYS to GND, placed as close to the IC as possible.
A3	BATT	Battery pin. Connect a ceramic capacitor from BATT to GND, placed as close to the IC as possible.
B1	NTC	Temperature sense input. Connect a negative temperature coefficient (NTC) thermistor to the NTC pin. Place a $91k\Omega$ resistor in parallel with the thermistor to ensure that the NTC voltage (V _{NTC}) is within the operating range. If the NTC function is not used, remove this resistor.
B2	INT	Interrupt output. The INT pin sends a charging status and fault interrupt signal to the host. INT is also used to disconnect the system from the battery.
B3	VDD	Internal control power supply. Connect a 100nF ceramic capacitor from VDD to GND. No external load is allowed.
C1	SDA	I ² C interface data. Connect SDA to the logic rail using a $10k\Omega$ resistor.
C2	SCL	I ² C interface clock. Connect SCL to the logic rail using a $10k\Omega$ resistor.
C3	GND	Ground.

ABSOLUTE MAXIMUM RATINGS (1)

IN		0.3V to +21V
SYS	0.3V to +5.3V	(5.5V for 500µs)
All other pins		0.3V to +6V
Junction temper	ature (T _J)	150°C
Lead temperatu	re	260°C
Continuous pow	er dissipation (Γ _A = 25°C) ⁽²⁾
	· · · ·	
		-65°C to +150°C

ESD Ratings

Human body model (HB	BM)	2000V
Charged-device model ((CDM)	750V

Recommended Operating Conditions ⁽³⁾

Input voltage (V _{IN})	4.35V to 5.5V
Input current (I _{IN})	Up to 500mA
Discharge current (I _{DSCHG})	Up to 3.2A
Charge current (I _{CHG})	Up to 456mA
Battery voltage (VBATT)	up to 4.545V
Operating junction temp (T _J)	40°C to +125°C

Thermal Resistance $^{(4)}$ θ_{JA} θ_{JC}

WLCSP (1.85mmx1.85mm)... 114 12... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-toambient thermal resistance, θ_{JA} , and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on a JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = 5V$, $V_{BATT} = 3.8V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Source and Battery I	Protection					
Input voltage (V _{IN}) under- voltage lock-out (UVLO) threshold	Vin_uvlo	V _{IN} falling	3.15	3.25	3.35	V
VIN UVLO hysteresis		V _{IN} rising		150		mV
V _{IN} over-voltage protection (OVP) threshold	Vin_ovp	V _{IN} rising	5.85	6	6.15	V
V _{IN} OVP hysteresis				350		mV
V _{IN} vs. battery voltage (V _{BATT}) headroom threshold	Vhdrm	VIN rising vs. VBATT	80	130	170	mV
V _{IN} vs. V _{BATT} headroom hysteresis				90		mV
Battery voltage (5)	VBATT				4.5	V
		V _{BATT} falling, REG01h[2:0] = 000	2.28	2.4	2.48	V
Battery UVLO threshold	VBATT_UVLO	V _{BATT} falling, REG01h[2:0] = 100	2.66	2.76	2.86	V
		VBATT falling, REG01h[2:0] = 111	2.93	3.03	3.13	V
Battery UVLO hysteresis		$V_{BATT_UVLO} = 2.76V$		190		mV
Battery OVP threshold	V_{BATT_OVP}	Rising, above VBATT_REG		130		mV
Battery OVP hysteresis				60		mV
Power-Path Management (PPM)					
		$V_{IN} = 5.5V, R_{SYS} = 100\Omega, I_{CHG} = 0A, REG07h[3:0] = 0000, V_{SYS_{REG}} = 4.2V$	4.1	4.2	4.3	V
Regulated system output voltage (V _{SYS_REG}) accuracy	Vsys_reg_acc	$V_{IN} = 5.5V, R_{SYS} = 100\Omega, I_{CHG} = 0A, REG07h[3:0] = 1001, V_{SYS_{REG}} = 4.65V$	4.55	4.65	4.75	V
		$V_{IN} = 5.5V, R_{SYS} = 100\Omega, I_{CHG} = 0A, REG07h[3:0] = 1111, V_{SYS_{REG}} = 4.95V$	4.85	4.95	5.05	V
		REG00h[3:0] = 0000, I _{IN_LIMIT} = 50mA	30	40	50	mA
Input current (I _{IN}) limit	I	REG00h[3:0] = 0011, I _{IN_LIMIT} = 140mA	112	126	140	mA
	I _{IN_LIMIT}	REG00h[3:0] = 1001, I _{IN_LIMIT} = 320mA	275	300	320	mA
		REG00h[3:0] = 1111, I _{IN_LIMIT} = 500mA	440	470	500	mA
		REG00h[7:4] = 0000, V _{IN_REG} = 3.88V	3.68	3.88	4.18	V
Minimum Input Voltage	Max	REG00h[7:4] = 0110, V _{IN_REG} = 4.36V	4.1	4.36	4.62	V
Regulation	Vin_min	REG00h[7:4] = 1001, V _{IN_REG} = 4.6V	4.34	4.6	4.86	V
		REG00h[7:4] = 1111, V _{IN_REG} = 5.08V	4.88	5.08	5.35	V
IN to SYS turn-on resistance	Ron_q1	V _{IN} = 5V, I _{SYS} = 100mA		290		mΩ

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Condition	Min	Тур	Max	Units
		$V_{IN} = 5V$, EN_HIZ = 0, CE = low, charging enabled, $I_{CHG} = 0A$, $I_{SYS} = 0A$		700	780	μA
Input quiescent current	Iin_q	$V_{IN} = 5V$, EN_HIZ = 0, CE = high, charging disabled		450	520	μA
		$V_{IN} = 5V, EN_HIZ = 1$		150	200	μA
		$V_{IN} = 5V$, CE = L, $I_{SYS} = 0A$, charging complete, $V_{BATT} = 4.35V$		15	20	μA
		$V_{IN} = GND, CE = H, I_{SYS} = 0A,$ $V_{BATT} = 4.35V, Iow-power mode: NTC$ disabled, BATTOCP disabled, INT interrupt disabled, watchdog disabled		1.5	3	μA
Battery quiescent current	Ibatt_q	$V_{IN} = GND, CE = H, I_{SYS} = 0A,$ $V_{BATT} = 4.35V, active mode, NTC disabled, watchdog disabled$		7.2	8.2	μA
		$V_{IN} = GND, CE = H, I_{SYS} = 0A,$ $V_{BATT} = 4.35V, active mode, NTC disabled, watchdog enabled$		15		μA
		$V_{BATT} = 4.5V, V_{IN} = V_{SYS} = GND,$ shipping mode			350	nA
Battery FET on resistance	R _{ON_Q2}	$V_{IN} < 2V, V_{BATT} = 3.5V, I_{SYS} = 100mA$		100		mΩ
Battery FET discharge	IDSCHG	REG0Dh[3:0] = 0001, I _{DSCHG} = 400mA	370	490	585	mA
current limit	ЮЗСПО	REG0Dh[3:0] =1001, I _{DSCHG} = 2000mA		2400 (5)		
SYS reverse to BATT switch leakage		$V_{SYS} = 4.65V, V_{IN} = 5V, V_{BATT} = GND,$ EN_HIZ = 1, CE = H, charging disabled			100	nA
Ideal diode forward voltage in supplement mode	Vfwd	Ibschg = 50mA		30		mV
Shipping Mode						
Enter shipping mode deglitch time	tesm_dgl	REG06h[5] is set from 0 to 1, REG0Ah[5:4] = 00		1		sec
Exit shipping mode	texsm_dgl	Exit shipping mode by V_{IN} plug-in, REG0Ah[2] = 0		80		ms
deglitch time		Exit shipping mode by pulling INT low		2		sec
Auto-Reset Mode						
Reset deglitch by INT	tper per	REG01h[7:6] = 00		8		sec
	trst_dgl	REG01h[7:6] = 10		16		sec
Battery FET off duration	t _{RST_DUR}	REG01h[5] = 0		2		sec
	"KOI_DUK	REG01h[5] = 1		4		sec

ELECTRICAL CHARACTERISTICS (continued)

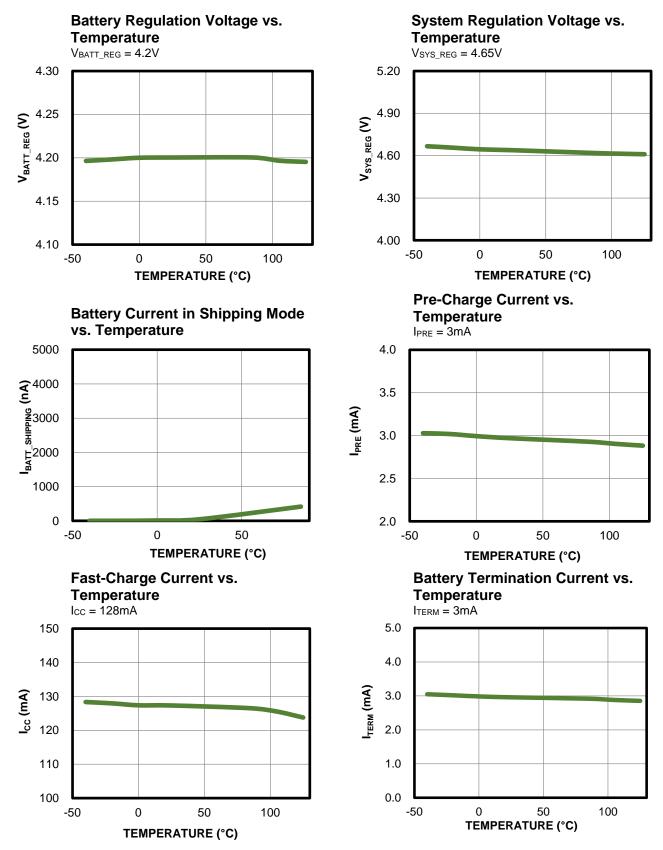
$V_{IN} = 5V$, $V_{BATT} = 3.8V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Battery Charger					-	
		REG04h[7:2] = 000000, $V_{BATT_{REG}} = 3.6V$, T _A = 0°C to 85°C	3.578	3.6	3.622	V
		REG04h[7:2] = 101000, V _{BATT_REG} = 4.2V	4.179	4.2	4.221	V
Battery charging regulation voltage	Vbatt_reg	REG04h[7:2] = 101000, $V_{BATT_{REG}} = 4.2V$, T _A = 0°C to 85°C	4.175	4.2	4.225	V
regulation voltage		REG04h[7:2] = 110010, $V_{BATT_{REG}} = 4.38V$, T _A = 0°C to 85°C	4.354	4.38	4.404	V
		REG04h[7:2] = 111110, $V_{BATT_{REG}} = 4.53V$, T _A = 0°C to 85°C	4.506	4.53	4.556	V
		REG02h[7:0] = 00000000, I _{CC} = 8mA	7.6	8	8.6	mA
		REG02h[7:0] = 00011100, Icc = 58mA	53	58	63	mA
Fast-charge current	lcc	REG02h[7:0] = 00110000, Icc = 98mA	91	98	105	mA
		REG02h[7:0] =10000011, I _{CC} = 264mA	246	264	280	mA
		REG02h[7:0] = 11100011, lcc = 456mA	420	456	484	mA
		REG03h[7:4] = 0000, I _{PRE} = 1mA	0.82	1.08	1.37	mA
		REG03h[7:4] = 0001, I _{PRE} = 3mA	2.55	3	3.45	mA
Pre-charge current	I _{PRE}	REG03h[7:4] = 0101, I _{PRE} = 11mA	9.8	11	12.2	mA
		REG03h[7:4] = 1111, I _{PRE} = 31mA	28	31	34	mA
	I _{term}	REG03h[3:0] = 0000, I _{TERM} = 1mA	0.82	1.08	1.37	mA
Charge termination		REG03h[3:0] = 0001, I _{TERM} = 3mA	2.55	3	3.45	mA
current threshold		REG03h[3:0] = 0101, I _{TERM} = 11mA	9.8	11	12.2	mA
		REG03h[3:0] = 1111, I _{TERM} = 31mA	28	31	34	mA
Termination deglitch time	tterm_dgl			3.2		sec
Pre-charge to fast charge threshold	VBATT_PRE	VBATT rising, REG05h[0] = 1, VBATT_PRE = 3V	2.9	3	3.1	V
Pre-charge to fast charge hysteresis				90		mV
Battery auto-recharge		Below $V_{BATT_{REG}}$, REG04h[0] = 0	60	100	140	mV
threshold	Vrech	Below $V_{BATT_{REG}}$, REG04h[0] = 1	160	200	240	mv
Battery auto-recharge delay time	trech_dgl			200		ms
Thermal Protection						
Junction temperature (T _J) regulation ⁽⁵⁾	T_{J_REG}	THERMAL_LIMIT = 120°C		120		°C
Thermal shutdown threshold ⁽⁵⁾	T _{SD}			150		°C
Thermal shutdown hysteresis ⁽⁵⁾				20		°C
NTC bias current	INTC		48.4	50	51	μA

ELECTRICAL CHARACTERISTICS (continued)

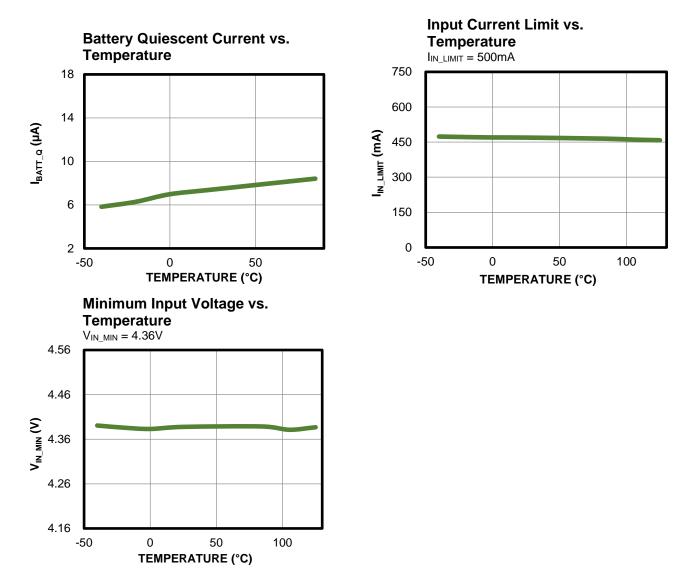
$V_{IN} = 5V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
NTC cold temperature rising threshold	Vcold		1040	1050	1060	mV
NTC cold temperature rising hysteresis				20		mV
NTC cooler temperature rising threshold	V _{COOLER}		743	751	759	mV
NTC cooler temperature rising hysteresis				25		mV
NTC cool temperature rising threshold	V _{COOL}		625	632	639	mV
NTC cool temperature rising hysteresis				25		mV
NTC warm temperature falling threshold	Vwarm		228	233	238	mV
NTC warm temperature falling hysteresis				25		mV
NTC hot temperature falling threshold	VHOT		193	199	205	mV
NTC hot temperature falling hysteresis				25		mV
Logic I/O Pin Characterist	ics					
Logic low voltage	VL				0.4	V
Logic high voltage	VH		1.3			V
I ² C Interface (SDA, SCL)						
Input high voltage	VIH		1.3			V
Input low voltage	VIL				0.4	V
Output low voltage	Vol	Isink = 5mA			0.4	V
I ² C clock frequency	f _{SCL}				400	kHz
Clock Frequency and Wat	chdog Time	r				
Clock frequency	fclĸ			131		kHz
Watchdog timer	twdt	REG05h[6:5] = 11		160		sec

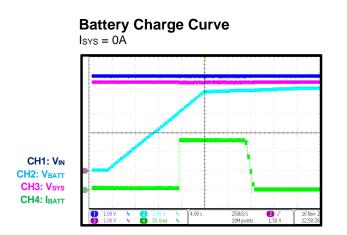

Note:

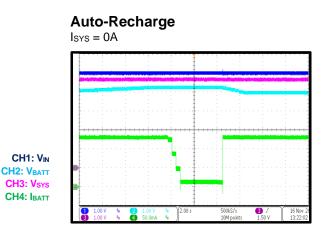
5) Guaranteed by design.

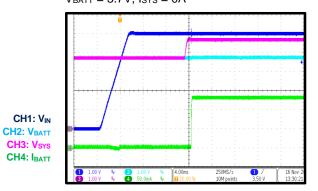
TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{IN} = 5V$, $I_{IN_LIMIT} = 500$ mA, $I_{CC} = 128$ mA, $T_A = 25$ °C, unless otherwise noted.

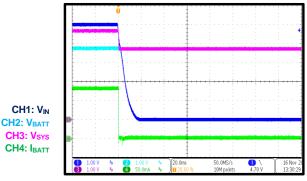
MP2710 Rev. 1.0 1/23/2024

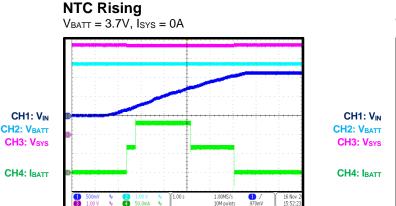


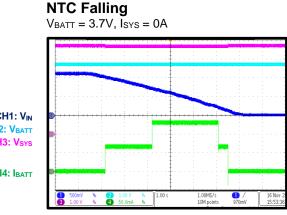

 $V_{IN} = 5V$, $I_{IN_LIMIT} = 500$ mA, $I_{CC} = 128$ mA, $T_A = 25$ °C, unless otherwise noted.



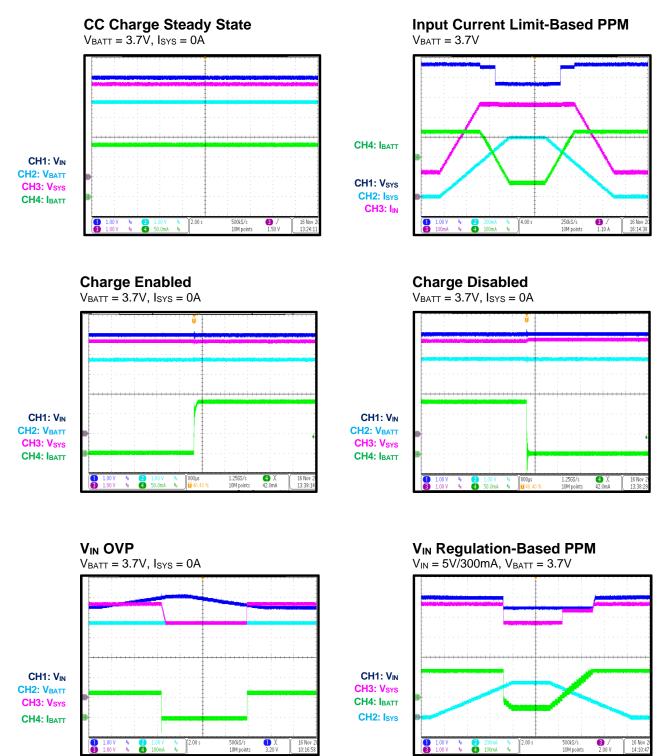
 $V_{IN} = 5V$, $I_{IN_LIMIT} = 500$ mA, $I_{CC} = 128$ mA, $T_A = 25$ °C, unless otherwise noted.

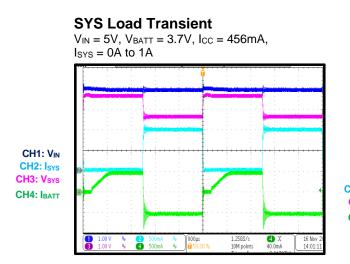


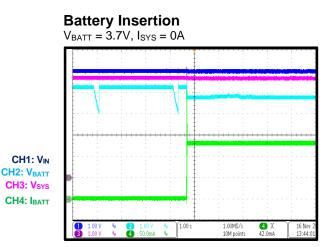


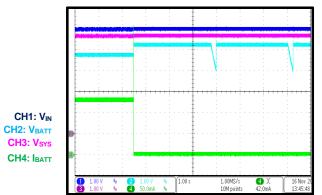

Start-Up VBATT = 3.7V, ISYS = 0A

Shutdown VBATT = 3.7V, I_{SYS} = 0A






 $V_{IN} = 5V$, $I_{IN_LIMIT} = 500$ mA, $I_{CC} = 128$ mA, $T_A = 25$ °C, unless otherwise noted.


 $V_{IN} = 5V$, $I_{IN_LIMIT} = 500$ mA, $I_{CC} = 128$ mA, $T_A = 25$ °C, unless otherwise noted.

Battery Removal

 $V_{BATT} = 3.7V$, $I_{SYS} = 0A$

FUNCTIONAL BLOCK DIAGRAM

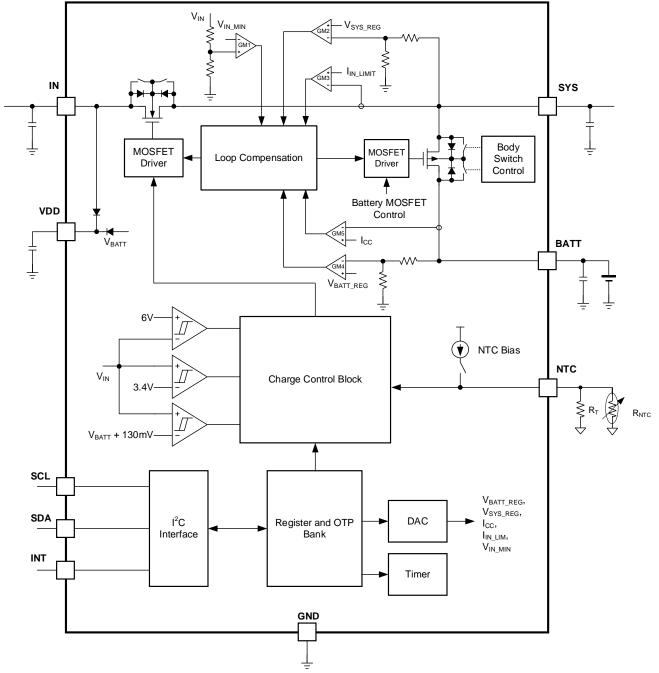


Figure 2: Functional Block Diagram

OPERATION

The MP2710 is an I²C-controlled, single-cell, Liion/Li-polymer battery charger with complete power-path management (PPM). The full charging function includes constant current precharge, constant current fast charge (CC), and constant voltage (CV) regulation, charge termination, auto-recharge, and a built-in timer. PPM allows the input source to power the system and charge the battery simultaneously. The system load requirement always takes priority over the charge current (I_{CHG}). When the input power is limited due to an input current limit (I_{IN_LIMIT}) or input voltage (V_{IN}) limit, the IC reduces I_{CHG} automatically until the battery supplements the system load.

The IC integrates a $290m\Omega$ low-dropout (LDO) MOSFET between the IN and SYS pins, as well as a $100m\Omega$ battery MOSFET between the SYS and BATT pins.

In charge mode, the on-chip, $100m\Omega$ battery MOSFET works as a fully featured linear charger with pre-charge, fast charge, CV charge, charge termination, auto-recharge, NTC monitoring, built-in timer control, and thermal protection. I_{CHG} can be configured via the I²C interface. The IC adjusts I_{CHG} when the die temperature exceeds the thermal regulation threshold (120°C by default).

In supplement mode, the $100m\Omega$ battery MOSFET turns on to connect the battery to the system load while the input power is not sufficient to power the system load. When the input is removed, the $100m\Omega$ battery MOSFET turns on fully to allow the battery to start up the system.

The system load is satisfied first, and then the remaining current is used to charge the smart PPM battery. The MP2710 reduces I_{CHG} or uses power from the battery to satisfy the system load when its demand exceeds the input power capacity.

If the battery is connected and the input source is missing, the IC operates in battery discharge mode; the low, $100m\Omega$ battery MOSFET and low-power mode reduce battery current consumption.

Figure 3 shows PPM for the MP2710.

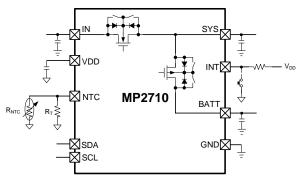


Figure 3: Power Path Management

Table 1 on page 17 shows the functions that are active for each operation mode. Each mode is discussed in detail in the following sections.

Power Supply

The IC's internal bias circuit is powered from either IN or BATT, whichever has the higher voltage. When the IN voltage (V_{IN}) or the BATT voltage (V_{BATT}) exceeds its respective undervoltage lockout (UVLO) threshold, the sleep comparator, battery depletion comparator, and battery MOSFET driver are active. The I²C interface is ready for communication, and all registers are reset to the default value. The host can access all of the registers.

Input Over-Voltage Protection (OVP) and Under-Voltage Lockout (UVLO)

The MP2710 has an input over-voltage protection (OVP) threshold and an input UVLO threshold (V_{IN_UVLO}). When V_{IN} drops below V_{IN_UVLO} or exceeds V_{IN_OVP} , the LDO MOSFET (Q1) turns off immediately.

When V_{IN} is identified as a good source, a 10ms glitch filter becomes active. If V_{IN} is normal for 10ms, the system starts up; otherwise, Q1 remains off (see Figure 4).

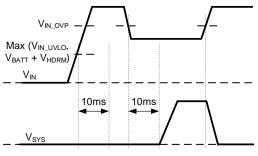


Figure 4: Input Power Detection

Function	Charge Mode	Battery Discharge Mode	Low-Power Mode	Shipping Mode				
VIN OVP	Yes	No	No	No				
VIN UVLO	Yes	No	No	No				
Battery OCP	Yes	Yes	No	No				
Battery UVLO	Yes	Yes	Yes	No				
V _{IN} dynamic power management (DPM)	If enabled	No	No	No				
	Yes	No	No	No				
Battery MOSFET	Yes	Yes	Yes	No				
NTC	If enabled	No	No	No				
Charging	If enabled	No	No	No				
INT input	Yes	Yes	Yes	Yes				
INT output	Yes	Yes	No	No				
l ² C	Yes	Yes	Yes	No				
Watchdog	If enabled	If enabled	No	No				

Table 1: Function Availability in Different Operation Modes

Power Path Management (PPM)

The MP2710 employs a power path structure consisting of a front-end LDO MOSFET (Q1) between the IN and SYS pins and a battery MOSFET (Q2) between the SYS and BATT pins. The battery MOSFET decouples the system from the battery, which allows for separate control between the system and the battery. The system has the priority to start up, even with a deeply discharged or missing battery. When input power is available, the system voltage (V_{SYS}) is regulated to the regulated system output voltage (V_{SYS REG}), which can be configured by register 07h, bits[3:0]. The LDO MOSFET and battery MOSFET can also be controlled via the I²C (see Table 2).

 Table 2: MOSFET Control via the l²C

MOSFET	Hi-Z Mode and Charge Control				
On/Off	Set EN_HIZ = 1	Set CEB = 1			
LDO MOSFET	Off	х			
Battery MOSFET (charging)	x	Off			
Battery MOSFET (discharging)	x	х			

Note:

6) "x" means not affected by I²C control.

For V_{SYS} control when V_{IN} exceeds V_{SYS_REG} , V_{SYS} is regulated to V_{SYS_REG} . When V_{IN} is below V_{SYS_REG} , the LDO FET is fully on with I_{IN_LIMIT} .

Battery Charge Profile

The MP2710 provides three main charging phases: pre-charge (PRE.C), fast-current (CC) charge, and constant-voltage (CV) charge (see Figure 5 on page 18).

- <u>Phase 1 (pre-charge)</u>: The MP2710 can safely pre-charge a deeply depleted battery until V_{BATT} reaches the pre-charge to fastcharge threshold (V_{BATT_PRE}). The precharge current (I_{PRE}) can be configured via REG03h, bits[7:4]. If V_{BATT} does not reach V_{BATT_PRE} before the pre-charge timer (1hr) expires, the charge cycle stops, and a corresponding timeout fault signal is asserted.
- 2. <u>Phase 2 (fast charge):</u> When V_{BATT} exceeds V_{BATT_PRE} , the MP2710 enters the fast-charge phase. The fast-charge current (I_{CC}) can be configured via REG02h, bits[7:0].
- 3. <u>Phase 3 (constant-voltage charge)</u>: When V_{BATT} rises to the battery full voltage (V_{BATT_REG}) set via REG04h, bits[7:2], the charge mode changes from CC mode to CV mode, and I_{CHG} decreases. Note that V_{SYS} should exceed V_{BATT} by at least 140mV when I_{CC} is below 200mA.

The charge cycle completes when I_{CHG} reaches the termination current threshold after a 3.2s termination deglitch time. The termination charge current threshold can be configured via register REG03h, bits[3:0].

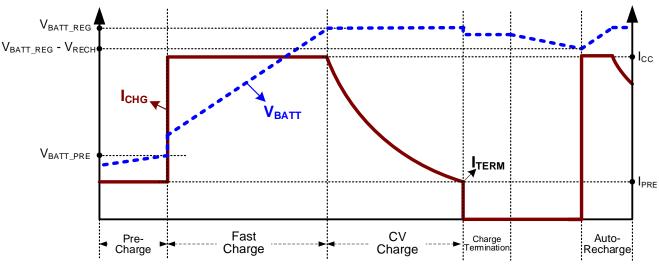


Figure 5: Battery Charge Profile

During the entire charging process, the actual I_{CHG} may be below the register setting due to other loop regulations, such as V_{IN} or I_{IN} dynamic power management (DPM) regulation or thermal regulation.

A new charge cycle starts when any of the following conditions are valid:

- The input power is recycled.
- Battery charging is enabled via the I²C.
- Auto-recharge kicks in.

Under the following conditions:

- No thermistor fault at NTC.
- No safety timer fault.
- No battery over-voltage (OV) event.
- The BATT FET is not forced off.

Automatic Recharge

When a charge cycle completes, the battery may be discharged due to system consumption or self-discharge. When V_{BATT} discharges to below the recharge threshold and a valid input is still present, the MP2710 begins a new charging cycle automatically.

Battery Over-Voltage Protection (OVP)

The MP2710 features a built-in battery OV limit (about 130mV above V_{BATT_REG}). When a battery OV fault occurs, the MP2710 suspends charging immediately and asserts a fault.

Input Current-Based and Input Voltage-Based Power Path Management (PPM)

To meet the input source's (typically USB) maximum current limit specification, the MP2710 uses I_{IN} -based power management by monitoring I_{IN} continuously. The total I_{IN_LIMIT} can be configured via the I^2C to prevent the input source from being overloaded.

If the preset I_{IN_LIMIT} exceeds the rating of the input source, back-up V_{IN} -based power management also works to prevent the input source from being overloaded. If either I_{IN_LIMIT} or the V_{IN} limit is reached, Q1 between IN and SYS is regulated, limiting the total input power and dropping V_{SYS} . Once the system drops to the minimum values of (V_{SYS_REG} - 100mV) and (V_{IN} - 145mV), I_{CHG} reduces to prevent V_{SYS} from dropping further.

 V_{IN} -based DPM regulates V_{IN} to its minimum voltage (V_{IN_MIN}) when the load is over the input power capacity. The V_{IN} limit function can be disabled via REG07h, bit[6].

Battery Supplement Mode

 I_{CHG} is reduced to keep I_{IN} or V_{IN} regulated during DPM. If I_{CHG} is reduced to 0A, and the input source remains overloaded due to a heavy system load, V_{SYS} decreases. Once V_{SYS} drops to 30mV below V_{BATT} , the MP2710 enters battery supplement mode, and ideal diode mode is enabled. The battery MOSFET is regulated to keep (V_{BATT} - V_{SYS}) at 22.5mV

when $(I_{DSCHG} \times R_{ON_BATT})$ is below 22.5mV. If $(I_{DSCHG} \times R_{ON_BATT})$ exceeds 22.5mV, the battery MOSFET fully turns on to maintain the ideal forward voltage. When the system load decreases and V_{SYS} exceeds (V_{BATT} + 20mV), ideal diode mode is disabled. Figure 6 shows DPM and battery supplement mode.

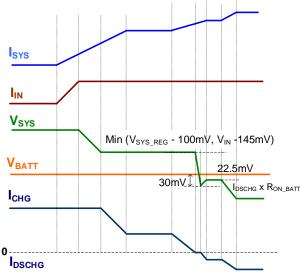


Figure 6: Dynamic Power Management and Battery Supplement

When V_{IN} is not available, the MP2710 operates in discharge mode, and the battery MOSFET is always fully on to reduce loss.

Thermal Regulation and Thermal Shutdown

The MP2710 monitors the internal junction temperature (T_J) continuously to maximize power delivery and avoid overheating the chip. When the internal T_J reaches the preset limit (T_{J REG}, 120°C by default), the IC reduces I_{CHG} to prevent higher power dissipation. The multiple thermal regulation thresholds between 60°C and 120°C help the system design meet requirements different thermal in the applications. The T_J regulation threshold can be set via REG07h, bits[5:4]. When T_J reaches 150°C, both Q1 and Q2 turn off.

Negative Temperature Coefficient (NTC) Temperature Sensor

The MP2710 continuously monitors the battery's temperature by measuring the NTC pin voltage (V_{NTC}), which is created by an internal precise NTC bias current flowing out of the NTC pin to the thermistor. The MP2710 compares this voltage to the internal threshold to determine which fault has occurred and to

take action accordingly. This current is only active when V_{IN} is present and can be disabled by writing 0 to the EN_NTC bit.

The MP2710 monitors five battery temperatures: the hot battery temperature, the warm battery temperature, the cool battery temperature, the cooler battery temperature, and the cold battery temperature. These temperatures correspond to the V_{HOT}, V_{WARM}, V_{COOL}, V_{COOLER}, and V_{COLD} thresholds in the Electrical Characteristics section on page 9. These thresholds can be adjusted via REG0Bh.

Figure 7 shows the NTC protection circuit.

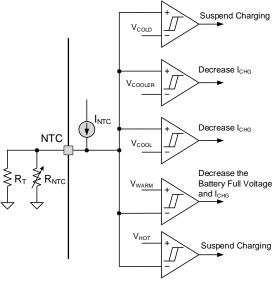
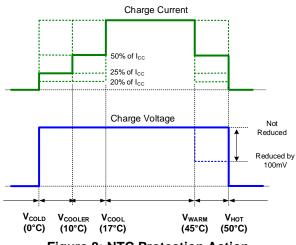


Figure 7: NTC Protection Circuit

 V_{NTC} can be up to 1.2V. Table 3 shows the default thresholds that the MP2710 supports with a 10k Ω NTC thermistor. For accurate temperature thresholds, a 10k Ω NTC thermistor with a 3435 B-constant should be used in parallel with a 91k Ω resistor.

VNTC (V)	Temperature (°C)
0.146	60
0.233	45
0.751	10
1.049	0


Charging is suspended when $V_{NTC} < V_{HOT}$ or $V_{NTC} > V_{COLD}$. The NTC actions can be configured by REGOCh. Table 4 on page 20 shows the NTC actions.

VNTC	V BATT_REG	Існд	
Vhot < Vntc < Vwarm	WARM_VSET	WARM_ISET	
V _{COOL} < V _{NTC} < V _{COOLER}	COOL_VSET	COOL_ISET	
Vcooler < Vntc < Vcold	-	COOLER_ ISET	

Table 4: NTC Actions

Figure 8 shows the NTC protection action.

When an NTC fault occurs, an interrupt is asserted and the fault bits are updated. The five adjustable temperature thresholds and the configured charge current's reduced value allow the user to easily meet the JEITA standard or a simpler I²C hot/cold function.

Safety Timer

The MP2710 provides both a pre-charge and fast-charge safety timer to prevent an extended charging cycle due to abnormal battery conditions. The safety timer is 1hr when V_{BATT} is below V_{BATT_PRE} . The fast-charge safety timer starts when the battery enters fast-charge mode. The fast-charge safety timer can be configured via the I²C. The safety timer can also be disabled via the I²C.

The following actions can restart the safety timer:

- A new charge cycle begins.
- Write REG01h, bit[3] from 1 to 0 (charge is enabled).
- Write REG01h, bit[4] from 1 to 0 (Hi-Z is disabled).

Watchdog Timer

The watchdog timer works in both charge and discharge mode. When the watchdog timer expires, most registers return to the default value (see the I²C Register Map section on page 27). When the watchdog timer runs out in both charge and discharge mode, both the LDO MOSFET and battery MOSFET turn off, and then turn on again automatically after 4s.

To save quiescent current (I_Q) during discharge mode, the watchdog timer can be turned off by setting REG05h, bit[7] to 0.

If the watchdog timer (REG05h, bits[6:5]) is enabled, the host must reset the watchdog timer regularly by writing 1 to REG06h, bit[7] before the watchdog timer expires. The watchdog timer can also be configured or disabled by host control.

When REG05h, bits[6:5] are set to 00, the watchdog timer is disabled in both charge mode and discharge mode, regardless of REG05h, bit[7].

Battery Discharge Mode

If the battery is connected and the input source is missing, the battery MOSFET is fully on when V_{BATT} is above V_{BATT_UVLO} . The 100m Ω battery MOSFET minimizes conduction loss during battery discharging, and the battery I_{Ω} is as low as 8µA in this mode. The MP2710 has lowpower mode, which is enabled by setting REG07h, bit[7] to 1. In this mode, the battery I_{Ω} can be as low as 1.5µA. The low on resistance and low I_{Ω} extend the battery run time.

Over-Discharge Current Protection

The MP2710 has over-discharge current protection in discharge mode and supplement mode. Once the discharge current (I_{DSCHG}) exceeds the configurable I_{DSCHG} limit (2A by default), the battery MOSFET turns off after 60µs. The MP2710 enters hiccup mode as part of over-current protection (OCP). I_{DSCHG} can be set high (3.2A) via the I²C. If I_{DSCHG} goes high and reaches the internal fixed current limit (about 3.7A), the battery MOSFET turns off and hiccup mode begins immediately.

Similarly, when V_{BATT} falls below the configurable V_{BATT_UVLO} (2.76V by default), the

battery MOSFET turns off to prevent overdischarge.

System Short-Circuit Protection (SCP)

The MP2710 features system short-circuit protection (SCP) for both the IN to SYS path and the BATT to SYS path.

 V_{SYS} is monitored continuously. If V_{SYS} is below 1.5V, system SCP for both the IN to SYS path and the BATT to SYS path is active. I_{DSCHG} decreases to half of the original value.

For the IN to SYS path, once the input current (I_{IN}) exceeds the protection threshold, both the LDO MOSFET and battery MOSFET turn off immediately, and the MP2710 enters hiccup mode. When the set I_{IN_LIMIT} is reached, I_{IN} is regulated at I_{IN_LIMIT} . Hiccup mode starts after a 60µs delay. The hiccup mode interval is 800µs.

For the BATT to SYS path, once I_{DSCHG} exceeds the protection threshold (3.7A), both the LDO MOSFET and battery MOSFET turn off immediately, and the MP2710 enters hiccup mode. When the battery I_{DSCHG} limit is reached, hiccup mode starts after 60µs. The hiccup mode interval is 800µs.

If a system short circuit occurs when both the input and battery are present, the protection mechanism of both paths works. The faster one of the two controls hiccup mode.

Interrupt (INT) to Host

The MP2710 has an alert mechanism that outputs an interrupt signal via INT to notify the system about operation by outputting a 256µs low-state INT pulse. All of the below events can trigger an INT output:

- A good input source is detected (PG_STAT).
- Charging is complete.
- The charging status has changed.
- A REG09h fault has occurred (e.g. watchdog timer fault, thermal fault, safety timer fault, battery OVP fault, or NTC fault).

When a fault occurs, the MP2710 sends out an INT pulse and latches the fault state in REG09h. After the MP2710 exits the fault state, the fault bit is reset to 0 after the host reads REG09h. The NTC fault is not latched and always reports the current thermistor conditions.

The INT signal can be masked when the corresponding control bit is set by REG06h, bits[4:0]. When an INT condition is masked, this means that the INT pin signal (and register bit) is not triggered when the corresponding condition occurs. Masking INTs is useful when writing software code to avoid unnecessary interruptions due to these events.

Battery Disconnect Function

In applications where the battery is not removable, it is essential to disconnect the battery from the system to reset system power during application or to enter shipping mode. The MP2710 provides both system reset mode and shipping mode for different applications (see Table 5).

	Enter Shipping Mode	Exit Shipping Mode		
Items	Set FET_DIS = 1 (or Pull INT Low if SHIP_METH = 1)	Pull INT Low for 2s	V _{IN} Plug-In	
LDO MOSFET	Х	х	On (10ms later)	
Battery MOSFET	Off	On	On (80ms later)	

Table 5: Shipping Mode Control

Note:

7) "x" means not affected.

The MP2710 pulls the INT pin low to reset the system. Once the logic at INT is set low for longer than the reset deglitch time (t_{RST_DGL}) (configurable via REG01h, bits[7:6]), the battery is disconnected from the system by turning off the battery MOSFET. The LDO MOSFET is

also turned off if V_{IN} is present. The off state lasts for the battery MOSFET off duration (t_{RST_DUR}) (configurable via REG01h, bit[5]). Then the battery MOSFET turns on

automatically, the LDO MOSFET turns on if V_{IN} is present, and the system starts up again.

Figure 9 shows a system reset with only the battery.

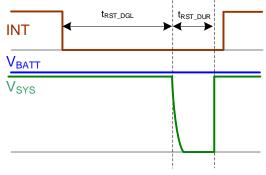


Figure 9: System Reset Mode

There are two ways the MP2710 can enter shipping mode, which is selected by the SHIP_METH OTP bit.

If SHIP_METH = 0, the part enters shipping mode using software (the l^2C). The IC enters shipping mode when the FET_DIS bit is set to 1. The shipping mode entry delay can be configured via REGOAh, bits[5:4]. The FET_DIS bit refreshes to 0 after entering shipping mode. There are two ways to exit shipping mode. To exit shipping mode, either plug in V_{IN} for 80ms (configurable via REGOAh, bit[2]), or pull the INT pin low for 2s. Figure 10 shows the part entering shipping mode via the l^2C .

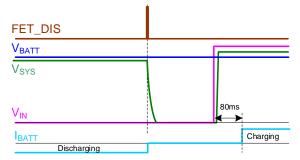


Figure 10: Enter Shipping Mode via the I²C

If SHIP_METH = 1, the part enters shipping mode using hardware. Pull the INT pin low for 16s (configurable via REG01h, bits[7:6]) to have the IC enter shipping mode. To exit shipping mode, plug in V_{IN} for 80ms or pull the INT pin low again for 2s. Note that system reset mode is not available when SHIP_METH = 1. Figure 11 shows the part entering shipping mode via hardware.

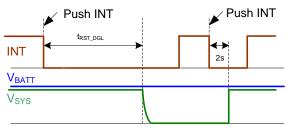


Figure 11: Enter Shipping Mode via Hardware

Table 5 on page 21 shows the shipping mode control settings.

SERIES INTERFACE

The IC uses an I²C-compatible interface for charging parameters setting flexible and instantaneous device status reporting. The I²C a bidirectional, 2-wire serial interface is developed by Philips Semiconductor (now NXP Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). The device can be considered a master or a slave when performing data transfers. A master device is the device that initiates a data transfer on the bus and generates the clock signals to permit the transfer. At that time, any device addressed is considered a slave device.

The MP2710 operates as a slave device with the address 08h receiving control inputs from the master device (e.g. a microcontroller or digital signal processor). The MP2710 ignores the general call address.

The I²C interface supports both standard mode (up to 100kbits) and fast mode (up to 400kbits). Both SDA and SCL are bidirectional lines that connect the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines are high. The SDA and SCL pins are open drains.

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low. One clock pulse is generated for each data bit transferred (see Figure 12 on page 23).

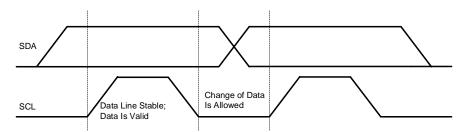
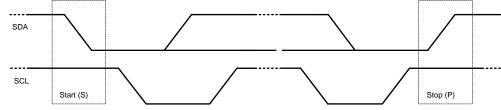



Figure 12: Bit Transfer on the I²C Bus

All the transactions begin with a start (S) command and can be terminated by a stop (P) command. A start command is defined as a high to low transition on the SDA line while SCL is high. A stop command is defined as a low to

high transition on the SDA line while SCL is high. Start and stop commands are always generated by the master. The bus is considered busy after the start command, and free after the stop command (see Figure 13).

Every byte on the SDA line is 8 bits long. Each byte must be followed by an acknowledge (ACK) bit. Data is transferred with the most significant bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some other function, it can hold the SCL clock line low to force the master into a wait state (clock stretching). Data transfer then continues when the slave is ready for another byte of data, and the SCL clock line is released (see Figure 14).

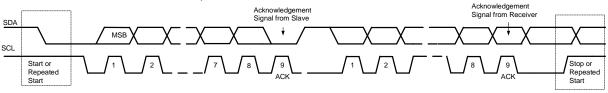


Figure 14: Data Transfer on the I²C Bus

Acknowledgement takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte was successfully received and another byte may be sent. All clock pulses, including the ninth clock pulse (acknowledge), are generated by the master.

The transmitter releases the SDA line during the acknowledge clock pulse, so the receiver can pull the SDA line low. The SDA line remains high during the ninth clock pulse. This is the not acknowledge (NACK) signal. The master can then generate either a stop to abort the transfer or a repeated start to start a new transfer. After the start command, a slave address is sent. This address is 7 bits long followed by the eighth data direction bit (R/W). A 0 indicates a transmission (write) and a 1 indicates a request for data (read). Figure 15 on page 24 shows a complete data transfer.

If the register address is not defined, the MP2710 sends back the NACK signal and enters an idle state.

The MP2710 supports single writes and single reads (see Figure 16 and Figure 17 on page 24).

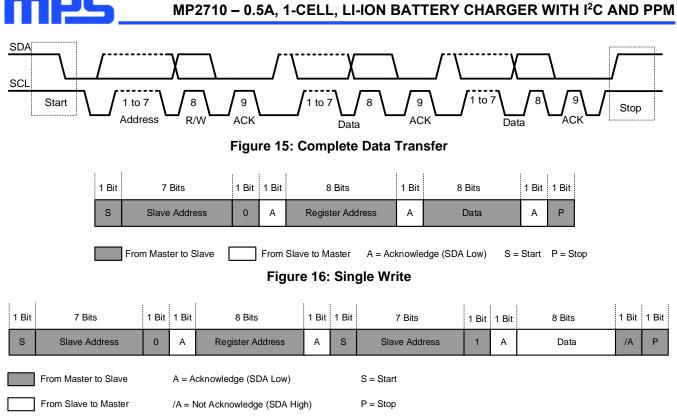


Figure 17: Single Read

APPLICATION INFORMATION

Selecting the NTC Sense Resistor

The MP2710 supports a $10k\Omega$ NTC thermistor with a 3435 B-constant. Every internal threshold is divided from the reference voltage (1.2V) based on the precise 50μ A current flowing through the $10k\Omega$ NTC thermistor in parallel with the $91k\Omega$ resistor (see Figure 18). Place a $91k\Omega$ resistor in parallel with the $10k\Omega$ NTC thermistor to generate an accurate temperature protection threshold. The threshold can be adjusted by configuring register REG0Bh.

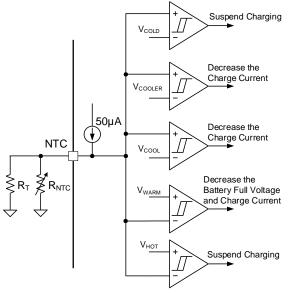


Figure 18: NTC Functional Block

Selecting the External Capacitors

As with most LDO regulators, the MP2710 requires external capacitors for regulator stability and voltage spike immunity. The device is designed for portable applications requiring minimal board space and small components. Select the proper capacitors for optimal performance.

Selecting the Input Capacitor

An input capacitor is required for stability. Connect a 1μ F capacitor between the IN and GND pins for stable operation across the entire load current range. The output capacitance can exceed the input capacitance, as long as the input capacitance is at least 1μ F.

Selecting the Output Capacitor

The MP2710 is designed specifically to work with a very small ceramic output capacitor. A \geq 4.7µF ceramic capacitor with X5R or X7R dielectrics is suitable for most applications. The output capacitor should be connected between the SYS and GND pins using a thick trace and small loop area.

Selecting the BATT to GND Capacitor

A capacitor between the BATT and GND pins is also necessary for the MP2710. A \geq 4.7µF ceramic capacitor with X5R or X7R dielectrics is suitable for most applications.

Selecting the VDD to GND Capacitor

The capacitor between the VDD and GND pins is used to stabilize the VDD voltage (V_{DD}) that powers the internal control and logic circuitry. The typical value of this capacitor is 100nF.

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 19 and follow the guidelines below:

- 1. Place the external capacitors as close to the IC as possible to provide the smallest input inductance and ground impedance.
- 2. The PCB trace connecting the capacitor between VDD and GND is very important; place this capacitor as close to the IC as possible.
- 3. GND for the I²C wire should be clean; do place this wire close to GND.
- 4. Place SDA in parallel with SCL.

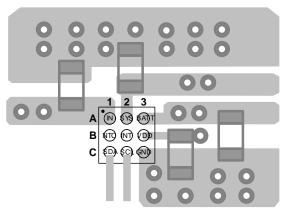


Figure 19: Recommended PCB Layout

TYPICAL APPLICATION CIRCUIT

Figure 20: Typical Application Circuit

Star It and a									
Qty	Ref	Value	Description	Package	Manufacturer				
1	C1	1µF	Ceramic capacitor, 25V, X5R or X7R	0603	Any				
1	C2	100nF	Ceramic capacitor, 16V, X5R or X7R	0603	Any				
1	C3	4.7µF	Ceramic capacitor, 16V, X5R or X7R	0603	Any				
1	C4	4.7µF	Ceramic capacitor, 16V, X5R or X7R	0603	Any				

Table 6: Typical Application Circuit BOM

I²C REGISTER MAP

IC Address: 08h (reserved some trim options)

Register Name	Address	R/W	Description			
REG00h	00h	R/W	Input source control register.			
REG01h	01h	R/W	Start-up configuration register.			
REG02h	02h	R/W	Charge current control register.			
REG03h	03h	R/W	Termination current.			
REG04h	04h	R/W	Charge voltage control register.			
REG05h	05h	R/W	Charge termination/timer control register.			
REG06h	06h	R/W	BATFET control and INT mask.			
REG07h	07h	R/W	Low-power mode and system voltage register.			
REG08h	08h	R	Status register.			
REG09h	09h	R	Fault register.			
REG0Ah	0Ah	R/W	Shipping mode delay and NTC control.			
REG0Bh	0Bh	R/W	NTC temperature threshold.			
REG0Ch	0Ch	R/W	NTC action.			
REG0Dh	0Dh	R/W	Battery discharge current limit.			

REG00h

REG00h sets the VIN_MIN threshold and IIN_LIM limit of the input source in charge mode.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	VIN_MIN [3]	0	Yes	No	R/W	640mV.	
6	VIN_MIN [2]	1	Yes	No	R/W	320mV.	Offset: 3.88V
5	VIN_MIN [1]	1	Yes	No	R/W	160mV.	Range: 3.88V to 5.08V Default: 4.36V (0110)
4	VIN_MIN [0]	0	Yes	No	R/W	80mV.	
3	IIN_LIM [3]	1	Yes	No	R/W	240mA.	
2	IIN_LIM [2]	1	Yes	No	R/W	120mA.	Offset: 50mA
1	IIN_LIM [1]	1	Yes	No	R/W	60mA.	Range: 50mA to 500mA Default: 500mA (1111)
0	IIN_LIM [0]	1	Yes	No	R/W	30mA.	

REG01h

REG01h sets the start-up related controls, including the system reset deglitch time, IC enable, and battery under-voltage lockout (UVLO) threshold.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	TRST_DGL[1]	1	Yes	No	R/W	00: 8s 01: 12s 10: 16s 11: 20s	The deglitch time for pulling INT low to reset system. After t _{RST_DUR} , V _{SYS} recovers.
6	TRST_DGL[0]	0	Yes	No	R/W		It is also the delay to enter shipping mode if EN_SHIP = 1 (via hardware). Default: 16s (10)
5	TRST_DUR	0	Yes	No	R/W	0: 2s 1: 4s	Default: 2s (0)
4	EN_HIZ ⁽⁸⁾	0	Yes	Yes	R/W	0: Disabled 1: Enabled	Default: Disabled (0)

MP2710 Rev. 1.0 1/23/2024

	3 CEB	1 Yes		Yes	R/W	0: Charge enabled 1: Charge disabled	Charge configuration.
3			1 Yes				Default: Charge disabled (1)
							OTP-configurable.
2	VBATT_ UVLO[2]	1	Yes	Yes	R/W	360mV.	Battery under-voltage lockout (UVLO) threshold.
1	VBATT_ UVLO[1]	0	Yes	Yes	R/W	180mV.	Offset: 2.4V Range: 2.4V to 3.03V Default: 2.76V (100)
0	VBATT_ UVLO[0]	0	Yes	Yes	R/W	90mV.	

Note:

8) This bit only controls the on and off of the LDO MOSFET.

REG02h

REG02h sets the battery fast-charge current (I_{CC}).

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	ICC [7]	0	Yes	Yes	R/W	256mA.	Fast shares surrent (L)
6	ICC [6]	0	Yes	Yes	R/W	128mA.	Fast-charge current (I _{cc}) setting.
5	ICC [5]	1	Yes	Yes	R/W	64mA.	Offset: 2mA
4	ICC [4]	1	Yes	Yes	R/W	32mA.	Range: 8mA to 456mA Default: 128mA (00111111) OTP-configurable. Note: When Icc < 00000011
3	ICC [3]	1	Yes	Yes	R/W	16mA.	
2	ICC [2]	1	Yes	Yes	R/W	8mA.	
1	ICC [1]	1	Yes	Yes	R/W	4mA.	
0	ICC [0]	1	Yes	Yes	R/W	2mA.	

REG03h

REG03h sets the battery pre-charge current (I_{PRE}) and charge termination current.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	IPRE [3]	0	Yes	Yes	R/W	16mA.	Pre-charge current (IPRE).
6	IPRE [2]	0	Yes	Yes	R/W	8mA.	Offset: 1mA
5	IPRE [1]	0	Yes	Yes	R/W	4mA.	Range: 1mA to 31mA Default: 3mA (0001)
4	IPRE [0]	1	Yes	Yes	R/W	2mA.	OTP-configurable.
3	ITERM [3]	0	Yes	Yes	R/W	16mA.	Termination current.
2	ITERM [2]	0	Yes	Yes	R/W	8mA.	Offset: 1mA Range: 1mA to 31mA Default: 3mA (0001) OTP-configurable.
1	ITERM [1]	0	Yes	Yes	R/W	4mA.	
0	ITERM [0]	1	Yes	Yes	R/W	2mA.	

REG04h

REG04h sets the battery voltage (V_{BATT}) controls, including the battery charge regulation voltage and recharge threshold.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	VBATT_REG [5]	1	Yes	Yes	R/W	480mV.	
6	VBATT_REG [4]	0	Yes	Yes	R/W	240mV.	Battery regulation voltage.
5	VBATT_REG [3]	1	Yes	Yes	R/W	120mV.	Offset: 3.6V
4	VBATT_REG [2]	0	Yes	Yes	R/W	60mV.	Range: 3.6V to 4.545V Default: 4.2V (101000)
3	VBATT_REG [1]	0	Yes	Yes	R/W	30mV.	OTP-configurable.
2	VBATT_REG [0]	0	Yes	Yes	R/W	15mV.	
1	RESERVED	-	-	-	-	Reserved.	
0	VRECH[0]	1	Yes	Yes	R/W	0: 100mV 1: 200mV	Battery recharge threshold (below V _{BATT_REG}).
						1. 200111	Default: 200mV (1)

REG05h

REG05h sets the battery pre-charge threshold and the timer-related configurations, including timer enable, the watchdog timer, and the charge timer.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	EN_WD_DISCHG	0	Yes	No	R/W	0: Disabled 1: Enabled	Watchdog control in discharge mode.
							Default: Disabled (0)
							I ² C watchdog timer limit.
6	WATCHDOG [1]	0	Yes	No	R/W	00: Disables the timer	Default: 40s (01)
						00. Disables the timer 01: 40s	If $bit[6:5] = 00$, then the
5	WATCHDOG [0]	1	Yes	No	R/W	10: 80s 11: 160s	watchdog timer is disabled, regardless of whether bit[7] is set.
							OTP-configurable.
4	EN_TERM	1	Yes	Yes	R/W	0: Disabled 1: Enabled	Termination setting that determines whether termination is allowed.
							Default: Enabled (1)
3		4	Vaa	Vaa	R/W	0: Disabled	Safety timer setting.
3	EN_TIMER	1	Yes	Yes	R/VV	1: Enabled	Default: Enabled (1)
2	CHG_TMR [1]	0	Yes	Yes	R/W	00: 3hrs 01: 5hrs	Fast charge timer.
1	CHG_TMR [0]	1	Yes	Yes	R/W	10: 8hrs 11: 12hrs	Default: 5hrs (01)
0	VBATT_PRE	1	Yes	Yes	R/W	0: 2.8V 1: 3V	Pre-charge to fast- charge threshold.
						1.00	Default: 3V (1)

REG06h

REG06h sets the BATT_FET control and INT mask.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	I2C_WATCHDOG _TIMER_RESET	0	Yes	Yes	R/W	0: Normal 1: Reset	Default: Normal (0)
6	TMR2X_EN	1	Yes	Yes	R/W	0: Disables the 2x extended safety timer during power-path management (PPM) 1: Enables the 2x extended safety timer during PPM	Default: Enables the 2x extended safety timer during PPM (1)
5	FET_DIS ⁽⁹⁾	0	Yes	No	R/W	0: Enabled 1: Disabled	Default: Enabled (0)
4	PG_INT_ CONTROL	0	Yes	Yes	R/W	0: On 1: Off	Default: On (0)
3	EOC_INT_ CONTROL	0	Yes	Yes	R/W	0: On 1: Off	Charge completed INT mask control. Default: On (0)
2	CHG_STATUS_ INT_CONTROL	0	Yes	Yes	R/W	0: On 1: Off	Charging status change INT mask control (charging status includes not charging, pre-charge, and charge). Default: On (0)
1	NTC_INT_ CONTROL	0	Yes	Yes	R/W	0: On 1: Off	Default: On (0)
0	BATTOVP_INT_ CONTROL	0	Yes	Yes	R/W	0: On 1: Off	Default: On (0)

Note:

9) This bit controls the on and off of the battery MOSFET, which includes charge and discharge.

REG07H

REG07h sets the low-power mode control, IC temperature regulation threshold, and system voltage (V_{SYS}).

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	LPM_EN	0	Yes	No	R/W	0: Disabled 1: Enabled	Low-power mode. Default: Disabled (0)
6	EN_VINLOOP	0	Yes	Yes	R/W	0: Enabled 1: Disabled	Default: Enabled (0)
5	TJ_REG [1]	1	Yes	Yes	R/W	00: 60°C 01: 80°C	Thermal regulation threshold.
4	TJ_REG [0]	1	Yes	Yes	R/W	10: 100°C 11: 120°C	Default: 120°C (11)

MP2710 Rev. 1.0 1/23/2024

MP2710 - 0.5A, 1-CELL, LI-ION BATTERY CHARGER WITH I²C AND PPM

3	VSYS_REG [3]	1	Yes	No	R/W	400mV.	System voltage (V _{SYS}) regulation.
2	VSYS_REG [2]	0	Yes	No	R/W	200mV.	Offset: 4.2V
1	VSYS_REG [1]	0	Yes	No	R/W	100mV.	Range: 4.2V to 4.95V Default: 4.65V (1001)
0	VSYS_REG [0]	1	Yes	No	R/W	50mV.	OTP-configurable.

REG08h

REG08h shows the operation status.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	WATCHDOG_FAULT	0	-	-	R	0: Normal 1: Watchdog timer expires	Default: Normal (0)
6	RESERVED	0	-	-	R	Reserved.	
5	CHG_STAT [1]	0	-	-	R	000: Not charging 001: Pre-charge	
4	CHG_STAT [1]	0	-	-	R	010: CC charge	Default: Not charging (000)
3	CHG_STAT [0]	0	-	-	R	011: CV charge 100: Charging complete	
2	PPM_STAT	0	-	-	R	0: No PPM 1: In PPM	Default: No PPM (0)
1	PG_STAT	0	-	-	R	0: Power failure 1: Power good	Default: Power failure (0)
0	THERM_STAT	0	-	-	R	0: No thermal regulation 1: In thermal regulation	Default: No thermal regulation (0)

REG09h

REG09h shows the operation faults.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	REGISTER_RESET	0	Yes	No	R/W	0: No fault 1: Reset	Default: No fault (0)
6	VIN_FAULT	0	-	-	R	0: No fault 1: Input fault (OVP or bad source)	Default: No fault (0)
5	THEM_SD	0	-	-	R	0: No fault 1: Thermal shutdown	Default: No fault (0)
4	BAT_FAULT	0	-	-	R	0: No fault 1: Battery OVP	Default: No fault (0)
3	STMR_FAULT	0	-	-	R	0: No fault 1: Safety timer expires	Default: No fault (0)
2	NTC_FAULT [2]	0	-	-	R	000: No fault 001: NTC hot fault	
1	NTC_FAULT [1]	0	-	-	R	010: NTC warm fault 011: NTC cool fault	Default: No fault (000)
0	NTC_FAULT [0]	0	-	-	R	100: NTC cooler fault 101: NTC cold fault	

REG0Ah

REG0Ah controls the shipping mode delay and NTC enable functions.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7:6	RESERVED	-	-	-	-	Reserved.	
5	TESM_DGL[1]	0	Yes	No	R/W	00: 1s 01: 2s 10: 4s 11: 8s	Enter shipping mode deglitch time. Default: 1s (00)
4	TESM_DGL[0]	0	Yes	No	R/W		
3	RESERVED	-	-	-	-	Reserved.	
2	TEXSM_DGL	0	Yes	No	R/W	0: 80ms 1: 2s	Exit shipping mode delay time by V _{IN} plug-in. Default: 80ms (0) OTP-configurable.
1	RESERVED	-	-	-	-	Reserved.	
0	EN_NTC	0	Yes	Yes	R/W	0: Disabled 1: Enabled	Default: Disabled (0) OTP- configurable.

REG0Bh

REG0Bh sets the different NTC thresholds.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	VHOT[1]	0	Yes	Yes	R/W	00: 146mV, 60°C 01: 170mV, 55°C	Hot threshold.
6	VHOT[0]	0	Yes	Yes	R/W	10: 181mV, 53°C 11: 199mV, 50°C	Default: 146mV (00) OTP- configurable.
5	VWARM[1]	0	Yes	Yes	R/W	00: 199mV, 50°C 01: 233mV, 45°C	Warm threshold.
4	VWARM[0]	1	Yes	Yes	R/W	10: 248mV, 43°C 11: 322mV, 35°C	Default: 233mV (01)
3	VCOOL[1]	1	Yes	Yes	R/W	00: 534mV, 20°C 01: 591mV, 17°C	Cool threshold.
2	VCOOL[0]	1	Yes	Yes	R/W	10: 632mV, 15°C 11: 751mV, 10°C	Default: 751mV (11) OTP- configurable.
1	VCOOLER	1	Yes	Yes	R/W	0: 632mV, 15°C 1: 751mV, 10°C	Cooler threshold. Default: 751mV (1)
0	VCOLD	1	Yes	Yes	R/W	0: 982mV, 2°C 1: 1049mV, 0°C	Cold threshold.
						1. 10491110, 0 C	Default: 1049mV (1)

REG0Ch

REG0Ch sets the NTC action.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	COOL_VSET (10)	0	Yes	Yes	R/W	0: No action 1: V _{BATT_REG} - 100mV	Default: No action (0)
6	WARM_VSET	0	Yes	Yes	R/W	0: No action 1: V _{BATT_REG} - 100mV	Default: No action (0)
5	WARM_ISET[1]	0	Yes	Yes	R/W	00: No action 01: 50% of the charge	Warm action.
4	WARM_ISET[0]	1	Yes	Yes	R/W	current (І _{СНG}) 10: 25% of І _{СНG} 11: 20% of І _{СНG}	Default: 50% of I _{CHG} (01)
3	COOL_ISET[1]	0	Yes	Yes	R/W	00: No action 01: 50% of Існа	Cool action.
2	COOL_ISET[0]	1	Yes	Yes	R/W	10: 25% of Існд 11: 20% of Існд	Default: 50% of I _{CHG} (01)
1	COOLER_ISET[1]	0	Yes	Yes	R/W	00: No action 01: 50% of I _{СНG}	Cooler action.
0	COOLER_ISET[0]	1	Yes	Yes	R/W	10: 25% of Існд 11: 20% of Існд	Default: 50% of I _{CHG} (01)

Note:

10) This bit is valid just when $V_{COOL} < V_{COOLER}$.

REG0Dh

REG0Dh sets the battery discharge current limit.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7:4	RESERVED	0	-	-	R	Reserved.	
3	IDSCHG[3]	1	Yes	Yes	R/W	1600mA	BATT to SYS discharge current limit.
2	IDSCHG[2]	0	Yes	Yes	R/W	800mA	Offset: 200mA
1	IDSCHG[1]	0	Yes	Yes	R/W	400mA	Range: 400mA to 3.2A Valid Range: 0001 to
0	IDSCHG[0]	1	Yes	Yes	R/W	200mA	1111 Default: 2000mA (1001)

REG0Eh

REG0Eh controls the system OVP enable, shipping mode method, and I²C communication address functions. This register is only for OTP use, and is available to customers to configure.

Bit	Name	POR	Reset by REG_RST	Reset by WTD	R/W	Description	Comment
7	SYSOVP_EN	0	-	-	R	0: Disabled 1: Enabled	Default: Disabled (0)
6	RESERVED	0	-	-	R	Reserved.	
5	SHIP_METH	0	-	-	R	0: By software 1: By hardware	Default: By software (0)

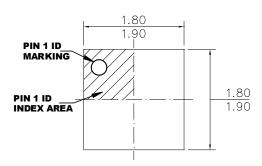
MP2710 - 0.5A, 1-CELL, LI-ION BATTERY CHARGER WITH I²C AND PPM

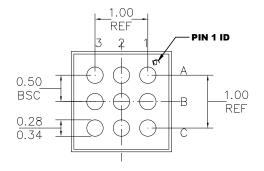
4	ADDR[1]	0	-	-	R	00: 08h 01: 0Ah	Default: 08h (00)	
3	ADDR[0]	0	-	-	R	10: 0Ch 11: 0Eh		
2	LP FUNC	0	-	-	R	0: Available 1: Not available	Low-power mode. Default: Available (0)	
1:0	RESERVED	0	-	-	R	Reserved.		

OTP REGISTER MAP

Addr.	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	
01h	-				CEB	-			
02h	ICC: 8mA to 456mA, 2mA/step								
03h	IPRE: 1mA to 31mA, 2mA/step				IT	ITERM: 1mA to 31mA, 2mA/step			
04h	VBATT_REG: 3.6V to 4.545V, 15mV/step -					-			
05h	-	WATCH	IDOG		-				
07h		-			VSYS	95V, 50mV/step			
0Ah	- TEXSM_DG				TEXSM_DGL		EN_NTC		
0Bh	VHOT[1]	VHOT[0]		-	VCOOL[1]	VCOOL[0]		-	
0Eh	SYSOVP_ EN	-	SHIP_ METH	ADDR[1]	ADDR[0]	LP_FUNC	-	-	

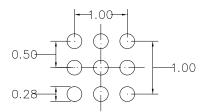
OTP DEFAULT VALUES


Table 7: OTP Default Values


OTP Items	Default Value
CEB	Disabled
ICC	128mA
IPRE	3mA
ITERM	3mA
VBATT_REG	4.2V
WATCHDOG	40s
VSYS_REG	4.65V
TEXSM_DGL	80ms
EN_NTC	Disabled
VHOT	146mV
VCOOL	751mV
ADDR	08H
LP FUNC	Available
SYSOVP_EN	Disabled
SHIP_METH	By software

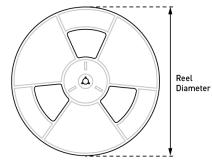
PACKAGE INFORMATION

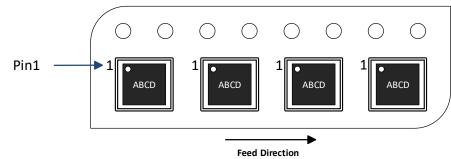
WLCSP (1.85mmx1.85mm)



TOP VIEW

SIDE VIEW


RECOMMENDED LAND PATTERN


NOTE:

 ALL DIMENSIONS ARE IN MILLIMETERS.
 BALL COPLANARITY SHALL BE 0.05 MILLIMETER MAX.
 JEDEC REFERENCE IS MO-211.
 DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantity/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP2710GC-xxxx-Z	WLCSP (1.85mmx1.85mm)	3000	N/A	N/A	7in	8mm	4mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	1/23/2024	Initial Release	-

Notice: The information in this document is subject to change without notice. Contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.