
Freescale Semiconductor MPC5604BCRM
Rev. 8.2, 09/2013

© Freescale Semiconductor, Inc., 2013. All rights reserved.

MPC5604B/C Microcontroller
Reference Manual
This is the MPC5604B/C Reference Manual set consisting of the following files:

• MPC5604B/C Reference Manual Addendum (MPC5604B/CRMAD), Rev. 2

• MPC5604B/C Reference Manual (MPC5604B/CRM), Rev. 8

Freescale Semiconductor
Reference Manual Addendum

MPC5604BRMAD
Rev. 2, 09/2013

Table of Contents

MPC5604B/C Microcontroller
Reference Manual Addendum

Addendum List for Revision 8.1 2
Addendum List for Revision 8 2
Revision History . 4
This addendum describes corrections to the
MPC5604B/C Microcontroller Reference Manual, order
number MPC5604BCRM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.

The current version available of the MPC5604B/C
Microcontroller Reference Manual is Revision 8.1.

1
2
3

© Freescale Semiconductor, Inc., 2013. All rights reserved.

1 Addendum List for Revision 8.1

2 Addendum List for Revision 8

Table 1. MPC5604BCRM Rev 8.1 Addenda

Location Description

Chapter 27, “Flash Memory”
page 644

Add a note below Table 27-4, “CFlash TestFlash Structure”.

NOTE
Unique Device ID – Memory location. This device now includes a 128-bit Unique
Identification number (UID) which is programmed during device fabrication.
Start – Stop Address Size (Bytes) Content:

• 0x00403C10 0x00403C17 8 UID 1

• 0x00403C18 0x00403C1F 8 UID 2

Table 2. MPC5604BCRM Rev 8 Addenda

Location Description

Chapter 4, Signal description,
page 60

In Table 4-3, Functional port pin descriptions, row PH[9], change the pin numbers for
MPC560xB 64 LQFP and MPC560xC 64 LQFP from “—” to 60.
In row PH[10], change the pin numbers for MPC560xB 64 LQFP and MPC560xC 64 LQFP
from “—” to 53.

Chapter 6, Clock Description,
page 113

Add Note: to Section 6.8.4.1, Crystal clock monitor:
Note: Functional FXOSC monitoring can only be guaranteed when the FXOSC frequency is
greater than (FIRC / 2RCDIV) + 0.5 MHz.

Add Note: to Section 6.8.4.2, FMPLL clock monitor:
Note: Functional FMPLL monitoring can only be guaranteed when the FMPLL frequency is
greater than (FIRC / 4) + 0.5 MHz.

Chapter 9, Reset Generation
Module (MC_RGM), page
209

Replace Section 9.4.7, Boot Mode Capturing, with the following:

The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz internal
RC oscillator) clock cycles before its deassertion edge. The result of the sampling is used at
the beginning of reset PHASE3 for boot mode selection and is retained after RESET has been
deasserted for subsequent boots after reset sequences during which RESET is not asserted.

Note: In order to ensure that the boot mode is correctly captured, the application needs to
apply the valid boot mode value the entire time that RESET is asserted.

RESET can be asserted as a consequence of the internal reset generation. This will force
re-sampling of the boot mode pins. (See Table 9-12 for details.)

Chapter 13, Real Time Clock /
Autonomous Periodic
Interrupt (RTC/API), page
262

In Table 13-3 (RTCC field descriptions), update Note in RTCC[APIVAL] field description:

Note: API functionality starts only when APIVAL is nonzero. The first API interrupt takes two
more cycles because of synchronization of APIVAL to the RTC clock, and APIVAL + 1 cycles
for subsequent occurrences. After that, interrupts are periodic in nature. Because of
synchronization issues, the minimum supported value of APIVAL is 4.
MPC5604BRMAD, Rev. 2

Freescale Semiconductor2

Chapter 21, LINFlex, p. 412 Insert the following section:

21.8.2.1.6 Overrun

Once the message buffer is full, the next valid message reception leads to an
overrun and a message is lost. The hardware sets the BOF bit in the LINSR to
signal the overrun condition. Which message is lost depends on the
configuration of the RX message buffer:

• If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last
message stored in the buffer is overwritten by the new incoming
message. In this case the latest message is always available to the
application.

• If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most
recent message is discarded and the previous message is available in the
buffer.

Chapter 22, FlexCAN,
throughout chapter

Remove references throughout the chapter to “low-cost MCUs.”

Chapter 22, FlexCAN, page
429

Add this Note in the RTR field description of Table 22-4 (Message Buffer Structure field
description):
Note: Do not configure the last Message Buffer to be the RTR frame.

Chapter 22, FlexCAN, page
461

In Section 22.4.9.4, Protocol timing, update the Note following Figure 22-16 (CAN engine
clocking scheme) to read: “This clock selection feature may not be available in all MCUs. A
particular MCU may not have a PLL, in which case it would have only the oscillator clock, or
it may use only the PLL clock feeding the FlexCAN module. In these cases, the CLK_SRC bit
in the CTRL Register has no effect on the module operation.”

Chapter 22, FlexCAN, page
462

Update the table title of Table 22-20 from “CAN Standard Compliant Bit Time Segment Settings”
to “Bosch CAN 2.0B standard compliant bit time segment settings.”

Chapter 22, FlexCAN, page
463

In Section 22.4.9.4, Protocol timing, update the Note following Table 22-20 to read: “Other
combinations of Time Segment 1 and Time Segment 2 can be valid. It is the user’s
responsibility to ensure the bit time settings are in compliance with the CAN standard. For bit
time calculations, use an IPT (Information Processing Time) of 2, which is the value
implemented in the FlexCAN module.”

Chapter 25, Analog-to-Digital
Converter (ADC), page

In Section 28.3.5.2, Presampling channel enable signals, in Table 28-7, Presampling voltage
selection based on PREVALx fields, in the 01 row, change the “Presampling voltage” field to:
V1 = VDD_HV_ADC0 or VDD_HV_ADC1.

Chapter 25, Analog-to-Digital
Converter (ADC), page 597

In Section 25.3.2, Analog clock generator and conversion timings, remove the paragraph:

The direct clock should basically be used only in low power mode when the device is using
only the 16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock
(an 8 MHz clock is not fast enough). In all other cases, the ADC should use the clock divided
by two internally.

Table 2. MPC5604BCRM Rev 8 Addenda

Location Description
MPC5604BRMAD, Rev. 2

Freescale Semiconductor 3

3 Revision History
Table 3 provides a revision history for this reference manual addendum document.

Chapter 25, Analog-to-Digital
Converter (ADC), p. 600

In Section 25.3.4.2, CTU in trigger mode, replace the sentence:
If another CTU conversion is triggered before the end of the conversion, that request is

discarded.
with:

If another CTU conversion is triggered before the end of the conversion, that request is
discarded. However, if the CTU has triggered a conversion that is still ongoing on a channel,
it will buffer a second request for the channel and wait for the end of the first conversion before
requesting another conversion. Thus, two conversion requests close together will both be
serviced.

Chapter 25, Analog-to-Digital
Converter (ADC), page 603

 Add Note to Section 25.3.10, Auto-clock-off mode:
Note: The auto-clock-off feature cannot operate when the digital interface runs at the same
rate as the analog interface. This means that when MCR.ADCCLKSEL = 1, the analog clock
will not shut down in IDLE mode.

Chapter 25, Analog-to-Digital
Converter (ADC), page 610

In Section 25.4.6.2, Main Status Register (MSR), replace the ADCSTATUS field description with
the following:

The value of this parameter depends on ADC status:
000 IDLE — The ADC is powered up but idle.
001 Power-down — The ADC is powered down.
010 Wait state — The ADC is waiting for an external multiplexer. This occurs only when the

DSDR register is nonzero.
011 Reserved
100 Sample — The ADC is sampling the analog signal.
101 Reserved
110 Conversion — The ADC is converting the sampled signal.
111 Reserved

Chapter 26, Cross Triggering
Unit (CTU), page 633

At the end of Section 26.4.1, Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63), add
the following Note:

NOTE
The CTU tracks issued conversion requests to the ADC. When the ADC
is being triggered by the CTU and there is a need to shut down the ADC,
the ADC must be allowed to complete conversions before being shut
down. This ensures that the CTU is notified of completion; if the ADC
is shut down while performing a CTU-triggered conversion, the CTU is
not notified and will not be able to trigger further conversions until the
device is reset.

Table 3. Revision History Table

Rev. Number Substantive Changes Date of Release

2.0 Add a note below Table 27-4, “CFlash TestFlash Structure” 09/2013

1.0 Initial release. 05/2012

Table 2. MPC5604BCRM Rev 8 Addenda

Location Description
MPC5604BRMAD, Rev. 2

Freescale Semiconductor4

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2013. All rights
reserved.

MPC5604BRMAD
Rev. 2
09/2013

Freescale Semiconductor MPC5604BCRM
Rev. 8.1, 05/2012

© Freescale Semiconductor, Inc., 2012. All rights reserved.

MPC5604B/C Microcontroller
Reference Manual
by: Microcontroller Solutions Group

This is the MPC5604B/C Reference Manual set consisting of the following files:

• MPC5604B/C Reference Manual Addendum (MPC5604B/CRMAD), Rev. 1

• MPC5604B/C Reference Manual (MPC5604B/CRM), Rev. 8

Freescale Semiconductor
Reference Manual Addendum

MPC5604BRMAD
Rev. 1, 05/2012

Table of Contents

MPC5604B/C Microcontroller
Reference Manual Addendum
by: Microcontroller Solutions Group

Addendum for Revision 8 2
Revision History . 4
This addendum document describes corrections to the
MPC5604B/C Microcontroller Reference Manual, order
number MPC5604BCRM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.

The current version available of the MPC5604B/C
Microcontroller Reference Manual is Revision 8.

1
2

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Addendum List for Revision 8
1 Addendum List for Revision 8
Table 1. MPC5604BCRM Rev 8 Addenda

Location Description

Chapter 4, Signal description,
page 60

In Table 4-3, Functional port pin descriptions, row PH[9], change the pin numbers for
MPC560xB 64 LQFP and MPC560xC 64 LQFP from “—” to 60.
In row PH[10], change the pin numbers for MPC560xB 64 LQFP and MPC560xC 64 LQFP
from “—” to 53.

Chapter 6, Clock Description,
page 113

Add Note: to Section 6.8.4.1, Crystal clock monitor:
Note: Functional FXOSC monitoring can only be guaranteed when the FXOSC frequency is
greater than (FIRC / 2RCDIV) + 0.5 MHz.

Add Note: to Section 6.8.4.2, FMPLL clock monitor:
Note: Functional FMPLL monitoring can only be guaranteed when the FMPLL frequency is
greater than (FIRC / 4) + 0.5 MHz.

Chapter 9, Reset Generation
Module (MC_RGM), page
209

Replaced Section 9.4.7, Boot Mode Capturing, with the following:

The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz internal
RC oscillator) clock cycles before its deassertion edge. The result of the sampling is used at
the beginning of reset PHASE3 for boot mode selection and is retained after RESET has been
deasserted for subsequent boots after reset sequences during which RESET is not asserted.

Note: In order to ensure that the boot mode is correctly captured, the application needs to
apply the valid boot mode value the entire time that RESET is asserted.

RESET can be asserted as a consequence of the internal reset generation. This will force
re-sampling of the boot mode pins. (See Table 9-12 for details.)

Chapter 13, Real Time Clock /
Autonomous Periodic
Interrupt (RTC/API), page
262

In Table 13-3 (RTCC field descriptions), update Note in RTCC[APIVAL] field description:

Note: API functionality starts only when APIVAL is nonzero. The first API interrupt takes two
more cycles because of synchronization of APIVAL to the RTC clock, and APIVAL + 1 cycles
for subsequent occurrences. After that, interrupts are periodic in nature. Because of
synchronization issues, the minimum supported value of APIVAL is 4.

Chapter 21, LINFlex, p. 412 Insert the following section:

21.8.2.1.6 Overrun

Once the message buffer is full, the next valid message reception leads to an
overrun and a message is lost. The hardware sets the BOF bit in the LINSR to
signal the overrun condition. Which message is lost depends on the
configuration of the RX message buffer:

• If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last
message stored in the buffer is overwritten by the new incoming
message. In this case the latest message is always available to the
application.

• If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most
recent message is discarded and the previous message is available in the
buffer.
MPC5604B Reference Manual Errata, Rev. 1

Freescale Semiconductor2

Addendum List for Revision 8
Chapter 22, FlexCAN,
throughout chapter

Remove references throughout the chapter to “low-cost MCUs.”

Chapter 22, FlexCAN, page
429

Added this Note in the RTR field description of Table 22-4 (Message Buffer Structure field
description):
Note: Do not configure the last Message Buffer to be the RTR frame.

Chapter 22, FlexCAN, page
461

In Section 22.4.9.4, Protocol timing, updated the Note following Figure 22-16 (CAN engine
clocking scheme) to read: “This clock selection feature may not be available in all MCUs. A
particular MCU may not have a PLL, in which case it would have only the oscillator clock, or
it may use only the PLL clock feeding the FlexCAN module. In these cases, the CLK_SRC bit
in the CTRL Register has no effect on the module operation.”

Chapter 22, FlexCAN, page
462

Updated the table title of Table 22-20 from “CAN Standard Compliant Bit Time Segment
Settings” to “Bosch CAN 2.0B standard compliant bit time segment settings.”

Chapter 22, FlexCAN, page
463

In Section 22.4.9.4, Protocol timing, updated the Note following Table 22-20 to read: “Other
combinations of Time Segment 1 and Time Segment 2 can be valid. It is the user’s
responsibility to ensure the bit time settings are in compliance with the CAN standard. For bit
time calculations, use an IPT (Information Processing Time) of 2, which is the value
implemented in the FlexCAN module.”

Chapter 25, Analog-to-Digital
Converter (ADC), page

In Section 28.3.5.2, Presampling channel enable signals, in Table 28-7, Presampling voltage
selection based on PREVALx fields, in the 01 row, change the “Presampling voltage” field to:
V1 = VDD_HV_ADC0 or VDD_HV_ADC1.

Chapter 25, Analog-to-Digital
Converter (ADC), page 597

In Section 25.3.2, Analog clock generator and conversion timings, remove the paragraph:

The direct clock should basically be used only in low power mode when the device is using
only the 16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock
(an 8 MHz clock is not fast enough). In all other cases, the ADC should use the clock divided
by two internally.

Chapter 25, Analog-to-Digital
Converter (ADC), p. 600

In Section 25.3.4.2, CTU in trigger mode, replace the sentence:
If another CTU conversion is triggered before the end of the conversion, that request is

discarded.
with:

If another CTU conversion is triggered before the end of the conversion, that request is
discarded. However, if the CTU has triggered a conversion that is still ongoing on a channel,
it will buffer a second request for the channel and wait for the end of the first conversion before
requesting another conversion. Thus, two conversion requests close together will both be
serviced.

Chapter 25, Analog-to-Digital
Converter (ADC), page 603

 Add Note to Section 25.3.10, Auto-clock-off mode:
Note: The auto-clock-off feature cannot operate when the digital interface runs at the same
rate as the analog interface. This means that when MCR.ADCCLKSEL = 1, the analog clock
will not shut down in IDLE mode.

Table 1. MPC5604BCRM Rev 8 Addenda

Location Description
MPC5604B Reference Manual Errata, Rev. 1

Freescale Semiconductor 3

Revision History
2 Revision History
Table 2 provides a revision history for this reference manual addendum document.

Chapter 25, Analog-to-Digital
Converter (ADC), page 610

In Section 25.4.6.2, Main Status Register (MSR), replace the ADCSTATUS field description with
the following:

The value of this parameter depends on ADC status:
000 IDLE — The ADC is powered up but idle.
001 Power-down — The ADC is powered down.
010 Wait state — The ADC is waiting for an external multiplexer. This occurs only when the

DSDR register is nonzero.
011 Reserved
100 Sample — The ADC is sampling the analog signal.
101 Reserved
110 Conversion — The ADC is converting the sampled signal.
111 Reserved

Chapter 26, Cross Triggering
Unit (CTU), page 633

At the end of Section 26.4.1, Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63), add
the following Note:

NOTE
The CTU tracks issued conversion requests to the ADC. When the ADC
is being triggered by the CTU and there is a need to shut down the ADC,
the ADC must be allowed to complete conversions before being shut
down. This ensures that the CTU is notified of completion; if the ADC
is shut down while performing a CTU-triggered conversion, the CTU is
not notified and will not be able to trigger further conversions until the
device is reset.

Table 2. Revision History Table

Rev. Number Substantive Changes Date of Release

1.0 • Initial release. 05/2012

Table 1. MPC5604BCRM Rev 8 Addenda

Location Description
MPC5604B Reference Manual Errata, Rev. 1

Freescale Semiconductor4

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 1

MPC5604B/C Microcontroller
Reference Manual

Devices Supported:
MPC5602B
MPC5602C
MPC5603B
MPC5603C
MPC5604B
MPC5604C

MPC5604BCRM
Rev. 8

5 May 2011

MPC5604B/C Microcontroller Reference Manual, Rev. 8

2 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 3

Chapter 1
Preface

1.1 Overview ...19
1.2 Audience ..19
1.3 Guide to this reference manual ..19
1.4 Register description conventions ..22
1.5 References ...23
1.6 How to use the MPC5604B documents ..23

1.6.1 The MPC5604B document set ..23
1.6.2 Reference manual content ..24

1.7 Using the MPC5604B ...25
1.7.1 Hardware design ...25
1.7.2 Input/output pins ...26
1.7.3 Software design ..27
1.7.4 Other features ...27

Chapter 2
Introduction

2.1 The MPC5604B microcontroller family ...29
2.2 Features ...29

2.2.1 MPC5604B family comparison ..29
2.2.2 Block diagram ..32
2.2.3 Chip-level features ..33

2.3 Packages ..34
2.4 Developer support ...34

Chapter 3
Memory Map

Chapter 4
Signal description

4.1 Introduction ...39
4.2 Package pinouts ...39
4.3 Pad configuration during reset phases ...42
4.4 Voltage supply pins ...43
4.5 Pad types ...43
4.6 System pins ...44
4.7 Functional ports ...44
4.8 Nexus 2+ pins ..61

Chapter 5
Microcontroller Boot

5.1 Boot mechanism ..63
5.1.1 Flash memory boot ...64
5.1.2 Serial boot mode ...66

MPC5604B/C Microcontroller Reference Manual, Rev. 8

4 Freescale Semiconductor

5.1.3 Censorship ..66
5.2 Boot Assist Module (BAM) ..71

5.2.1 BAM software flow ..71
5.2.2 LINFlex (RS232) boot ..79
5.2.3 FlexCAN boot ..80

5.3 System Status and Configuration Module (SSCM) ..82
5.3.1 Introduction ..82
5.3.2 Features ...82
5.3.3 Modes of operation ...83
5.3.4 Memory map and register description ..83

Chapter 6
Clock Description

6.1 Clock architecture ...93
6.2 Clock gating ..94
6.3 Fast external crystal oscillator (FXOSC) digital interface ..95

6.3.1 Main features ..95
6.3.2 Functional description ..95
6.3.3 Register description ..96

6.4 Slow external crystal oscillator (SXOSC) digital interface ..97
6.4.1 Introduction ..97
6.4.2 Main features ..97
6.4.3 Functional description ..97
6.4.4 Register description ..98

6.5 Slow internal RC oscillator (SIRC) digital interface ..99
6.5.1 Introduction ..99
6.5.2 Functional description ..99
6.5.3 Register description ..100

6.6 Fast internal RC oscillator (FIRC) digital interface ..101
6.6.1 Introduction ..101
6.6.2 Functional description ..101
6.6.3 Register description ..102

6.7 Frequency-modulated phase-locked loop (FMPLL) ...102
6.7.1 Introduction ..102
6.7.2 Overview ..102
6.7.3 Features ...103
6.7.4 Memory map ..103
6.7.5 Register description ..104
6.7.6 Functional description ..107
6.7.7 Recommendations ..110

6.8 Clock monitor unit (CMU) ..110
6.8.1 Introduction ..110
6.8.2 Main features ..111
6.8.3 Block diagram ..111
6.8.4 Functional description ..112

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 5

6.8.5 Memory map and register description ..114

Chapter 7
Clock Generation Module (MC_CGM)

7.1 Overview ...119
7.2 Features ...120
7.3 Modes of Operation ...121

7.3.1 Normal and Reset Modes of Operation ..121
7.4 External Signal Description ..121
7.5 Memory Map and Register Definition ..121

7.5.1 Register Descriptions ..125
7.6 Functional Description ..129

7.6.1 System Clock Generation ...129
7.6.2 Output Clock Multiplexing ...130
7.6.3 Output Clock Division Selection ..131

Chapter 8
Mode Entry Module (MC_ME)

8.1 Introduction ...133
8.1.1 Overview ..133
8.1.2 Features ...135
8.1.3 Modes of Operation ..135

8.2 External Signal Description ..136
8.3 Memory Map and Register Definition ..136

8.3.1 Register Description ...144
8.4 Functional Description ..166

8.4.1 Mode Transition Request ..166
8.4.2 Modes Details ...167
8.4.3 Mode Transition Process ..172
8.4.4 Protection of Mode Configuration Registers ..182
8.4.5 Mode Transition Interrupts ...182
8.4.6 Peripheral Clock Gating ...184
8.4.7 Application Example ..185

Chapter 9
Reset Generation Module (MC_RGM)

9.1 Introduction ...187
9.1.1 Overview ..187
9.1.2 Features ...188
9.1.3 Modes of operation ...189

9.2 External signal description ..190
9.3 Memory map and register definition ...190

9.3.1 Register descriptions ..192
9.4 Functional Description ..203

9.4.1 Reset State Machine ...203

MPC5604B/C Microcontroller Reference Manual, Rev. 8

6 Freescale Semiconductor

9.4.2 Destructive Resets ..207
9.4.3 External Reset ...207
9.4.4 Functional Resets ..208
9.4.5 STANDBY Entry Sequence ...208
9.4.6 Alternate Event Generation ..208
9.4.7 Boot Mode Capturing ...209

Chapter 10
Power Control Unit (MC_PCU)

10.1 Introduction ...211
10.1.1 Overview ..211
10.1.2 Features ...212
10.1.3 Modes of Operation ..212

10.2 External Signal Description ..213
10.3 Memory Map and Register Definition ..213

10.3.1 Register Descriptions ..214
10.4 Functional Description ..218

10.4.1 General ...218
10.4.2 Reset / Power-On Reset ..218
10.4.3 MC_PCU Configuration ...218
10.4.4 Mode Transitions ..218

10.5 Initialization Information ..221
10.6 Application Information ..221

10.6.1 STANDBY Mode Considerations ..221

Chapter 11
Voltage Regulators and Power Supplies

11.1 Voltage regulators ..223
11.1.1 High power regulator (HPREG) ...223
11.1.2 Low power regulator (LPREG) ..223
11.1.3 Ultra low power regulator (ULPREG) ...224
11.1.4 LVDs and POR ...224
11.1.5 VREG digital interface ...224
11.1.6 Register description ..225

11.2 Power supply strategy ...225
11.3 Power domain organization ...226

Chapter 12
Wakeup Unit (WKPU)

12.1 Overview ...229
12.2 Features ...231
12.3 External signal description ..231
12.4 Memory map and register description ...231

12.4.1 Memory map ..231
12.4.2 NMI Status Flag Register (NSR) ..232

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 7

12.4.3 NMI Configuration Register (NCR) ...233
12.4.4 Wakeup/Interrupt Status Flag Register (WISR) ...234
12.4.5 Interrupt Request Enable Register (IRER) ...235
12.4.6 Wakeup Request Enable Register (WRER) ..235
12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)236
12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)236
12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER) ..237
12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER) ...237

12.5 Functional description ...238
12.5.1 General ...238
12.5.2 Non-maskable interrupts ..238
12.5.3 External wakeups/interrupts ...240
12.5.4 On-chip wakeups ..241

Chapter 13
Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

13.1 Overview ...243
13.2 Features ...243
13.3 Device-specific information ..245
13.4 Modes of operation ..245

13.4.1 Functional mode ...245
13.4.2 Debug mode ..246

13.5 Register descriptions ...246
13.5.1 RTC Supervisor Control Register (RTCSUPV) ...246
13.5.2 RTC Control Register (RTCC) ...247
13.5.3 RTC Status Register (RTCS) ..249
13.5.4 RTC Counter Register (RTCCNT) ...250

13.6 RTC functional description ...250
13.7 API functional description ..251

Chapter 14
CAN Sampler

14.1 Introduction ...253
14.2 Main features ...253
14.3 Register description ...254

14.3.1 Control Register (CR) ...254
14.3.2 Sample register n (n = 0..11) ..255

14.4 Functional description ...256
14.4.1 Enabling/Disabling the CAN sampler ..256
14.4.2 Baud rate generation ...257

Chapter 15
e200z0h Core

15.1 Overview ...261
15.2 Microarchitecture summary ..261

MPC5604B/C Microcontroller Reference Manual, Rev. 8

8 Freescale Semiconductor

15.3 Block diagram ...263
15.4 Features ...263

15.4.1 Instruction unit features ..264
15.4.2 Integer unit features ..264
15.4.3 Load/Store unit features ...265
15.4.4 e200z0h system bus features ..265
15.4.5 Nexus 2+ features ...265

15.5 Core registers and programmer’s model ...266

Chapter 16
Interrupt Controller (INTC)

16.1 Introduction ...269
16.2 Features ...269
16.3 Block diagram ...270
16.4 Modes of operation ..271

16.4.1 Normal mode ..271
16.5 Memory map and register description ...272

16.5.1 Module memory map ...272
16.5.2 Register description ..273

16.6 Functional description ...280
16.6.1 Interrupt request sources ...289
16.6.2 Priority management ..289
16.6.3 Handshaking with processor ...291

16.7 Initialization/application information ..293
16.7.1 Initialization flow ...293
16.7.2 Interrupt exception handler ...293
16.7.3 ISR, RTOS, and task hierarchy ...295
16.7.4 Order of execution ..296
16.7.5 Priority ceiling protocol ..297
16.7.6 Selecting priorities according to request rates and deadlines297
16.7.7 Software configurable interrupt requests ..298
16.7.8 Lowering priority within an ISR ..299
16.7.9 Negating an interrupt request outside of its ISR ..299
16.7.10 Examining LIFO contents ..300

Chapter 17
Crossbar Switch (XBAR)

17.1 Introduction ...301
17.2 Block diagram ...301
17.3 Overview ...302
17.4 Features ...302
17.5 Modes of operation ..302

17.5.1 Normal mode ..302
17.5.2 Debug mode ..302

17.6 Functional description ...302

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 9

17.6.1 Overview ..302
17.6.2 General operation ...303
17.6.3 Master ports ..303
17.6.4 Slave ports ..304
17.6.5 Priority assignment ...304
17.6.6 Arbitration ..304

Chapter 18
Memory Protection Unit (MPU)

18.1 Introduction ...307
18.2 Features ...308
18.3 Modes of operation ..309
18.4 External signal description ..309
18.5 Memory map and register description ...309

18.5.1 Memory map ..309
18.5.2 Register description ..310

18.6 Functional description ...322
18.6.1 Access evaluation macro ..322
18.6.2 Putting it all together and AHB error terminations ..324

18.7 Initialization information ...324
18.8 Application information ..324

Chapter 19
System Integration Unit Lite (SIUL)

19.1 Introduction ...327
19.2 Overview ...327
19.3 Features ...329
19.4 External signal description ..329

19.4.1 Detailed signal descriptions ..330
19.5 Memory map and register description ...331

19.5.1 SIUL memory map ...331
19.5.2 Register protection ..332
19.5.3 Register descriptions ..333

19.6 Functional description ...350
19.6.1 Pad control ..350
19.6.2 General purpose input and output pads (GPIO) ...350
19.6.3 External interrupts ..351

19.7 Pin muxing ..352

Chapter 20
Inter-Integrated Circuit Bus Controller Module (I2C)

20.1 Introduction ...355
20.1.1 Overview ..355
20.1.2 Features ...355
20.1.3 Block diagram ..356

MPC5604B/C Microcontroller Reference Manual, Rev. 8

10 Freescale Semiconductor

20.2 External signal description ..356
20.2.1 SCL ...356
20.2.2 SDA ..356

20.3 Memory map and register description ...356
20.3.1 Module memory map ...356
20.3.2 I2C Bus Address Register (IBAD) ...357
20.3.3 I2C Bus Frequency Divider Register (IBFD) ...358
20.3.4 I2C Bus Control Register (IBCR) ...364
20.3.5 I2C Bus Status Register (IBSR) ..365
20.3.6 I2C Bus Data I/O Register (IBDR) ...366
20.3.7 I2C Bus Interrupt Config Register (IBIC) ..367

20.4 Functional description ...367
20.4.1 I-Bus protocol ...367
20.4.2 Interrupts ...371

20.5 Initialization/application information ..372
20.5.1 I2C programming examples ..372

Chapter 21
LIN Controller (LINFlex)

21.1 Introduction ...377
21.2 Main features ...377

21.2.1 LIN mode features ..377
21.2.2 UART mode features ..377
21.2.3 Features common to LIN and UART ...377

21.3 General description ...378
21.4 Fractional baud rate generation ...379
21.5 Operating modes ...381

21.5.1 Initialization mode ..382
21.5.2 Normal mode ..382
21.5.3 Low power mode (Sleep) ...382

21.6 Test modes ...382
21.6.1 Loop Back mode ...382
21.6.2 Self Test mode ..383

21.7 Memory map and registers description ...383
21.7.1 Memory map ..383

21.8 Functional description ...409
21.8.1 UART mode ..409
21.8.2 LIN mode ..411
21.8.3 8-bit timeout counter ..419
21.8.4 Interrupts ...421

Chapter 22
FlexCAN

22.1 Introduction ...423
22.1.1 Overview ..423

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 11

22.1.2 FlexCAN module features ..424
22.1.3 Modes of operation ...425

22.2 External signal description ..425
22.2.1 Overview ..425
22.2.2 Signal descriptions ..426

22.3 Memory map and register description ...426
22.3.1 FlexCAN memory mapping ...426
22.3.2 Message buffer structure ..428
22.3.3 Rx FIFO structure ...431
22.3.4 Register description ..433

22.4 Functional description ...451
22.4.1 Overview ..451
22.4.2 Local priority transmission ...452
22.4.3 Transmit process ...452
22.4.4 Arbitration process ...453
22.4.5 Receive process ..454
22.4.6 Matching process ..455
22.4.7 Data coherence ...456
22.4.8 Rx FIFO ..459
22.4.9 CAN protocol related features ..460
22.4.10 Modes of operation details ...464
22.4.11 Interrupts ...465
22.4.12 Bus interface ...465

22.5 Initialization/Application information ...466
22.5.1 FlexCAN initialization sequence ..466
22.5.2 FlexCAN addressing and SRAM size configurations ..467

Chapter 23
Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction ...469
23.2 Features ...470
23.3 Modes of operation ..471

23.3.1 Master mode ...471
23.3.2 Slave mode ...471
23.3.3 Module Disable mode ...471
23.3.4 Debug mode ..472

23.4 External signal description ..472
23.4.1 Signal overview ..472
23.4.2 Signal names and descriptions ..472

23.5 Memory map and register description ...474
23.5.1 Memory map ..474
23.5.2 DSPI Module Configuration Register (DSPIx_MCR) ...475
23.5.3 DSPI Transfer Count Register (DSPIx_TCR) ..478
23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)478
23.5.5 DSPI Status Register (DSPIx_SR) ...486

MPC5604B/C Microcontroller Reference Manual, Rev. 8

12 Freescale Semiconductor

23.5.6 DSPI Interrupt Request Enable Register (DSPIx_RSER) ..488
23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR) ...490
23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR) ..492
23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn) ...493

23.6 Functional description ...494
23.6.1 Modes of operation ...495
23.6.2 Start and stop of DSPI transfers ...496
23.6.3 Serial peripheral interface (SPI) configuration ...497
23.6.4 DSPI baud rate and clock delay generation ..500
23.6.5 Transfer formats ...503
23.6.6 Continuous serial communications clock ...511
23.6.7 Interrupt requests ..514
23.6.8 Power saving features ...515

23.7 Initialization and application information ...516
23.7.1 How to change queues ..516
23.7.2 Baud rate settings ...516
23.7.3 Delay settings ...518
23.7.4 Calculation of FIFO pointer addresses ...518

Chapter 24
Timers

24.1 Introduction ...523
24.2 Technical overview ..523

24.2.1 Overview of the STM ...525
24.2.2 Overview of the eMIOS ...525
24.2.3 Overview of the PIT ...527

24.3 System Timer Module (STM) ...527
24.3.1 Introduction ..527
24.3.2 External signal description ...528
24.3.3 Memory map and register definition ..528
24.3.4 Functional description ..532

24.4 Enhanced Modular IO Subsystem (eMIOS) ...532
24.4.1 Introduction ..532
24.4.2 External signal description ...535
24.4.3 Memory map and register description ..535
24.4.4 Functional description ..547
24.4.5 Initialization/Application information ..577

24.5 Periodic Interrupt Timer (PIT) ..580
24.5.1 Introduction ..580
24.5.2 Features ...581
24.5.3 Signal description ...581
24.5.4 Memory map and register description ..581
24.5.5 Functional description ..586
24.5.6 Initialization and application information ..587

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 13

Chapter 25
Analog-to-Digital Converter (ADC)

25.1 Overview ...591
25.1.1 Device-specific features ...591
25.1.2 Device-specific implementation ...592

25.2 Introduction ...592
25.3 Functional description ...593

25.3.1 Analog channel conversion ..593
25.3.2 Analog clock generator and conversion timings ..597
25.3.3 ADC sampling and conversion timing ...597
25.3.4 ADC CTU (Cross Triggering Unit) ..599
25.3.5 Presampling ..600
25.3.6 Programmable analog watchdog ..601
25.3.7 Interrupts ...602
25.3.8 External decode signals delay ..603
25.3.9 Power-down mode ..603
25.3.10 Auto-clock-off mode ..603

25.4 Register descriptions ...604
25.4.1 Introduction ..604
25.4.2 Control logic registers ..607
25.4.3 Interrupt registers ..611
25.4.4 Threshold registers ...618
25.4.5 Presampling registers ..619
25.4.6 Conversion timing registers CTR[0..2] ..622
25.4.7 Mask registers ...622
25.4.8 Delay registers ..627
25.4.9 Data registers ..628

Chapter 26
Cross Triggering Unit (CTU)

26.1 Introduction ...631
26.2 Main features ...631
26.3 Block diagram ...631
26.4 Memory map and register descriptions ...631

26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)632
26.5 Functional description ...633

26.5.1 Channel value ...635

Chapter 27
Flash Memory

27.1 Introduction ...639
27.2 Main features ...640
27.3 Block diagram ...640
27.4 Functional description ...641

27.4.1 Module structure ...641

MPC5604B/C Microcontroller Reference Manual, Rev. 8

14 Freescale Semiconductor

27.4.2 Flash memory module sectorization ...642
27.4.3 TestFlash block ...643
27.4.4 Shadow sector ...645
27.4.5 User mode operation ...645
27.4.6 Reset ...646
27.4.7 Power-down mode ..647
27.4.8 Low power mode ..647

27.5 Register description ...648
27.5.1 CFlash register description ...649
27.5.2 DFlash register description ...680

27.6 Programming considerations ...703
27.6.1 Modify operation ..703
27.6.2 Double word program ...704
27.6.3 Sector erase ...706

27.7 Platform flash memory controller ...714
27.7.1 Introduction ..714
27.7.2 Memory map and register description ..717

27.8 Functional description ...726
27.8.1 Access protections ..727
27.8.2 Read cycles – Buffer miss ..727
27.8.3 Read cycles – Buffer hit ...727
27.8.4 Write cycles ..727
27.8.5 Error termination ..727
27.8.6 Access pipelining ..728
27.8.7 Flash error response operation ..728
27.8.8 Bank0 page read buffers and prefetch operation ..728
27.8.9 Bank1 Temporary Holding Register ...730
27.8.10 Read-while-write functionality ...731
27.8.11 Wait-state emulation ...732

Chapter 28
Static RAM (SRAM)

28.1 Introduction ...735
28.2 Low power configuration ..735
28.3 Register memory map ...735
28.4 SRAM ECC mechanism ..735

28.4.1 Access timing ...736
28.4.2 Reset effects on SRAM accesses ..737

28.5 Functional description ...737
28.6 Initialization and application information ...737

Chapter 29
Register Protection

29.1 Introduction ...741
29.2 Features ...741

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 15

29.3 Modes of operation ..742
29.4 External signal description ..742
29.5 Memory map and register description ...742

29.5.1 Memory map ..743
29.5.2 Register description ..744

29.6 Functional description ...746
29.6.1 General ...746
29.6.2 Change lock settings ...746
29.6.3 Access errors ..750

29.7 Reset ..750
29.8 Protected registers ...750

Chapter 30
Software Watchdog Timer (SWT)

30.1 Overview ...755
30.2 Features ...755
30.3 Modes of operation ..755
30.4 External signal description ..756
30.5 Memory map and register description ...756

30.5.1 Memory map ..756
30.5.2 Register description ..757

30.6 Functional description ...761

Chapter 31
Error Correction Status Module (ECSM)

31.1 Introduction ...763
31.2 Overview ...763
31.3 Features ...763
31.4 Memory map and register description ...763

31.4.1 Memory map ..763
31.4.2 Register description ..764
31.4.3 Register protection ..783

Chapter 32
IEEE 1149.1 Test Access Port Controller (JTAGC)

32.1 Introduction ...787
32.2 Block diagram ...787
32.3 Overview ...787
32.4 Features ...788
32.5 Modes of operation ..788

32.5.1 Reset ...788
32.5.2 IEEE 1149.1-2001 defined test modes ...788

32.6 External signal description ..789
32.7 Memory map and register description ...790

32.7.1 Instruction Register ..790

MPC5604B/C Microcontroller Reference Manual, Rev. 8

16 Freescale Semiconductor

32.7.2 Bypass Register ..790
32.7.3 Device Identification Register ..790
32.7.4 Boundary Scan Register ...791

32.8 Functional Description ..791
32.8.1 JTAGC Reset Configuration ...791
32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port ..791
32.8.3 TAP controller state machine ...792
32.8.4 JTAGC instructions ..794
32.8.5 Boundary Scan ..796

32.9 e200z0 OnCE controller ..796
32.9.1 e200z0 OnCE Controller Block Diagram ...796
32.9.2 e200z0 OnCE Controller Functional Description ..797
32.9.3 e200z0 OnCE Controller Register Description ..797

32.10 Initialization/application information ..799

Chapter 33
Nexus Development Interface (NDI)

33.1 Introduction ...801
33.2 Block diagram ...801
33.3 Features ...802
33.4 Modes of Operation ...803

33.4.1 Nexus Reset ..803
33.4.2 Operating Mode ..804

33.5 External Signal Description ..804
33.5.1 Nexus Signal Reset States ..804

33.6 Memory Map and Register Description ..804
33.6.1 Nexus Debug Interface Registers ...805
33.6.2 Register Description ...806

33.7 Functional description ...815
33.7.1 NPC_HNDSHK module ...815
33.7.2 Enabling Nexus Clients for TAP Access ..816
33.7.3 Configuring the NDI for Nexus Messaging ...817
33.7.4 Programmable MCKO Frequency ..817
33.7.5 Nexus Messaging ..817
33.7.6 EVTO Sharing ..817
33.7.7 Debug Mode Control ..818
33.7.8 Ownership Trace ...818

Appendix A
Register Map

Appendix B
Revision History

B.1 Changes between revisions 7 and 8 ...903

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 17

B.2 Changes between revisions 5 and 7 ...908
B.3 Changes between revisions 4 and 5 ..910
B.4 Changes between revisions 2 and 4 ..911
B.5 Changes between revisions 1 and 2 ..920

MPC5604B/C Microcontroller Reference Manual, Rev. 8

18 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 19

Chapter 1
Preface

1.1 Overview
The primary objective of this document is to define the functionality of the MPC5604B microcontroller
for use by software and hardware developers. The MPC5604B is built on Power Architecture® technology
and integrates technologies that are important for today’s automotive vehicle body applications.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page. As with any technical documentation, it is the reader’s responsibility to be sure he or she is using the
most recent version of the documentation.

To locate any published errata or updates for this document, visit the Freescale Web site at
http://www.freescale.com/.

1.2 Audience
This manual is intended for system software and hardware developers and applications programmers who
want to develop products with the MPC5604B device. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of software and hardware, and basic details of the
Power Architecture.

1.3 Guide to this reference manual
Table 1-1. Guide to this reference manual

Chapter
Description Functional group

Title

2 Introduction General overview, family description, feature list and
information on how to use the reference manual in
conjunction with other available documents.

Introductory
material

3 Memory Map Memory map of all peripherals and memory. Memory map

4 Signal description Pinout diagrams and descriptions of all pads. Signals

5 Microcontroller Boot Boot

 • Boot mechanism • Describes what configuration is required by the
user and what processes are involved when the
microcontroller boots from flash memory or serial
boot modes.

 • Describes censorship.

 • Boot Assist Module (BAM) Features of BAM code and when it's used.

 • System Status and
Configuration Module
(SSCM)

Reports information about current state and
configuration of the microcontroller.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

20 Freescale Semiconductor

6 Clock Description • Covers configuration of all of the clock sources in
the system.

 • Describes the Clock Monitor Unit (CMU).

Clocks and power

(includes operating
mode configuration
and how to wake up

from low power
mode)

7 Clock Generation Module
(MC_CGM)

Determines how the clock sources are used (including
clock dividers) to generate the reference clocks for all
of the modules and peripherals.

8 Mode Entry Module (MC_ME) Determines the clock source, memory, power and
peripherals that are available in each operating mode.

9 Reset Generation Module
(MC_RGM)

Manages the process of entering and exiting reset,
allows reset sources to be configured (including
LVD's) and provides status reporting.

10 Power Control Unit (MC_PCU) Controls the power to different power domains within
the microcontroller (allowing SRAM to be selectively
powered in STANDBY mode).

11 Voltage Regulators and Power
Supplies

Information on voltage regulator implementation.
Includes enable bit for 5 V LVD (see also MC_RGM).

12 Wakeup Unit (WKPU) Always-active analog block. Details configuration of 2
internal (API/RTC) and 30 external (pin) low power
mode wakeup sources.

13 Real Time Clock / Autonomous
Periodic Interrupt (RTC/API)

Details configuration and operation of timers that are
predominately used for system wakeup.

14 CAN Sampler Details on how to configure the CAN sampler which is
used to capture the identifier frame of a CAN message
when the microcontroller is in low power mode.

15 e200z0h Core Overview on cores. For more details consult the core
reference manuals available on www.freescale.com.

Core platform
modules

16 Interrupt Controller (INTC) Provides the configuration and control of all of the
external interrupts (non-core) that are then routed to
the IVOR4 core interrupt vector.

17 Crossbar Switch (XBAR) Describes the connections of the XBAR masters and
slaves on this microcontroller.

18 Memory Protection Unit (MPU) The MPU sits on the slave side of the XBAR and
allows highly configurable control over all master
accesses to the memory.

19 System Integration Unit Lite
(SIUL)

How to configure the pins or ports for input or output
functions including external interrupts and DSI
serialization.

Ports

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 21

20 Inter-Integrated Circuit Bus
Controller Module (I2C)

These chapters describe the configuration and
operation of the various communication modules.
Some of these modules support eDMA requests to fill
/ empty buffer queues to minimize CPU overhead.

Communication
modules

21 LIN Controller (LINFlex)

22 FlexCAN

23 Deserial Serial Peripheral
Interface (DSPI)

24 Timers Timer modules

 • Technical overview Gives an overview of the available system timer
modules showing links to other modules as well as
tables detailing the external pins associated with
eMIOS timer channels.

 • System Timer Module
(STM)

A simple 32-bit free running counter with 4 compare
channels with interrupt on match. It can be read at any
time; this is very useful for measuring execution times.

 • Enhanced Modular IO
Subsystem (eMIOS)

Highly configurable timer module(s) supporting PWM,
output compare and input capture features. Includes
interrupt and eDMA support.

 • Periodic Interrupt Timer
(PIT)

Set of 32-bit countdown timers that provide periodic
events (which can trigger an interrupt) with automatic
re-load.

25 Analog-to-Digital Converter
(ADC)

Details the configuration and operation of the ADC
modules as well as detailing the channels that are
shared between the 10-bit and 12-bit ADC. The ADC
is tightly linked to the INTC, eDMA, PIT_RTI and CTU.
When used in conjunction with these other modules,
the CPU overhead for an ADC conversion is
significantly reduced.

ADC system

26 Cross Triggering Unit (CTU) The CTU allows an ADC conversion to be
automatically triggered based on an eMIOS event (like
a PWM output going high) or a PIT_RTI event with no
CPU intervention.

27 Flash Memory Details the code and data flash memory structure
(with ECC), block sizes and the flash memory port
configuration, including wait states, line buffer
configuration and pre-fetch control.

Memory

28 Static RAM (SRAM) Details the structure of the SRAM (with ECC). There
are no user configurable registers associated with the
SRAM.

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

MPC5604B/C Microcontroller Reference Manual, Rev. 8

22 Freescale Semiconductor

1.4 Register description conventions
The register information for MPC5604B is presented in:

• Memory maps containing:

— An offset from the module’s base address

— The name and acronym/abbreviation of each register

— The page number on which each register is described

• Register figures

• Field-description tables

• Associated text

The register figures show the field structure using the conventions in Figure 1-1.

29 Register Protection Certain registers in each peripheral can be protected
from further writes using the register protection
mechanism detailed in this section. Registers can
either be configured to be unlocked via a soft lock bit
or locked unit the next reset.

Integrity

30 Software Watchdog Timer
(SWT)

The SWT offers a selection of configurable modes that
can be used to monitor the operation of the
microcontroller and /or reset the device or trigger an
interrupt if the SWT is not correctly serviced. The SWT
is enabled out of reset.

31 Error Correction Status Module
(ECSM)

Provides information about the last reset, general
device information, system fault information and
detailed ECC error information.

32 IEEE 1149.1 Test Access Port
Controller (JTAGC)

Used for boundary scan as well as device debug. Debug

33 Nexus Development Interface
(NDI)

Provides advanced debug features including non
intrusive trace capabilities.

A Register Map Summarizes the registers on this microcontroller Register summary

B Revision History Summarizes the changes between each successive
revision of this reference manual

Revision history
information

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 23

Figure 1-1. Register figure conventions

The numbering of register bits and fields on MPC5604B is as follows:

• Register bit numbers, shown at the top of each figure, use the standard Power Architecture bit
ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).

• Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is the least
significant bit (LSB).

1.5 References
In addition to this reference manual, the following documents provide additional information on the
operation of the MPC5604B:

• IEEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)

• IEEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan Architecture

• Power Architecture Book E V1.0
(http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf)

1.6 How to use the MPC5604B documents
This section:

• Describes how the MPC5604B documents provide information on the microcontroller

• Makes recommendations on how to use the documents in a system design

1.6.1 The MPC5604B document set

The MPC5604B document set comprises:

• This reference manual (provides information on the features of the logical blocks on the device and
how they are integrated with each other)

• The device data sheet (specifies the electrical characteristics of the device)

• The device product brief

The following reference documents (available online at www.freescale.com) are also available to support
the CPU on this device:

R 0 1

W

R FIELD1 FIELD2

W

R
FIELD

W

Reserved bits Read-only fields Read/write fields

R FIELD

W w1c

Write 1 to clear field
(field will always read 0)

R 0 0 0

W FIELD1 FIELD2

Write-only fields

MPC5604B/C Microcontroller Reference Manual, Rev. 8

24 Freescale Semiconductor

• Programmer’s Reference Manual for Freescale Embedded Processors

• e200z0 Power Architecture Core Reference Manual

• Variable-Length Encoding (VLE) Programming Environments Manual

The aforementioned documents describe all of the functional and electrical characteristics of the
MPC5604B microcontroller.

Depending on your task, you may need to refer to multiple documents to make design decisions. However,
in general the use of the documents can be divided up as follows:

• Use the reference manual (this document) during software development and when allocating
functions during system design.

• Use the data sheet when designing hardware and optimizing power consumption.

• Use the CPU reference documents when doing detailed software development in assembly
language or debugging complex software interactions.

1.6.2 Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than its
performance. Most chapters describe the functionality of a particular on-chip module, such as a CAN
controller or timer. The remaining chapters describe how these modules are integrated into the memory
map, how they are powered and clocked, and the pin-out of the device.

In general, when an individual module is enabled for use all of the detail required to configure and operate
it is contained in the dedicated chapter. In some cases there are multiple implementations of this module,
however, there is only one chapter for each type of module in use. For this reason, the address of registers
in each module is normally provided as an offset from a base address which can be found in Chapter 3,
Memory Map. The benefit of this approach is that software developed for a particular module can be easily
reused on this device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the integration
features of the microcontroller. The module will normally have to be powered and enabled at system level,
then a clock may have to be explicitly chosen and finally if required the input and output connections to
the external system must be configured.

The primary integration chapters of the reference manual contain most of the information required to
enable the modules. There are special cases where a chapter may describe module functionality and some
integration features for convenience — for example, the microcontroller input/output (SIUL) module.
Integration and functional content is provided in the manual as shown in Table 1-2.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 25

1.7 Using the MPC5604B
There are many different approaches to designing a system using the MPC5604B so the guidance in this
section is provided as an example of how the documents can be applied in this task.

Familiarity with the MPC5604B modules can help ensure that its features are being optimally used in a
system design. Therefore, the current chapter is a good starting point. Further information on the detailed
features of a module are provided within the module chapters. These, combined with the current chapter,
should provide a good introduction to the functions available on the MCU.

1.7.1 Hardware design

The MPC5604B requires that certain pins are connected to particular power supplies, system functions and
other voltage levels for operation.

Table 1-2. Reference manual integration and functional content

Chapter Integration content Functional content

Introduction • The main features on chip
 • A summary of the functions provided by

each module

—

Memory Map How the memory map is allocated,
including:
 • Internal RAM
 • Flash memory
 • External memory-mapped resources

and the location of the registers used by
the peripherals1

1 To find the address of a register in a particular module take the start address of the module given in the memory
map and add the offset for the register given in the module chapter.

—

Signal Description How the signals from each of the modules
are combined and brought to a particular
pin on a package

—

Boot Assist Module CPU boot sequence from reset Implementation of the boot options if
internal flash memory is not used

Clock Description Clocking architecture of the device (which
clock is available for the system and each
peripheral)

Description of operation of different clock
sources

Interrupt Controller Interrupt vector table Operation of the module

Mode Entry Module Module numbering for control and status Operation of operating modes

System Integration Unit
Lite

How input signals are mapped to individual
modules including external interrupt pins

Operation of GPIO

Voltage regulators and
power supplies

Power distribution to the MCU —

Wakeup Unit Allocation of inputs to the Wakeup Unit Operation of the wakeup feature

MPC5604B/C Microcontroller Reference Manual, Rev. 8

26 Freescale Semiconductor

The MPC5604B internal logic operates from 1.2 V (nominal) supplies that are normally supplied by the
on-chip voltage regulator from a 5 V or 3.3 V supply. The 3.3–5 V (±10%) supply is also used to supply
the input/output pins on the MCU. Chapter 4, Signal description, describes the power supply pin names,
numbers and their purpose. For more detail on the voltage supply of each pin, see Chapter 11, Voltage
Regulators and Power Supplies. For specifications of the voltage ranges and limits and decoupling of the
power supplies see the MPC5604B data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These include pins
to force test or alternate boot conditions and debug features. These are described in Chapter 4, Signal
description, and a hardware designer should take care that these pins are connected to allow correct
operation.

Beyond power supply and pins that have special functions there are also pins that have special system
purposes such as oscillator and reset pins. These are also described in Chapter 4, Signal description. The
reset pin is bidirectional and its function is closely tied to the reset generation module [Chapter 9, Reset
Generation Module (MC_RGM)”]. The crystal oscillator pins are dedicated to this function but the
oscillator is not started automatically after reset. The oscillator module is described in Chapter 6, Clock
Description, along with the internal clock architecture and the other oscillator sources on chip.

1.7.2 Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as general purpose
pins or be connected to a particular on-chip module. The arrangement allows a function to be available on
several pins. The system designer should allocate the function for the pin before connecting to external
hardware. The software should then choose the correct function to match the hardware. The pad
characteristics can vary depending on the functions on the pad. Chapter 4, Signal description, describes
each pad type (for example, S, M, or J). Two pads may be able to carry the same function but have different
pad types. The electrical specification of the pads is described in the data sheet dependent on the function
enabled and the pad type.

There are three modules that configure the various functions available:

• System Integration Unit Lite (SIUL)

• Wakeup Unit (WKPU)

• 32 KHz oscillator (SXOSC)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module that allows
selection of the output functions that is connected to the pin. The available settings for the PCR are
described in Section 4.7, Functional ports. Inputs are selected using the PSMI registers; these are described
in Chapter 19, System Integration Unit Lite (SIUL). (PSMI registers connect a module to one of several
pins, whereas the PCR registers connect a pin to one of several modules).

The WKPU provides the ability to cause interrupts and wake the MCU from low power modes and
operates independently from the SIUL.

In addition to digital I/O functions the SXOSC is a "special function" that provides a slow external crystal.
The SXOSC is enabled independently from the digital I/O which means that the digital function on the pin
must be disabled when the SXOSC is active. The ADC functions are enabled using the PCRs.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 27

1.7.3 Software design

Certain modules provide system integration functions, and other modules (such as timers) provide specific
functions.

From reset, the modules involved in configuring the system for application software are:

• Boot Assist Module (BAM) — determines the selected boot source

• Reset Generation Module (MC_RGM) — determines the behavior of the MCU when various reset
sources are triggered and reports the source of the reset

• Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and configures
the peripherals and clocks and power supplies for each of the modes

• Power Control Unit (MC_PCU) — determines which power domains are active

• Clock Generation Module (MC_CGM) — chooses the clock source for the system and many
peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to execute code. At
this point the system clock is the 16 MHz FIRC oscillator, the CPU is in supervisor mode and all the
memory is available. Initialization is required before most peripherals may be used and before the SRAM
can be read (since the SRAM is protected by ECC, the syndrome will generally be uninitialized after reset
and reads would fail the check). Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks, heaps,
variable initialization and so on and configuring the MCU for the application.

The MC_ME module enables the modules and other features like clocks. It is therefore an essential part
of the initialization and operation software. In general, the software will configure an MC_ME mode to
make certain peripherals, clocks, and memory active and then switch to that mode.

Chapter 6, Clock Description, includes a graphic of the clock architecture of the MCU. This can be used
to determine how to configure the MC_CGM module. In general software will configure the module to
enable the required clocks and PLLs and route these to the active modules.

After these steps are complete it is possible to configure the input/output pins and the modules for the
application.

1.7.4 Other features

The MC_ME module manages low power modes and so it is likely that it will be used to switch into
different configurations (module sets, clocks) depending on the application requirements.

The MCU includes two other features to improve the integrity of the application:

• It is possible to enable a software watchdog (SWT) immediately at reset or afterwards to help
detect code runaway.

• Individual register settings can be protected from unintended writes using the features of the
Register Protection module. The protected registers are shown in Chapter 29, Register Protection.

Other integration functionality is provided by the System Status and Configuration Module (SSCM).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

28 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 29

Chapter 2
Introduction

2.1 The MPC5604B microcontroller family
The MPC5604B represents a new generation of 32-bit microcontrollers based on the Power Architecture®.
It belongs to an expanding family of automotive-focused products targeted at addressing the next wave of
body electronics applications within the vehicle.

This document describes the features of the family and options available within the family members, and
highlights important electrical and physical characteristics of the device.

The advanced and cost-efficient host processor core of the family complies with the Power Architecture
embedded category. It operates at speeds of up to 64 MHz and offers high performance processing
optimized for low power consumption. It capitalizes on the available development infrastructure of current
Power Architecture devices and is supported with software drivers, operating systems and configuration
code to assist with users implementations. See Section 2.4, Developer support, for more information.

2.2 Features
This section describes the features of the MPC5604B.

2.2.1 MPC5604B family comparison

Table 2-1 and Table 2-2 report the memory scaling of Code Flash and SRAM.

Table 2-3 provides a summary of the different members of the MPC5604B family. This information is
intended to provide an understanding of the range of functionality offered by this family.

Table 2-1. Code Flash memory scaling

Memory size Start address End address

256 KB 0x00000000 0x0003FFFF

384 KB 0x00000000 0x0005FFFF

512 KB 0x00000000 0x0007FFFF

Table 2-2. SRAM memory scaling

Memory size Start address End address

24 KB 0x40000000 0x40005FFF

28 KB 0x40000000 0x40006FFF

32 KB 0x40000000 0x40007FFF

40 KB 0x40000000 0x40009FFF

48 KB 0x40000000 0x4000BFFF

M
P

C
5604B

/C
 M

icro
co

n
tro

ller R
eferen

ce M
an

u
al R

ev. 8

In
tro

d
u

ctio
n

F
reescale S

em
iconductor

30 Table 2-3. MPC5604B device comparison1

Feature

Device

MPC56
02BxLH

MPC56
02BxLL

MPC56
02BxLQ

MPC56
02CxLH

MPC56
02CxLL

MPC56
03BxLH

MPC56
03BxLL

MPC56
03BxLQ

MPC56
03CxLH

MPC56
03CxLL

MPC56
04BxLH

MPC56
04BxLL

MPC56
04BxLQ

MPC56
04CxLH

MPC56
04CxLL

MPC560
4BxMG

CPU e200z0h

Execution
speed2

Static – up to 64 MHz

Code Flash 256 KB 384 KB 512 KB

Data Flash 64 KB (4 × 16 KB)

RAM 24 KB 32 KB 28 KB 40 KB 32 KB 48 KB

MPU 8-entry

ADC 12 ch,
10-bit

28 ch,
10-bit

36 ch,
10-bit

8 ch,
10-bit

28 ch,
10-bit

12 ch,
10-bit

28 ch,
10-bit

36 ch,
10-bit

8 ch,
10-bit

28 ch,
10-bit

12 ch,
10-bit

28 ch,
10-bit

36 ch,
10-bit

8 ch,
10-bit

28 ch,
10-bit

36 ch,
10-bit

CTU Yes

Total timer I/O3

eMIOS
12 ch,
16-bit

28 ch,
16-bit

56 ch,
16-bit

12 ch,
16-bit

28 ch,
16-bit

12 ch,
16-bit

28 ch,
16-bit

56ch,
16-bit

12 ch,
16-bit

28 ch,
16-bit

12 ch,
16-bit

28 ch,
16-bit

56 ch,
16-bit

12 ch,
16-bit

28 ch,
16-bit

56 ch,
16-bit

 • PWM + MC
+ IC/OC4

2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 10 ch

 • PWM +
IC/OC4

10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch

 • IC/OC4 0 ch 3 ch 6 ch 0 ch 3 ch 0 ch 3 ch 6 ch 0 ch 3 ch 0 ch 3 ch 6 ch 0 ch 3 ch 6 ch

SCI (LINFlex) 35 4

SPI (DSPI) 2 3 2 3 2 3 2 3 2 3 2 3

CAN
(FlexCAN)

26 5 6 37 5 6 37 5 6

I2C 1

32 kHz
oscillator

Yes

GPIO8 45 79 123 45 79 45 79 123 45 79 45 79 123 45 79 123

Debug JTAG Nexus2+

In
tro

d
u

ctio
n

M
P

C
5604B

/C
 M

icro
co

n
tro

ller R
eferen

ce M
an

u
al R

ev. 8

F
reescale S

em
iconductor

31

Package 64
LQFP

100
LQFP

144
LQFP

64
LQFP

100
LQFP

64
LQFP

100
LQFP

144
LQFP

64
LQFP

100
LQFP

64
LQFP

100
LQFP

144
LQFP

64
LQFP

100
LQFP

208
MAPBG

A9

1 Feature set dependent on selected peripheral multiplexing—table shows example implementation
2 Based on 125 °C ambient operating temperature
3 See the eMIOS section of the device reference manual for information on the channel configuration and functions.
4 IC - Input Capture; OC - Output Compare; PWM - Pulse Width Modulation; MC - Modulus counter
5 SCI0, SCI1 and SCI2 are available. SCI3 is not available.
6 CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
7 CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
8 I/O count based on multiplexing with peripherals
9 208 MAPBGA available only as development package for Nexus2+

Table 2-3. MPC5604B device comparison1 (continued)

Feature

Device

MPC56
02BxLH

MPC56
02BxLL

MPC56
02BxLQ

MPC56
02CxLH

MPC56
02CxLL

MPC56
03BxLH

MPC56
03BxLL

MPC56
03BxLQ

MPC56
03CxLH

MPC56
03CxLL

MPC56
04BxLH

MPC56
04BxLL

MPC56
04BxLQ

MPC56
04CxLH

MPC56
04CxLL

MPC560
4BxMG

MPC5604B/C Microcontroller Reference Manual, Rev. 8

32 Freescale Semiconductor

2.2.2 Block diagram

Figure 2-1 shows a top-level block diagram of the MPC5604B family.

Figure 2-1. MPC5604B block diagram

3 x
DSPI

FMPLL

Nexus 2+

Nexus

SRAM

 SIUL
Reset control

48 KB

External

IMUX

GPIO and

 JTAG

pad control

JTAG port

Nexus port
e200z0h

Interrupt requests

64
-b

it
2

x
3

C
ro

ss
ba

r
S

w
itc

h
6 x

FlexCAN

Peripheral bridge

interrupt
request

Interrupt
request

I/O

Clocks

Instructions

Data

Voltage
regulator

NMI

SWT PITSTM

NMI

SIUL

.

INTC

I2C

. . .

4 x
LINFlex

2 x
eMIOS

36 Ch.
ADC

M
P

U

CMU

SRAM Flash

Code Flash
512 KB

Data Flash
64 KB

MC_PCUMC_MEMC_CGMMC_RGM BAM

CTU

RTC SSCM

(Master)

(Master)

(Slave)

(Slave)

(Slave)

controllercontroller

Legend:

ADC Analog-to-Digital Converter
BAM Boot Assist Module
FlexCAN Controller Area Network
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
eMIOS Enhanced Modular Input Output System
FMPLL Frequency-Modulated Phase-Locked Loop
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
ECSM Error Correction Status Module
MC_CGM Clock Generation Module

MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
Nexus Nexus Development Interface (NDI) Level
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit

MPU

ECSM

from peripheral

registers

blocks

WKPU

Interrupt
request with

wakeup
functionality

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 33

2.2.3 Chip-level features

On-chip modules available within the family include the following features:

• Single issue, 32-bit CPU core complex (e200z0)

— Compliant with the Power Architecture™ embedded category

— Includes an instruction set enhancement allowing variable length encoding (VLE) for code size
footprint reduction. With the optional encoding of mixed 16-bit and 32-bit instructions, it is
possible to achieve significant code size footprint reduction.

• Up to 512 Kbytes on-chip Code Flash supported with the Flash controller

• Up to 64 Kbytes on-chip Data Flash supported with the Flash controller

• Up to 48 Kbytes on-chip SRAM

• Memory protection unit (MPU) with 8 region descriptors and 32-byte region granularity

• Interrupt controller (INTC) capable of handling 148 selectable-priority interrupt sources

• Frequency-modulated phase-locked loop (FMPLL)

• Crossbar switch architecture for concurrent access to peripherals, Flash, or SRAM from multiple
bus masters

• Boot assist module (BAM) supports internal Flash programming via a serial link (FlexCAN or
LINFlex)

• Timer supports input/output channels providing a range of 16-bit input capture, output compare,
and pulse width modulation functions (eMIOS)

• 10-bit analog-to-digital converter (ADC)

• Up to 3 serial peripheral interface (DSPI) modules

• Up to 4 serial communication interface (LINFlex) modules

— LINFlex 1, 2 and 3: Master capable

— LINFlex 0: Master capable and slave capable

• Up to 6 enhanced full CAN (FlexCAN) modules with 64 configurable message buffers

• 1 inter-integrated circuit (I2C) module

• Up to 123 configurable general purpose pins supporting input and output operations (package
dependent)

• Real time counter (RTC) with clock source from FIRC or SIRC supporting autonomous wake-up
with 1-ms resolution with max timeout of 2 seconds

— Support for RTC with clock source from SXOSC, supporting wake-up with 1-sec resolution
and max timeout of 1 hour

• 6 periodic interrupt timers (PIT) with 32-bit counter resolution

• 1 system module timer (STM)

• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus

• Device/board boundary scan testing supported with per Joint Test Action Group (JTAG) of IEEE
(IEEE 1149.1)

• On-chip voltage regulator (VREG) for regulation of input supply for all internal levels

MPC5604B/C Microcontroller Reference Manual, Rev. 8

34 Freescale Semiconductor

2.3 Packages
MPC5604B family members are offered in the following package types:

• 64-pin LQFP, 10mm x 10mm outline

• 100-pin LQFP, 0.5mm pitch, 14mm x 14mm outline

• 144-pin LQFP, 0.5mm pitch, 20mm x 20mm outline

• 208 MAPBGA, 1mm ball pitch, 17mm x 17mm outline development package

2.4 Developer support
The MPC5604B MCU tools and third-party developers are similar to those used for the Freescale
MPC5500 product family, offering a widespread, established network of tool and software vendors. It also
features a high-performance Nexus debug interface.

The following development support is available:

• Automotive evaluation boards (EVB) featuring CAN, LIN interfaces, and more

• Compilers

• Debuggers

• JTAG and Nexus interfaces

The following software support is available:

• OSEK solutions will be available from multiple third parties

• CAN and LIN drivers

• AUTOSAR package

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 35

Chapter 3
Memory Map
Table 3-1 shows the memory map for the MPC5604B. All addresses on the device, including those that
are reserved, are identified in the table. The addresses represent the physical addresses assigned to each IP
block.

Table 3-1. MPC5604B memory map

Start address End address Size (KB) Region name

0x0000_0000 0x0000_7FFF 32 Code Flash Sector 0

0x0000_8000 0x0000_BFFF 16 Code Flash Sector 1

0x0000_C000 0x0000_FFFF 16 Code Flash Sector 2

0x0001_0000 0x0001_7FFF 32 Code Flash Sector 3

0x0001_8000 0x0001_FFFF 32 Code Flash Sector 4

0x0002_0000 0x0003_FFFF 128 Code Flash Sector 5

0x0004_0000 0x0005_FFFF 128 Code Flash Sector 6

0x0006_0000 0x0007_FFFF 128 Code Flash Sector 7

0x0008_0000 0x001F_FFFF 1536 Reserved

0x0020_0000 0x0020_3FFF 16 Code Flash Shadow Sector

0x0020_4000 0x003F_FFFF 2032 Reserved

0x0040_0000 0x0040_3FFF 16 Code Flash Test Sector

0x0040_4000 0x007F_FFFF 4080 Reserved

0x0080_0000 0x0080_3FFF 16 Data Flash Array 0

0x0080_4000 0x0080_7FFF 16 Data Flash Array 1

0x0080_8000 0x0080_BFFF 16 Data Flash Array 2

0x0080_C000 0x0080_FFFF 16 Data Flash Array 3

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_0000 0x00C0_3FFF 16 Data test sector

0x00C0_4000 0x00DF_FFFF 4080 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Flash Emulation Mapping

0x2000_0000 0x3FFF_FFFF 524288 Reserved for External Bus Interface

0x4000_0000 0x4000_BFFF 48 SRAM

0x4000_C000 0xC3F8_7FFF 2162160 Reserved

0xC3F8_8000 0xC3F8_BFFF 16 Code Flash A Configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data Flash A Configuration

0xC3F9_0000 0xC3F9_3FFF 16 SIUL

MPC5604B/C Microcontroller Reference Manual, Rev. 8

36 Freescale Semiconductor

0xC3F9_4000 0xC3F9_7FFF 16 WKPU

0xC3F9_8000 0xC3F9_FFFF 32 Reserved

0xC3FA_0000 0xC3FA_3FFF 16 eMIOS_0

0xC3FA_4000 0xC3FA_7FFF 16 eMIOS_1

0xC3FA_8000 0xC3FD_7FFF 192 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 SSCM

0xC3FD_C000 0xC3FD_FFFF 16 MC_ME

0xC3FE_0000 0xC3FE_3FFF 16 MC_CGM

0xC3FE_4000 0xC3FE_7FFF 16 MC_RGM

0xC3FE_8000 0xC3FE_BFFF 16 MC_PCU

0xC3FE_C000 0xC3FE_FFFF 16 RTC/API

0xC3FF_0000 0xC3FF_3FFF 16 PIT

0xC3FF4000 0xFFDF_FFFF 981040 Reserved

0xFFE0_0000 0xFFE0_3FFF 16 ADC_0

0xFFE0_4000 0xFFE2_FFFF 176 Reserved

0xFFE3_0000 0xFFE3_3FFF 16 I2C_0

0xFFE3_4000 0xFFE3_FFFF 48 Reserved

0xFFE4_0000 0xFFE4_3FFF 16 LINFlex_0

0xFFE4_4000 0xFFE4_7FFF 16 LINFlex_1

0xFFE4_8000 0xFFE4_BFFF 16 LINFlex_2

0xFFE4_C000 0xFFE4_FFFF 16 LINFlex_3

0xFFE5_0000 0xFFE6_3FFF 80 Reserved

0xFFE6_4000 0xFFE6_7FFF 16 CTU

0xFFE6_8000 0xFFE6_FFFF 32 Reserved

0xFFE7_0000 0xFFE7_3FFF 16 CAN sampler

0xFFE7_4000 0xFFE7_FFFF 48 Reserved

0xFFE8_0000 0xFFEF_FFFF 512 Mirrored range 0x3F80000–0xC3FFFFFF

0xFFF0_0000 0xFFF0_FFFF 64 Reserved

0xFFF1_0000 0xFFF1_3FFF 16 MPU

0xFFF1_4000 0xFFF3_7FFF 144 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

Table 3-1. MPC5604B memory map (continued)

Start address End address Size (KB) Region name

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 37

0xFFF4_4000 0xFFF4_7FFF 16 Reserved

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF8_FFFF 272 Reserved

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_0

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_1

0xFFF9_8000 0xFFF9_BFFF 16 DSPI_2

0xFFF9_C000 0xFFFB_FFFF 144 Reserved

0xFFFC_0000 0xFFFC_3FFF 16 FlexCAN_0

0xFFFC_4000 0xFFFC_7FFF 16 FlexCAN_1

0xFFFC_8000 0xFFFC_BFFF 16 FlexCAN_2

0xFFFC_C000 0xFFFC_FFFF 16 FlexCAN_3

0xFFFD_0000 0xFFFD_3FFF 16 FlexCAN_4

0xFFFD_4000 0xFFFD_7FFF 16 FlexCAN_5

0xFFFD_8000 0xFFFF_BFFF 144 Reserved

0xFFFF_C000 0xFFFF_FFFF 16 BAM

Table 3-1. MPC5604B memory map (continued)

Start address End address Size (KB) Region name

MPC5604B/C Microcontroller Reference Manual, Rev. 8

38 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 39

Chapter 4
Signal description

4.1 Introduction
The following sections provide signal descriptions and related information about the functionality and
configuration.

4.2 Package pinouts
The LQFP pinouts and the BGA ballmap are provided in the following figures.

For more information on pin multiplexing on this device, see Table 4-1 through Table 4-4.

Figure 4-1. MPC560xB LQFP 64-pin configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]

VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PC[10]
PB[0]
PB[1]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC

 P
C

[7
]

PA
[1

5]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[4
]

P
C

[5
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

64 LQFP
Top view

MPC5604B/C Microcontroller Reference Manual, Rev. 8

40 Freescale Semiconductor

Figure 4-2. MPC560xC LQFP 64-pin configuration

Figure 4-3. LQFP 100-pin configuration (top view)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

PB[3]
PC[9]
PA[2]
PA[1]
PA[0]

VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PC[10]
PB[0]
PB[1]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PF[14]
PF[15]
PG[0]
PG[1]
PA[3]
PB[15]
PB[14]
PB[11]
PB[7]
VDD_HV_ADC
VSS_HV_ADC

 P
C

[7
]

PA
[1

5]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[4
]

P
C

[5
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

64 LQFP
Top view

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

PB[3]
PC[9]

PC[14]
PC[15]

PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]

PE[10]
PA[0]

PE[11]
VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PC[11]
PC[10]

PB[0]
PB[1]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC

P
C

[7
]

PA
[1

5]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
D

[0
]

P
D

[1
]

P
D

[2
]

P
D

[3
]

P
D

[4
]

P
D

[5
]

P
D

[6
]

P
D

[7
]

P
D

[8
]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[1
3]

P
C

[1
2]

P
E

[7
]

P
E

[6
]

P
E

[5
]

P
E

[4
]

P
C

[4
]

P
C

[5
]

P
E

[3
]

P
E

[2
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

P
E

[1
2]

100 LQFP

Note:

Availability of port pin alternate functions depends on product selection.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 41

Figure 4-4. LQFP 144-pin configuration (top view)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

108
107
106
105
104
103
102
101
100

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

13
2

13
1

13
0

12
9

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

12
0

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

PB[3]
PC[9]

PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]

PE[10]
PA[0]

PE[11]
VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PG[9]
PG[8]

PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]

PF[12]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC

P
C

[7
]

P
F

[1
0]

P
F

[1
1]

PA
[1

5]
P

F
[1

3]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
F

[0
]

P
F

[1
]

P
F

[2
]

P
F

[3
]

P
F

[4
]

P
F

[5
]

P
F

[6
]

P
F

[7
]

P
D

[0
]

P
D

[1
]

P
D

[2
]

P
D

[3
]

P
D

[4
]

P
D

[5
]

P
D

[6
]

P
D

[7
]

P
D

[8
]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[1
3]

P
C

[1
2]

P
E

[7
]

P
E

[6
]

P
H

[8
]

P
H

[7
]

P
H

[6
]

P
H

[5
]

P
H

[4
]

P
E

[5
]

P
E

[4
]

P
C

[4
]

P
C

[5
]

P
E

[3
]

P
E

[2
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

P
G

[1
1]

P
G

[1
0]

P
E

[1
5]

P
E

[1
4]

P
G

[1
5]

P
G

[1
4]

P
E

[1
2]

144 LQFP

Note:

Availability of port pin alternate functions depends on product selection.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

42 Freescale Semiconductor

Figure 4-5. 208 MAPBGA configuration

4.3 Pad configuration during reset phases
All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

• PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.

• PA[8] (ABS[0]) is pull-up.

• RESET pad is driven low. This is pull-up only after PHASE2 reset completion.

• JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.

• Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A PC[8] PC[13] NC NC PH[8] PH[4] PC[5] PC[0] NC NC PC[2] NC PE[15] NC NC NC A

B PC[9] PB[2] NC PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] NC PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B

C PC[14] VDD_HV PB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] NC PA[5] NC PE[14] PE[12] PA[9] PA[8] C

D NC NC PC[15] NC PH[6] PE[4] PE[2] VDD_LV VDD_HV NC PA[6] NC PG[10] PF[14] PE[13] PA[7] D

E PG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_HV E

F PE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F

G PE[9] PE[8] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV NC NC MSEO G

H VSS_HV PE[11] VDD_HV NC VSS_HV VSS_HV VSS_HV VSS_HV MDO3 MDO2 MDO0 MDO1 H

J RESET VSS_LV NC NC VSS_HV VSS_HV VSS_HV VSS_HV NC NC NC NC J

K EVTI NC VDD_BV VDD_LV VSS_HV VSS_HV VSS_HV VSS_HV NC PG[12] PA[3] PG[13] K

L PG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L

M PG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M

N PB[1] PF[9] PB[0] NC NC PA[4] VSS_LV EXTAL VDD_HV PF[0] PF[4] NC PB[11] PD[10] PD[9] PD[11] N

P PF[8] NC PC[7] NC NC PA[14] VDD_LV XTAL PB[10] PF[1] PF[5] PD[0] PD[3]
VDD_HV

_ADC
PB[6] PB[7] P

R PF[12] PC[6] PF[10] PF[11] VDD_HV PA[15] PA[13] NC
OSC32K
_XTAL

PF[3] PF[7] PD[2] PD[4] PD[7]
VSS_HV

_ADC
PB[5] R

T NC NC NC MCKO NC PF[13] PA[12] NC
OSC32K
_EXTAL

PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note: 208 MAPBGA available only as development package for Nexus 2+. NC = Not connected

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 43

• Main oscillator pads (EXTAL, XTAL) are tristate.

• Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.

4.4 Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V
regulator stabilization.

4.5 Pad types
In the device the following types of pads are available for system pins and functional port pins:

S = Slow1

M = Medium1 2

Table 4-1. Voltage supply pin descriptions

Port pin Function

Pin number

64 LQFP1

1 Pin numbers apply to both the MPC560xB and MPC560xC packages.

100 LQFP 144 LQFP
208

MAPBGA2

2 208 MAPBGA available only as development package for Nexus2+

VDD_HV Digital supply voltage 7, 28, 56 15, 37, 70,
84

19, 51, 100,
123

C2, D9, E16,
G13, H3, N9,

R5

VSS_HV Digital ground 6, 8, 26, 55 14, 16, 35,
69, 83

18, 20, 49,
99, 122

G7, G8, G9,
G10, H1, H7,
H8, H9, H10,

J7, J8, J9,
J10, K7, K8,

K9, K10

VDD_LV 1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VSS_LV pin.3

3 A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable
voltage (see the recommended operating conditions in the device datasheet for details).

11, 23, 57 19, 32, 85 23, 46, 124 D8, K4, P7

VSS_LV 1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VDD_LV pin.3

10, 24, 58 18, 33, 86 22, 47, 125 C8, J2, N7

VDD_BV Internal regulator supply voltage 12 20 24 K3

VSS_HV_AD
C

Reference ground and analog ground for
the ADC

33 51 73 R15

VDD_HV_AD
C

Reference voltage and analog supply for
the ADC

34 52 74 P14

1. See the I/O pad electrical characteristics in the device datasheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC
in Section 19.5.3.8, “Pad Configuration Registers (PCR0–PCR122)).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

44 Freescale Semiconductor

F = Fast1 2

I = Input only with analog feature1

J = Input/Output with analog feature

X = Oscillator

4.6 System pins
The system pins are listed in Table 4-2.

4.7 Functional ports
The functional port pins are listed in Table 4-3.

Table 4-2. System pin descriptions

System
pin

Function
I/O

directio
n

Pad
typ
e

RESET
config.

Pin number

64
L

Q
F

P
1

1 Pin numbers apply to both the MPC560xB and MPC560xC packages.
10

0
L

Q
F

P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

2

2 208 MAPBGA available only as development package for Nexus2+

RESET Bidirectional reset with Schmitt-Trigger
characteristics and noise filter.

I/O M Input, weak
pull-up

only after
PHASE2

9 17 21 J1

EXTAL Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
mode.
Analog input for the clock generator when the
oscillator is in bypass mode. 3

3 See the relevant section of the datasheet

I/O X Tristate 27 36 50 N8

XTAL Analog input of the oscillator amplifier circuit.
Needs to be grounded if oscillator is used in
bypass mode. 3

I X Tristate 25 34 48 P8

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 45

Table 4-3. Functional port pin descriptions

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

PA[0] PCR[0] AF0
AF1
AF2
AF3
—

GPIO[0]
E0UC[0]
CLKOUT

—
WKUP[19]4

SIUL
eMIOS_0

CGL
—

WKPU

I/O
I/O
O
—
I

M Tristate 5 5 12 16 G4

PA[1] PCR[1] AF0
AF1
AF2
AF3
—
—

GPIO[1]
E0UC[1]

—
—

NMI5

WKUP[2]4

SIUL
eMIOS_0

—
—

WKPU
WKPU

I/O
I/O
—
—
I
I

S Tristate 4 4 7 11 F3

PA[2] PCR[2] AF0
AF1
AF2
AF3
—

GPIO[2]
E0UC[2]

—
—

WKUP[3]4

SIUL
eMIOS_0

—
—

WKPU

I/O
I/O
—
—
I

S Tristate 3 3 5 9 F2

PA[3] PCR[3] AF0
AF1
AF2
AF3
—

GPIO[3]
E0UC[3]

—
—

EIRQ[0]

SIUL
eMIOS_0

—
—

SIUL

I/O
I/O
—
—
I

S Tristate 43 39 68 90 K15

PA[4] PCR[4] AF0
AF1
AF2
AF3
—

GPIO[4]
E0UC[4]

—
—

WKUP[9]4

SIUL
eMIOS_0

—
—

WKPU

I/O
I/O
—
—
I

S Tristate 20 20 29 43 N6

PA[5] PCR[5] AF0
AF1
AF2
AF3

GPIO[5]
E0UC[5]

—
—

SIUL
eMIOS_0

—
—

I/O
I/O
—
—

M Tristate 51 51 79 118 C11

PA[6] PCR[6] AF0
AF1
AF2
AF3
—

GPIO[6]
E0UC[6]

—
—

EIRQ[1]

SIUL
eMIOS_0

—
—

SIUL

I/O
I/O
—
—
I

S Tristate 52 52 80 119 D11

PA[7] PCR[7] AF0
AF1
AF2
AF3
—

GPIO[7]
E0UC[7]
LIN3TX

—
EIRQ[2]

SIUL
eMIOS_0
LINFlex_3

—
SIUL

I/O
I/O
O
—
I

S Tristate 44 44 71 104 D16

MPC5604B/C Microcontroller Reference Manual, Rev. 8

46 Freescale Semiconductor

PA[8] PCR[8] AF0
AF1
AF2
AF3
—

N/A
6

—

GPIO[8]
E0UC[8]

—
—

EIRQ[3]
ABS[0]
LIN3RX

SIUL
eMIOS_0

—
—

SIUL
BAM

LINFlex_3

I/O
I/O
—
—
I
I
I

S Input, weak
pull-up

45 45 72 105 C16

PA[9] PCR[9] AF0
AF1
AF2
AF3
N/A

6

GPIO[9]
E0UC[9]

—
—

FAB

SIUL
eMIOS_0

—
—

BAM

I/O
I/O
—
—
I

S Pull-down 46 46 73 106 C15

PA[10] PCR[10] AF0
AF1
AF2
AF3

GPIO[10]
E0UC[10]

SDA
—

SIUL
eMIOS_0

I2C_0
—

I/O
I/O
I/O
—

S Tristate 47 47 74 107 B16

PA[11] PCR[11] AF0
AF1
AF2
AF3

GPIO[11]
E0UC[11]

SCL
—

SIUL
eMIOS_0

I2C_0
—

I/O
I/O
I/O
—

S Tristate 48 48 75 108 B15

PA[12] PCR[12] AF0
AF1
AF2
AF3
—

GPIO[12]
—
—
—

SIN_0

SIUL
—
—
—

DSPI0

I/O
—
—
—
I

S Tristate 22 22 31 45 T7

PA[13] PCR[13] AF0
AF1
AF2
AF3

GPIO[13]
SOUT_0

—
—

SIUL
DSPI_0

—
—

I/O
O
—
—

M Tristate 21 21 30 44 R7

PA[14] PCR[14] AF0
AF1
AF2
AF3
—

GPIO[14]
SCK_0
CS0_0

—
EIRQ[4]

SIUL
DSPI_0
DSPI_0

—
SIUL

I/O
I/O
I/O
—
I

M Tristate 19 19 28 42 P6

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 47

PA[15] PCR[15] AF0
AF1
AF2
AF3
—

GPIO[15]
CS0_0
SCK_0

—
WKUP[10]4

SIUL
DSPI_0
DSPI_0

—
WKPU

I/O
I/O
I/O
—
I

M Tristate 18 18 27 40 R6

PB[0] PCR[16] AF0
AF1
AF2
AF3

GPIO[16]
CAN0TX

—
—

SIUL
FlexCAN_0

—
—

I/O
O
—
—

M Tristate 14 14 23 31 N3

PB[1] PCR[17] AF0
AF1
AF2
AF3
—
—

GPIO[17]
—
—
—

WKUP[4]4

CAN0RX

SIUL
—
—
—

WKPU
FlexCAN_0

I/O
—
—
—
I
I

S Tristate 15 15 24 32 N1

PB[2] PCR[18] AF0
AF1
AF2
AF3

GPIO[18]
LIN0TX

SDA
—

SIUL
LINFlex_0

I2C_0
—

I/O
O
I/O
—

M Tristate 64 64 100 144 B2

PB[3] PCR[19] AF0
AF1
AF2
AF3
—
—

GPIO[19]
—

SCL
—

WKUP[11]4

LIN0RX

SIUL
—

I2C_0
—

WKPU
LINFlex_0

I/O
—
I/O
—
I
I

S Tristate 1 1 1 1 C3

PB[4] PCR[20] AF0
AF1
AF2
AF3
—

GPIO[20]
—
—
—

GPI[0]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate 32 32 50 72 T16

PB[5] PCR[21] AF0
AF1
AF2
AF3
—

GPIO[21]
—
—
—

GPI[1]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate 35 — 53 75 R16

PB[6] PCR[22] AF0
AF1
AF2
AF3
—

GPIO[22]
—
—
—

GPI[2]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate 36 — 54 76 P15

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

48 Freescale Semiconductor

PB[7] PCR[23] AF0
AF1
AF2
AF3
—

GPIO[23]
—
—
—

GPI[3]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate 37 35 55 77 P16

PB[8] PCR[24] AF0
AF1
AF2
AF3
—
—

GPIO[24]
—
—
—

ANS[0]
OSC32K_XTAL7

SIUL
—
—
—

ADC
SXOSC

I
—
—
—
I

I/O

I Tristate 30 30 39 53 R9

PB[9] PCR[25] AF0
AF1
AF2
AF3
—
—

GPIO[25]
—
—
—

ANS[1]
OSC32K_EXTAL7

SIUL
—
—
—

ADC
SXOSC

I
—
—
—
I

I/O

I Tristate 29 29 38 52 T9

PB[10] PCR[26] AF0
AF1
AF2
AF3
—
—

GPIO[26]
—
—
—

ANS[2]
WKUP[8]4

SIUL
—
—
—

ADC
WKPU

I/O
—
—
—
I
I

J Tristate 31 31 40 54 P9

PB[11]8 PCR[27] AF0
AF1
AF2
AF3
—

GPIO[27]
E0UC[3]

—
CS0_0
ANS[3]

SIUL
eMIOS_0

—
DSPI_0

ADC

I/O
I/O
—
I/O
I

J Tristate 38 36 59 81 N13

PB[12] PCR[28] AF0
AF1
AF2
AF3
—

GPIO[28]
E0UC[4]

—
CS1_0
ANX[0]

SIUL
eMIOS_0

—
DSPI_0

ADC

I/O
I/O
—
O
I

J Tristate 39 — 61 83 M1
6

PB[13] PCR[29] AF0
AF1
AF2
AF3
—

GPIO[29]
E0UC[5]

—
CS2_0
ANX[1]

SIUL
eMIOS_0

—
DSPI_0

ADC

I/O
I/O
—
O
I

J Tristate 40 — 63 85 M1
3

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 49

PB[14] PCR[30] AF0
AF1
AF2
AF3
—

GPIO[30]
E0UC[6]

—
CS3_0
ANX[2]

SIUL
eMIOS_0

—
DSPI_0

ADC

I/O
I/O
—
O
I

J Tristate 41 37 65 87 L16

PB[15] PCR[31] AF0
AF1
AF2
AF3
—

GPIO[31]
E0UC[7]

—
CS4_0
ANX[3]

SIUL
eMIOS_0

—
DSPI_0

ADC

I/O
I/O
—
O
I

J Tristate 42 38 67 89 L13

PC[0]9 PCR[32] AF0
AF1
AF2
AF3

GPIO[32]
—

TDI
—

SIUL
—

JTAGC
—

I/O
—
I

—

M Input, weak
pull-up

59 59 87 126 A8

PC[1]9 PCR[33] AF0
AF1
AF2
AF3

GPIO[33]
—

TDO10

—

SIUL
—

JTAGC
—

I/O
—
O
—

M Tristate 54 54 82 121 C9

PC[2] PCR[34] AF0
AF1
AF2
AF3
—

GPIO[34]
SCK_1

CAN4TX11

—
EIRQ[5]

SIUL
DSPI_1

LINFlex_4
—

SIUL

I/O
I/O
O
—
I

M Tristate 50 50 78 117 A11

PC[3] PCR[35] AF0
AF1
AF2
AF3
—
—
—

GPIO[35]
CS0_1
MA[0]

—
CAN1RX

CAN4RX11

EIRQ[6]

SIUL
DSPI_1

ADC
—

FlexCAN_1
FlexCAN_4

SIUL

I/O
I/O
O
—
I
I
I

S Tristate 49 49 77 116 B11

PC[4] PCR[36] AF0
AF1
AF2
AF3
—
—

GPIO[36]
—
—
—

SIN_1
CAN3RX11

SIUL
—
—
—

DSPI_1
FlexCAN_3

I/O
—
—
—
I
I

M Tristate 62 62 92 131 B7

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

50 Freescale Semiconductor

PC[5] PCR[37] AF0
AF1
AF2
AF3
—

GPIO[37]
SOUT_1

CAN3TX11

—
EIRQ[7]

SIUL
DSPI1

FlexCAN_3
—

SIUL

I/O
O
O
—
I

M Tristate 61 61 91 130 A7

PC[6] PCR[38] AF0
AF1
AF2
AF3

GPIO[38]
LIN1TX

—
—

SIUL
LINFlex_1

—
—

I/O
O
—
—

S Tristate 16 16 25 36 R2

PC[7] PCR[39] AF0
AF1
AF2
AF3
—
—

GPIO[39]
—
—
—

LIN1RX
WKUP[12]4

SIUL
—
—
—

LINFlex_1
WKPU

I/O
—
—
—
I
I

S Tristate 17 17 26 37 P3

PC[8] PCR[40] AF0
AF1
AF2
AF3

GPIO[40]
LIN2TX

—
—

SIUL
LINFlex_2

—
—

I/O
O
—
—

S Tristate 63 63 99 143 A1

PC[9] PCR[41] AF0
AF1
AF2
AF3
—
—

GPIO[41]
—
—
—

LIN2RX
WKUP[13]4

SIUL
—
—
—

LINFlex_2
WKPU

I/O
—
—
—
I
I

S Tristate 2 2 2 2 B1

PC[10] PCR[42] AF0
AF1
AF2
AF3

GPIO[42]
CAN1TX

CAN4TX11

MA[1]

SIUL
FlexCAN_1
FlexCAN_4

ADC

I/O
O
O
O

M Tristate 13 13 22 28 M3

PC[11] PCR[43] AF0
AF1
AF2
AF3
—
—
—

GPIO[43]
—
—
—

CAN1RX
CAN4RX11

WKUP[5]4

SIUL
—
—
—

FlexCAN_1
FlexCAN_4

WKPU

I/O
—
—
—
I
I
I

S Tristate — — 21 27 M4

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 51

PC[12] PCR[44] AF0
AF1
AF2
AF3
—

GPIO[44]
E0UC[12]

—
—

SIN_2

SIUL
eMIOS_0

—
—

DSPI_2

I/O
I/O
—
—
I

M Tristate — — 97 141 B4

PC[13] PCR[45] AF0
AF1
AF2
AF3

GPIO[45]
E0UC[13]
SOUT_2

—

SIUL
eMIOS_0
DSPI_2

—

I/O
I/O
O
—

S Tristate — — 98 142 A2

PC[14] PCR[46] AF0
AF1
AF2
AF3
—

GPIO[46]
E0UC[14]

SCK_2
—

EIRQ[8]

SIUL
eMIOS_0
DSPI_2

—
SIUL

I/O
I/O
I/O
—
I

S Tristate — — 3 3 C1

PC[15] PCR[47] AF0
AF1
AF2
AF3

GPIO[47]
E0UC[15]

CS0_2
—

SIUL
eMIOS_0
DSPI_2

—

I/O
I/O
I/O
—

M Tristate — — 4 4 D3

PD[0] PCR[48] AF0
AF1
AF2
AF3
—

GPIO[48]
—
—
—

GPI[4]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 41 63 P12

PD[1] PCR[49] AF0
AF1
AF2
AF3
—

GPIO[49]
—
—
—

GPI[5]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 42 64 T12

PD[2] PCR[50] AF0
AF1
AF2
AF3
—

GPIO[50]
—
—
—

GPI[6]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 43 65 R12

PD[3] PCR[51] AF0
AF1
AF2
AF3
—

GPIO[51]
—
—
—

GPI[7]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 44 66 P13

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

52 Freescale Semiconductor

PD[4] PCR[52] AF0
AF1
AF2
AF3
—

GPIO[52]
—
—
—

GPI[8]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 45 67 R13

PD[5] PCR[53] AF0
AF1
AF2
AF3
—

GPIO[53]
—
—
—

GPI[9]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 46 68 T13

PD[6] PCR[54] AF0
AF1
AF2
AF3
—

GPIO[54]
—
—
—

GPI[10]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 47 69 T14

PD[7] PCR[55] AF0
AF1
AF2
AF3
—

GPIO[55]
—
—
—

GPI[11]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 48 70 R14

PD[8] PCR[56] AF0
AF1
AF2
AF3
—

GPIO[56]
—
—
—

GPI[12]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 49 71 T15

PD[9] PCR[57] AF0
AF1
AF2
AF3
—

GPIO[57]
—
—
—

GPI[13]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 56 78 N15

PD[10] PCR[58] AF0
AF1
AF2
AF3
—

GPIO[58]
—
—
—

GPI[14]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 57 79 N14

PD[11] PCR[59] AF0
AF1
AF2
AF3
—

GPIO[59]
—
—
—

GPI[15]

SIUL
—
—
—

ADC

I
—
—
—
I

I Tristate — — 58 80 N16

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 53

PD[12]8 PCR[60] AF0
AF1
AF2
AF3
—

GPIO[60]
CS5_0

E0UC[24]
—

ANS[4]

SIUL
DSPI_0

eMIOS_0
—

ADC

I/O
O
I/O
—
I

J Tristate — — 60 82 M1
5

PD[13] PCR[61] AF0
AF1
AF2
AF3
—

GPIO[61]
CS0_1

E0UC[25]
—

ANS[5]

SIUL
DSPI_1

eMIOS_0
—

ADC

I/O
I/O
I/O
—
I

J Tristate — — 62 84 M1
4

PD[14] PCR[62] AF0
AF1
AF2
AF3
—

GPIO[62]
CS1_1

E0UC[26]
—

ANS[6]

SIUL
DSPI_1

eMIOS_0
—

ADC

I/O
O
I/O
—
I

J Tristate — — 64 86 L15

PD[15] PCR[63] AF0
AF1
AF2
AF3
—

GPIO[63]
CS2_1

E0UC[27]
—

ANS[7]

SIUL
DSPI_1

eMIOS_0
—

ADC

I/O
O
I/O
—
I

J Tristate — — 66 88 L14

PE[0] PCR[64] AF0
AF1
AF2
AF3
—
—

GPIO[64]
E0UC[16]

—
—

CAN5RX11

WKUP[6]4

SIUL
eMIOS_0

—
—

FlexCAN_5
WKPU

I/O
I/O
—
—
I
I

S Tristate — — 6 10 F1

PE[1] PCR[65] AF0
AF1
AF2
AF3

GPIO[65]
E0UC[17]
CAN5TX11

—

SIUL
eMIOS_0

FlexCAN_5
—

I/O
I/O
O
—

M Tristate — — 8 12 F4

PE[2] PCR[66] AF0
AF1
AF2
AF3
—

GPIO[66]
E0UC[18]

—
—

SIN_1

SIUL
eMIOS_0

—
—

DSPI_1

I/O
I/O
—
—
I

M Tristate — — 89 128 D7

PE[3] PCR[67] AF0
AF1
AF2
AF3

GPIO[67]
E0UC[19]
SOUT_1

—

SIUL
eMIOS_0
DSPI_1

—

I/O
I/O
O
—

M Tristate — — 90 129 C7

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

54 Freescale Semiconductor

PE[4] PCR[68] AF0
AF1
AF2
AF3
—

GPIO[68]
E0UC[20]

SCK_1
—

EIRQ[9]

SIUL
eMIOS_0
DSPI_1

—
SIUL

I/O
I/O
I/O
—
I

M Tristate — — 93 132 D6

PE[5] PCR[69] AF0
AF1
AF2
AF3

GPIO[69]
E0UC[21]

CS0_1
MA[2]

SIUL
eMIOS_0
DSPI_1

ADC

I/O
I/O
I/O
O

M Tristate — — 94 133 C6

PE[6] PCR[70] AF0
AF1
AF2
AF3

GPIO[70]
E0UC[22]

CS3_0
MA[1]

SIUL
eMIOS_0
DSPI_0

ADC

I/O
I/O
O
O

M Tristate — — 95 139 B5

PE[7] PCR[71] AF0
AF1
AF2
AF3

GPIO[71]
E0UC[23]

CS2_0
MA[0]

SIUL
eMIOS_0
DSPI_0

ADC

I/O
I/O
O
O

M Tristate — — 96 140 C4

PE[8] PCR[72] AF0
AF1
AF2
AF3

GPIO[72]
CAN2TX12

E0UC[22]
CAN3TX11

SIUL
FlexCAN_2
eMIOS_0

FlexCAN_3

I/O
O
I/O
O

M Tristate — — 9 13 G2

PE[9] PCR[73] AF0
AF1
AF2
AF3
—
—
—

GPIO[73]
—

E0UC[23]
—

WKUP[7]4

CAN2RX12

CAN3RX11

SIUL
—

eMIOS_0
—

WKPU
FlexCAN_2
FlexCAN_3

I/O
—
I/O
—
I
I
I

S Tristate — — 10 14 G1

PE[10] PCR[74] AF0
AF1
AF2
AF3
—

GPIO[74]
LIN3TX
CS3_1

—
EIRQ[10]

SIUL
LINFlex_3
DSPI_1

—
SIUL

I/O
O
O
—
I

S Tristate — — 11 15 G3

PE[11] PCR[75] AF0
AF1
AF2
AF3
—
—

GPIO[75]
—

CS4_1
—

LIN3RX
WKUP[14]4

SIUL
—

DSPI_1
—

LINFlex_3
WKPU

I/O
—
O
—
I
I

S Tristate — — 13 17 H2

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 55

PE[12] PCR[76] AF0
AF1
AF2
AF3
—
—

GPIO[76]
—

E1UC[19]13

—
SIN_2

EIRQ[11]

SIUL
—

eMIOS_1
—

DSPI_2
SIUL

I/O
—
I/O
—
I
I

S Tristate — — 76 109 C14

PE[13] PCR[77] AF0
AF1
AF2
AF3

GPIO[77]
SOUT2

E1UC[20]
—

SIUL
DSPI_2

eMIOS_1
—

I/O
O
I/O
—

S Tristate — — — 103 D15

PE[14] PCR[78] AF0
AF1
AF2
AF3
—

GPIO[78]
SCK_2

E1UC[21]
—

EIRQ[12]

SIUL
DSPI_2

eMIOS_1
—

SIUL

I/O
I/O
I/O
—
I

S Tristate — — — 112 C13

PE[15] PCR[79] AF0
AF1
AF2
AF3

GPIO[79]
CS0_2

E1UC[22]
—

SIUL
DSPI_2

eMIOS_1
—

I/O
I/O
I/O
—

M Tristate — — — 113 A13

PF[0] PCR[80] AF0
AF1
AF2
AF3
—

GPIO[80]
E0UC[10]

CS3_1
—

ANS[8]

SIUL
eMIOS_0
DSPI_1

—
ADC

I/O
I/O
O
—
I

J Tristate — — — 55 N10

PF[1] PCR[81] AF0
AF1
AF2
AF3
—

GPIO[81]
E0UC[11]

CS4_1
—

ANS[9]

SIUL
eMIOS_0
DSPI_1

—
I

I/O
I/O
O
—
I

J Tristate — — — 56 P10

PF[2] PCR[82] AF0
AF1
AF2
AF3
—

GPIO[82]
E0UC[12]

CS0_2
—

ANS[10]

SIUL
eMIOS_0
DSPI_2

—
ADC

I/O
I/O
I/O
—
I

J Tristate — — — 57 T10

PF[3] PCR[83] AF0
AF1
AF2
AF3
—

GPIO[83]
E0UC[13]

CS1_2
—

ANS[11]

SIUL
eMIOS_0
DSPI_2

—
ADC

I/O
I/O
O
—
I

J Tristate — — — 58 R10

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

56 Freescale Semiconductor

PF[4] PCR[84] AF0
AF1
AF2
AF3
—

GPIO[84]
E0UC[14]

CS2_2
—

ANS[12]

SIUL
eMIOS_0
DSPI_2

—
ADC

I/O
I/O
O
—
I

J Tristate — — — 59 N11

PF[5] PCR[85] AF0
AF1
AF2
AF3
—

GPIO[85]
E0UC[22]

CS3_2
—

ANS[13]

SIUL
eMIOS_0
DSPI_2

—
ADC

I/O
I/O
O
—
I

J Tristate — — — 60 P11

PF[6] PCR[86] AF0
AF1
AF2
AF3
—

GPIO[86]
E0UC[23]

—
—

ANS[14]

SIUL
eMIOS_0

—
—

ADC

I/O
I/O
—
—
I

J Tristate — — — 61 T11

PF[7] PCR[87] AF0
AF1
AF2
AF3
—

GPIO[87]
—
—
—

ANS[15]

SIUL
—
—
—

ADC

I/O
—
—
—
I

J Tristate — — — 62 R11

PF[8] PCR[88] AF0
AF1
AF2
AF3

GPIO[88]
CAN3TX14

CS4_0
CAN2TX15

SIUL
FlexCAN_3

DSPI_0
FlexCAN_2

I/O
O
O
O

M Tristate — — — 34 P1

PF[9] PCR[89] AF0
AF1
AF2
AF3
—
—

GPIO[89]
—

CS5_0
—

CAN2RX15

CAN3RX14

SIUL
—

DSPI_0
—

FlexCAN_2
FlexCAN_3

I/O
—
O
—
I
I

S Tristate — — — 33 N2

PF[10] PCR[90] AF0
AF1
AF2
AF3

GPIO[90]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M Tristate — — — 38 R3

PF[11] PCR[91] AF0
AF1
AF2
AF3
—

GPIO[91]
—
—
—

WKUP[15]4

SIUL
—
—
—

WKPU

I/O
—
—
—
I

S Tristate — — — 39 R4

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 57

PF[12] PCR[92] AF0
AF1
AF2
AF3

GPIO[92]
E1UC[25]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 35 R1

PF[13] PCR[93] AF0
AF1
AF2
AF3
—

GPIO[93]
E1UC[26]

—
—

WKUP[16]4

SIUL
eMIOS_1

—
—

WKPU

I/O
I/O
—
—
I

S Tristate — — — 41 T6

PF[14] PCR[94] AF0
AF1
AF2
AF3

GPIO[94]
CAN4TX11

E1UC[27]
CAN1TX

SIUL
FlexCAN_4
eMIOS_1

FlexCAN_4

I/O
O
I/O
O

M Tristate — 43 — 102 D14

PF[15] PCR[95] AF0
AF1
AF2
AF3
—
—
—

GPIO[95]
—
—
—

CAN1RX
CAN4RX11

EIRQ[13]

SIUL
—
—
—

FlexCAN_1
FlexCAN_4

SIUL

I/O
—
—
—
I
I
I

S Tristate — 42 — 101 E15

PG[0] PCR[96] AF0
AF1
AF2
AF3

GPIO[96]
CAN5TX11

E1UC[23]
—

SIUL
FlexCAN_5
eMIOS_1

—

I/O
O
I/O
—

M Tristate — 41 — 98 E14

PG[1] PCR[97] AF0
AF1
AF2
AF3
—
—

GPIO[97]
—

E1UC[24]
—

CAN5RX11

EIRQ[14]

SIUL
—

eMIOS_1
—

FlexCAN_5
SIUL

I/O
—
I/O
—
I
I

S Tristate — 40 — 97 E13

PG[2] PCR[98] AF0
AF1
AF2
AF3

GPIO[98]
E1UC[11]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 8 E4

PG[3] PCR[99] AF0
AF1
AF2
AF3
—

GPIO[99]
E1UC[12]

—
—

WKUP[17]4

SIUL
eMIOS_1

—
—

WKPU

I/O
I/O
—
—
I

S Tristate — — — 7 E3

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

58 Freescale Semiconductor

PG[4] PCR[100] AF0
AF1
AF2
AF3

GPIO[100]
E1UC[13]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 6 E1

PG[5] PCR[101] AF0
AF1
AF2
AF3
—

GPIO[101]
E1UC[14]

—
—

WKUP[18]4

SIUL
eMIOS_1

—
—

WKPU

I/O
I/O
—
—
I

S Tristate — — — 5 E2

PG[6] PCR[102] AF0
AF1
AF2
AF3

GPIO[102]
E1UC[15]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 30 M2

PG[7] PCR[103] AF0
AF1
AF2
AF3

GPIO[103]
E1UC[16]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 29 M1

PG[8] PCR[104] AF0
AF1
AF2
AF3
—

GPIO[104]
E1UC[17]

—
CS0_2

EIRQ[15]

SIUL
eMIOS_1

—
DSPI_2

SIUL

I/O
I/O
—
I/O
I

S Tristate — — — 26 L2

PG[9] PCR[105] AF0
AF1
AF2
AF3

GPIO[105]
E1UC[18]

—
SCK_2

SIUL
eMIOS_1

—
DSPI_2

I/O
I/O
—
I/O

S Tristate — — — 25 L1

PG[10] PCR[106] AF0
AF1
AF2
AF3

GPIO[106]
E0UC[24]

—
—

SIUL
eMIOS_0

—
—

I/O
I/O
—
—

S Tristate — — — 114 D13

PG[11] PCR[107] AF0
AF1
AF2
AF3

GPIO[107]
E0UC[25]

—
—

SIUL
eMIOS_0

—
—

I/O
I/O
—
—

M Tristate — — — 115 B12

PG[12] PCR[108] AF0
AF1
AF2
AF3

GPIO[108]
E0UC[26]

—
—

SIUL
eMIOS_0

—
—

I/O
I/O
—
—

M Tristate — — — 92 K14

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 59

PG[13] PCR[109] AF0
AF1
AF2
AF3

GPIO[109]
E0UC[27]

—
—

SIUL
eMIOS_0

—
—

I/O
I/O
—
—

M Tristate — — — 91 K16

PG[14] PCR[110] AF0
AF1
AF2
AF3

GPIO[110]
E1UC[0]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

S Tristate — — — 110 B14

PG[15] PCR[111] AF0
AF1
AF2
AF3

GPIO[111]
E1UC[1]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 111 B13

PH[0] PCR[112] AF0
AF1
AF2
AF3
—

GPIO[112]
E1UC[2]

—
—

SIN1

SIUL
eMIOS_1

—
—

DSPI_1

I/O
I/O
—
—
I

M Tristate — — — 93 F13

PH[1] PCR[113] AF0
AF1
AF2
AF3

GPIO[113]
E1UC[3]
SOUT1

—

SIUL
eMIOS_1
DSPI_1

—

I/O
I/O
O
—

M Tristate — — — 94 F14

PH[2] PCR[114] AF0
AF1
AF2
AF3

GPIO[114]
E1UC[4]
SCK_1

—

SIUL
eMIOS_1
DSPI_1

—

I/O
I/O
I/O
—

M Tristate — — — 95 F16

PH[3] PCR[115] AF0
AF1
AF2
AF3

GPIO[115]
E1UC[5]
CS0_1

—

SIUL
eMIOS_1
DSPI_1

—

I/O
I/O
I/O
—

M Tristate — — — 96 F15

PH[4] PCR[116] AF0
AF1
AF2
AF3

GPIO[116]
E1UC[6]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

M Tristate — — — 134 A6

PH[5] PCR[117] AF0
AF1
AF2
AF3

GPIO[117]
E1UC[7]

—
—

SIUL
eMIOS_1

—
—

I/O
I/O
—
—

S Tristate — — — 135 B6

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

60 Freescale Semiconductor

PH[6] PCR[118] AF0
AF1
AF2
AF3

GPIO[118]
E1UC[8]

—
MA[2]

SIUL
eMIOS_1

—
ADC

I/O
I/O
—
O

M Tristate — — — 136 D5

PH[7] PCR[119] AF0
AF1
AF2
AF3

GPIO[119]
E1UC[9]
CS3_2
MA[1]

SIUL
eMIOS_1
DSPI_2

ADC

I/O
I/O
O
O

M Tristate — — — 137 C5

PH[8] PCR[120] AF0
AF1
AF2
AF3

GPIO[120]
E1UC[10]

CS2_2
MA[0]

SIUL
eMIOS_1
DSPI_2

ADC

I/O
I/O
O
O

M Tristate — — — 138 A5

PH[9]9 PCR[121] AF0
AF1
AF2
AF3

GPIO[121]
—

TCK
—

SIUL
—

JTAGC
—

I/O
—
I

—

S Input, weak
pull-up

— — 88 127 B8

PH[10]9 PCR[122] AF0
AF1
AF2
AF3

GPIO[122]
—

TMS
—

SIUL
—

JTAGC
—

I/O
—
I

—

S Input, weak
pull-up

— — 81 120 B9

1 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select
the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the
values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is
reported as “—”.

2 Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

3 208 MAPBGA available only as development package for Nexus2+
4 All WKUP pins also support external interrupt capability. See wakeup unit chapter for further details.
5 NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6 “Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the

reference manual for details.
7 Value of PCR.IBE bit must be 0
8 Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and

VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B and MPC5607B.
9 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.

PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.

Table 4-3. Functional port pin descriptions (continued)

P
o

rt
 p

in

P
C

R

A
lt

er
n

at
e

fu
n

ct
io

n
1

F
u

n
ct

io
n

P
er

ip
h

er
al

I/O
 d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
 c

o
n

fi
g

u
ra

ti
o

n Pin number

M
P

C
56

0x
B

 6
4

L
Q

F
P

M
P

C
56

0x
C

 6
4

L
Q

F
P

10
0

L
Q

F
P

14
4

L
Q

F
P

20
8

M
A

P
B

G
A

3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 61

4.8 Nexus 2+ pins
In the 208 MAPBGA package, eight additional debug pins are available (see Table 4-4).

10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in
STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad
is configured as an input. When no debugger is connected the TDO pad is floating causing additional current
consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of
47–100 k should be added between the TDO pin and VDD. Only in case the TDO pin is used as application pin
and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and
GND instead.

11 Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices
12 Not available on MPC5602B devices
13 Not available in 100 LQFP package
14 Available only on MPC5604B 208 MAPBGA devices
15 Not available on MPC5603B 144-pin devices

Table 4-4. Nexus 2+ pin descriptions

Debug pin Function
I/O

direction
Pad type

Function
after reset

Pin number

100
LQFP

144
LQFP

208 MAP
BGA1

1 208 MAPBGA available only as development package for Nexus2+

MCKO Message clock out O F — — — T4

MDO0 Message data out 0 O M — — — H15

MDO1 Message data out 1 O M — — — H16

MDO2 Message data out 2 O M — — — H14

MDO3 Message data out 3 O M — — — H13

EVTI Event in I M Pull-up — — K1

EVTO Event out O M — — — L4

MSEO Message start/end out O M — — — G16

MPC5604B/C Microcontroller Reference Manual, Rev. 8

62 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 63

Chapter 5
Microcontroller Boot
This chapter explains the process of booting the microcontroller. The following entities are involved in the
boot process:

• Boot Assist Module (BAM)

• System Status and Configuration Module (SSCM)

• Flash memory boot sectors (see Chapter 27, Flash Memory)

• Memory Management Unit (MMU)

5.1 Boot mechanism
This section describes the configuration required by the user, and the steps performed by the
microcontroller, in order to achieve a successful boot from flash memory or serial download modes.

There are 2 external pins on the microcontroller that are latched during reset and used to determine whether
the microcontroller will boot from flash memory or attempt a serial download via FlexCAN or LINFlex
(RS232):

• FAB (Force Alternate Boot mode) on pin PA[9]

• ABS (Alternate Boot Select) on pin PA[8]

Table 5-1 describes the configuration options.

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means that if
nothing external is connected to these pins, the microcontroller will enter flash memory boot mode by
default. In order to change the boot behavior, you should use external pullup or pulldown resistors on
PA[9] and PA[8]. If there is any external circuitry connected to either pin, you must ensure that this does
not interfere with the expected value applied to the pin at reset. Otherwise, the microcontroller may boot
into an unexpected mode after reset.

The SSCM preforms a lot of the automated boot activity including reading the latched value of the FAB
(PA[9]) pin to determine whether to boot from flash memory or serial boot mode. This is illustrated in
Figure 5-1.

Table 5-1. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])

Flash memory boot (default mode) 0 X

Serial boot (LINFlex) 1 0

Serial boot (FlexCAN) 1 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

64 Freescale Semiconductor

Figure 5-1. Boot mode selection

5.1.1 Flash memory boot

In order to sucessfully boot from flash memory, you must program two 32-bit fields into one of 5 possible
boot blocks as detailed below. The entities to program are:

• 16-bit Reset Configuration Half Word (RCHW), which contains:

— A BOOT_ID field that must be correctly set to 0x5A in order to "validate" the boot sector

• 32-bit reset vector (this is the start address of the user code)

The location and structure of the boot sectors in flash memory are shown in Figure 5-2.

FAB (PA[9]) value?
FAB = 0

Boot from
ABS (PA[8]) value?

Serial boot
(FlexCAN)

SSCM reads latched
values of PA[8] and

PA[9] pins

flash memory

Serial boot
(LINFlex)

FAB = 1

ABS = 0 ABS = 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 65

Figure 5-2. Boot sector structure

The RCHW fields are described in Table 5-2.

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid BOOT_ID
within the RCHW. If a valid BOOT_ID is found, the SSCM reads the boot vector address. If a valid
BOOT_ID is not found, the SSCM starts the process of putting the microcontroller into static mode.

Finally, the SSCM sets the e200z0h core instruction pointer to the reset vector address and starts the core
running.

5.1.1.1 Static mode

If no valid BOOT_ID within the RCHW was found, the SSCM sets the CPU core instruction pointer to the
BAM address and the core starts to execute the code to enter static mode as follows:

• The core executes the "wait" instruction which halts the core.

The sequence is illustrated in Figure 5-3.

Table 5-2. RCHW field descriptions

Field Description

BOOT_ID Boot identifier.
If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.

32 KB

Boot sector 0

16 KB

16 KB

32 KB

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

Code flash memory

32 KB

0x0001_8000

Boot sector 1

Boot sector 2

Boot sector 3

Boot sector 4

Boot sector structure

Bit 0 Bit 31

Reserved Reserved

7 8 15 16

BOOT_ID
(0x5A)

0x0
(RCHW)

0x4 32-bit reset vector (points to start address of application code)

0x8 Application code (from offset 0x8 and onward)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

66 Freescale Semiconductor

Figure 5-3. Flash memory boot mode sequence

5.1.1.2 Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be erased and
reprogrammed in the field. When an alternate boot is needed, you can create two bootable sectors:

• The valid boot sector located at the lowest address is the main boot sector.

• The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector is erased.

5.1.2 Serial boot mode

Serial boot provides a mechanism to download and then execute code into the microcontroller SRAM.
Code may be downloaded using either FlexCAN or LINFlex (RS232). After the SSCM has detected that
serial boot mode has been requested, execution is transferred to the BAM which handles all of the serial
boot mode tasks. See Section 5.2, Boot Assist Module (BAM), for more details.

5.1.3 Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or modified. In
order to achieve this, the censorship mechanism controls access to the:

• JTAG / Nexus debug interface

• Serial boot mode (which could otherwise be used to download and execute code to query or modify
the flash memory)

SSCM searches flash
boot sectors for valid

Valid
BOOT_ID found?

SSCM reads reset
vector address

Yes No

BOOT_ID (0x5A)

SSCM transfers
execution to e200z0h core

which runs BAM code

BAM code executes
wait instruction

System in static mode

e200z0h core starts
executing code at

vector address

(requires reset to recover)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 67

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be correctly entered.

CAUTION
When censorship has been enabled, the only way to regain access is with the
password. If this is forgotten or not correctly configured, then there is no
way back into the device.

There are two 64-bit values stored in the shadow flash which control the censorship (see Table 27-6 for a
full description):

• Nonvolatile Private Censorship Password registers, NVPWD0 and NVPWD1

• Nonvolatile System Censorship Control registers, NVSCC0 and NVSCC1

5.1.3.1 Censorship password registers (NVPWD0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be programmed to a
value known only by you. After factory test these registers are programmed as shown below:

• NVPWD0 = 0xFEED_FACE

• NVPWD1 = 0xCAFE_BEEF

This means that even if censorship was inadvertently enabled by writing to the censorship control registers,
there is an opportunity to get back into the microcontroller using the default private password of
0xFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1" and one "0".
Some examples of legal and illegal passwords are shown in Table 5-3:

In uncensored devices it is possible to download code via LINFlex or FlexCAN (Serial Boot Mode) into
internal SRAM even if the 64-bit private password stored in the flash and provided during the boot
sequence is a password that does not conform to the password rules.

5.1.3.2 Nonvolatile System Censorship Control registers (NVSCC0 and
NVSCC1)

These registers are used together to define the censorship configuration. After factory test these registers
are programmed as shown below which disables censorship:

• NVSCC0 = 0x55AA_55AA

• NVSCC1 = 0x55AA_55AA

Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC field) are used
to control serial boot mode censorship. The lower 16 bits (the CW field) are used to control flash memory
boot censorship.

Table 5-3. Examples of legal and illegal passwords

Legal (valid) passwords Illegal (invalid) passwords

0x0001_0001_0001_0001
0xFFFE_FFFE_FFFE_FFFE
0x1XXX_X2XX_XX4X_XXX8

0x0000_XXXX_XXXX_XXXX
0xFFFF_XXXX_XXXX_XXXX

MPC5604B/C Microcontroller Reference Manual, Rev. 8

68 Freescale Semiconductor

CAUTION
If the contents of the shadow flash memory are erased and the NVSCC0,1
registers are not re-programmed to a valid value, the microcontroller will be
permanently censored with no way for you to regain access. A
microcontroller in this state cannot be debugged or re-flashed.

5.1.3.3 Censorship configuration

The steps to configuring censorship are:

1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and configure
the NVSCC0,1 values.

3. Re-program the shadow flash memory and NVPWD0,1 and NVSCC0,1 registers with your new
values. A POR is required before these will take effect.

CAUTION
If
(NVSCC0 and NVSCC1 do not match)

or
(Either NVSCC0 or NVSCC1 is not set to 0x55AA)

then the microcontroller will be permanently censored with no way to get
back in.

Table 5-4 shows all the possible modes of censorship. The red shaded areas are to be avoided as these show
the configuration for a device that is permanently locked out. If you wish to enable censorship with a
private password there is only one valid configuration — to modify the CW field in both NVSCC0,1
registers so they match but do not equal 0x55AA. This will allow you to enter the private password in both
serial and flash boot modes.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 69

The flow charts in Figure 5-4 and Figure 5-5 provide a way to quickly check what will happen with
different configurations of the NVSCC0,1 registers as well as detailing the correct way to enter the serial
password. In the password examples, assume the 64-bit password has been programmed into the shadow
flash memory in the order {NVPWD0, NWPWD1} and has a value of 0x01234567_89ABCDEF.

Table 5-4. Censorship configuration and truth table

Boot configuration Serial
censorship

control word
(NVSCCn[SC]

)

Censorship
control word

(NVSCCn[CW])

Internal
flash

memory
state

Nexus
state

Serial
password

JTAG
passwordFAB pin

state
Control options

0 (flash
memory
boot)

Uncensored 0xXXXX AND
NVSCC0 ==

NVSCC1

0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Enabled N/A

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Enabled
with

password

NVPWD1,0
(SSCM

reads flash
memory1)

1 When the SSCM reads the passwords from flash memory, the NVPWD0 and NVPWD1 password order is swapped, so
you have to submit the 64-bit password as {NVPWD1, NVPWD0}.

Censored with no
password access
(lockout)

!0x55AA !0X55AA Enabled Disabled N/A

OR
NVSCC0 != NVSCC1

1 (serial
boot)

Private flash
memory password
and uncensored

0x55AA AND
NVSCC0 == NVSCC1

Enabled Enabled NVPWD0,1
(BAM reads

flash
memory1)

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Disabled NVPWD1,0
(SSCM

reads flash
memory1)

Public password
and uncensored

!0x55AA AND
NVSCC0 !=

NVSCC1

0X55AA AND
NVSCC0 !=

NVSCC1

Enabled Enabled Public
(0xFEED_F
ACE_CAFE

_BEEF)

Public password
and censored
(lockout)

!0x55AA Disabled Disabled Public
(0xFEED_F
ACE_CAFE

_BEEF)

OR NVSCC0 != NVSCC1

= Microcontroller permanently locked out

= Not applicable

MPC5604B/C Microcontroller Reference Manual, Rev. 8

70 Freescale Semiconductor

Figure 5-4. Censorship control in flash memory boot mode

FAB = 0
(Flash boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

JTAG password details:

Enter password as
{NVPWD1, NVPWD0}

False

False

False

Both
SC and CW !=

0x55AA

CW != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True Censored with
private password

over JTAG

Uncensored

example –
0x89ABCDEF_01234567

Note:
SC = 0x55AA

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 71

Figure 5-5. Censorship control in serial boot mode

5.2 Boot Assist Module (BAM)
The BAM consits of a block of ROM at address 0xFFFF_C000 containing VLE firmware. The BAM
provides 2 main functions:

• Manages the serial download (FlexCAN or LINFlex protocols supported) including support for a
serial password if censorship is enabled

• Places the microcontroller into static mode if flash memory boot mode is selected and a valid
BOOT_ID is not located in one of the boot sectors by the SSCM

5.2.1 BAM software flow

Figure 5-6 illustrates the BAM logic flow.

FAB = 1
(Serial boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

Serial password details:

Enter public password
0xFEEDFACE_CAFEBEEF

False

False

False

Both
SC and CW !=

0x55AA

SC != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True
Note:
CW = 0x55AA

False

CW != 0x55AA
?

True
Note:
SC = 0x55AA

Public password,
Uncensored

Flash
(private) password,

Censored

Flash
(private) password,

Uncensored

Enter password as
{NVPWD1, NVPWD0}
example –
0x89ABCDEF_01234567

Enter password as
{NVPWD0, NVPWD1}
example –
0x01234567_89ABCDEF

MPC5604B/C Microcontroller Reference Manual, Rev. 8

72 Freescale Semiconductor

Figure 5-6. BAM logic flow

The initial (reset) device configuration is saved including the mode and clock configuration. This means
that the serial download software running in the BAM can make changes to the modes and clocking and
then restore these to the default values before running the newly downloaded application code from the
SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see Table 5-5). This
field is only updated during reset.

There are 2 conditions where the boot mode is not considered valid and the BAM pushes the
microcontroller into static mode after restoring the default configuration:

• BMODE = 011 (flash memory boot mode). This means that the SSCM has been unable to find a
valid BOOT_ID in the boot sectors so has called the BAM

• BMODE = reserved

In static mode a wait instruction is executed to halt the core.

For the FlexCAN and LINFlex serial boot modes, the respective area of BAM code is executed to
download the code to SRAM.

No Restore default
configuration

configuration

Save default

BAM Entry
0xFFFF_C000

Boot mode valid?

Download new
code and save in

SRAM

Restore default

configuration
Execute new

code

STATIC mode

Yes

Check boot
mode at

SSCM_STATUS[BMODE]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 73

After the code has been downloaded to SRAM, the BAM code restores the initial device configuration and
then transfers execution to the start address of the downloaded code.

5.2.1.1 BAM resources

The BAM uses/initializes the following MCU resources:

• MC_ME and MC_CGM to initialize mode and clock sources

• FlexCAN_0, LINFlex _0 and the respective I/O pins when performing serial boot mode

• SSCM and shadow flash memory (NVPWD0,1 and NVSCC0,1) during password check

• SSCM to check the boot mode (see Table 5-5)

• 4–16 MHz fast external crystal oscillator

The system clock is selected directly from the 4–16 MHz fast external crystal oscillator. Thus, the external
oscillator frequency defines the baud rates used for serial download (see Table 5-6).

5.2.1.2 Download and execute the new code

From a high level perspective, the download protocol follows these steps:

1. Send the 64-bit password.

2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit1.

3. Download the code.

Each step must be completed before the next step starts. After the download is complete (the specified
number of bytes is downloaded), the code executes from the start address.

Table 5-5. SSCM_STATUS[BMODE] values as used by BAM

BMODE value Corresponding boot mode

000 Reserved

001 FlexCAN_0 serial boot loader

010 LINFlex_0 (RS232 /UART) serial boot loader

011 Flash memory boot mode

100–111 Reserved

Table 5-6. Serial boot mode – baud rates

FXOSC frequency
(MHz)

LINFlex baud rate
(baud)

CAN bit rate
(bit/s)

fFXOSC fFXOSC/833 fFXOSC/40

8 9600 200K

12 14400 300K

16 19200 400K

1. Since the device supports only VLE code and not Book E code, this flag is used only for backward compatibility.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

74 Freescale Semiconductor

The communication is done in half duplex manner, whereby the transmission from the host is followed by
the microcontroller transmission mirroring the transmission back to the host:

• Host sends data to the microcontroller and waits for a response.

• MCU echoes to host the data received.

• Host verifies if echo is correct:

— If data is correct, the host can continue to send data.

— If data is not correct, the host stops transmission and the microcontroller enters static mode.

All multi-byte data structures are sent with MSB first.

A more detailed description of these steps follows.

5.2.1.3 Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which censorship mode the
microcontroller is in and which password to use. It does this by reading the PUB and SEC fields in the
SSCM Status Register (see Section 5.3.4.1, System Status Register (SSCM_STATUS)) as shown in
Table 5-7.

When censorship is enabled, the flash memory cannot be read by application code running in the BAM or
in the SRAM. This means that the private password in the shadow flash memory cannot be read by the
BAM code. In this case the SSCM is used to obtain the private password from the flash memory of the
censored device. When the SSCM reads the private password it inverts the order of {NVPWD0,
NWPWD1} so the password entered over the serial download needs to be {NVPWD1, NVPWD0}.

Table 5-7. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison

PUB SEC

1 0 Uncensored, public password 0xFEED_FACE_CAFE_BEEF

0 0 Uncensored, private password NVPWD0,1 from flash memory via BAM

0 1 Censored, private password NVPWD1,0 from flash memory via SSCM

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 75

Figure 5-7. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the stored
password, then the BAM code pushes the microcontroller into static mode.

The way the password is compared with either the public or private password (depending on mode) varies
depending on whether censorship is enabled as described in the following subsections.

5.2.1.3.1 Censorship disabled (private or public passwords):

1. If the public password is used, the BAM code does a direct comparison between the serial password
and 0xFEED_FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the serial
password and the private password in flash memory, {NVPWD0, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download and pushes
the microcontroller into static mode.

Yes

BAM code is being
executed

(serial boot mode)

No

No

PUB = 1
?

Yes

Start serial download
with password

SSCM_STATUS register
PUB and SEC
bits are read

SEC = 1
?

Public password,
Uncensored,

BAM can directly
 check password

Private password,
Censored,

SSCM needed to
 check password

Private password,
Uncensored,

BAM can directly
 check password

Public password
mode

Is censorship
enabled

BAM tasks Applicable password

?

?

MPC5604B/C Microcontroller Reference Manual, Rev. 8

76 Freescale Semiconductor

5.2.1.3.2 Censorship enabled (private password)

1. Since the flash is secured, the SSCM is required to read the private password.

2. The BAM code writes the serial password to the SSCM_PWCMPH and SSCM_PWCMPL
registers.

3. The BAM code then continues with the serial download (start address, data size and data) until all
the data has been copied to the SRAM.

4. In the meantime the SSCM has compared the private password in flash with the serial download
password the BAM code wrote into SSCM_PWCMPH and SSCM_PWCMPL.

5. If the SSCM obtains a match in the passwords, the censorship is temporarily disabled (until the
next reset).

6. The SSCM updates the status of the security (SEC) bit to reflect whether the passwords matched
(SEC = 0) or not (SEC = 1)

7. Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in the SRAM.
If SEC = 1, the BAM code forces the microcontroller into static mode.

Figure 5-8 shows this in more detail.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 77

Figure 5-8. BAM serial boot mode flow for censorship enabled and private password

With LINFlex, any receive error will result in static mode. With FlexCAN, the host will re-transmit data
if there has been no acknowledgment from the microcontroller. However there could be a situation where
the receiver configuration has an error which would result in static mode entry.

Censorship enabled,
private password,

BAM running

Yes

BAM reads
SSCM_STATUS[SEC]

Serial password
received

Is SEC bit
cleared

BAM tasks SSCM tasks

serial boot mode

BAM writes received
password to SSCM

registers

Upper 32-bits to
SSCM_PWCMPH
Lower 32-bits to

SSCM_PWCMPL

Start address
and data

Data download
received

and copied to SRAM

?

BAM code pushes
microcontroller into

static mode

If any frame
is received
incorrectly,
BAM code

pushes
device into

static mode
If passwords match,

un-censor device
until next POR

Update SSCM_STATUS[SEC]
bit with

censorship state

SSCM compares
registers to private
password in flash

SSCM_PWCMPH to NVPWD1
SSCM_PWCMPL to NVPWD0

No

BAM code transfers
execution to user

code in SRAM

length received

MPC5604B/C Microcontroller Reference Manual, Rev. 8

78 Freescale Semiconductor

NOTE
In a censored device booting with serial boot mode, it is possible to read the
content of the four 32-bit flash memory locations that make up the boot
sector. For example, if the RCHW is stored at address 0x0000_0000, the
reads at address 0x0000_0000, 0x0000_0004, 0x0000_0008 and
0x0000_000C will return a correct value. No other flash memory locations
can be read.

5.2.1.4 Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE mode bit and a
31-bit code Length as shown in Figure 5-9.

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be downloaded is Book
VLE or Book III-E. This device family supports only VLE = 1; the bit is used for backward compatibility.

The Start Address defines where the received data will be stored and where the MCU will branch after the
download is finished. The start address is 32-bit word aligned and the 2 least significant bits are ignored
by the BAM code.

NOTE
The start address is configurable, but most not lie within the 0x4000_0000
to 0x4000_00FF address range.

The Length defines how many data bytes have to be loaded.

5.2.1.5 Download data

Each byte of data received is stored in the microcontroller’s SRAM, starting from the address specified in
the previous protocol step.

The address increments until the number of bytes of data received matches the number of bytes specified
by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code always writes
bytes into SRAM grouped into 32-bit words. If the last byte received does not fall onto a 32-bit boundary,
the BAM code fills any additional bytes with 0x0.

START_ADDRESS[31:16]

START_ADDRESS[15:0]

VLE CODE_LENGTH[30:16]

CODE_LENGTH[15:0]

Figure 5-9. Start address, VLE bit and download size in bytes

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 79

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have just been
downloaded), an additional dummy word of 0x0000_0000 is written at the end of the downloaded data
block to avoid any ECC errors during core prefetch.

5.2.1.6 Execute code

The BAM code waits for the last data byte to be received. If the operating mode is censored with a private
password, then the BAM reads the SSCM status register to determine whether the serial password matched
the private password. If there was a password match then the BAM code restores the initial configuration
and transfers execution to the downloaded code start address in SRAM. If the passwords did not match,
the BAM code forces a static mode entry.

NOTE
The watchdog is disabled at the start of BAM code execution. In the case of
an unexpected issue during BAM code execution, the microcontroller may
be stalled and an external reset required to recover the microcontroller.

5.2.2 LINFlex (RS232) boot

5.2.2.1 Configuration

Boot according to the LINFlex boot mode download protocol (see Section 5.2.2.2, Protocol) is performed
by the LINFlex_0 module in UART (RS232) mode. Pins used are:

• LIN0TX mapped on PB[2]

• LIN0RX mapped on PB[3]

Boot from LINFlex uses the system clock driven by the 4–16 MHz external crystal oscillator (FXOSC).

The LINFlex controller is configured to operate at a baud rate = system clock frequency/833, using an 8-bit
data frame without parity bit and 1 stop bit.

Figure 5-10. LINFlex bit timing in UART mode

5.2.2.2 Protocol

Table 5-8 summarizes the protocol and BAM action during this boot mode.

D1 D2 D3 D4 D5 D6 D7D0

Byte field

Start
bit

Stop
bit

MPC5604B/C Microcontroller Reference Manual, Rev. 8

80 Freescale Semiconductor

5.2.3 FlexCAN boot

5.2.3.1 Configuration

Boot according to the FlexCAN boot mode download protocol (see Section 5.2.3.2, Protocol) is performed
by the FlexCAN_0 module. Pins used are:

• CAN0TX mapped on PB[0]

• CAN0RX mapped on PB[1]

NOTE
When the serial download via FlexCAN is selected and the device is part of
a CAN network, the serial download may stop unexpectedly if there is any
other traffic on the network. To avoid this situation, ensure that no other
CAN device on the network is active during the serial download process.

Boot from FlexCAN uses the system clock driven by the 4–16 MHz fast external crystal oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40 (see Table 5-6
for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2 time quanta
before the end, as shown in Figure 5-11.

Table 5-8. UART boot mode download protocol

Protocol
step

Host sent message
BAM response

message
Action

1 64-bit password
(MSB first)

64-bit password Password checked for validity and compared against
stored password.

2 32-bit store address 32-bit store address Load address is stored for future use.

3 VLE bit + 31-bit
number of bytes
(MSB first)

VLE bit + 31-bit
number of bytes
(MSB first)

Size of download are stored for future use.
Verify if VLE bit is set to 1

4 8 bits of raw binary
data

8 bits of raw binary
data

8-bit data are packed into a 32-bit word. This word is
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 81

Figure 5-11. FlexCAN bit timing

5.2.3.2 Protocol

Table 5-9 summarizes the protocol and BAM action during this boot mode. All data are transmitted byte
wise.

Table 5-9. FlexCAN boot mode download protocol

Protoco
l

step
Host sent message

BAM response
message

Action

1 CAN ID 0x011 +
64-bit password

CAN ID 0x001 +
64-bit password

Password checked for validity and compared against stored
password

2 CAN ID 0x012 +
32-bit store
address + VLE
bit + 31-bit number of
bytes

CAN ID 0x002 +
32-bit store
address + VLE
bit + 31-bit number of
bytes

Load address is stored for future use.
Size of download are stored for future use.
Verify if VLE bit is set to 1

3 CAN ID 0x013 +
8 to 64 bits of raw
binary data

CAN ID 0x003 +
8 to 64 bits of raw
binary data

8-bit data are packed into 32-bit words. These words are
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
time quantum time quanta time quanta

7 2

1 bit time

1 time quantum = 4 system clock periods

MPC5604B/C Microcontroller Reference Manual, Rev. 8

82 Freescale Semiconductor

5.3 System Status and Configuration Module (SSCM)

5.3.1 Introduction

The primary purpose of the SSCM is to provide information about the current state and configuration of
the system that may be useful for configuring application software and for debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is part of that
domain.

Figure 5-12. SSCM block diagram

5.3.2 Features

The SSCM includes these features:

• System Configuration and Status

— Memory sizes/status

— Microcontroller Mode and Security Status (including censorship and serial boot information)

— Search Code Flash for bootable sector

— Determine boot vector

• Device identification information (MCU ID Registers)

• Debug Status Port enable and selection

• Bus and peripheral abort enable/disable

Bus

System Status and Configuration Module

Interface

Password
Comparator

RevID
Hardmacro

Core
Logic

System
Status

Peripheral

Interface
Bus

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 83

5.3.3 Modes of operation

The SSCM operates identically in all system modes.

5.3.4 Memory map and register description

Table 5-10 shows the memory map for the SSCM. Note that all addresses are offsets; the absolute address
may be calculated by adding the specified offset to the base address of the SSCM.

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As an example, the
SSCM_STATUS register is accessible by a 16-bit read/write to address ‘Base + 0x0002’, but performing
a 16-bit access to ‘Base + 0x0003’ is illegal.

5.3.4.1 System Status Register (SSCM_STATUS)

The System Status register is a read-only register that reflects the current state of the system.

Table 5-10. SSCM memory map

Address offset Register Location

0x00 System Status Register (SSCM_STATUS) on page 83

0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 84

0x04 Reserved

0x06 Error Configuration (SSCM_ERROR) on page 85

0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 86

0x0A Reserved

0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 87

0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 87

Offset:0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0

N
X

E
N

PUB SEC 0 BMODE 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0/1 0/1 0/1 0 0 0 0 0

Figure 5-13. System Status Register (SSCM_STATUS)

Table 5-11. SSCM_STATUS allowed register accesses

Access type 8-bit 16-bit 32-bit1

Read Allowed Allowed Allowed

Write Not allowed Not allowed Not allowed

MPC5604B/C Microcontroller Reference Manual, Rev. 8

84 Freescale Semiconductor

5.3.4.2 System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory configuration
of the system.

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Table 5-12. SSCM_STATUS field descriptions

Field Description

NXEN Nexus enabled

PUB Public Serial Access Status. This bit indicates whether serial boot mode with public password is
allowed.
1 Serial boot mode with public password is allowed
0 Serial boot mode with private flash memory password is allowed

SEC Security Status. This bit reflects the current security state of the flash memory.
1 The flash memory is secured.
0 The flash memory is not secured.

BMODE Device Boot Mode
000 Reserved
001 FlexCAN_0 Serial Boot Loader
010 LINFlex_0 Serial Boot Loader
011 Single Chip
100 Reserved
101 Reserved
110 Reserved
111 Reserved
This field is only updated during reset.

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 PRSZ PVLB DTSZ DVLD

W

Reset x x x x x x x x x x 1 x x x x 1

Figure 5-14. System Memory Configuration Register (SSCM_MEMCONFIG)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 85

5.3.4.3 Error Configuration (SSCM_ERROR)

The Error Configuration register is a read-write register that controls the error handling of the system.

Table 5-13. SSCM_MEMCONFIG field descriptions

Field Description

PRSZ Code Flash Size
10000 128 KB
10001 256 KB
10010 384 KB
10011 512 KB

PVLB Code Flash Available
This bit identifies whether or not the on-chip code Flash is available in the system memory map. The
Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Code Flash is available
0 Code Flash is not available

DTSZ Data Flash Size
0000 No Data Flash
0011 64 KB

DVLD Data Flash Valid
This bit identifies whether or not the on-chip Data Flash is visible in the system memory map. The Flash
may not be accessible due to security limitations, or because there is no Flash in the system.
1 Data Flash is visible
0 Data Flash is not visible

Table 5-14. SSCM_MEMCONFIG allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed
(also reads SSCM_STATUS

register)

Write Not allowed Not allowed Not allowed

Offset: 0x06 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE RAE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-15. Error Configuration (SSCM_ERROR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

86 Freescale Semiconductor

5.3.4.4 Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

Table 5-15. SSCM_ERROR field descriptions

Field Description

PAE Peripheral Bus Abort Enable
This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This feature
is intended to aid in debugging when developing application code.
1 Illegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception

RAE Register Bus Abort Enable
This bit enables bus aborts on illegal accesses to off-platform peripherals. Illegal accesses are defined
as reads or writes to reserved addresses within the address space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.
1 Illegal accesses to peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to peripherals do not produce a Prefetch or Data Abort exception
Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

Table 5-16. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed

Write Allowed Allowed Not allowed

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DEBUG_MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-16. Debug Status Port Register (SSCM_DEBUGPORT)

Table 5-17. SSCM_DEBUGPORT field descriptions

Field Description

DEBUG_MODE Debug Status Port Mode
This field selects the alternate debug functionality for the Debug Status Port.
000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected
Table 5-18 describes the functionality of the Debug Status Port in each mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 87

PIN[0..7] referred to in Table 5-18 equates to PC[2..9] (Pad 34..41).

5.3.4.5 Password comparison registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if the password
has been provided via serial download.

Table 5-18. Debug status port modes

Pin
1

1 All signals are active high, unless otherwise noted

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

0 SSCM_STATUS
[0]

SSCM_STATUS
[8]

SSCM_MEMCONFI
G[0]

SSCM_MEMCONFI
G[8]

Reserved Reserved Reserved

1 SSCM_STATUS
[1]

SSCM_STATUS
[9]

SSCM_MEMCONFI
G[1]

SSCM_MEMCONFI
G[9]

Reserved Reserved Reserved

2 SSCM_STATUS
[2]

SSCM_STATUS
[10]

SSCM_MEMCONFI
G[2]

SSCM_MEMCONFI
G[10]

Reserved Reserved Reserved

3 SSCM_STATUS
[3]

SSCM_STATUS
[11]

SSCM_MEMCONFI
G[3]

SSCM_MEMCONFI
G[11]

Reserved Reserved Reserved

4 SSCM_STATUS
[4]

SSCM_STATUS
[12]

SSCM_MEMCONFI
G[4]

SSCM_MEMCONFI
G[12]

Reserved Reserved Reserved

5 SSCM_STATUS
[5]

SSCM_STATUS
[13]

SSCM_MEMCONFI
G[5]

SSCM_MEMCONFI
G[13]

Reserved Reserved Reserved

6 SSCM_STATUS
[6]

SSCM_STATUS
[14]

SSCM_MEMCONFI
G[6]

SSCM_MEMCONFI
G[14]

Reserved Reserved Reserved

7 SSCM_STATUS
[7]

SSCM_STATUS
[15]

SSCM_MEMCONFI
G[7]

SSCM_MEMCONFI
G[15]

Reserved Reserved Reserved

Table 5-19. SSCM_DEBUGPORT allowed register accesses

Access type 8-bit 16-bit 32-bit1

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Not allowed

Write Allowed Allowed Not allowed

MPC5604B/C Microcontroller Reference Manual, Rev. 8

88 Freescale Semiconductor

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-17. Password Comparison Register High Word (SSCM_PWCMPH)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-18. Password Comparison Register Low Word (SSCM_PWCMPL)

Table 5-20. Password Comparison Register field descriptions

Field Description

PWD_HI Upper 32 bits of the password

PWD_LO Lower 32 bits of the password

Table 5-21. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit1

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Allowed

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 89

In order to unsecure the device, the password needs to be written as follows: first the upper word to the
SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL register. The SSCM compares
the 64-bit password entered into the SSCM_PWCMPH / SSCM_PWCMPL registers with the
NVPWM[1,0] private password stored in the shadow flash. If the passwords match then the SSCM
temporarily uncensors the microcontroller.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

90 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 91

——— Clocks and power ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

92 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 93

Chapter 6
Clock Description
This chapter describes the clock architectural implementation for MPC5604B.

6.1 Clock architecture
System clocks are generated from three sources:

• Fast external crystal oscillator 4-16 MHz (FXOSC)

• Fast internal RC oscillator 16 MHz (FIRC)

• Frequency modulated phase locked loop (FMPLL)

Additionally, there are two low power oscillators:

• Slow internal RC oscillator 128 kHz (SIRC)

• Slow external crystal oscillator 32 KHz (SXOSC)

The clock architecture is shown in Figure 6-1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

94 Freescale Semiconductor

Figure 6-1. MPC5604B system clock generation

6.2 Clock gating
The MPC5604B provides the user with the possibility of gating the clock to the peripherals. Table 6-1
describes for each peripheral the associated gating register address. See the ME_PCTLn section in this
reference manual.

Additionally, peripheral set (1, 2 or 3) frequency can be configured to be an integer (1 to 16) divided
version of the main system clock. See the CGM_SC_DC0 section in this reference manual for details.

Table 6-1. MPC5604B — Peripheral clock sources

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)1
Peripheral set2

RPP_Z0H Platform none (managed through ME mode) —

DSPI_n 4+n (n = 0..2) 2

FXOSC

FIRC

Clock Monitor
Unit

SIRC

Reset

System

Clock

Selector

FMPLL

FXOSC_div

FIRC_div

FMPLL

(e.g. 64 MHz)

SYSCLK Core

Platform

Peripheral

Set 1

Peripheral

Set 2

SWT

API/RTC

SXOSC SXOSC

(32 KHz)

/1 to /16

/1 to /16

SXOSC_div

SIRC_div

SIRC

SIRC

FIRC

FXOSC

CLKOUT (PA0)
/1, /2, /4, /8

FMPLL

FIRC

FXOSC

CLKOUT

Selector

Peripheral

Set 3

/1 to /16

/1 to /32

/1 to /32

FIRC_div

/1 to /32

/1 to /32

SIRC_clk_div

SXOSC_div

(128 kHz)

(4–16 MHz)

(16 MHz)

Safe
Interrupt

ME_<mode>_FIRCON

ME_<mode>_FXOSCON

FXOSC_CTL[OSCDIV]

FIRC_TRIM[FIRCDIV]

ME_<mode>
[SYSCLK]ME_<mode>[FMPLLON] & FMPLL_CR

SXOSC_CTL

SIRC_CTL

SXOSC_CTL[OSCDIV]

SIRC_CTL[SIRCDIV]

CGM_OCDS_SC[SELCTL]

CGM_OCDS_SC[SELDIV]

CGM_SC_DC0

CGM_SC_DC1

CGM_SC_DC2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 95

6.3 Fast external crystal oscillator (FXOSC) digital interface
The FXOSC digital interface controls the operation of the 4–16 MHz fast external crystal oscillator
(FXOSC). It holds control and status registers accessible for application.

6.3.1 Main features
• Oscillator powerdown control and status reporting through MC_ME block

• Oscillator clock available interrupt

• Oscillator bypass mode

• Output clock division factors ranging from 1, 2, 3....32

6.3.2 Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It provides an
output clock that can be provided to the FMPLL or used as a reference clock to specific modules depending
on system needs.

The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit controls the
powerdown of the oscillator based on the current device mode while ME_GS[S_XOSC] register provides
the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on when required.
Whenever the crystal oscillator is switched on from the off state, the OSCCNT counter starts and when it

FlexCAN_n 16+n (n = 0..5) 2

ADC 32 3

I2C 44 1

LINFLEX_n 48+n(n = 0..3) 1

CTU 57 3

CANS 60 —

SIUL 68 —

WKUP 69 —

eMIOS_n 72+n (n = 0..1) 3

RTC/API 91 —

PIT 92 —

CMU 104 —

1 See the ME_PCTL section in this reference manual for details.
2 “—” means undivided system clock.

Table 6-1. MPC5604B — Peripheral clock sources (continued)

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)1
Peripheral set2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

96 Freescale Semiconductor

reaches the value EOCV[7:0]×512, the oscillator clock is made available to the system. Also, an interrupt
pending FXOSC_CTL[I_OSC] bit is set. An interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only be set by
software. A system reset is needed to reset this bit. In this bypass mode, the output clock has the same
polarity as the external clock applied on the EXTAL pin and the oscillator status is forced to ‘1’. The
bypass configuration is independent of the powerdown mode of the oscillator.

Table 6-2 shows the truth table of different oscillator configurations.

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by FXOSC_CTL[OSCDIV]
field.

6.3.3 Register description

Table 6-2. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON]
FXOSC_CTL[OSCBYP

]
XTAL EXTAL FXOSC Oscillator mode

0 0 No crystal,
High Z

No crystal,
High Z

0 Powerdown, IDDQ

x 1 x Ext clock EXTAL Bypass, OSC
disabled

1 0 Crystal Crystal EXTAL Normal, OSC
enabled

Gnd Ext clock EXTAL Normal, OSC
enabled

Address: 0xC3FE_0000 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

1

1 You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCVW

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
_O

S
C 0 0

OSCDIV

I_
O

S
C

2

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-2. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 97

6.4 Slow external crystal oscillator (SXOSC) digital interface

6.4.1 Introduction

The SXOSC digital interface controls the operation of the 32 KHz slow external crystal oscillator
(SXOSC). It holds control and status registers accessible for application.

6.4.2 Main features
• Oscillator powerdown control and status

• Oscillator bypass mode

• Output clock division factors ranging from 1 to 32

6.4.3 Functional description

The SXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It can be used as
a reference clock to specific modules depending on system needs.

The SXOSC can be controlled via the SXOSC_CTL register. The OSCON bit controls the powerdown
while bit S_OSC provides the oscillator clock available status.

2 You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no
effect on the field value.

Table 6-3. FXOSC_CTL field descriptions

Field Description

OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock
1 EXTAL is used as root clock

EOCV End of Count Value.
These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on the
FXOSC). This counting period ensures that external oscillator clock signal is stable before it can
be selected by the system. When oscillator counter reaches the value EOCV × 512, the crystal
oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept under
reset if oscillator bypass mode is selected.

M_OSC Crystal oscillator clock interrupt mask.
0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.

OSCDIV Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV+1.

I_OSC Crystal oscillator clock interrupt.
This bit is set by hardware when OSCCNT counter reaches the count value EOCV × 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

98 Freescale Semiconductor

After system reset, the oscillator is put to powerdown state and software has to switch on when required.
Whenever the SXOSC is switched on from off state, the OSCCNT counter starts and when it reaches the
value EOCV[7:0]×512, the oscillator clock is made available to the system.

The oscillator circuit can be bypassed by writing SXOSC_CTL[OSCBYP] bit to ‘1’. This bit can only be
set by software. A system reset is needed to reset this bit. In this bypass mode, the output clock has the
same polarity as the external clock applied on the OSC32K_EXTAL pin and the oscillator status is forced
to ‘1’. The bypass configuration is independent of the powerdown mode of the oscillator.

Table 6-4 shows the truth table of different configurations of the oscillator.

The SXOSC clock can be further divided by a configurable factor in the range 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by SXOSC_CTL[OSCDIV]
field.

6.4.4 Register description

Table 6-4. SXOSC truth table

SXOSC_CTL fields
OSC32K_XTAL OSC32K_EXTAL SXOSC Oscillator MODE

OSCON OSCBYP

0 0 No crystal, High Z No crystal, High Z 0 Powerdown, IDDQ

x 1 x External clock OSC32K_EXTAL Bypass, OSC disabled

1 0 Crystal Crystal OSC32K_EXTAL Normal, OSC enabled

Ground External clock OSC32K_EXTAL Normal, OSC enabled

Address: 0xC3FE_0040 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

1

1 You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCVW

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0

OSCDIV
0 0 0 0 0 0

S
_O

S
C

O
S

C
O

N

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-3. Slow External Crystal Oscillator Control Register (SXOSC_CTL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 99

NOTE
The 32 KHz slow external crystal oscillator is by default always ON, but
can be configured OFF in standby by setting the OSCON bit.

6.5 Slow internal RC oscillator (SIRC) digital interface

6.5.1 Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds control and
status registers accessible for application.

6.5.2 Functional description

The SIRC provides a low frequency (fSIRC) clock of 128 kHz requiring very low current consumption.
This clock can be used as the reference clock when a fixed base time is required for specific modules.

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is controlled by
SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM]. After a power-on reset, the
SIRC is trimmed using a factory test value stored in test flash memory. However, after a power-on reset

Table 6-5. SXOSC_CTL field descriptions

Field Description

OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock.
1 OSC32K_EXTAL is used as root clock.

EOCV End of Count Value.
This field specifies the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state. This counting period
ensures that external oscillator clock signal is stable before it can be selected by the system. When
oscillator counter reaches the value EOCV × 512, the crystal oscillator status (S_OSC) is set. The
OSCCNT counter will be kept under reset if oscillator bypass mode is selected.

OSCDIV Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV + 1.

S_OSC Crystal oscillator status.
0 Crystal oscillator output clock is not stable.
1 Crystal oscillator is providing a stable clock.

OSCON Crystal oscillator enable.
0 Crystal oscillator is switched off.
1 Crystal oscillator is switched on.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

100 Freescale Semiconductor

the test flash memory value is not visible at SIRC_CTL[SIRCTRIM] and this field shows a value of zero.
Therefore, be aware that the SIRC_CTL[SIRCTRIM] does not reflect the current trim value until you have
written to this field. Pay particular attention to this feature when you initiate a read-modify-write operation
on SIRC_CTL, because a SIRCTRIM value of zero may be unintentionally written back and this may alter
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure that you only
write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code increases
from –16 to 15. As the trimming code increases, the internal time constant increases and frequency
reduces. Please refer to device datasheet for average frequency variation of the trimming step.

6.5.3 Register description

Address: 0xC3FE_0080 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
SIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0

SIRCDIV

0 0 0

S
_S

IR
C

0 0 0

S
IR

C
O

N
_S

T
D

B
Y

W

RESET: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Figure 6-4. Low Power RC Control Register (SIRC_CTL)

Table 6-6. SIRC_CTL field descriptions

Field Description

SIRCTRIM SIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in SIRCTRIM decreases the current frequency by SIRCTRIM (see the device data
sheet).
A –1 change in SIRCTRIM increases the current frequency by SIRCTRIM (see the device data
sheet).

SIRCDIV SIRC clock division factor.
This field specifies the SIRC oscillator output clock division factor. The output clock is divided
by the factor SIRCDIV+1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 101

6.6 Fast internal RC oscillator (FIRC) digital interface

6.6.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds control and
status registers accessible for application.

6.6.2 Functional description

The FIRC provides a high frequency (fFIRC) clock of 16 MHz. This clock can be used to accelerate the exit
from reset and wakeup sequence from low power modes of the system. It is controlled by the MC_ME
module based on the current device mode. The clock source status is updated in ME_GS[S_RC]. Please
refer to the MC_ME chapter for further details.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM]. After a power-on reset, the
FIRC is trimmed using a factory test value stored in test flash memory. However, after a power-on reset
the test flash memory value is not visible at FIRC_CTL[FIRCTRIM], and this field will show a value of
zero. Therefore, be aware that the FIRC_CTL[FIRCTRIM] field does not reflect the current trim value
until you have written to it. Pay particular attention to this feature when you initiate a read-modify-write
operation on FIRC_CTL, because a FIRCTRIM value of zero may be unintentionally written back and this
may alter the FIRC frequency. In this case, you should calibrate the FIRC using the CMU or ensure that
you write only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code increases
from –32 to 31. As the trimming code increases, the internal time constant increases and frequency
reduces. Please refer to device datasheet for average frequency variation of the trimming step.

During STANDBY mode entry process, the FIRC is controlled based on ME_STANDBY_MC[RCON]
bit. This is the last step in the standby entry sequence. On any system wake-up event, the device exits
STANDBY mode and switches on the FIRC. The actual powerdown status of the FIRC when the device
is in standby is provided by RC_CTL[FIRCON_STDBY] bit.

S_SIRC SIRC clock status.
0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRCON_STDBY SIRC control in STANDBY mode.
0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.

Table 6-6. SIRC_CTL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

102 Freescale Semiconductor

6.6.3 Register description

6.7 Frequency-modulated phase-locked loop (FMPLL)

6.7.1 Introduction

This section describes the features and functions of the FMPLL module implemented in the device.

6.7.2 Overview

The FMPLL enables the generation of high speed system clocks from a common 4–16 MHz input clock.
Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL
multiplication factor and output clock divider ratio are all software configurable.

MPC5604B has one FMPLL that can generate the system clock and takes advantage of the FM mode.

Address: 0xC3FE_0060 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
FIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
FIRCDIV

0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-5. FIRC Oscillator Control Register (FIRC_CTL)

Table 6-7. FIRC_CTL field descriptions

Field Description

FIRCTRIM FIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in FIRCTRIM decreases the current frequency by FIRCTRIM (see the device data
sheet).
A –1 change in SIRCTRIM increases the current frequency by FIRCTRIM (see the device data
sheet).

FIRCDIV FIRC clock division factor.
This field specifies the FIRC oscillator output clock division factor. The output clock is divided by
the factor FIRCDIV+1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 103

NOTE
The user must take care not to program device with a frequency higher than
allowed (no hardware check).

The FMPLL block diagram is shown in Figure 6-6.

Figure 6-6. FMPLL block diagram

6.7.3 Features

The FMPLL has the following major features:

• Input clock frequency 4 MHz – 16 MHz

• Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

• Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to relock

• Frequency modulated FMPLL

— Modulation enabled/disabled through software

— Triangle wave modulation

• Programmable modulation depth

— ±0.25% to ±4% deviation from center spread frequency1

— 0.5% to +8% deviation from down spread frequency

— Programmable modulation frequency dependent on reference frequency

• Self-clocked mode (SCM) operation

• 4 available modes

— Normal mode

— Progressive clock switching

— Normal mode with frequency modulation

— Powerdown mode

6.7.4 Memory map2

Table 6-8 shows the memory map of the FMPLL.

1. Spread spectrum should be programmed in line with maximum datasheet frequency figures.
2. FMPLL_x are mapped through the ME_CGM register slot

BUFFER

Charge
Pump
Low Pass
Filter

VCOIDF

NDIV
Loop
Frequency
Divider

ODF
PHIFXOSC

MPC5604B/C Microcontroller Reference Manual, Rev. 8

104 Freescale Semiconductor

6.7.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and written in
supervisor mode only.

6.7.5.1 Control Register (CR)

Table 6-8. FMPLL memory map

Base address: 0xC3FE_00A0

Address offset Register Location

0x0 Control Register (CR) on page 104

0x4 Modulation Register (MR) on page 106

Offset: 0x0 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
IDF ODF

0
NDIV

W

Reset 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0

E
N

_P
LL

_S
W

0

U
N

LO
C

K
_O

N
C

E

0

I_
LO

C
K

S
_L

O
C

K

P
LL

_F
A

IL
_M

A
S

K

P
LL

_F
A

IL
_F

LA
G

1

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 6-7. Control Register (CR)

Table 6-9. CR field descriptions

Field Description

IDF The value of this field sets the FMPLL input division factor as described in Table 6-10.

ODF The value of this field sets the FMPLL output division factor as described in Table 6-11.

NDIV The value of this field sets the FMPLL loop division factor as described in Table 6-12.

EN_PLL_SW This bit is used to enable progressive clock switching. After the PLL locks, the PLL output initially
is divided by 8, and then progressively decreases until it reaches divide-by-1.
0 Progressive clock switching disabled.
1 Progressive clock switching enabled.
Note: Progressive clock switching should not be used if a non-changing clock is needed, such

as for serial communications, until the division has finished.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 105

UNLOCK_ONCE This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when the
FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set. Only a
power-on reset clears this bit.

I_LOCK This bit is set by hardware whenever there is a lock/unlock event.

S_LOCK This bit is an indication of whether the FMPLL has acquired lock.
0: FMPLL unlocked
1: FMPLL locked
Note:

PLL_FAIL_MASK This bit is used to mask the pll_fail output.
0 pll_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL
is switched on. It is cleared by software writing ‘1’.

Table 6-10. Input divide ratios

IDF[3:0] Input divide ratios

0000 Divide by 1

0001 Divide by 2

0010 Divide by 3

0011 Divide by 4

0100 Divide by 5

0101 Divide by 6

0110 Divide by 7

0111 Divide by 8

1000 Divide by 9

1001 Divide by 10

1010 Divide by 11

1011 Divide by 12

1100 Divide by 13

1101 Divide by 14

1110 Divide by 15

1111 Clock Inhibit

Table 6-9. CR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

106 Freescale Semiconductor

6.7.5.2 Modulation Register (MR)

Table 6-11. Output divide ratios

ODF[1:0] Output divide ratios

00 Divide by 2

01 Divide by 4

10 Divide by 8

11 Divide by 16

Table 6-12. Loop divide ratios

NDIV[6:0] Loop divide ratios

0000000–0011111 —

0100000 Divide by 32

0100001 Divide by 33

0100010 Divide by 34

... ...

1011111 Divide by 95

1100000 Divide by 96

1100001–1111111 —

Offset: 0x4 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
T

R
B

_B
Y

PA
S

S 0

S
P

R
D

_S
E

L

MOD_PERIOD
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

F
M

_E
N

INC_STEP
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-8. Modulation Register (MR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 107

6.7.6 Functional description

6.7.6.1 Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL is in lock
state, the FMPLL output clock (PHI) is derived by the reference clock (XOSC) through this relation:

where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 6-10, Table 6-11
and Table 6-12.

Table 6-13. MR field descriptions

Field Description

STRB_BYPASS Strobe bypass.
The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the
correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).
0 Strobe is used to latch FMPLL modulation control bits
1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed

only when FMPLL is in powerdown mode.

SPRD_SEL Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.
0 Center SPREAD
1 Down SPREAD

MOD_PERIOD Modulation period.
The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:

where:
fref: represents the frequency of the feedback divider
fmod: represents the modulation frequency

FM_EN Frequency Modulation Enable. The FM_EN enables the frequency modulation.
0 Frequency modulation disabled
1 Frequency modulation enabled

INC_STEP Increment step.
The INC_STEP field is the binary equivalent of the value incstep derived from following formula:

where:
md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md,
Downspread -- pk-pk=-2×md)
MDF: represents the nominal value of loop divider (CR[NDIV])

modperiod
fref

4 fmod
--------------------=

incstep round
2

15
1– md MDF

100 5 MODPERIOD

 =

phi clkin NDIV
IDF ODF

----------------------------------=

MPC5604B/C Microcontroller Reference Manual, Rev. 8

108 Freescale Semiconductor

6.7.6.2 Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock stepping through
different division factors. This means that the current consumption gradually increases and, in turn, voltage
regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the system clock is
switched to divided PHI. The FMPLL_clk divider is then progressively decreased to the target divider as
shown in Table 6-15.

Figure 6-9. FMPLL output clock division flow during progressive switching

Table 6-14. FMPLL lookup table

Crystal frequency
(MHz)

FMPLL output
frequency (MHz)

CR field values
VCO frequency (MHz)

IDF ODF NDIV

8 32 0 2 32 256

64 0 2 64 512

80 0 1 40 320

16 32 1 2 32 256

64 1 2 64 512

80 1 1 40 320

40 32 4 2 32 256

64 4 2 64 512

80 3 1 32 320

Table 6-15. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles
FMPLL_clk frequency

(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2

onward FMPLL output clock frequency

FMPLL output clock FMPLL_clkDivision factors of 8, 4, 2 or 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 109

6.7.6.3 Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency modulation is
enabled, however, two parameters must be set to generate the desired level of modulation: the PERIOD,
and the STEP. The modulation waveform is always a triangle wave and its shape is not programmable.

FM mode is activated in two steps:

1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to ‘1’. FM mode can only be enabled
when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit STRB_BYPASS
in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when the strobe
signal goes high for at least two cycles of CLKIN clock. The strobe signal is automatically generated in
the FMPLL digital interface when the modulation is enabled (FM_EN goes high) if the FMPLL is locked
(S_LOCK = 1) or when the modulation has been enabled (FM_EN = 1) and FMPLL enters lock state
(S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits (MOD_PERIOD[12:0],
INC_STEP[14:0], SPREAD_CONTROL) need to be static or hardwired to constant values. The control
bits must be changed only when the FMPLL is in powerdown mode.

The modulation depth in % is

NOTE
The user must ensure that the product of INCTEP and MODPERIOD is less
than (215-1).

ModulationDepth
100 5 INCSTEPxMODPERIOD

2
15

1– MDF

 =

MPC5604B/C Microcontroller Reference Manual, Rev. 8

110 Freescale Semiconductor

Figure 6-10. Frequency modulation

6.7.6.4 Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming the registers
ME_x_MC on the MC_ME module.

6.7.7 Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these guidelines:

• The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is required
when programming the multiplication and division factors to respect this requirement.

• The user must change the multiplication, division factors only when the FMPLL output clock is
not selected as system clock. Use progressive clock switching if system clock changes are required
while the PLL is being used as the system clock source. MOD_PERIOD, INC_STEP,
SPREAD_SEL bits should be modified before activating the FM mode. Then strobe has to be
generated to enable the new settings. If STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP
and SPREAD_SEL can be modified only when FMPLL is in powerdown mode.

• Use progressive clock switching (FMPLL output clock can be changed when it is the system clock,
but only when using progressive clock switching).

6.8 Clock monitor unit (CMU)

6.8.1 Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault Detector, serves
two purposes. The main task is to permanently supervise the integrity of the various clock sources, for
example a crystal oscillator or FMPLL. In case the FMPLL leaves an upper or lower frequency boundary

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 111

or the crystal oscillator fails it can detect and forward these kind of events towards the MC_ME and
MC_CGM. The clock management unit in turn can then switch to a SAFE mode where it uses the default
safe clock source (FIRC), reset the device or generate the interrupt according to the system needs.

It can also monitor the external crystal oscillator clock, which must be greater than the internal RC clock
divided by a division factor given by CMU_CSR[RCDIV], and generates a system clock transition request
or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the frequency of
one clock source vs. a reference clock. This is useful to allow the calibration of the on-chip RC
oscillator(s), as well as being able to correct/calculate the time deviation of a counter which is clocked by
the RC oscillator.

6.8.2 Main features
• FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference clock

• External oscillator clock monitoring with respect to FIRC_clk/n clock

• FMPLL clock frequency monitoring for a high and low frequency range with FIRC as reference
clock

• Event generation for various failures detected inside monitoring unit

6.8.3 Block diagram

MPC5604B/C Microcontroller Reference Manual, Rev. 8

112 Freescale Semiconductor

Figure 6-11. Clock Monitor Unit diagram

6.8.4 Functional description

The clock and frequency names referenced in this block are defined as follows:

• FXOSC_clk: clock coming from the fast external crystal oscillator

CMU_MDR

XOSC Supervisor
FXOSC < FIRC / n

CMU_HFREFR

CMU_LFREFR

Frequency Meter CMU_FDR

FMPLL Supervisor

OLR_evt

FHH_FLL_OR_evt_a

XXOSC ON/OFF
From MC_ME

FMPLL ON/OFF
From MC_ME

MUX1

CKSEL1[1:0]

00

01

10

11

FIRC_clk

FIRC_clk

SIRC_clk

SXOSC_clk

FXOSC_clk

FMPLL

FMPLL > hfref
OR
FMPLL < lfref

OLR_evt : It is the event signalling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt
or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a : It is the event signalling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR
configuration, if the FMPLL is greater than hign frequency range or less than the low frequency range configuration, this signal is
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 113

• SXOSC_clk: clock coming from the slow external crystal oscillator

• SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator

• FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator

• FMPLL_clk: clock coming from the FMPLL

• fFXOSC_clk: frequency of fast external crystal oscillator clock

• fSXOSC_clk: frequency of slow external crystal oscillator clock

• fSIRC_clk: frequency of slow (low frequency) internal RC oscillator

• fFIRC_clk: frequency of fast (high frequency) internal RC oscillator

• fFMPLL_clk: frequency of FMPLL clock

6.8.4.1 Crystal clock monitor

If fFXOSC_clk is less than fFIRC_clk divided by 2RCDIV bits of the CMU_CSR and the FXOSC_clk is ‘ON’ as
signalled by the MC_ME then:

• An event pending bit OLRI in CMU_ISR is set.

• A failure event OLR is signalled to the MC_RGM which in turn can automatically switch to a safe
fallback clock and generate an interrupt or reset.

6.8.4.2 FMPLL clock monitor

The fFMPLL_clk can be monitored by programming bit CME of the CMU_CSR register to ‘1’. The
FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at any time by writing
bit CME to ‘0’.

If fFMPLL_clk is greater than a reference value determined by bits HFREF[11:0] of the CMU_HFREFR and
the FMPLL_clk is ‘ON’, as signalled by the MC_ME, then:

• An event pending bit FHHI in CMU_ISR is set.

• A failure event is signalled to the MC_RGM which in turn can generate an interrupt or safe mode
request or functional reset depending on the programming model.

If fFMPLL_clk is less than a reference value determined by bits LFREF[11:0] of the CMU_LFREFR and the
FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

• An event pending bit FLLI in CMU_ISR is set.

• A failure event FLL is signalled to the MC_RGM which in turn can generate an interrupt or safe
mode request or functional reset depending on the programming model.

NOTE
The internal RC oscillator is used as reliable reference clock for the clock
supervision. In order to avoid false events, proper programming of the
dividers is required. These have to take into account the accuracy and
frequency deviation of the internal RC oscillator.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

114 Freescale Semiconductor

NOTE
If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh
event. It takes approximately 5 s to generate this event.

6.8.4.3 Frequency meter

The purpose of the frequency meter is twofold:

• to measure the frequency of the oscillators SIRC, FIRC or SXOSC

• to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency

Hint: This value can then be stored into the flash so that application software can reuse it later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value of frequencies
fSXOSC_clk, fFIRC_clk or fSIRC_clk according to CKSEL1 bit value. The measure starts when bit SFM (Start
Frequency Measure) in the CMU_CSR is set to ‘1’. The measurement duration is given by the
CMU_MDR in numbers of clock cycles of the selected clock source with a width of 20 bits. Bit SFM is
reset to ‘0’ by hardware once the frequency measurement is done and the count is loaded in the
CMU_FDR. The frequency fx

1 can be derived from the value loaded in the CMU_FDR as follows:

fx = (fFXOSC × MD) / n Eqn. 6-1

where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates fFIRC_clk, but software can swap to fSIRC_clk or fSXOSC_clk by
programming the CKSEL bits in the CMU_CSR.

6.8.5 Memory map and register description

The memory map of the CMU is shown in Table 6-16.

1. x = FIRC,SIRC or SXOSC

Table 6-16. CMU memory map

Base address: 0xC3FE_0100

Register name Address offset Reset value Location

Control Status Register (CMU_CSR) 0x00 0x00000006 on page 115

Frequency Display Register (CMU_FDR) 0x04 0x00000000 on page 116

High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 0x00000FFF on page 116

Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000 on page 117

Interrupt Status Register (CMU_ISR) 0x10 0x00000000 on page 117

Reserved 0x14 0x00000000 —

Measurement Duration Register (CMU_MDR) 0x18 0x00000000 on page 118

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 115

6.8.5.1 Control Status Register (CMU_CSR)

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

S
F

M
1

1 You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CKSEL1

0 0 0 0 0
RCDIV

C
M

E
_A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 6-12. Control Status Register (CMU_CSR)

Table 6-17. CMU_CSR field descriptions

Field Description

SFM Start frequency measure.
The software can only set this bit to start a clock frequency measure. It is reset by hardware when
the measure is ready in the CMU_FDR register.
0 Frequency measurement completed or not yet started.
1 Frequency measurement not completed.

CKSEL1 Clock oscillator selection bit.
CKSEL1 selects the clock to be measured by the frequency meter.
00 FIRC_clk selected.
01 SIRC_clk selected.
10 SXOSC_clk selected.
11 FIRC_clk selected.

RCDIV RC clock division factor .
These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor
2RCDIV. This output clock is used to compare with FXOSC_clk for crystal clock monitor feature.The
clock division coding is as follows.
00 Clock divided by 1 (No division)
01 Clock divided by 2
10 Clock divided by 4
11 Clock divided by 8

CME_A FMPLL_0 clock monitor enable.
0 FMPLL_0 monitor disabled.
1 FMPLL_0 monitor enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

116 Freescale Semiconductor

6.8.5.2 Frequency Display Register (CMU_FDR)

.

6.8.5.3 High Frequency Reference Register FMPLL (CMU_HFREFR)

Offset: 0x04 Access: Read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 FD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-13. Frequency Display Register (CMU_FDR)

Table 6-18. CMU_FDR field descriptions

Field Description

FD Measured frequency bits.
This register displays the measured frequency fx with respect to fFXOSC. The measured value is given
by the following formula: fx = (fFXOSC × MD) / n, where n is the value in CMU_FDR register.
Note: x = FIRC, SIRC or SXOSC.

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
HFREF

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 6-14. High Frequency Reference Register FMPLL (CMU_HFREFR)

Table 6-19. CMU_HFREFR field descriptions

Field Description

HFREF High Frequency reference value.
This field determines the high reference value for the FMPLL clock. The reference value is given by:
(HFREF 16) × (fFIRC 4).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 117

6.8.5.4 Low Frequency Reference Register FMPLL (CMU_LFREFR)

6.8.5.5 Interrupt Status Register (CMU_ISR)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
LFREF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-15. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Table 6-20. CMU_LFREFR field descriptions

Field Description

LFREF Low Frequency reference value.
This field determines the low reference value for the FMPLL. The reference value is given by:
(LFREF 16) × (fFIRC 4).

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0 0 0

F
H

H
I

F
LL

I

O
LR

I

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-16. Interrupt status register (CMU_ISR)

Table 6-21. CMU_ISR field descriptions

Field Description

FHHI FMPLL clock frequency higher than high reference interrupt.
This bit is set by hardware when fFMPLL_clk becomes higher than HFREF value and FMPLL_clk is ‘ON’
as signalled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FHH event.
1 FHH event is pending.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

118 Freescale Semiconductor

6.8.5.6 Measurement Duration Register (CMU_MDR)

FLLI FMPLL clock frequency lower than low reference event.
This bit is set by hardware when fFMPLL_clk becomes lower than LFREF value and FMPLL_clk is ‘ON’
as signalled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FLL event.
1 FLL event is pending.

OLRI Oscillator frequency lower than RC frequency event.
This bit is set by hardware when fFXOSC_clk is lower than FIRC_clk/2RCDIV frequency and FXOSC_clk
is ‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No OLR event.
1 OLR event is pending.

Offset: 0x18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
MD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-17. Measurement Duration Register (CMU_MDR)

Table 6-22. CMU_MDR field descriptions

Field Description

MD Measurement duration bits.
This field displays the measurement duration in numbers of clock cycles of the selected clock source.
This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the
downcounter starts counting.

Table 6-21. CMU_ISR field descriptions (continued)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 119

Chapter 7
Clock Generation Module (MC_CGM)

7.1 Overview
The clock generation module (MC_CGM) generates reference clocks for all SoC blocks. The MC_CGM
selects one of the system clock sources to supply the system clock. The MC_ME controls the system clock
selection (see the MC_ME chapter for more details). A set of MC_CGM registers controls the clock
dividers which are utilized for divided system and peripheral clock generation. The memory spaces of
system and peripheral clock sources which have addressable memory spaces, are accessed through the
MC_CGM memory space. The MC_CGM also selects and generates an output clock.

Figure 7-1 depicts the MC_CGM block diagram.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

120 Freescale Semiconductor

7.2 Features
The MC_CGM includes the following features:

• generates system and peripheral clocks

• selects and enables/disables the system clock supply from system clock sources according to
MC_ME control

Output Clock
Selector/Divider

Registers

Platform Interface

core

MC_CGM

Figure 7-1. MC_CGM Block Diagram

MC_ME

System Clock
Multiplexer/Divider

FXOSC

FMPLL

FIRC

M
ap

pe
d

M
od

ul
es

 In
te

rf
ac

e

mapped
peripherals

peripherals

PA[0]

MC_RGM

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 121

• contains a set of registers to control clock dividers for divided clock generation

• supports multiple clock sources and maps their address spaces to its memory map

• generates an output clock

• guarantees glitch-less clock transitions when changing the system clock selection

• supports 8-, 16- and 32-bit wide read/write accesses

7.3 Modes of Operation
This section describes the basic functional modes of the MC_CGM.

7.3.1 Normal and Reset Modes of Operation

During normal and reset modes of operation, the clock selection for the system clock is controlled by the
MC_ME.

7.4 External Signal Description
The MC_CGM delivers an output clock to the PA[0] pin for off-chip use and/or observation.

7.5 Memory Map and Register Definition

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

• cause a transfer error

Table 7-1. MC_CGM Register Description

Address Name Description Size
Access

Location
Supervisor

0xC3FE_0370 CGM_OC_EN Output Clock Enable word read/write on page 126

0xC3FE_0374 CGM_OCDS_SC Output Clock Division Select byte read/write on page 126

0xC3FE_0378 CGM_SC_SS System Clock Select Status byte read on page 127

0xC3FE_037C CGM_SC_DC0 System Clock Divider Configuration 0 byte read/write on page 128

0xC3FE_037D CGM_SC_DC1 System Clock Divider Configuration 1 byte read/write on page 128

0xC3FE_037E CGM_SC_DC2 System Clock Divider Configuration 2 byte read/write on page 128

MPC5604B/C Microcontroller Reference Manual, Rev. 8

122 Freescale Semiconductor

Table 7-2. MC_CGM Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_0000

…
0xC3FE
_001C

FXOSC registers

0xC3FE
_0020

…
0xC3FE
_003C

reserved

0xC3FE
_0040

…
0xC3FE
_005C

SXOSC registers

0xC3FE
_0060

…
0xC3FE
_007C

FIRC registers

0xC3FE
_0080

…
0xC3FE
_009C

SIRC registers

0xC3FE
_00A0

…
0xC3FE
_00BC

FMPLL registers

0xC3FE
_00C0

…
0xC3FE
_00DC

reserved

0xC3FE
_00E0

…
0xC3FE
_00FC

reserved

0xC3FE
_0100

…
0xC3FE
_011C

CMU registers

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 123

0xC3FE
_0120

…
0xC3FE
_013C

reserved

0xC3FE
_0140

…
0xC3FE
_015C

reserved

0xC3FE
_0160

…
0xC3FE
_017C

reserved

0xC3FE
_0180

…
0xC3FE
_019C

reserved

0xC3FE
_01A0

…
0xC3FE
_01BC

reserved

0xC3FE
_01C0

…
0xC3FE
_01DC

reserved

0xC3FE
_01E0

…
0xC3FE
_01FC

reserved

0xC3FE
_0200

…
0xC3FE
_021C

reserved

0xC3FE
_0220

…
0xC3FE
_023C

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

124 Freescale Semiconductor

0xC3FE
_0240

…
0xC3FE
_025C

reserved

0xC3FE
_0260

…
0xC3FD
_C27C

reserved

0xC3FE
_0280

…
0xC3FE
_029C

reserved

0xC3FE
_02A0

…
0xC3FE
_02BC

reserved

0xC3FE
_02C0

…
0xC3FE
_02DC

reserved

0xC3FE
_02E0

…
0xC3FE
_02FC

reserved

0xC3FE
_0300

…
0xC3FE
_031C

reserved

0xC3FE
_0320

…
0xC3FE
_033C

reserved

0xC3FE
_0340

…
0xC3FE
_035C

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 125

7.5.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes are ordered
according to big endian. For example, the CGM_OC_EN register may be accessed as a word at address
0xC3FE_0370, as a half-word at address 0xC3FE_0372, or as a byte at address 0xC3FE_0373.

0xC3FE
_0360

…
0xC3FE
_036C

reserved

0xC3FE
_0370

CGM_OC_EN R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

0xC3FE
_0374

CGM_OCDS_
SC

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0378

CGM_SC_SS R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_037C

CGM_SC_DC
0…2

R

D
E

0 0 0 0
DIV0

D
E

1 0 0 0
DIV1

W

R

D
E

2 0 0 0
DIV2

0 0 0 0 0 0 0 0

W

0xC3FE
_0400

…
0xC3FE
_3FFC

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

126 Freescale Semiconductor

7.5.1.1 Output Clock Enable Register (CGM_OC_EN)

This register is used to enable and disable the output clock.

7.5.1.2 Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is divided before being
delivered at the output clock.

Address 0xC3FE_0370 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-2. Output Clock Enable Register (CGM_OC_EN)

Table 7-3. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

EN Output Clock Enable control
0 Output Clock is disabled
1 Output Clock is enabled

Address 0xC3FE_0374 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-3. Output Clock Division Select Register (CGM_OCDS_SC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 127

7.5.1.3 System Clock Select Status Register (CGM_SC_SS)

This register provides the current clock source selection for the following clocks:

• undivided: system clock

• divided by system clock divider 0: peripheral set 1 clock

• divided by system clock divider 1: peripheral set 2 clock

• divided by system clock divider 2: peripheral set 3 clock

See Figure 7-6 for details.

Table 7-4. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

SELDIV Output Clock Division Select
00 output selected Output Clock without division
01 output selected Output Clock divided by 2
10 output selected Output Clock divided by 4
11 output selected Output Clock divided by 8

SELCTL Output Clock Source Selection Control — This value selects the current source for the output clock.
0000 4-16 MHz ext. xtal osc.
0001 16 MHz int. RC osc.
0010 freq. mod. PLL
0011 reserved
0100 reserved
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Address 0xC3FE_0378 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-4. System Clock Select Status Register (CGM_SC_SS)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

128 Freescale Semiconductor

7.5.1.4 System Clock Divider Configuration Registers (CGM_SC_DC0…2)

These registers control the system clock dividers.

Table 7-5. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field Description

SELSTAT System Clock Source Selection Status — This value indicates the current source for the system clock.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FE_037C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DE0

0 0 0
DIV0 DE1

0 0 0
DIV1

W

Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DE2

0 0 0
DIV2

0 0 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-5. System Clock Divider Configuration Registers (CGM_SC_DC0…2)

Table 7-6. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions

Field Description

DE0 Divider 0 Enable
0 Disable system clock divider 0
1 Enable system clock divider 0

DIV0 Divider 0 Division Value — The resultant peripheral set 1 clock will have a period DIV0 + 1 times that of
the system clock. If the DE0 is set to ‘0’ (Divider 0 is disabled), any write access to the DIV0 field is ignored
and the peripheral set 1 clock remains disabled.

DE1 Divider 1 Enable
0 Disable system clock divider 1
1 Enable system clock divider 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 129

7.6 Functional Description

7.6.1 System Clock Generation

Figure 7-6 shows the block diagram of the system clock generation logic. The MC_ME provides the
system clock select and switch mask (see MC_ME chapter for more details), and the MC_RGM provides
the safe clock request (see MC_RGM chapter for more details). The safe clock request forces the selector
to select the 16 MHz int. RC osc. as the system clock and to ignore the system clock select.

7.6.1.1 System Clock Source Selection

During normal operation, the system clock selection is controlled

• on a SAFE mode or reset event, by the MC_RGM

• otherwise, by the MC_ME

7.6.1.2 System Clock Disable

During normal operation, the system clock can be disabled by the MC_ME.

7.6.1.3 System Clock Dividers

The MC_CGM generates three derived clocks from the system clock.

7.6.1.4 Dividers Functional Description

Dividers are utilized for the generation of divided system and peripheral clocks. The MC_CGM has the
following control registers for built-in dividers:

• Section 7.5.1.4, “System Clock Divider Configuration Registers (CGM_SC_DC0…2)

The reset value of all counters is ‘1’. If a divider has its DE bit in the respective configuration register set
to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

DIV1 Divider 1 Division Value — The resultant peripheral set 2 clock will have a period DIV1 + 1 times that of
the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is ignored
and the peripheral set 2 clock remains disabled.

DE2 Divider 2 Enable
0 Disable system clock divider 2
1 Enable system clock divider 2

DIV2 Divider 2 Division Value — The resultant peripheral set 3 clock will have a period DIV2 + 1 times that of
the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is ignored
and the peripheral set 3 clock remains disabled.

Table 7-6. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

130 Freescale Semiconductor

7.6.2 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can then be utilized
as output clock sources. The selection is done via the CGM_OCDS_SC register.

Figure 7-6. MC_CGM System Clock Generation Overview

16 MHz int. RC osc.

4-16 MHz ext. xtal osc. 2
div. ext. xtal osc. 3

freq. mod. PLL 4

div. 16 MHz int. RC osc. 1
0

system clock

’0’

system clock is disabled if
ME_<current mode>_MC.SYSCLK = “1111”

CGM_SC_SS Register

MC_RGM safe clock request

MC_ME clock select

1

0

CGM_SC_DC0 Register

clock divider peripheral set 1 clock

CGM_SC_DC1 Register

clock divider peripheral set 2 clock

CGM_SC_DC2 Register

clock divider peripheral set 3 clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 131

7.6.3 Output Clock Division Selection

The MC_CGM provides the following output signals for the output clock generation:

• PA[0] (see Figure 7-7). This signal is generated by utilizing one of the 3-stage ripple counter
outputs or the selected signal without division. The non-divided signal is not guaranteed to be 50%
duty cycle by the MC_CGM.

• the MC_CGM also has an output clock enable register (see Section 7.5.1.1, “Output Clock Enable
Register (CGM_OC_EN)) which contains the output clock enable/disable control bit.

CGM_OCDS_SC.SELCTL
CGM_OCDS_SC.SELDIV

0

1

2

3

Register
Register

Figure 7-7. MC_CGM Output Clock Multiplexer and PA[0] Generation

4-16 MHz ext. xtal osc. 0
16 MHz int. RC osc. 1

freq. mod. PLL 2

PA[0]

’0’

CGM_OC_EN Register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

132 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 133

Chapter 8
Mode Entry Module (MC_ME)

8.1 Introduction

8.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states. It also contains
configuration, control and status registers accessible for the application.

Figure 8-1 depicts the MC_ME block diagram.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

134 Freescale Semiconductor

Registers

Platform Interface

core

MC_ME

Figure 8-1. MC_MEBlock Diagram

MC_RGM

FXOSC

FMPLL

FIRC

MC_CGM

MC_PCU

peripherals

Flashes

VREG

Device
Mode
State

Machine

WKPU

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 135

8.1.2 Features

The MC_ME includes the following features:

• control of the available modes by the ME_ME register

• definition of various device mode configurations by the ME_<mode>_MC registers

• control of the actual device mode by the ME_MCTL register

• capture of the current mode and various resource status within the contents of the ME_GS register

• optional generation of various mode transition interrupts

• status bits for each cause of invalid mode transitions

• peripheral clock gating control based on the ME_RUN_PC0…7, ME_LP_PC0…7, and
ME_PCTL0…143 registers

• capture of current peripheral clock gated/enabled status

8.1.3 Modes of Operation

The MC_ME is based on several device modes corresponding to different usage models of the device.
Each mode is configurable and can define a policy for energy and processing power management to fit
particular system requirements. An application can easily switch from one mode to another depending on
the current needs of the system. The operating modes controlled by the MC_ME are divided into system
and user modes. The system modes are modes such as RESET, DRUN, SAFE, and TEST. These modes
aim to ease the configuration and monitoring of the system. The user modes are modes such as RUN0…3,
HALT, STOP, and STANDBY which can be configured to meet the application requirements in terms of
energy management and available processing power. The modes DRUN, SAFE, TEST, and RUN0…3 are
the device software running modes.

Table 8-1 describes the MC_ME modes.

Table 8-1. MC_ME Mode Descriptions

Name Description Entry Exit

RESET This is a chip-wide virtual mode during which the
application is not active. The system remains in this mode
until all resources are available for the embedded software
to take control of the device. It manages hardware
initialization of chip configuration, voltage regulators,
oscillators, PLLs, and flash modules.

system reset
assertion from
MC_RGM

system reset
deassertion from
MC_RGM

DRUN This is the entry mode for the embedded software. It
provides full accessibility to the system and enables the
configuration of the system at startup. It provides the
unique gate to enter USER modes. BAM when present is

executed in DRUN mode.

system reset
deassertion from
MC_RGM,
software request
from SAFE, TEST
and RUN0…3,
wakeup request
from STANDBY

system reset
assertion,
RUN0…3, TEST,
STANDBY via
software, SAFE via
software or
hardware failure.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

136 Freescale Semiconductor

8.2 External Signal Description
The MC_ME has no connections to any external pins.

8.3 Memory Map and Register Definition
The MC_ME contains registers for:

• mode selection and status reporting

• mode configuration

• mode transition interrupts status and mask control

• scalable number of peripheral sub-mode selection and status reporting

SAFE This is a chip-wide service mode which may be entered on
the detection of a recoverable error. It forces the system
into a pre-defined safe configuration from which the system
may try to recover.

hardware failure,
software request
from DRUN, TEST,
and RUN0…3

system reset
assertion, DRUN
via software

TEST This is a chip-wide service mode which is intended to
provide a control environment for device self-test. It may
enable the application to run its own self-test like flash
checksum, memory BIST etc.

software request
from DRUN

system reset
assertion, DRUN
via software

RUN0…3 These are software running modes where most processing
activity is done. These various run modes allow to enable
different clock & power configurations of the system with
respect to each other.

software request
from DRUN,
interrupt event
from HALT,
interrupt or wakeup
event from STOP

system reset
assertion, SAFE
via software or
hardware failure,
other RUN0…3
modes, HALT,
STOP, STANDBY
via software

HALT This is a reduced-activity low-power mode during which the
clock to the core is disabled. It can be configured to switch
off analog peripherals like PLL, flash, main regulator etc. for
efficient power management at the cost of higher wakeup
latency.

software request
from RUN0…3

system reset
assertion, SAFE
on hardware
failure, RUN0…3
on interrupt event

STOP This is an advanced low-power mode during which the
clock to the core is disabled. It may be configured to switch
off most of the peripherals including oscillator for efficient
power management at the cost of higher wakeup latency.

software request
from RUN0…3

system reset
assertion, SAFE
on hardware
failure, RUN0…3
on interrupt event
or wakeup event

STANDBY This is a reduced-leakage low-power mode during which
power supply is cut off from most of the device. Wakeup
from this mode takes a relatively long time, and content is
lost or must be restored from backup.

software request
from RUN0…3,
DRUN modes

system reset
assertion, DRUN
on wakeup event

Table 8-1. MC_ME Mode Descriptions (continued)

Name Description Entry Exit

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 137

Table 8-2. MC_ME Register Description

Address Name Description Size
Access

Location
Supervisor

0xC3FD_C000 ME_GS Global Status word read on page 144

0xC3FD_C004 ME_MCTL Mode Control word read/write on page 146

0xC3FD_C008 ME_ME Mode Enable word read/write on page 147

0xC3FD_C00C ME_IS Interrupt Status word read/write on page 149

0xC3FD_C010 ME_IM Interrupt Mask word read/write on page 150

0xC3FD_C014 ME_IMTS Invalid Mode Transition Status word read/write on page 151

0xC3FD_C018 ME_DMTS Debug Mode Transtion Status word read on page 152

0xC3FD_C020 ME_RESET_MC RESET Mode Configuration word read on page 154

0xC3FD_C024 ME_TEST_MC TEST Mode Configuration word read/write on page 155

0xC3FD_C028 ME_SAFE_MC SAFE Mode Configuration word read/write on page 155

0xC3FD_C02C ME_DRUN_MC DRUN Mode Configuration word read/write on page 156

0xC3FD_C030 ME_RUN0_MC RUN0 Mode Configuration word read/write on page 157

0xC3FD_C034 ME_RUN1_MC RUN1 Mode Configuration word read/write on page 157

0xC3FD_C038 ME_RUN2_MC RUN2 Mode Configuration word read/write on page 157

0xC3FD_C03C ME_RUN3_MC RUN3 Mode Configuration word read/write on page 157

0xC3FD_C040 ME_HALT_MC HALT Mode Configuration word read/write on page 157

0xC3FD_C048 ME_STOP_MC STOP Mode Configuration word read/write on page 158

0xC3FD_C054 ME_STANDBY_MC STANDBY Mode Configuration word read/write on page 158

0xC3FD_C060 ME_PS0 Peripheral Status 0 word read on page 160

0xC3FD_C064 ME_PS1 Peripheral Status 1 word read on page 161

0xC3FD_C068 ME_PS2 Peripheral Status 2 word read on page 161

0xC3FD_C06C ME_PS3 Peripheral Status 3 word read on page 162

0xC3FD_C080 ME_RUN_PC0 Run Peripheral Configuration 0 word read/write on page 162

0xC3FD_C084 ME_RUN_PC1 Run Peripheral Configuration 1 word read/write on page 162

…

0xC3FD_C09C ME_RUN_PC7 Run Peripheral Configuration 7 word read/write on page 162

0xC3FD_C0A0 ME_LP_PC0 Low-Power Peripheral Configuration
0

word read/write on page 163

0xC3FD_C0A4 ME_LP_PC1 Low-Power Peripheral Configuration
1

word read/write on page 163

…

MPC5604B/C Microcontroller Reference Manual, Rev. 8

138 Freescale Semiconductor

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

• cause a transfer error

0xC3FD_C0BC ME_LP_PC7 Low-Power Peripheral Configuration
7

word read/write on page 163

0xC3FD_C0C4 ME_PCTL4 DSPI0 Control byte read/write on page 164

0xC3FD_C0C5 ME_PCTL5 DSPI1 Control byte read/write on page 164

0xC3FD_C0C6 ME_PCTL6 DSPI2 Control byte read/write on page 164

0xC3FD_C0D0 ME_PCTL16 FlexCAN0 Control byte read/write on page 164

0xC3FD_C0D1 ME_PCTL17 FlexCAN1 Control byte read/write on page 164

0xC3FD_C0D2 ME_PCTL18 FlexCAN2 Control byte read/write on page 164

0xC3FD_C0D3 ME_PCTL19 FlexCAN3 Control byte read/write on page 164

0xC3FD_C0D4 ME_PCTL20 FlexCAN4 Control byte read/write on page 164

0xC3FD_C0D5 ME_PCTL21 FlexCAN5 Control byte read/write on page 164

0xC3FD_C0E0 ME_PCTL32 ADC0 Control byte read/write on page 164

0xC3FD_C0EC ME_PCTL44 I2C0 Control byte read/write on page 164

0xC3FD_C0F0 ME_PCTL48 LINFlex0 Control byte read/write on page 164

0xC3FD_C0F1 ME_PCTL49 LINFlex1 Control byte read/write on page 164

0xC3FD_C0F2 ME_PCTL50 LINFlex2 Control byte read/write on page 164

0xC3FD_C0F3 ME_PCTL51 LINFlex3 Control byte read/write on page 164

0xC3FD_C0F9 ME_PCTL57 CTU Control byte read/write on page 164

0xC3FD_C0FC ME_PCTL60 CANSampler Control byte read/write on page 164

0xC3FD_C104 ME_PCTL68 SIUL Control byte read/write on page 164

0xC3FD_C105 ME_PCTL69 WKPU Control byte read/write on page 164

0xC3FD_C108 ME_PCTL72 eMIOS0 Control byte read/write on page 164

0xC3FD_C109 ME_PCTL73 eMIOS1 Control byte read/write on page 164

0xC3FD_C11B ME_PCTL91 RTC_API Control byte read/write on page 164

0xC3FD_C11C ME_PCTL92 PIT_RTI Control byte read/write on page 164

0xC3FD_C128 ME_PCTL104 CMU Control byte read/write on page 164

Table 8-2. MC_ME Register Description (continued)

Address Name Description Size
Access

Location
Supervisor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 139

Table 8-3. MC_ME Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FD
_C000

ME_GS

R S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

R

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

0xC3FD
_C004

ME_MCTL R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

0xC3FD
_C008

ME_ME R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

0xC3FD
_C00C

ME_IS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

0xC3FD
_C010

ME_IM R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

0xC3FD
_C014

ME_IMTS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

MPC5604B/C Microcontroller Reference Manual, Rev. 8

140 Freescale Semiconductor

0xC3FD
_C018

ME_DMTS

R 0 0 0 0 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

R 0
F

M
P

LL
_S

C

F
X

O
S

C
_S

C

F
IR

C
_S

C

S
Y

S
C

LK
_S

W

D
F

LA
S

H
_S

C

C
F

LA
S

H
_S

C

C
D

P
_P

R
P

H
_0

_1
43

0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

0xC3FD
_C01C

reserved

0xC3FD
_C020

ME_RESET_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C024

ME_TEST_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD
_C028

ME_SAFE_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Table 8-3. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 141

0xC3FD
_C02C

ME_DRUN_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C030

…
0xC3FD
_C03C

ME_RUN0…3
_MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C040

ME_HALT_M
C

R 0 0 0 0 0 0 0 0
P

D
O 0 0

M
V

R
O

N

DFLAON CFLAON
W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N
SYSCLK

W

0xC3FD
_C044

reserved

0xC3FD
_C048

ME_STOP_M
C

R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON
W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C04C

…
0xC3FD
_C050

reserved

Table 8-3. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

142 Freescale Semiconductor

0xC3FD
_C054

ME_STANDB
Y_MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

0xC3FD
_C058

…
0xC3FD
_C05C

reserved

0xC3FD
_C060

ME_PS0

R

S
_F

le
xC

A
N

5

S
_F

le
xC

A
N

4

S
_F

le
xC

A
N

3

S
_F

le
xC

A
N

2

S
_F

le
xC

A
N

1

S
_F

le
xC

A
N

0

W

R

S
_D

S
P

I2

S
_D

S
P

I1

S
_D

S
P

I0
W

0xC3FD
_C064

ME_PS1

R

S
_C

A
N

S
am

pl
er

S
_C

T
U

S
_L

IN
F

le
x3

S
_L

IN
F

le
x2

S
_L

IN
F

le
x1

S
_L

IN
F

le
x0

W

R

S
_I

2C
0

S
_A

D
C

0

W

Table 8-3. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 143

0xC3FD
_C068

ME_PS2

R

S
_P

IT
_R

T
I

S
_R

T
C

_A
P

I

W

R

S
_e

M
IO

S
1

S
_e

M
IO

S
0

S
_W

K
P

U

S
_S

IU
L

W

0xC3FD
_C06C

ME_PS3 R

W

R

S
_C

M
U

W

0xC3FD
_C070

reserved

0xC3FD
_C074

…
0xC3FD
_C07C

reserved

0xC3FD
_C080

…
0xC3FD
_C09C

ME_RUN_PC
0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T
W

0xC3FD
_C0A0

…
0xC3FD
_C0BC

ME_LP_PC0
…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P

0

H
A

LT

0 0 0 0 0 0 0 0

W

Table 8-3. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

144 Freescale Semiconductor

8.3.1 Register Description

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes.
The bytes are ordered according to big endian. For example, the ME_RUN_PC0 register may be accessed
as a word at address 0xC3FD_C080, as a half-word at address 0xC3FD_C082, or as a byte at address
0xC3FD_C083.

8.3.1.1 Global Status Register (ME_GS)

This register contains global mode status.

0xC3FD
_C0C0

…
0xC3FD
_C14C

ME_PCTL0…
143

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

0xC3FD
_C150

…
0xC3FD
_FFFC

reserved

Address 0xC3FD_C000 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

Reset 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-2. Global Status Register (ME_GS)

Table 8-3. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 145

Table 8-4. Global Status Register (ME_GS) Field Descriptions

Field Description

S_CURREN
T_MODE

Current device mode status
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

S_MTRANS Mode transition status
0 Mode transition process is not active
1 Mode transition is ongoing

S_DC Device current consumption status
0 Device consumption is low enough to allow powering down of main voltage regulator
1 Device consumption requires main voltage regulator to remain powered regardless of mode

configuration

S_PDO Output power-down status — This bit specifies output power-down status of I/Os. This bit is asserted
whenever outputs of pads are forced to high impedance state or the pads power sequence driver is
switched off.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only pad power
sequence driver is disabled but the state of the output is kept. In STANDBY mode, the power
sequence driver and all pads except those mapped on wakeup lines are not powered and therefore
high impedance. Wakeup lines configuration remains unchanged

S_MVR Main voltage regulator status
0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA Data flash availability status
00 Data flash is not available
01 Data flash is in power-down mode
10 Data flash is in low-power mode
11 Data flash is in normal mode and available for use

S_CFLA Code flash availability status
00 Code flash is not available
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode and available for use

S_FMPLL frequency modulated phase locked loop status
0 frequency modulated phase locked loop is not stable
1 frequency modulated phase locked loop is providing a stable clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

146 Freescale Semiconductor

8.3.1.2 Mode Control Register (ME_MCTL)

This register is used to trigger software-controlled mode changes. Depending on the modes as enabled by
ME_ME register bits, configurations corresponding to unavailable modes are reserved and access to
ME_<mode>_MC registers must respect this for successful mode requests.

S_FXOSC fast external crystal oscillator (4-16 MHz) status
0 fast external crystal oscillator (4-16 MHz) is not stable
1 fast external crystal oscillator (4-16 MHz) is providing a stable clock

S_FIRC fast internal RC oscillator (16 MHz) status
0 fast internal RC oscillator (16 MHz) is not stable
1 fast internal RC oscillator (16 MHz) is providing a stable clock

S_SYSCLK System clock switch status — These bits specify the system clock currently used by the system.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FD_C004 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

Figure 8-3. Mode Control Register (ME_MCTL)

Table 8-4. Global Status Register (ME_GS) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 147

NOTE
Byte and half-word write accesses are not allowed for this register as a
predefined key is required to change its value.

8.3.1.3 Mode Enable Register (ME_ME)

Table 8-5. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

TARGET_M
ODE

Target device mode — These bits provide the target device mode to be entered by software
programming. The mechanism to enter into any mode by software requires the write operation twice:
first time with key, and second time with inverted key. These bits are automatically updated by
hardware while entering SAFE on hardware request. Also, while exiting from the HALT and STOP
modes on hardware exit events, these are updated with the appropriate RUN0…3 mode value.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

KEY Control key — These bits enable write access to this register. Any write access to the register
with a value different from the keys is ignored. Read access will always return inverted key.
KEY: 0101101011110000 (0x5AF0)
INVERTED KEY: 1010010100001111 (0xA50F)

Address 0xC3FD_C008 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 8-4. Mode Enable Register (ME_ME)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

148 Freescale Semiconductor

This register allows a way to disable the device modes which are not required for a given device. RESET,
SAFE, DRUN, and RUN0 modes are always enabled.

Table 8-6. Mode Enable Register (ME_ME) Field Descriptions

Field Description

STANDBY STANDBY mode enable
0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP STOP mode enable
0 STOP mode is disabled
1 STOP mode is enabled

HALT HALT mode enable
0 HALT mode is disabled
1 HALT mode is enabled

RUN3 RUN3 mode enable
0 RUN3 mode is disabled
1 RUN3 mode is enabled

RUN2 RUN2 mode enable
0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1 RUN1 mode enable
0 RUN1 mode is disabled
1 RUN1 mode is enabled

RUN0 RUN0 mode enable
0 RUN0 mode is disabled
1 RUN0 mode is enabled

DRUN DRUN mode enable
0 DRUN mode is disabled
1 DRUN mode is enabled

SAFE SAFE mode enable
0 SAFE mode is disabled
1 SAFE mode is enabled

TEST TEST mode enable
0 TEST mode is disabled
1 TEST mode is enabled

RESET RESET mode enable
0 RESET mode is disabled
1 RESET mode is enabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 149

8.3.1.4 Interrupt Status Register (ME_IS)

This register provides the current interrupt status.

Address 0xC3FD_C00C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-5. Interrupt Status Register (ME_IS)

Table 8-7. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

I_ICONF Invalid mode configuration interrupt — This bit is set whenever a write operation to ME_<mode>_MC
registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’ to this bit.
0 No invalid mode configuration interrupt occurred
1 Invalid mode configuration interrupt is pending

I_IMODE Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is cleared
by writing a ‘1’ to this bit.
0 No invalid mode interrupt occurred
1 Invalid mode interrupt is pending

I_SAFE SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware requests
generated in the system. It is cleared by writing a ‘1’ to this bit.
0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending

I_MTC Mode transition complete interrupt — This bit is set whenever the mode transition process completes
(S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode transition interrupt
bit will not be set while entering low-power modes HALT, STOP, or STANDBY.
0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

MPC5604B/C Microcontroller Reference Manual, Rev. 8

150 Freescale Semiconductor

8.3.1.5 Interrupt Mask Register (ME_IM)

This register controls whether an event generates an interrupt or not.

Address 0xC3FD_C010 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-6. Interrupt Mask Register (ME_IM)

Table 8-8. Interrupt Mask Register (ME_IM) Field Descriptions

Field Description

M_ICONF Invalid mode configuration interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_IMODE Invalid mode interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_SAFE SAFE mode interrupt mask
0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled

M_MTC Mode transition complete interrupt mask
0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 151

8.3.1.6 Invalid Mode Transition Status Register (ME_IMTS)

This register provides the status bits for each cause of invalid mode interrupt.

Address 0xC3FD_C014 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-7. Invalid Mode Transition Status Register (ME_IMTS)

Table 8-9. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions

Field Description

S_MTI Mode Transition Illegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5, “Mode
Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal

S_MRI Mode Request Illegal status — This bit is set whenever the target mode requested is not a valid
mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode

S_DMA Disabled Mode Access status — This bit is set whenever the target mode requested is one of those
disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode

S_NMA Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode

S_SEA SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit is
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to
this bit.
0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending

MPC5604B/C Microcontroller Reference Manual, Rev. 8

152 Freescale Semiconductor

8.3.1.7 Debug Mode Transition Status Register (ME_DMTS)

This register provides the status of different factors which influence mode transitions. It is used to give an
indication of why a mode transition indicated by ME_GS.S_MTRANS may be taking longer than
expected.

NOTE
The ME_DMTS register does not indicate whether a mode transition is
ongoing. Therefore, some ME_DMTS bits may still be asserted after the
mode transition has completed.

Address 0xC3FD_C018 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0

F
M

P
LL

_S
C

F
X

O
S

C
_S

C

F
IR

C
_S

C

0

S
Y

S
C

LK
_S

W

D
F

LA
S

H
_S

C

C
F

LA
S

H
_S

C

C
D

P
_P

R
P

H
_0

_1
43

0 0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-8. Debug Mode Transition Status Register (ME_DMTS)

Table 8-10. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

MPH_BUSY MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested a mode
change from the MC_PCU and the MC_PCU has not yet responded. It is cleared when the MC_PCU
has responded.
0 Handshake is not busy
1 Handshake is busy

PMC_PROG MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the process of
powering up or down power domains. It is cleared when all power-up/down processes have
completed.
0 Power-up/down transition is not in progress
1 Power-up/down transition is in progress

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 153

CORE_DBG Processor is in Debug mode indicator — This bit is set while the processor is in debug mode.
0 The processor is not in debug mode
1 The processor is in debug mode

SMR SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE mode
request has been triggered. It is cleared when the hardware SAFE mode request has been cleared.
0 A SAFE mode request is not active
1 A SAFE mode request is active

FMPLL_SC FMPLL State Change during mode transition indicator — This bit is set when the frequency
modulated phase locked loop is requested to change its power up/down state. It is cleared when the
frequency modulated phase locked loop has completed its state change.
0 No state change is taking place
1 A state change is taking place

FXOSC_SC FXOSC State Change during mode transition indicator — This bit is set when the fast external crystal
oscillator (4-16 MHz) is requested to change its power up/down state. It is cleared when the fast
external crystal oscillator (4-16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place

FIRC_SC FIRC State Change during mode transition indicator — This bit is set when the fast internal RC
oscillator (16 MHz) is requested to change its power up/down state. It is cleared when the fast internal
RC oscillator (16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place

SYSCLK_S
W

System Clock Switching pending status —
0 No system clock source switching is pending
1 A system clock source switching is pending

DFLASH_SC DFLASH State Change during mode transition indicator — This bit is set when the DFLASH is
requested to change its power up/down state. It is cleared when the DFLASH has completed its state
change.
0 No state change is taking place
1 A state change is taking place

CFLASH_SC CFLASH State Change during mode transition indicator — This bit is set when the CFLASH is
requested to change its power up/down state. It is cleared when the DFLASH has completed its state
change.
0 No state change is taking place
1 A state change is taking place

CDP_PRPH
_0_143

Clock Disable Process Pending status for Peripherals 0…143 — This bit is set when any peripheral
has been requested to have its clock disabled. It is cleared when all the peripherals which have been
requested to have their clocks disabled have entered the state in which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_96_127

Clock Disable Process Pending status for Peripherals 96…127 — This bit is set when any peripheral
appearing in ME_PS3 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Table 8-10. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

154 Freescale Semiconductor

8.3.1.8 RESET Mode Configuration Register (ME_RESET_MC)

This register configures system behavior during RESET mode. Please refer to Table 8-11 for details.

CDP_PRPH
_64_95

Clock Disable Process Pending status for Peripherals 64…95 — This bit is set when any peripheral
appearing in ME_PS2 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_32_63

Clock Disable Process Pending status for Peripherals 32…63 — This bit is set when any peripheral
appearing in ME_PS1 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_0_31

Clock Disable Process Pending status for Peripherals 0…31 — This bit is set when any peripheral
appearing in ME_PS0 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Address 0xC3FD_C020 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N
DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-9. Invalid Mode Transition Status Register (ME_IMTS)

Table 8-10. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 155

8.3.1.9 TEST Mode Configuration Register (ME_TEST_MC)

This register configures system behavior during TEST mode. Please refer to Table 8-11 for details.

NOTE
Byte and half-word write accesses are not allowed to this register.

8.3.1.10 SAFE Mode Configuration Register (ME_SAFE_MC)

This register configures system behavior during SAFE mode. Please refer to Table 8-11 for details.

Address 0xC3FD_C024 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0

PDO
0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-10. TEST Mode Configuration Register (ME_TEST_MC)

Address 0xC3FD_C028 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0

PDO
0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-11. SAFE Mode Configuration Register (ME_SAFE_MC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

156 Freescale Semiconductor

NOTE
Byte and half-word write accesses are not allowed to this register.

8.3.1.11 DRUN Mode Configuration Register (ME_DRUN_MC)

This register configures system behavior during DRUN mode. Please refer to Table 8-11 for details.

NOTE
Byte and half-word write accesses are not allowed to this register.

NOTE
The values of FXOSCON, CFLAON and DFLAON are retained through
STANDBY mode.

Address 0xC3FD_C02C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-12. DRUN Mode Configuration Register (ME_DRUN_MC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 157

8.3.1.12 RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

This register configures system behavior during RUN0…3 modes. Please refer to Table 8-11 for details.

NOTE
Byte and half-word write accesses are not allowed to this register.

8.3.1.13 HALT Mode Configuration Register (ME_HALT_MC)

This register configures system behavior during HALT mode. Please refer to Table 8-11 for details.

NOTE
Byte and half-word write accesses are not allowed to this register.

Address 0xC3FD_C030 - 0xC3FD_C03C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-13. RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

Address 0xC3FD_C040 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-14. HALT Mode Configuration Register (ME_HALT_MC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

158 Freescale Semiconductor

8.3.1.14 STOP Mode Configuration Register (ME_STOP_MC)

This register configures system behavior during STOP mode. Please refer to Table 8-11 for details.

NOTE
Byte and half-word write accesses are not allowed to this register.

8.3.1.15 STANDBY Mode Configuration Register (ME_STANDBY_MC)

This register configures system behavior during STANDBY mode. Please refer to Table 8-11 for details.

Address 0xC3FD_C048 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
PDO

0 0

M
V

R
O

N

DFLAON CFLAON
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-15. STOP Mode Configuration Register (ME_STOP_MC)

Address 0xC3FD_C054 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 8-16. STANDBY Mode Configuration Register (ME_STANDBY_MC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 159

NOTE
Byte and half-word write accesses are not allowed to this register.

Table 8-11. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions

Field Description

PDO I/O output power-down control — This bit controls the output power-down of I/Os.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only pad power
sequence driver is disabled but the state of the output is kept. In STANDBY mode, power sequence
driver and all pads except those mapped on wakeup lines are not powered and therefore high
impedance. Wakeup line configuration remains unchanged.

MVRON Main voltage regulator control — This bit specifies whether main voltage regulator is switched off or
not while entering this mode.
0 Main voltage regulator is switched off
1 Main voltage regulator is switched on

DFLAON Data flash power-down control — This bit specifies the operating mode of the data flash after entering
this mode.
00reserved
01 Data flash is in power-down mode
10 Data flash is in low-power mode
11 Data flash is in normal mode
Note: If the flash memory is to be powered down in any mode, then your software must ensure that

reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.7,
Functional Event Short Sequence Register (RGM_FESS)).

CFLAON Code flash power-down control — This bit specifies the operating mode of the program flash after
entering this mode.
00reserved
01Code flash is in power-down mode
10Code flash is in low-power mode
11Code flash is in normal mode

FMPLLON frequency modulated phase locked loop control
0 frequency modulated phase locked loop is switched off
1 frequency modulated phase locked loop is switched on

FXOSCON fast external crystal oscillator (4-16 MHz) control
0 fast external crystal oscillator (4-16 MHz) is switched off
1 fast external crystal oscillator (4-16 MHz) is switched on

MPC5604B/C Microcontroller Reference Manual, Rev. 8

160 Freescale Semiconductor

8.3.1.16 Peripheral Status Register 0 (ME_PS0)

This register provides the status of the peripherals. Please refer to Table 8-12 for details.

FIRCON fast internal RC oscillator (16 MHz) control
0 fast internal RC oscillator (16 MHz) is switched off
1 fast internal RC oscillator (16 MHz) is switched on

SYSCLK System clock switch control — These bits specify the system clock to be used by the system.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FD_C060 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0 0 0 0

S
_F

le
xC

A
N

5

S
_F

le
xC

A
N

4

S
_F

le
xC

A
N

3

S
_F

le
xC

A
N

2

S
_F

le
xC

A
N

1

S
_F

le
xC

A
N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

S
_D

S
P

I2

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-17. Peripheral Status Register 0 (ME_PS0)

Table 8-11. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 161

8.3.1.17 Peripheral Status Register 1 (ME_PS1)

This register provides the status of the peripherals. Please refer to Table 8-12 for details.

8.3.1.18 Peripheral Status Register 2 (ME_PS2)

This register provides the status of the peripherals. Please refer to Table 8-12 for details.

Address 0xC3FD_C064 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0

S
_C

A
N

S
am

pl
er

0 0

S
_C

T
U

0 0 0 0 0

S
_L

IN
F

le
x3

S
_L

IN
F

le
x2

S
_L

IN
F

le
x1

S
_L

IN
F

le
x0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0

S
_I

2C
0

0 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-18. Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C068 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

_A
P

I

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0

S
_e

M
IO

S
1

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-19. Peripheral Status Register 2 (ME_PS2)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

162 Freescale Semiconductor

8.3.1.19 Peripheral Status Register 3 (ME_PS3)

This register provides the status of the peripherals. Please refer to Table 8-12 for details.

8.3.1.20 Run Peripheral Configuration Registers (ME_RUN_PC0…7)

These registers configure eight different types of peripheral behavior during run modes.

Address 0xC3FD_C06C Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-20. Peripheral Status Register 3 (ME_PS3)

Table 8-12. Peripheral Status Registers 0…4 (ME_PS0…4) Field Descriptions

Field Description

S_<periph> Peripheral status — These bits specify the current status of the peripherals in the system. If no peripheral is
mapped on a particular position, the corresponding bit is always read as ‘0’.
0 Peripheral is frozen
1 Peripheral is active

Address 0xC3FD_C080 - 0xC3FD_C09C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-21. Run Peripheral Configuration Registers (ME_RUN_PC0…7)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 163

8.3.1.21 Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

These registers configure eight different types of peripheral behavior during non-run modes.

Table 8-13. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions

Field Description

RUN3 Peripheral control during RUN3
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2 Peripheral control during RUN2
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1 Peripheral control during RUN1
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN0 Peripheral control during RUN0
0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN Peripheral control during DRUN
0 Peripheral is frozen with clock gated
1 Peripheral is active

SAFE Peripheral control during SAFE
0 Peripheral is frozen with clock gated
1 Peripheral is active

TEST Peripheral control during TEST
0 Peripheral is frozen with clock gated
1 Peripheral is active

RESET Peripheral control during RESET
0 Peripheral is frozen with clock gated
1 Peripheral is active

Address 0xC3FD_C0A0 - 0xC3FD_C0BC Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P 0

H
A

LT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-22. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

164 Freescale Semiconductor

8.3.1.22 Peripheral Control Registers (ME_PCTL0…143)

These registers select the configurations during run and non-run modes for each peripheral.

Table 8-14. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) Field Descriptions

Field Description

STANDBY Peripheral control during STANDBY
0 Peripheral is frozen with clock gated
1 Peripheral is active

STOP Peripheral control during STOP
0 Peripheral is frozen with clock gated
1 Peripheral is active

HALT Peripheral control during HALT
0 Peripheral is frozen with clock gated
1 Peripheral is active

Address 0xC3FD_C0C0 - 0xC3FD_C14F Access: Supervisor read/write

0 1 2 3 4 5 6 7

R 0
DBG_F LP_CFG RUN_CFG

W

Reset 0 0 0 0 0 0 0 0

Figure 8-23. Peripheral Control Registers (ME_PCTL0…143)

Table 8-15. Peripheral Control Registers (ME_PCTL0…143) Field Descriptions

Field Description

DBG_F Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode.
0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode.
1 Peripheral is frozen if not already frozen in device modes.
Note: This feature is useful to freeze the peripheral state while entering debug. For example, this may

be used to prevent a reference timer from running while making a debug accesses.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 165

LP_CFG Peripheral configuration select for non-run modes — These bits associate a configuration as defined
in the ME_LP_PC0…7 registers to the peripheral.
000 Selects ME_LP_PC0 configuration
001 Selects ME_LP_PC1 configuration
010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PC5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG Peripheral configuration select for run modes — These bits associate a configuration as defined in
the ME_RUN_PC0…7 registers to the peripheral.
000 Selects ME_RUN_PC0 configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

Table 8-16. Peripheral control registers by peripheral

Peripheral ME_PCTLn

ADC_0 32

CAN sampler 60

CMU 104

CTU 57

DMA_MUX 23

DSPI_0 4

DSPI_1 5

DSPI_2 6

DSPI_3 7

eMIOS_0 72

eMIOS_1 73

FlexCAN_0 16

FlexCAN_1 17

FlexCAN_2 18

FlexCAN_3 10

FlexCAN_4 20

FlexCAN_5 21

Table 8-15. Peripheral Control Registers (ME_PCTL0…143) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

166 Freescale Semiconductor

8.4 Functional Description

8.4.1 Mode Transition Request

The transition from one mode to another mode is normally handled by software by accessing the mode
control ME_MCTL register. But in case of special events, mode transition can be automatically managed
by hardware. In order to switch from one mode to another, the application should access ME_MCTL
register twice by writing

• the first time with the value of the key (0x5AF0) into the KEY bit field and the required target mode
into the TARGET_MODE bit field,

• and the second time with the inverted value of the key (0xA50F) into the KEY bit field and the
required target mode into the TARGET_MODE bit field.

Once a valid mode transition request is detected, the target mode configuration information is loaded from
the corresponding ME_<mode>_MC register. The mode transition request may require a number of cycles
depending on the programmed configuration, and software should check the S_CURRENT_MODE bit
field and the S_MTRANS bit of the global status register ME_GS to verify when the mode has been
correctly entered and the transition process has completed. For a description of valid mode requests, please
refer to Section 8.4.5, “Mode Transition Interrupts“.

Any modification of the mode configuration register of the currently selected mode will not be taken into
account immediately but on the next request to enter this mode. This means that transition requests such
as RUN0…3 RUN0…3, DRUN DRUN, SAFE SAFE, and TEST TEST are considered valid
mode transition requests. As soon as the mode request is accepted as valid, the S_MTRANS bit is set till
the status in the ME_GS register matches the configuration programmed in the respective
ME_<mode>_MC register.

NOTE
It is recommended that software poll the S_MTRANS bit in the ME_GS
register after requesting a transition to HALT, STOP, or STANDBY modes.

I2C 44

LINFlex_0 48

LINFlex_1 49

LINFlex_2 50

LINFlex_3 51

PIT 92

RTC/API 91

SIUL 68

WKPU 69

Table 8-16. Peripheral control registers by peripheral (continued)

Peripheral ME_PCTLn

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 167

8.4.2 Modes Details

8.4.2.1 RESET Mode

The device enters this mode on the following events:

• from SAFE, DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0000”

• from any mode due to a system reset by the MC_RGM because of some non-recoverable hardware
failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset sequence is
finished. The mode configuration information for this mode is provided by the ME_RESET_MC register.
This mode has a pre-defined configuration, and the 16 MHz int. RC osc. is selected as the system clock.
All power domains are made active in this mode.

8.4.2.2 DRUN Mode

The device enters this mode on the following events.

• automatically from RESET mode after completion of the reset sequence

SAFE

DRUN

TEST

RESET

RUN0

RUN1
HALT

STOP

SYSTEM MODES USER MODES

software
request

non-recoverable
failure

RUN2

RUN3

recoverable
hardware failure

Figure 8-24. MC_ME Mode Diagram

STANDBY

MPC5604B/C Microcontroller Reference Manual, Rev. 8

168 Freescale Semiconductor

• from RUN0…3, SAFE, or TEST mode when the TARGET_MODE bit field of the ME_MCTL
register is written with “0011”

• from the STANDBY mode after an external wakeup event or internal wakeup alarm (e.g. RTC/API
event)

As soon as any of the above events has occurred, a DRUN mode transition request is generated. The mode
configuration information for this mode is provided by the ME_DRUN_MC register. In this mode, the
flashes, all clock sources, and the system clock configuration can be controlled by software as required.
After system reset, the software execution starts with the default configuration selecting the 16 MHz int.
RC osc. as the system clock.

This mode is intended to be used by software

• to initialize all registers as per the system needs

• to execute small routines in a ‘ping-pong’ with the STANDBY mode

When this mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC register content
is restored to its pre-STANDBY values, and the mode starts in that configuration.

All power domains are active when this mode is entered due to a system reset sequence initiated by a
destructive reset event. In other cases of entry, such as the exit from STANDBY after a wakeup event, a
functional reset event like an external reset or a software request from RUN0…3, SAFE, or TEST mode,
active power domains are determined by the power configuration register PCU_PCONF2 of the MC_PCU.
All power domains except power domains #0 and #1 are configurable in this mode (see the MC_PCU
chapter for details).

NOTE

As flashes can be configured in low-power or power-down state in this
mode, software must ensure that the code executes from SRAM before
changing to this mode.

8.4.2.3 SAFE Mode

The device enters this mode on the following events:

• from DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the ME_MCTL
register is written with “0010”

• from any mode except RESET due to a SAFE mode request generated by the MC_RGM because
of some potentially recoverable hardware failure in the system (see the MC_RGM chapter for
details)

As soon as any of the above events has occurred, a SAFE mode transition request is generated. The mode
configuration information for this mode is provided by the ME_SAFE_MC register. This mode has a
pre-defined configuration, and the 16 MHz int. RC osc. is selected as the system clock. All power domains
are made active in this mode.

If the SAFE mode is requested by software while some other mode transition process is ongoing, the new
target mode becomes the SAFE mode regardless of other pending requests. In this case, the new mode
request is not interpreted as an invalid request.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 169

NOTE
If software requests to change to the SAFE mode and then requests to
change back to the parent mode before the mode transition is completed, the
device’s final mode after mode transition will be the parent mode. However,
this is not recommended software behavior. It is recommended for software
to wait until the S_MTRANS bit is cleared after requesting a change to
SAFE before requesting another mode change.

As long as a SAFE event is active, the system remains in the SAFE mode and no write access is allowed
to the ME_MCTL register.

This mode is intended to be used by software

• to assess the severity of the cause of failure and then to either

— re-initialize the device via the DRUN mode, or

— completely reset the device via the RESET mode.

If the outputs of the system I/Os need to be forced to a high impedance state upon entering this mode, the
PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’ power sequence driver cell is
also disabled. The input levels remain unchanged.

8.4.2.4 TEST Mode

The device enters this mode on the following events:

• from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is written
with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is generated. The mode
configuration information for this mode is provided by the ME_TEST_MC register. Except for the main
voltage regulator, all resources of the system are configurable in this mode. The system clock to the whole
system can be stopped by programming the SYSCLK bit field to “1111”, and in this case, the only way to
exit this mode is via a device reset.

This mode is intended to be used by software

• to execute on-chip test routines

All power domains except power domains #0 and #1 are configurable in this mode. Active power domains
are determined by the power configuration register PCU_PCONF2 of the MC_PCU.

NOTE
As flash modules can be configured to a low-power or power-down state in
these modes, software must ensure that the code will execute from SRAM
before it changes to this mode.

8.4.2.5 RUN0…3 Modes

The device enters one of these modes on the following events:

MPC5604B/C Microcontroller Reference Manual, Rev. 8

170 Freescale Semiconductor

• from the DRUN another RUN0…3 mode when the TARGET_MODE bit field of the ME_MCTL
register is written with “0100…0111”

• from the HALT mode by an interrupt event

• from the STOP mode by an interrupt or wakeup event

As soon as any of the above events occur, a RUN0…3 mode transition request is generated. The mode
configuration information for these modes is provided by ME_RUN0…3_MC registers. In these modes,
the flashes, all clock sources, and the system clock configuration can be controlled by software as required.

These modes are intended to be used by software

• to execute application routines

All power domains except power domains #0 and #1 are configurable in these modes in order to reduce
leakage consumption. Active power domains are determined by the power configuration register
PCU_PCONF2 of the MC_PCU.

NOTE
As flash modules can be configured to a low-power or power-down state in
these modes, software must ensure that the code will execute from SRAM
before it changes to this mode.

8.4.2.6 HALT Mode

The device enters this mode on the following events:

• from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL register
is written with “1000”.

As soon as any of the above events occur, a HALT mode transition request is generated. The mode
configuration information for this mode is provided by ME_HALT_MC register. This mode is quite
configurable, and the ME_HALT_MC register should be programmed according to the system needs. The
main voltage regulator and the flashes can be put in power-down mode as needed. If there is a HALT mode
request while an interrupt request is active, the device mode does not change, and an invalid mode interrupt
is not generated.

This mode is intended as a first level low-power mode with

• the core clock frozen

• only a few peripherals running

and to be used by software

• to wait until it is required to do something and then to react quickly (i.e. within a few system clock
cycles of an interrupt event)

All power domains except power domains #0 and #1 are configurable in this mode in order to reduce
leakage consumption. Active power domains are determined by the power configuration register
PCU_PCONF2 of the MC_PCU.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 171

8.4.2.7 STOP Mode

The device enters this mode on the following events:

• from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL register
is written with “1010”.

As soon as any of the above events occur, a STOP mode transition request is generated. The mode
configuration information for this mode is provided by the ME_STOP_MC register. This mode is fully
configurable, and the ME_STOP_MC register should be programmed according to the system needs. The
FMPLL is switched off in this mode. The main voltage regulator and the flashes can be put in power-down
mode as needed. If there is a STOP mode request while any interrupt or wakeup event is active, the device
mode does not change, and an invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all peripherals
stopped.

This mode is intended as an advanced low-power mode with

• the core clock frozen

• almost all peripherals stopped

and to be used by software

• to wait until it is required to do something with no need to react quickly (e.g. allow for system clock
source to be re-started)

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the PDO bit of the
ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources, thus preserving the device status. When exiting the STOP
mode, the fast internal RC oscillator (16 MHz) clock is selected as the system clock until the target clock
is available.

All power domains except power domains #0 and #1 are configurable in this mode in order to reduce
leakage consumption. Active power domains are determined by the power configuration register
PCU_PCONF2 of the MC_PCU.

8.4.2.8 STANDBY Mode

The device enters this mode on the following events:

• from the DRUN or one of the RUN0…3 modes when the TARGET_MODE bit field of the
ME_MCTL register is written with “1101”.

As soon as any of the above events occur, a STANDBY mode transition request is generated. The mode
configuration information for this mode is provided by the ME_STANDBY_MC register. In this mode, the
power supply is turned off for most of the device. The only parts of the device that are still powered during
this mode are pads mapped on wakeup lines and power domain #0 which contains the MC_RGM,
MC_PCU, WKPU, 8K RAM, RTC_API, CANSampler, SIRC, FIRC, SXOSC, and device and user option
bits. The FIRC can be optionally switched off. This is the lowest power consumption mode possible on the
device.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

172 Freescale Semiconductor

This mode is intended as an extreme low-power mode with

• the core, the flashes, and almost all peripherals and memories powered down

and to be used by software

• to wait until it is required to do something with no need to react quickly (i.e. allow for system
power-up and system clock source to be re-started)

The exit sequence of this mode is similar to the reset sequence. However, in addition to booting from the
default location, the device can also be configured to boot from the backup SRAM (see the RGM_STDBY
register description in the MC_RGM chapter for details). In the case of booting from backup SRAM, it is
also possible to keep the flashes disabled by writing “01” to the CFLAON and DFLAON fileds in the
ME_DRUN_MC register prior to STANDBY entry.

If there is a STANDBY mode request while any wakeup event is active, the device mode does not change.

All power domains except power domain #0 are configurable in this mode in order to reduce leakage
consumption. Active power domains are determined by the power configuration register PCU_PCONF2
of the MC_PCU.

8.4.3 Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner depending on the
current device mode and the requested target mode. In many cases of mode transition, not all steps need
to be executed based on the mode control information, and some steps may not be valid according to the
mode definition itself.

8.4.3.1 Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys. This mode
transition request by software must be a valid request satisfying a set of pre-defined rules to initiate the
process. If the request fails to satisfy these rules, it is ignored, and the TARGET_MODE bit field is not
updated. An optional interrupt can be generated for invalid mode requests. Refer to Section 8.4.5, “Mode
Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a SAFE mode request,
or interrupt requests and wakeup events to exit from low-power modes, the TARGET_MODE bit field of
the ME_MCTL register is automatically updated with the appropriate target mode. The mode change
process start is indicated by the setting of the mode transition status bit S_MTRANS of the ME_GS
register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which generates a
global system reset and initiates the reset sequence. The RESET mode request has the highest priority, and
the MC_ME is kept in the RESET mode during the entire reset sequence.

The SAFE mode request has the next highest priority after reset which can be generated by software via
the ME_MCTL register from all software running modes including DRUN, RUN0…3, and TEST or by
the MC_RGM after the detection of system hardware failures, which may occur in any mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 173

8.4.3.2 Target Mode Configuration Loading

On completion of the Target Mode Request, the target mode configuration from the
ME_<target mode>_MC register is loaded to start the resources (voltage sources, clock sources, flashes,
pads, etc.) control process.

An overview of resource control possibilities for each mode is shown in Table 8-17. A ‘’ indicates that a
given resource is configurable for a given mode.

8.4.3.3 Peripheral Clocks Disable

On completion of the Target Mode Request, the MC_ME requests each peripheral to enter its stop mode
when:

• the peripheral is configured to be disabled via the target mode, the peripheral configuration
registers ME_RUN_PC0…7 and ME_LP_PC0…7, and the peripheral control registers
ME_PCTL0…143

Table 8-17. MC_ME Resource Control Overview

Resource
Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

FIRC

on on on on on on on on

FXOSC

off off off off off off off off

FMPLL

off off off off off off off off

CFLASH

normal normal normal normal normal low-power power-
down

power-
down

DFLASH

normal normal normal normal normal low-power power-
down

power-
down

MVREG

on on on on on on on off

PDO

off off on off off off off on

MPC5604B/C Microcontroller Reference Manual, Rev. 8

174 Freescale Semiconductor

CAUTION
The MC_ME does not automatically request peripherals to enter their stop
modes if the power domains in which they are residing are to be turned off
due to a mode change. Therefore, it is software’s responsibility to ensure
that those peripherals that are to be powered down are configured in the
MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The MC_ME then
disables the corresponding clock(s) to this peripheral.

In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals to
acknowledge the stop requests. The SAFE mode clock gating configuration is applied immediately
regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6, “Peripheral Clock Gating“ for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected ensures that these
outputs are forced to a safe or recessive state when the device enters the SAFE mode.

8.4.3.4 Processor Low-Power Mode Entry

If, on completion of the Peripheral Clocks Disable, the mode transition is to the HALT mode, the MC_ME
requests the processor to enter its halted state. The processor acknowledges its halt state request after
completing all outstanding bus transactions.

If, on completion of the Peripheral Clocks Disable, the mode transition is to the STOP or STANDBY
mode, the MC_ME requests the processor to enter its stopped state. The processor acknowledges its stop
state request after completing all outstanding bus transactions.

8.4.3.5 Processor and System Memory Clock Disable

If, on completion of the Processor Low-Power Mode Entry, the mode transition is to the HALT, STOP, or
STANDBY mode and the processor is in its appropriate halted or stopped state, the MC_ME disables the
processor and system memory clocks to achieve further power saving.

The clocks to the processor and system memories are unaffected for all transitions between software
running modes including DRUN, RUN0…3, and SAFE.

CAUTION
Clocks to the whole device including the processor and system memories
can be disabled in TEST mode.

8.4.3.6 Clock Sources Switch-On

On completion of the Processor Low-Power Mode Entry, the MC_ME controls all clock sources that affect
the system clock based on the <clock source>ON bits of the ME_<current mode>_MC and
ME_<target mode>_MC registers. The following system clock sources are controlled at this step:

• the fast internal RC oscillator (16 MHz)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 175

• the fast external crystal oscillator (4-16 MHz)

NOTE
The frequency modulated phase locked loop, which needs the main voltage
regulator to be stable, is not controlled by this step.

The clock sources that are required by the target mode are switched on. The duration required for the
output clocks to be stable depends on the type of source, and all further steps of mode transition depending
on one or more of these clocks waits for the stable status of the respective clocks. The availability status
of these system clocks is updated in the S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order to not disturb
the system clock which might require one of these clocks before switching to a different target clock.

8.4.3.7 Main Voltage Regulator Switch-On

On completion of the Target Mode Request, if the main voltage regulator needs to be switched on from its
off state based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, the MC_ME requests the MC_PCU to power-up the regulator and waits for the output voltage
stable status in order to update the S_MVR bit of the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this step, the fast
internal RC oscillator (16 MHz) is switched on regardless of the target mode configuration, as the main
voltage regulator requires the 16 MHz int. RC osc. during power-up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the main voltage
regulator, and the MC_ME is kept in RESET or shut off (depending on the power domain #1 status).

8.4.3.8 Flash Modules Switch-On

On completion of the Main Voltage Regulator Switch-On, if a flash module needs to be switched to normal
mode from its low-power or power-down mode based on the CFLAON and DFLAON bit fields of the
ME_<current mode>_MC and ME_<target mode>_MC registers, the MC_ME requests the flash to exit
from its low-power/power-down mode. When the flash modules are available for access, the S_CFLA and
S_DFLA bit fields of the ME_GS register are updated to “11” by hardware.

If the main regulator is also off in device low-power modes, then during the exit sequence, the flash is kept
in its low-power state and is switched on only when the Main Voltage Regulator Switch-On process has
completed.

CAUTION
It is illegal to switch the flashes from low-power mode to power-down mode
and from power-down mode to low-power mode. The MC_ME, however,
does not prevent this nor does it flag it.

8.4.3.9 FMPLL Switch-On

On completion of the Clock Sources Switch-On and Main Voltage Regulator Switch-On, if the FMPLL is
to be switched on from the off state based on the FMPLLON bit of the ME_<current mode>_MC and

MPC5604B/C Microcontroller Reference Manual, Rev. 8

176 Freescale Semiconductor

ME_<target mode>_MC registers, the MC_ME requests the FMPLL digital interface to start the phase
locking process and waits for the FMPLL to enter into the locked state. When the FMPLL enters the locked
state and starts providing a stable output clock, the S_FMPLL bit of ME_GS register is set.

8.4.3.10 Power Domain #2 Switch-On

On completion of the Main Voltage Regulator Switch-On, the MC_ME indicates a mode change to the
MC_PCU. The MC_PCU then determines whether a power-up sequence is required for power domain #2.
Only after the MC_PCU has executed all required power-ups does the MC_ME complete the mode
transition.

8.4.3.11 Pad Outputs-On

On completion of the Main Voltage Regulator Switch-On, if the PDO bit of the ME_<target mode>_MC
register is cleared, then

• all pad outputs are enabled to return to their previous state

• the I/O pads power sequence driver is switched on

8.4.3.12 Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers ME_RUN_PC0…7,
ME_LP_PC0…7, and the peripheral control registers ME_PCTL0…143, the MC_ME enables the clocks
for selected modules as required. This step is executed only after the Main Voltage Regulator Switch-On
process is completed.

Also if a mode change translates to a power up of one or more power domains, the MC_PCU indicates the
MC_ME after completing the power-up sequence upon which the MC_ME may assert the peripheral clock
enables of the peripherals residing in those power domains.

8.4.3.13 Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALT or STOP to RUN0…3, the clocks to the
processor and system memories are enabled. The process of enabling these clocks is executed only after
the Flash Modules Switch-On process is completed.

8.4.3.14 Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALT, STOP, or STANDBY to RUN0…3, the
MC_ME requests the processor to exit from its halted or stopped state. This step is executed only after the
Processor and Memory Clock Enable process is completed.

8.4.3.15 System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and ME_<target mode>_MC registers,
if the target and current system clock configurations differ, the following method is implemented for clock
switching.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 177

• The target clock configuration for the 16 MHz int. RC osc. is effective only when the S_FIRC bit
of the ME_GS register is set by hardware (i.e. the fast internal RC oscillator (16 MHz) has
stabilized).

• The target clock configuration for the div. 16 MHz int. RC osc. is effective only when the S_FIRC
bit of the ME_GS register is set by hardware (i.e. the fast internal RC oscillator (16 MHz) has
stabilized).

• The target clock configuration for the 4-16 MHz ext. xtal osc. is effective only when the S_FXOSC
bit of the ME_GS register is set by hardware (i.e the fast external crystal oscillator (4-16 MHz) has
stabilized).

• The target clock configuration for the div. ext. xtal osc. is effective only when the S_FXOSC bit of
the ME_GS register is set by hardware (i.e the fast external crystal oscillator (4-16 MHz) has
stabilized).

• The target clock configuration for the freq. mod. PLL is effective only when the S_FMPLL bit of
the ME_GS register is set by hardware (i.e. the frequency modulated phase locked loop has
stabilized).

• If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”. This is
possible only in the STOP and TEST modes. In the STANDBY mode, the clock configuration is
fixed, and the system clock is automatically forced to ‘0’.

The current system clock configuration can be observed by reading the S_SYSCLK bit field of the ME_GS
register, which is updated after every system clock switching. Until the target clock is available, the system
uses the previous clock configuration.

System clock switching starts only after

• the Clock Sources Switch-On process has completed if the target system clock source needs to be
switched on

• the FMPLL Switch-On process has completed if the target system clock is the freq. mod. PLL

• the Peripheral Clocks Disable process is completed in order not to change the system clock
frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in Table 8-18. A ‘’
indicates that a given clock source is selectable for a given mode.

Table 8-18. MC_ME System Clock Selection Overview

System
Clock

Source

Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

16 MHz
int. RC

osc.

(default)

(default)

(default)

(default)

(default)

(default)

(default)

div. 16
MHz int.
RC osc.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

178 Freescale Semiconductor

8.4.3.16 Power Domain #2 Switch-Off

Based on the device mode and the MC_PCU’s power configuration register PCU_PCONF2, the power
domain #2 is controlled by the MC_PCU.

If a mode change translates to a power-down of the power domain, then the MC_PCU starts the
power-down sequence. The MC_PCU acknowledges the completion of the power-down sequence with
respect to the new mode, and the MC_ME uses this information to update the mode transition status. This
step is executed only after the Peripheral Clocks Disable process has completed.

8.4.3.17 Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then

• the outputs of the pads are forced to the high impedance state if the target mode is SAFE or TEST

• I/O pads power sequence driver is switched off if the target mode is one of SAFE, TEST, or STOP
modes

In STANDBY mode, the power sequence driver and all pads except the external reset and those mapped
on wakeup lines are not powered and therefore high impedance. The wakeup line configuration remains
unchanged.

This step is executed only after the Peripheral Clocks Disable process is completed.

8.4.3.18 FMPLL Switch-Off

Based on the FMPLLON bit of the ME_<current mode>_MC and ME_<target mode>_MC registers, if
FMPLL is to be switched off, the MC_ME requests the FMPLL to power down and updates its availability
status bit S_FMPLL of the ME_GS register to ‘0’. This step is executed only after the System Clock
Switching process is completed.

4-16 MHz
ext. xtal

osc.

div. ext.
xtal osc.

freq. mod.
PLL

system
clock is
disabled

(default)

1 disabling the system clock during TEST mode will require a reset in order to exit TEST mode

Table 8-18. MC_ME System Clock Selection Overview (continued)

System
Clock

Source

Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 179

8.4.3.19 Clock Sources Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC registers, if a given
clock source is to be switched off, the MC_ME requests the clock source to power down and updates its
availability status bit S_<clock source> of the ME_GS register to ‘0’.

This step is executed only after

• System Clock Switching process is completed in order not to lose the current system clock during
mode transition.

• FMPLL Switch-Off as the input reference clock of the FMPLL can be among these clock sources.
This is needed to prevent an unwanted lock transition when the FMPLL is switched on.

8.4.3.20 Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flash modules is to be put in a low-power state, the
MC_ME requests the flash to enter the corresponding low-power state and waits for the deassertion of
flash ready status signal. The exact low-power mode status of the flash modules is updated in the S_CFLA
and S_DFLA bit fields of the ME_GS register. This step is executed only when Processor and System
Memory Clock Disable process is completed.

8.4.3.21 Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC registers, if the
main voltage regulator is to be switched off, the MC_ME requests it to power down and clears the
availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This step is executed
only after completing the following processes:

• FMPLL Switch-Off

• Flash Switch-Off

• Power Domain #2 Switch-Off

• Power Domain #2 Switch-On

• the device consumption is less than the pre-defined threshold value (i.e. the S_DC bit of the
ME_GS register is ‘0’).

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME and the
STANDBY request is asserted after the above processes have completed upon which the MC_PCU takes
control of the main regulator. As the MC_PCU needs the 16 MHz int. RC osc., the fast internal RC
oscillator (16 MHz) remains active until all the STANDBY steps are executed by the MC_PCU after which
it may be switched off depending on the FIRCON bit of the ME_STANDBY_MC register.

8.4.3.22 Current Mode Update

The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated with the target
mode bit field TARGET_MODE of the ME_MCTL register when:

MPC5604B/C Microcontroller Reference Manual, Rev. 8

180 Freescale Semiconductor

• all the updated status bits in the ME_GS register match the configuration specified in the
ME_<target mode>_MC register

• power sequences are done

• clock disable/enable process is finished

• processor low-power mode (halt/stop) entry and exit processes are finished

Software can monitor the mode transition status by reading the S_MTRANS bit of the ME_GS register.
The mode transition latency can differ from one mode to another depending on the resources’ availability
before the new mode request and the target mode’s requirements.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 181

Power Domain
Switch-On

Power Domain
Switch-Off

PLL
Switch-On

PLL
Switch-Off

End

Target Mode Request
Write ME_MCTL register
SAFE mode request
interrupt/wakeup event

Peripheral Clocks
Disable

Clock sources
Switch-On

System Clock
Switching

Main VREG
Switch-On

FLASH
Switch-On

Pad

Processor
Low-Power

Processor &

PAD

Peripheral Clocks
Enable

FLASH
Switch-Off

Clock sources
Switch-Off

S
_M

T
R

A
N

S
 =

 ‘1
’

A
N

A
L

O
G

 O
N

D
IG

IT
A

L
 C

O
N

T
R

O
L

A
N

A
L

O
G

 O
F

F

Current Mode Update

Start

S_MTRANS = ‘0’

Outputs -On

Outputs -Off

Entry
Processor

Low-Power
Exit

Clock Disable
Memory

Processor &

Clock Enable
Memory

Figure 8-25. MC_ME Transition Diagram

Target
STANDBY

STANDBY
Request

N YMain VREG
Switch-Off

MPC5604B/C Microcontroller Reference Manual, Rev. 8

182 Freescale Semiconductor

8.4.4 Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules must be
respected. Otherwise, the write operation is ignored and an invalid mode configuration interrupt may be
generated.

• FIRC must be on if the system clock is one of the following:

— 16 MHz int. RC osc.

— div. 16 MHz int. RC osc.

• FXOSC must be on if the system clock is one of the following:

— 4-16 MHz ext. xtal osc.

— div. ext. xtal osc.

NOTE
Software must ensure to switch on the clock source that provides the input
reference clock to the FMPLL. There is no automatic protection mechanism
to check this in the MC_ME.

• FMPLL must be on if the system clock is the freq. mod. PLL.

• Configuration “00” for the CFLAON and DFLAON bit fields are reserved.

• MVREG must be on if any of the following is active:

— FMPLL

— CFLASH

— DFLASH

• System clock configurations marked as ‘reserved’ may not be selected.

• Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST modes,
and only in this case may all system clock sources be turned off.

CAUTION
If the system clock is stopped during TEST mode, the device can exit only
via a system reset.

8.4.5 Mode Transition Interrupts

The following are the three interrupts related to mode transition implemented in the MC_ME.

8.4.5.1 Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the protection rules
mentioned in the Section 8.4.4, “Protection of Mode Configuration Registers, the interrupt pending bit
I_ICONF of the ME_IS register is set and an interrupt request is generated if the mask bit M_ICONF of
ME_IM register is ‘1’.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 183

8.4.5.2 Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

• If the system is in the SAFE mode and the SAFE mode request from MC_RGM is active, and if
the target mode requested is other than RESET or SAFE, then this new mode request is considered
to be invalid, and the S_SEA bit of the ME_IMTS register is set.

• If the TARGET_MODE bit field of the ME_MCTL register is written with a value different from
the specified mode values (i.e. a non existing mode), an invalid mode transition event is generated.
When such a non existing mode is requested, the S_NMA bit of the ME_IMTS register is set. This
condition is detected regardless of whether the proper key mechanism is followed while writing
the ME_MCTL register.

• If some of the device modes are disabled as programmed in the ME_ME register, their respective
configurations are considered reserved, and any access to the ME_MCTL register with those
values results in an invalid mode transition request. When such a disabled mode is requested, the
S_DMA bit of the ME_IMTS register is set. This condition is detected regardless of whether the
proper key mechanism is followed while writing the ME_MCTL register.

• If the target mode is not a valid mode with respect to current mode, the mode request illegal status
bit S_MRI of the ME_IMTS register is set. This condition is detected only when the proper key
mechanism is followed while writing the ME_MCTL register. Otherwise, the write operation is
ignored.

• If further new mode requests occur while a mode transition is in progress (the S_MTRANS bit of
the ME_GS register is ‘1’), the mode transition illegal status bit S_MTI of the ME_IMTS register
is set. This condition is detected only when the proper key mechanism is followed while writing
the ME_MCTL register. Otherwise, the write operation is ignored.

NOTE
As the causes of invalid mode transitions may overlap at the same time, the
priority implemented for invalid mode transition status bits of the
ME_IMTS register in the order from highest to lowest is S_SEA, S_NMA,
S_DMA, S_MRI, and S_MTI.

As an exception, the mode transition request is not considered as invalid under the following conditions:

• A new request is allowed to enter the RESET or SAFE mode irrespective of the mode transition
status.

• As the exit of HALT and STOP modes depends on the interrupts of the system which can occur at
any instant, these requests to return to RUN0…3 modes are always valid.

• In order to avoid any unwanted lockup of the device modes, software can abort a mode transition
by requesting the parent mode if, for example, the mode transition has not completed after a
software determined ‘reasonable’ amount of time for whatever reason. The parent mode is the
device mode before a valid mode request was made.

• Self-transition requests (e.g. RUN0 RUN0) are not considered as invalid even when the mode
transition process is active (i.e. S_MTRANS is ‘1’). During the low-power mode exit process, if
the system is not able to enter the respective RUN0…3 mode properly (i.e. all status bits of the
ME_GS register match with configuration bits in the ME_<mode>_MC register), then software

MPC5604B/C Microcontroller Reference Manual, Rev. 8

184 Freescale Semiconductor

can only request the SAFE or RESET mode. It is not possible to request any other mode or to go
back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the ME_IS register
is set, and an interrupt request is generated if the mask bit M_IMODE is ME_IM register is ‘1’.

8.4.5.3 SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the MC_RGM due
to a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register is set, and an interrupt is
generated if the mask bit M_SAFE of ME_IM register is ‘1’.

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is deasserted by
the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE mode request). If the system
is already in SAFE mode, any new SAFE mode request by the MC_RGM also sets the interrupt pending
bit I_SAFE. However, the SAFE mode interrupt pending bit is not set when the SAFE mode is entered by
a software request (i.e. programming of ME_MCTL register).

8.4.5.4 Mode Transition Complete interrupt

Whenever the system completes a mode transition fully (i.e. the S_MTRANS bit of ME_GS register
transits from ‘1’ to ‘0’), the interrupt pending bit I_MTC of the ME_IS register is set, and interrupt request
is generated if the mask bit M_MTC of the ME_IM register is ‘1’. The interrupt bit I_MTC is not set when
entering low-power modes HALT and STOP in order to avoid the same event requesting the exit of these
low-power modes.

8.4.6 Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating policy
determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PC0…7 are chosen only during the software running
modes DRUN, TEST, SAFE, and RUN0…3. All configurations are programmable by software according
to the needs of application. Each configuration register contains a mode bit which determines whether or
not a peripheral clock is to be gated. Run configuration selection for each peripheral is done by the
RUN_CFG bit field of the ME_PCTL0…143 registers.

The low-power peripheral configuration registers ME_LP_PC0…7 are chosen only during the low-power
modes HALT, STOP, and STANDBY. All configurations are programmable by software according to the
needs of the application. Each configuration register contains a mode bit which determines whether or not
a peripheral clock is to be gated. Low-power configuration selection for each peripheral is done by the
LP_CFG bit field of the ME_PCTL0…143 registers.

Any modifications to the ME_RUN_PC0…7, ME_LP_PC0…7, and ME_PCTL0…143 registers do not
affect the clock gating behavior until a new mode transition request is generated.

Whenever the processor enters a debug session during any mode, the following occurs for each peripheral:

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 185

• The clock is gated if the DBG_F bit of the associated ME_PCTL0…143 register is set. Otherwise,
the peripheral clock gating status depends on the RUN_CFG and LP_CFG bits. Any further
modifications of the ME_RUN_PC0…7, ME_LP_PC0…7, and ME_PCTL0…143 registers
during a debug session will take affect immediately without requiring any new mode request.

8.4.7 Application Example

Figure 8-26 shows an example application flow for requesting a mode change and then waiting until the
mode transition has completed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

186 Freescale Semiconductor

Figure 8-26. MC_ME Application Example Flow Diagram

START of mode change

config
for target mode

okay?

write ME_<target mode>_MC,
ME_RUN_PC0…7,

ME_LP_PC0…7, and

N

Y

write ME_MCTL with target
mode and key

write ME_MCTL with target
mode and inverted key

start timer

S_MTRANS
cleared?

Y
timer

expired?

N

Y

N

write ME_MCTL with current or
SAFE mode and key

write ME_MCTL with current or
SAFE mode and inverted key

stop timer

mode change DONE

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 187

Chapter 9
Reset Generation Module (MC_RGM)

9.1 Introduction

9.1.1 Overview

The reset generation module (MC_RGM) centralizes the different reset sources and manages the reset
sequence of the device. It provides a register interface and the reset sequencer. The different registers are
available to monitor and control the device reset sequence. The reset sequencer is a state machine which
controls the different phases (PHASE0, PHASE1, PHASE2, PHASE3, and IDLE) of the reset sequence
and control the reset signals generated in the system.

Figure 9-1 depicts the MC_RGM block diagram.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

188 Freescale Semiconductor

9.1.2 Features

The MC_RGM contains the functionality for the following features:

• ‘destructive’ resets management

• ‘functional’ resets management

• signalling of reset events after each reset sequence (reset status flags)

• conversion of reset events to SAFE mode or interrupt request events (for further mode details,
please see the MC_ME chapter)

PA[8] and PA[9]

RESET

Registers

Platform Interface

core

MC_RGM

Figure 9-1. MC_RGM block diagram

MC_ME

power-on

1.2 V low-voltage detected
(power domain #0)

1.2 V low-voltage detected
(power domain #1)

software watchdog timer
2.7 V low-voltage detected

JTAG initiated reset
debug control core reset

software reset
checkstop reset

FMPLL fail
FXOSC frequency lower than

reference
CMU clock frequency

higher/lower than reference
4.5 V low-voltage detected

code or data flash fatal error

F
un

ct
io

na
l

R
es

et
 F

ilt
er

Boot Mode
Capture

D
es

tr
uc

tiv
e

R
es

et
 F

ilt
er

Reset
State

Machine

SSCM

peripherals

MC_CGM

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 189

• short reset sequence configuration

• bidirectional reset behavior configuration

• selection of alternate boot via the backup SRAM on STANDBY mode exit (for further mode
details, please see the MC_ME chapter)

• boot mode capture on RESET deassertion

9.1.3 Modes of operation

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

• A ‘destructive’ reset source is associated with an event related to a critical - usually hardware -
error or dysfunction. When a ‘destructive’ reset event occurs, the full reset sequence is applied to
the device starting from PHASE0. This resets the full device ensuring a safe start-up state for both
digital and analog modules. ‘Destructive’ resets are

– power-on reset

– 1.2 V low-voltage detected (power domain #0)

– 1.2 V low-voltage detected (power domain #1)

– software watchdog timer

– 2.7 V low-voltage detected

• A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial reset
sequence is applied to the device starting from PHASE1. In this case, most digital modules are reset
normally, while analog modules or specific digital modules’ (e.g. debug modules, flash modules)
state is preserved. ‘Functional’ resets are

– external reset

– JTAG initiated reset

– debug control core reset

– software reset

– checkstop reset

– FMPLL fail

– FXOSC frequency lower than reference

– CMU clock frequency higher/lower than reference

– 4.5 V low-voltage detected

– code or data flash fatal error

When a reset is triggered, the MC_RGM state machine is activated and proceeds through the different
phases (i.e. PHASEn states). Each phase is associated with a particular device reset being provided to the
system. A phase is completed when all corresponding phase completion gates from either the system or
internal to the MC_RGM are acknowledged. The device reset associated with the phase is then released,
and the state machine proceeds to the next phase up to entering the IDLE phase. During this entire process,
the MC_ME state machine is held in RESET mode. Only at the end of the reset sequence, when the IDLE
phase is reached, does the MC_ME enter the DRUN mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

190 Freescale Semiconductor

Alternatively, it is possible for software to configure some reset source events to be converted from a reset
to either a SAFE mode request issued to the MC_ME or to an interrupt issued to the core (see
Section 9.3.1.4, “Destructive Event Reset Disable Register (RGM_DERD) and Section 9.3.1.6,
“Destructive Event Alternate Request Register (RGM_DEAR) for ‘destructive’ resets and Section 9.3.1.3,
“Functional Event Reset Disable Register (RGM_FERD) and Section 9.3.1.5, “Functional Event Alternate
Request Register (RGM_FEAR) for ‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins PA[8] and PA[9].

9.3 Memory map and register definition

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

• cause a transfer error

Table 9-1. MC_RGM register description

Address Name Description Size
Access

Location
Supervisor

0xC3FE_4000 RGM_FES Functional Event Status half-word read/write1 on page 193

0xC3FE_4002 RGM_DES Destructive Event Status half-word read/write1

1 individual bits cleared on writing ‘1’

on page 194

0xC3FE_4004 RGM_FERD Functional Event Reset Disable half-word read/write2

2 write once: ‘0’ = disable, ‘1’ = enable.

on page 195

0xC3FE_4006 RGM_DERD Destructive Event Reset Disable half-word read on page 197

0xC3FE_4010 RGM_FEAR Functional Event Alternate Request half-word read/write on page 198

0xC3FE_4012 RGM_DEAR Destructive Event Alternate Request half-word read on page 199

0xC3FE_4018 RGM_FESS Functional Event Short Sequence half-word read/write on page 200

0xC3FE_401A RGM_STDBY STANDBY Reset Sequence half-word read/write on page 202

0xC3FE_401C RGM_FBRE Functional Bidirectional Reset Enable half-word read/write on page 202

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 191

Table 9-2. MC_RGM Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_4000

RGM_
FES /
RGM_
DES

R

F
_E

X
R

0 0 0 0 0 0

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T

F
_C

O
R

E

F
_J

TA
G

W w1c

R

F
_P

O
R

0 0 0 0 0 0 0 0 0 0 0

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c

0xC3FE
_4004

RGM_
FERD /
RGM_
DERD

R

D
_E

X
R

0 0 0 0 0 0

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T

D
_C

O
R

E

D
_J

TA
G

W

R 0 0 0 0 0 0 0 0 0 0 0 0

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

0xC3FE
_4008

…
0xC3FE
_400C

reserved

0xC3FE
_4010

RGM_
FEAR /
RGM_
DEAR

R

A
R

_E
X

R

0 0 0 0 0 0

A
R

_F
LA

S
H

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

A
R

_C
H

K
S

TO
P

A
R

_S
O

F
T

A
R

_C
O

R
E

A
R

_J
TA

G

W

R 0 0 0 0 0 0 0 0 0 0 0 0

A
R

_L
V

D
27

A
R

_S
W

T

A
R

_L
V

D
12

_P
D

1

A
R

_L
V

D
12

_P
D

0

W

w1c w1c w1c w1c w1c w1c w1c w1c w1c

w1c w1c w1c w1c

MPC5604B/C Microcontroller Reference Manual, Rev. 8

192 Freescale Semiconductor

9.3.1 Register descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes.
The bytes are ordered according to big endian. For example, the RGM_STDBY register may be accessed
as a word at address 0xC3FE_4018, as a half-word at address 0xC3FE_401A, or as a byte at address
0xC3FE_401B.

0xC3FE
_4014

reserved

0xC3FE
_4018

RGM_
FESS /
RGM_
STDB
Y

R
S

S
_E

X
R

0 0 0 0 0 0

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

S
S

_C
O

R
E

S
S

_J
TA

G

W

R 0 0 0 0 0 0 0 0

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

0xC3FE
_401C

RGM_
FBRE

R

B
E

_E
X

R

0 0 0 0 0 0

B
E

_F
LA

S
H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

B
E

_C
O

R
E

B
E

_J
TA

G

W

0xC3FE
_4020

…
0xC3FE
_7FFC

reserved

Table 9-2. MC_RGM Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 193

9.3.1.1 Functional Event Status Register (RGM_FES)

This register contains the status of the last asserted functional reset sources. It can be accessed in read/write
on either supervisor mode or test mode. Register bits are cleared on write ‘1’.

Address 0xC3FE_4000 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_E

X
R

0 0 0 0 0 0

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T

F
_C

O
R

E

F
_J

TA
G

W w1c

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-2. Functional Event Status Register (RGM_FES)

Table 9-3. Functional Event Status Register (RGM_FES) Field Descriptions

Field Description

F_EXR Flag for External Reset
0 No external reset event has occurred since either the last clear or the last destructive reset

assertion
1 An external reset event has occurred

F_FLASH Flag for code or data flash fatal error
0 No code or data flash fatal error event has occurred since either the last clear or the last destructive

reset assertion
1 A code or data flash fatal error event has occurred

F_LVD45 Flag for 4.5 V low-voltage detected
0 No 4.5 V low-voltage detected event has occurred since either the last clear or the last destructive

reset assertion
1 A 4.5 V low-voltage detected event has occurred

F_CMU_FHL Flag for CMU clock frequency higher/lower than reference
0 No CMU clock frequency higher/lower than reference event has occurred since either the last clear

or the last destructive reset assertion
1 A CMU clock frequency higher/lower than reference event has occurred

F_CMU_OL
R

Flag for FXOSC frequency lower than reference
0 No FXOSC frequency lower than reference event has occurred since either the last clear or the

last destructive reset assertion
1 A FXOSC frequency lower than reference event has occurred

F_FMPLL Flag for FMPLL fail
0 No FMPLL fail event has occurred since either the last clear or the last destructive reset assertion
1 A FMPLL fail event has occurred

F_CHKSTOP Flag for checkstop reset
0 No checkstop reset event has occurred since either the last clear or the last destructive reset

assertion
1 A checkstop reset event has occurred

w1c w1c w1c w1c w1c w1c w1c w1c w1c

MPC5604B/C Microcontroller Reference Manual, Rev. 8

194 Freescale Semiconductor

9.3.1.2 Destructive Event Status Register (RGM_DES)

This register contains the status of the last asserted destructive reset sources. It can be accessed in
read/write on either supervisor mode or test mode. Register bits are cleared on write ‘1’.

F_SOFT Flag for software reset
0 No software reset event has occurred since either the last clear or the last destructive reset

assertion
1 A software reset event has occurred

F_CORE Flag for debug control core reset
0 No debug control core reset event has occurred since either the last clear or the last destructive

reset assertion
1 A debug control core reset event has occurred; this event can only be asserted when the

DBCR0[RST] field is set by an external debugger. See the "Debug Support" chapter of the core
reference manual for more details.

F_JTAG Flag for JTAG initiated reset
0 No JTAG initiated reset event has occurred since either the last clear or the last destructive reset

assertion
1 A JTAG initiated reset event has occurred

Address 0xC3FE_4002 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_P

O
R

0 0 0 0 0 0 0 0 0 0 0

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c

POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-3. Destructive Event Status Register (RGM_DES)

Table 9-4. Destructive Event Status Register (RGM_DES) Field Descriptions

Field Description

F_POR Flag for Power-On reset
0 No power-on event has occurred since the last clear (due to either a software clear or a low-voltage

detection)
1 A power-on event has occurred

F_LVD27 Flag for 2.7 V low-voltage detected
0 No 2.7 V low-voltage detected event has occurred since either the last clear or the last power-on

reset assertion
1 A 2.7 V low-voltage detected event has occurred

Table 9-3. Functional Event Status Register (RGM_FES) Field Descriptions (continued)

Field Description

w1c w1c w1c w1c

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 195

NOTE
The F_POR flag is automatically cleared on a 1.2 V low-voltage detected
(power domain #0 or #1) or a 2.7 V low-voltage detected. This means that
if the power-up sequence is not monotonic (i.e the voltage rises and then
drops enough to trigger a low-voltage detection), the F_POR flag may not
be set but instead the F_LVD12_PD0, F_LVD12_PD1, or F_LVD27 flag is
set on exiting the reset sequence. Therefore, if the F_POR, F_LVD12_PD0,
F_LVD12_PD1, or F_LVD27 flags are set on reset exit, software should
interpret the reset cause as power-on.

NOTE
In contrast to all other reset sources, the 1.2 V low-voltage detected (power
domain #0) event is captured on its deassertion. Therefore, the status bit
F_LVD12_PD0 is also asserted on the reset’s deassertion. In case an
alternate event is selected, the SAFE mode or interrupt request are similarly
asserted on the reset’s deassertion.

9.3.1.3 Functional Event Reset Disable Register (RGM_FERD)

F_SWT Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-on

reset assertion
1 A software watchdog timer event has occurred

F_LVD12_P
D1

Flag for 1.2 V low-voltage detected (power domain #1)
0 No 1.2 V low-voltage detected (power domain #1) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2 V low-voltage detected (power domain #1) event has occurred

F_LVD12_P
D0

Flag for 1.2 V low-voltage detected (power domain #0)
0 No 1.2 V low-voltage detected (power domain #0) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2 V low-voltage detected (power domain #0) event has occurred

Address 0xC3FE_4004 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
_E

X
R

0 0 0 0 0 0

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T

D
_C

O
R

E

D
_J

TA
G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-4. Functional Event Reset Disable Register (RGM_FERD)

Table 9-4. Destructive Event Status Register (RGM_DES) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

196 Freescale Semiconductor

This register provides dedicated bits to disable functional reset sources.When a functional reset source is
disabled, the associated functional event will trigger either a SAFE mode request or an interrupt request
(see Section 9.3.1.5, “Functional Event Alternate Request Register (RGM_FEAR)). It can be accessed in
read/write in either supervisor mode or test mode. It can be accessed in read only in user mode. Each byte
can be written only once after power-on reset.

Table 9-5. Functional Event Reset Disable Register (RGM_FERD) Field Descriptions

Field Description

D_EXR Disable External Reset
0 An external reset event triggers a reset sequence
1 An external reset event generates a SAFE mode request

D_FLASH Disable code or data flash fatal error
0 A code or data flash fatal error event triggers a reset sequence
1 A code or data flash fatal error event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_FLASH

D_LVD45 Disable 4.5 V low-voltage detected
0 A 4.5 V low-voltage detected event triggers a reset sequence
1 A 4.5 V low-voltage detected event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_LVD45

D_CMU_FH
L

Disable CMU clock frequency higher/lower than reference
0 A CMU clock frequency higher/lower than reference event triggers a reset sequence
1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or an

interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL

D_CMU_OL
R

Disable FXOSC frequency lower than reference
0 A FXOSC frequency lower than reference event triggers a reset sequence
1 A FXOSC frequency lower than reference event generates either a SAFE mode or an interrupt

request depending on the value of RGM_FEAR.AR_CMU_OLR

D_FMPLL Disable FMPLL fail
0 A FMPLL fail event triggers a reset sequence
1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the value

of RGM_FEAR.AR_FMPLL

D_CHKSTO
P

Disable checkstop reset
0 A checkstop reset event triggers a reset sequence
1 A checkstop reset event generates either a SAFE mode or an interrupt request depending on the

value of RGM_FEAR.AR_CHKSTOP

D_SOFT Disable software reset
0 A software reset event triggers a reset sequence
1 A software reset event generates either a SAFE mode or an interrupt request depending on the

value of RGM_FEAR.AR_SOFT

D_CORE Disable debug control core reset
0 A debug control core reset event triggers a reset sequence
1 A debug control core reset event generates either a SAFE mode or an interrupt request depending

on the value of RGM_FEAR.AR_CORE

D_JTAG Disable JTAG initiated reset
0 A JTAG initiated reset event triggers a reset sequence
1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request depending on

the value of RGM_FEAR.AR_JTAG

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 197

9.3.1.4 Destructive Event Reset Disable Register (RGM_DERD)

This register provides dedicated bits to disable particular destructive reset sources. When a destructive
reset source is disabled, the associated destructive event will trigger either a safe mode request or an
interrupt request (see Section 9.3.1.6, “Destructive Event Alternate Request Register (RGM_DEAR)).

Address 0xC3FE_4006 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0 0 0 0 0 0

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-5. Destructive Event Reset Disable Register (RGM_DERD)

Table 9-6. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions

Field Description

D_LVD27 Disable 2.7 V low-voltage detected
0 A 2.7 V low-voltage detected event triggers a reset sequence
1 A 2.7 V low-voltage detected event generates either a SAFE mode or an interrupt request

depending on the value of RGM_DEAR.AR_LVD27

D_SWT Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence
1 A software watchdog timer event generates either a SAFE mode or an interrupt request depending

on the value of RGM_DEAR.

D_LVD12_P
D1

Disable 1.2 V low-voltage detected (power domain #1)
0 A 1.2 V low-voltage detected (power domain #1) event triggers a reset sequence
1 A 1.2 V low-voltage detected (power domain #1) event generates either a SAFE mode or an

interrupt request depending on the value of RGM_DEAR.AR_LVD12_PD1

D_LVD12_P
D0

Disable 1.2 V low-voltage detected (power domain #0)
0 A 1.2 V low-voltage detected (power domain #0) event triggers a reset sequence
1 A 1.2 V low-voltage detected (power domain #0) event generates either a SAFE mode or an

interrupt request depending on the value of RGM_DEAR.AR_LVD12_PD0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

198 Freescale Semiconductor

9.3.1.5 Functional Event Alternate Request Register (RGM_FEAR)

This register defines an alternate request to be generated when a reset on a functional event has been
disabled. The alternate request can be either a SAFE mode request to MC_ME or an interrupt request to
the system. It can be accessed in read/write in either supervisor mode or test mode. It can be accessed in
read only in user mode.

Address 0xC3FE_4010 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
A

R
_E

X
R

0 0 0 0 0 0

A
R

_F
LA

S
H

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

A
R

_C
H

K
S

TO
P

A
R

_S
O

F
T

A
R

_C
O

R
E

A
R

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-6. Functional Event Alternate Request Register (RGM_FEAR)

Table 9-7. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions

Field Description

AR_EXR Alternate Request for External Reset
0 Generate a SAFE mode request on an external reset event if the reset is disabled
1 Generate an interrupt request on an external reset event if the reset is disabled

AR_FLASH Alternate Request for code or data flash fatal error
0 Generate a SAFE mode request on a code or data flash fatal error event if the reset is

disabled
1 Generate an interrupt request on a code or data flash fatal error event if the reset is disabled

AR_LVD45 Alternate Request for 4.5 V low-voltage detected
0 Generate a SAFE mode request on a 4.5 V low-voltage detected event if the reset is

disabled
1 Generate an interrupt request on a 4.5 V low-voltage detected event if the reset is disabled

AR_CMU_FHL Alternate Request for CMU clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference

event if the reset is disabled
1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event

if the reset is disabled

AR_CMU_OLR Alternate Request for FXOSC frequency lower than reference
0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the

reset is disabled
1 Generate an interrupt request on a FXOSC frequency lower than reference event if the

reset is disabled
For the case when RGM_FERD[D_CMU_OLR] = 1 & RGM_FEAR[AR_CMU_OLR] = 1, an

RGM interrupt will not be generated for an FXOSC failure when the system clock = FXOSC
as there will be no system clock to execute the interrupt service routine. However, the
interrupt service routine will be executed if the FXOSC recovers at some point. The
recommended use case for this feature is when the system clock = FIRC or FMPLL.

AR_FMPLL Alternate Request for FMPLL fail
0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 199

9.3.1.6 Destructive Event Alternate Request Register (RGM_DEAR)

This register defines an alternate request to be generated when a reset on a destructive event has been
disabled. The alternate request can be either a SAFE mode request to MC_ME or an interrupt request to
the system.

AR_CHKSTOP Alternate Request for checkstop reset
0 Generate a SAFE mode request on a checkstop reset event if the reset is disabled
1 Generate an interrupt request on a checkstop reset event if the reset is disabled

AR_SOFT Alternate Request for software reset
0 Generate a SAFE mode request on a software reset event if the reset is disabled
1 Generate an interrupt request on a software reset event if the reset is disabled

AR_CORE Alternate Request for debug control core reset
0 Generate a SAFE mode request on a debug control core reset event if the reset is disabled
1 Generate an interrupt request on a debug control core reset event if the reset is disabled

AR_JTAG Alternate Request for JTAG initiated reset
0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

Address 0xC3FE_4012 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0 0 0 0 0 0

A
R

_L
V

D
27

A
R

_S
W

T

A
R

_L
V

D
12

_P
D

1

A
R

_L
V

D
12

_P
D

0

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-7. Destructive Event Alternate Request Register (RGM_DEAR)

Table 9-8. Destructive Event Alternate Request Register (RGM_DEAR) Field Descriptions

Field Description

AR_LVD27 Alternate Request for 2.7 V low-voltage detected
0 Generate a SAFE mode request on a 2.7 V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 2.7 V low-voltage detected event if the reset is disabled

AR_SWT Alternate Request for software watchdog timer
0 Generate a SAFE mode request on a software watchdog timer event if the reset is disabled
1 Generate an interrupt request on a software watchdog timer event if the reset is disabled

Table 9-7. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

200 Freescale Semiconductor

9.3.1.7 Functional Event Short Sequence Register (RGM_FESS)

This register defines which reset sequence will be done when a functional reset sequence is triggered.The
functional reset sequence can either start from PHASE1 or from PHASE3, skipping PHASE1 and
PHASE2.

NOTE
This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed in read in user
mode.

AR_LVD12_
PD1

Alternate Request for 1.2 V low-voltage detected (power domain #1)
0 Generate a SAFE mode request on a 1.2 V low-voltage detected (power domain #1) event if the

reset is disabled
1 Generate an interrupt request on a 1.2 V low-voltage detected (power domain #1) event if the reset

is disabled

AR_LVD12_
PD0

Alternate Request for 1.2 V low-voltage detected (power domain #0)
0 Generate a SAFE mode request on a 1.2 V low-voltage detected (power domain #0) event if the

reset is disabled
1 Generate an interrupt request on a 1.2 V low-voltage detected (power domain #0) event if the reset

is disabled

Address 0xC3FE_4018 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
S

_E
X

R

0 0 0 0 0 0

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

S
S

_C
O

R
E

S
S

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-8. Functional Event Short Sequence Register (RGM_FESS)

Table 9-9. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions

Field Description

SS_EXR Short Sequence for External Reset
0 The reset sequence triggered by an external reset event will start from PHASE1
1 The reset sequence triggered by an external reset event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_FLASH Short Sequence for code or data flash fatal error
0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1
1 The reset sequence triggered by a code or data flash fatal error event will start from PHASE3,

skipping PHASE1 and PHASE2

Table 9-8. Destructive Event Alternate Request Register (RGM_DEAR) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 201

SS_LVD45 Short Sequence for 4.5 V low-voltage detected
0 The reset sequence triggered by a 4.5 V low-voltage detected event will start from PHASE1
1 The reset sequence triggered by a 4.5 V low-voltage detected event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_CMU_F
HL

Short Sequence for CMU clock frequency higher/lower than reference
0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will

start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will

start from PHASE3, skipping PHASE1 and PHASE2

SS_CMU_O
LR

Short Sequence for FXOSC frequency lower than reference
0 The reset sequence triggered by a FXOSC frequency lower than reference event will start from

PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start from

PHASE3, skipping PHASE1 and PHASE2

SS_FMPLL Short Sequence for FMPLL fail
0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
1 The reset sequence triggered by a FMPLL fail event will start from PHASE3, skipping PHASE1

and PHASE2

SS_CHKST
OP

Short Sequence for checkstop reset
0 The reset sequence triggered by a checkstop reset event will start from PHASE1
1 The reset sequence triggered by a checkstop reset event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_SOFT Short Sequence for software reset
0 The reset sequence triggered by a software reset event will start from PHASE1
1 The reset sequence triggered by a software reset event will start from PHASE3, skipping PHASE1

and PHASE2

SS_CORE Short Sequence for debug control core reset
0 The reset sequence triggered by a debug control core reset event will start from PHASE1
1 The reset sequence triggered by a debug control core reset event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_JTAG Short Sequence for JTAG initiated reset
0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
1 The reset sequence triggered by a JTAG initiated reset event will start from PHASE3, skipping

PHASE1 and PHASE2

Table 9-9. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

202 Freescale Semiconductor

9.3.1.8 STANDBY Reset Sequence Register (RGM_STDBY)

This register defines the reset sequence to be applied on STANDBY mode exit. It can be accessed in
read/write in either supervisor mode or test mode. It can be accessed in read only in user mode.

NOTE
This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

9.3.1.9 Functional Bidirectional Reset Enable Register (RGM_FBRE)

This register enables the generation of an external reset on functional reset. It can be accessed in read/write
in either supervisor mode or test mode. It can be accessed in read in user mode.

Address 0xC3FE_401A Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0 0

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-9. STANDBY Reset Sequence Register (RGM_STDBY)

Table 9-10. STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions

Field Description

BOOT_
FROM_

BKP_RAM

Boot from Backup SRAM indicator — This bit indicates whether the system will boot from backup
SRAM or flash out of STANDBY exit.
0 Boot from default boot location on STANDBY exit
1 Boot from backup SRAM on STANDBY exit

Address 0xC3FE_401C Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B
E

_E
X

R

0 0 0 0 0 0

B
E

_F
LA

S
H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

B
E

_C
O

R
E

B
E

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-10. Functional Bidirectional Reset Enable Register (RGM_FBRE)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 203

9.4 Functional Description

9.4.1 Reset State Machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the correct parts of
the device are reset based on the reset source event. This is summarized in Table 9-12.

Table 9-11. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field Description

BE_EXR Bidirectional Reset Enable for External Reset
0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_FLASH Bidirectional Reset Enable for code or data flash fatal error
0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45 Bidirectional Reset Enable for 4.5 V low-voltage detected
0 RESET is asserted on a 4.5 V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5 V low-voltage detected event

BE_CMU_F
HL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference
0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset is
enabled
1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_O
LR

Bidirectional Reset Enable for FXOSC frequency lower than reference
0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL Bidirectional Reset Enable for FMPLL fail
0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKST
OP

Bidirectional Reset Enable for checkstop reset
0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT Bidirectional Reset Enable for software reset
0 RESET is asserted on a software reset event if the reset is enabled
1 RESET is not asserted on a software reset event

BE_CORE Bidirectional Reset Enable for debug control core reset
0 RESET is asserted on a debug control core reset event if the reset is enabled
1 RESET is not asserted on a debug control core reset event

BE_JTAG Bidirectional Reset Enable for JTAG initiated reset
0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event

Table 9-12. MC_RGM Reset Implications

Source What Gets Reset
External Reset

Assertion
Boot Mode

Capture

power-on reset all yes yes

MPC5604B/C Microcontroller Reference Manual, Rev. 8

204 Freescale Semiconductor

NOTE
JTAG logic has its own independent reset control and is not controlled by
the MC_RGM in any way.

The reset sequence is comprised of five phases managed by a state machine, which ensures that all phases
are correctly processed through waiting for a minimum duration and until all processes that need to occur
during that phase have been completed before proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 9-11.

‘destructive’ resets all except some clock/reset management yes yes

external reset all except some clock/reset management and
debug

yes yes

‘functional’ resets all except some clock/reset management and
debug

programmable1 programmable2

shortened ‘functional’ resets3 flip-flops except some clock/reset management programmable1 programmable2

1 the assertion of the external reset is controlled via the RGM_FBRE register
2 the boot mode is captured if the external reset is asserted
3 the short sequence is enabled via the RGM_FESS register

Table 9-12. MC_RGM Reset Implications (continued)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 205

x

9.4.1.1 PHASE0 Phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’ reset event. The
reset state machine exits PHASE0 and enters PHASE1 on verification of the following:

Figure 9-11. MC_RGM State Machine

PHASE0

PHASE1

PHASE2

PHASE3

IDLE

duration 3 fast internal RC oscillator (16 MHz) clock cycles

FIRC stable, VREG voltage okay done

duration 350 fast internal RC oscillator (16 MHz) clock
cycles

durationfast internal RC oscillator (16 MHz) clock cycles

code and data flash initialization done

duration 40fast internal RC oscillator (16 MHz) clock cycles

code and data flash initialization done

fast internal RC oscillator (16 MHz) clock is running

power-up has completed

power-on
or enabled

‘destructive’
reset

enabled
non-shortened

external or
‘functional’

reset1

enabled
shortened
external or
‘functional’

reset
code and data flash initialization done

RESET released

MPC5604B/C Microcontroller Reference Manual, Rev. 8

206 Freescale Semiconductor

• power-up has completed

• fast internal RC oscillator (16 MHz) clock is running

• all enabled ‘destructive’ resets have been processed

• all processes that need to be done in PHASE0 are completed

— FIRC stable, VREG voltage okay

• a minimum of 3 fast internal RC oscillator (16 MHz) clock cycles have elapsed since power-up
completion and the last enabled ‘destructive’ reset event

9.4.1.2 PHASE1 Phase

This phase is entered either on exit from PHASE0 or immediately from PHASE2, PHASE3, or IDLE on
a non-masked external or ‘functional’ reset event if it has not been configured to trigger a ‘short’ sequence.
The reset state machine exits PHASE1 and enters PHASE2 on verification of the following:

• all enabled, non-shortened ‘functional’ resets have been processed

• a minimum of 350 fast internal RC oscillator (16 MHz) clock cycles have elapsed since the last
enabled external or non-shortened ‘functional’ reset event

9.4.1.3 PHASE2 Phase

This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and enters PHASE3
on verification of the following:

• all processes that need to be done in PHASE2 are completed

— code and data flash initialization

• a minimum of 8 fast internal RC oscillator (16 MHz) clock cycles have elapsed since entering
PHASE2

9.4.1.4 PHASE3 Phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an enabled, shortened
‘functional’ reset event. The reset state machine exits PHASE3 and enters IDLE on verification of the
following:

• all processes that need to be done in PHASE3 are completed

— code and data flash initialization

• a minimum of 40 fast internal RC oscillator (16 MHz) clock cycles have elapsed since the last
enabled, shortened ‘functional’ reset event

9.4.1.5 IDLE Phase

This is the final phase and is entered on exit from PHASE3. When this phase is reached, the MC_RGM
releases control of the system to the platform and waits for new reset events that can trigger a reset
sequence.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 207

9.4.2 Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or memory content
can no longer be guaranteed.

The status flag associated with a given ‘destructive’ reset event (RGM_DES.F_<destructive reset> bit) is
set when the ‘destructive’ reset is asserted and the power-on reset is not asserted. It is possible for multiple
status bits to be set simultaneously, and it is software’s responsibility to determine which reset source is
the most critical for the application.

The ‘destructive’ reset can be optionally disabled by writing bit RGM_DERD.D_<destructive reset>.

NOTE
The RGM_DERD register can be written only once between two power-on
reset events.

The device’s low-voltage detector threshold ensures that, when 1.2 V low-voltage detected (power domain
#0) is enabled, the supply is sufficient to have the destructive event correctly propagated through the digital
logic. Therefore, if a given ‘destructive’ reset is enabled, the MC_RGM ensures that the associated reset
event will be correctly triggered to the full system. However, if the given ‘destructive’ reset is disabled and
the voltage goes below the digital functional threshold, functionality can no longer be ensured, and the
reset may or may not be asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of PHASE0.

9.4.3 External Reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling edge on RESET
will start the reset sequence from the beginning of PHASE1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit) is set when
the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.

NOTE
The RGM_FERD register can be written only once between two power-on
reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning of PHASE1.
Nevertheless, the RGM_FESS register enables the further configuring of the reset sequence triggered by
the external reset. When RGM_FESS.SS_EXR is set, the external reset will trigger a reset sequence
starting directly from the beginning of PHASE3, skipping PHASE1 and PHASE2. This can be useful
especially when an external reset should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by one of the
following:

• a power-on reset

• a ‘destructive’ reset event

MPC5604B/C Microcontroller Reference Manual, Rev. 8

208 Freescale Semiconductor

• an external reset event

• a ‘functional’ reset event configured via the RGM_FBRE register to assert the external reset

In this case, the external reset is asserted until the end of PHASE3.

9.4.4 Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed that critical
register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event (RGM_FES.F_<functional reset> bit) is set
when the ‘functional’ reset is asserted and the power-on reset is not asserted. It is possible for multiple
status bits to be set simultaneously, and it is software’s responsibility to determine which reset source is
the most critical for the application.

The ‘functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

NOTE
The RGM_FERD register can be written only once between two power-on
reset events.

An enabled functional reset will normally trigger a reset sequence starting from the beginning of PHASE1.
Nevertheless, the RGM_FESS register enables the further configuring of the reset sequence triggered by
a functional reset. When RGM_FESS.SS_<functional reset> is set, the associated ‘functional’ reset will
trigger a reset sequence starting directly from the beginning of PHASE3, skipping PHASE1 and PHASE2.
This can be useful especially in case a functional reset should not reset the flash module.

9.4.5 STANDBY Entry Sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry, the
MC_RGM moves to PHASE1. The minimum duration counter in PHASE1 does not start until STANDBY
mode is exited. On entry to PHASE1 due to STANDBY mode entry, the resets for all power domains
except power domain #0 are asserted. During this time, RESET is not asserted as the external reset can act
as a wakeup for the device.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit by configuring
the DRUN mode before STANDBY entry so that the flash is in power-down or low-power mode. If the
flash is to be inaccessible, the PHASE2 and PHASE3 states do not wait for the flash to complete
initialization before exiting, and the reset to the flash remains asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

9.4.6 Alternate Event Generation

The MC_RGM provides alternative events to be generated on reset source assertion. When a reset source
is asserted, the MC_RGM normally enters the reset sequence. Alternatively, it is possible for each reset

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 209

source event (except the power-on reset event) to be converted from a reset to either a SAFE mode request
issued to the MC_ME or to an interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_F/DERD and RGM_F/DEAR
registers as shown in Table 9-13.

The alternate event is cleared by deasserting the source of the request (i.e. at the reset source that caused
the alternate request) and also clearing the appropriate RGM_F/DES status bit.

NOTE
Alternate requests (SAFE mode as well as interrupt requests) are generated
asynchronously.

NOTE
If a masked ‘destructive’ reset event which is configured to generate a
SAFE mode/interrupt request occurs during PHASE0, it is ignored, and the
MC_RGM will not send any safe mode/interrupt request to the MC_ME.
The same is true for masked ‘functional’ reset events during PHASE1.

9.4.7 Boot Mode Capturing

The MC_RGM provides sampling of the boot mode PA[8] and PA[9] for use by the system to determine
the boot mode. This sampling is done five fast internal RC oscillator (16 MHz) clock cycles before the
rising edge of RESET. The result of the sampling is then provided to the system. For each bit, a value of
‘1’ is produced only if each of the oldest three of the five samples have the value ‘1’, otherwise a value of
‘0’ is produced.

NOTE
In order to ensure that the boot mode is correctly captured, the application
needs to apply the valid boot mode value to the device at least five fast
internal RC oscillator (16 MHz) clock periods before the external reset
deassertion crosses the VIH threshold.

NOTE
RESET can be low as a consequence of the internal reset generation. This
will force re-sampling of the boot mode pins.

Table 9-13. MC_RGM Alternate Event Selection

RGM_F/DERD
Bit Value

RGM_F/DEAR
Bit Value

Generated Event

0 X reset

1 0 SAFE mode request

1 1 interrupt request

MPC5604B/C Microcontroller Reference Manual, Rev. 8

210 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 211

Chapter 10
Power Control Unit (MC_PCU)

10.1 Introduction

10.1.1 Overview

The power control unit (MC_PCU) is used to reduce the overall SoC power consumption. Power can be
saved by disconnecting parts of the SoC from the power supply via a power switching device. The SoC is
grouped into multiple parts having this capability which are called “power domains”.

When a power domain is disconnected from the supply, the power consumption is reduced to zero in that
domain. Any status information of such a power domain is lost. When re-connecting a power domain to
the supply voltage, the domain draws an increased current until the power domain reaches its operational
voltage.

Power domains are controlled on a device mode basis. For each mode, software can configure whether a
power domain is connected to the supply voltage (power-up state) or disconnected (power-down state).
Maximum power saving is reached by entering the STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the power domain
configuration registers and initiates a power-down or a power-up sequence for each individual power
domain. The power-up/down sequences are handled by finite state machines to ensure a smooth and safe
transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power domains other than
power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU address
space.

Figure 10-1 depicts the MC_PCU block diagram.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

212 Freescale Semiconductor

10.1.2 Features

The MC_PCU includes the following features:

• support for 3 power domains

• support for device modes RESET, DRUN, SAFE, TEST, RUN0…3, HALT, STOP, and STANDBY
(for further mode details, please see the MC_ME chapter)

• power states updating on each mode change and on system wakeup

• a handshake mechanism for power state changes thus guaranteeing operable voltage

• maps the VREG registers to the MC_PCU address space

10.1.3 Modes of Operation

The MC_PCU is available in all device modes.

MC_ME

FIRC

VREG

WKPUpower
domains

Power Domain
State Machines

Registers

Platform Interface

MC_PCU

Figure 10-1. MC_PCU Block Diagram

M
ap

pe
d

M
od

ul
e

In
te

rf
ac

e

mapped
peripheral

core

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 213

10.2 External Signal Description
The MC_PCU has no connections to any external pins.

10.3 Memory Map and Register Definition

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

• cause a transfer error

Table 10-1. MC_PCU Register Description

Address Name Description Size
Access

Location
Supervisor

0xC3FE_8000 PCU_PCONF0 Power Domain #0 Configuration word read on page 215

0xC3FE_8004 PCU_PCONF1 Power Domain #1 Configuration word read on page 216

0xC3FE_8008 PCU_PCONF2 Power Domain #2 Configuration word read/write on page 217

0xC3FE_8040 PCU_PSTAT Power Domain Status Register word read on page 217

Table 10-2. MC_PCU Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_8000

PCU_PCONF0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE
_8004

PCU_PCONF1 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE
_8008

PCU_PCONF2 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0 0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

MPC5604B/C Microcontroller Reference Manual, Rev. 8

214 Freescale Semiconductor

10.3.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes are ordered
according to big endian. For example, the PD0 field of the PCU_PSTAT register may be accessed as a word
at address 0xC3FE_8040, as a half-word at address 0xC3FE_8042, or as a byte at address 0xC3FE_8043.

0xC3FE
_800C

…
0xC3FE
_803C

reserved

0xC3FE
_8040

PCU_PSTAT R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0

P
D

2

P
D

1

P
D

0

W

0x044
…

0x07C
reserved

0xC3FE
_8080

…
0xC3FE
_80FC

VREG registers

0xC3FE
_8100

…
0xC3FE
_BFFC

reserved

Table 10-2. MC_PCU Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 215

10.3.1.1 Power Domain #0 Configuration Register (PCU_PCONF0)

This register defines for power domain #0 whether it is on or off in each device mode. As power domain
#0 is the always-on power domain (and includes the MC_PCU), none of its bits are programmable. This
register is available for completeness reasons.

Address 0xC3FE_8000 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 10-2. Power Domain #0 Configuration Register (PCU_PCONF0)

Table 10-3. Power Domain Configuration Register Field Descriptions

Field Description

RST Power domain control during RESET mode
0 Power domain off
1 Power domain on

TEST Power domain control during TEST mode
0 Power domain off
1 Power domain on

SAFE Power domain control during SAFE mode
0 Power domain off
1 Power domain on

DRUN Power domain control during DRUN mode
0 Power domain off
1 Power domain on

RUN0 Power domain control during RUN0 mode
0 Power domain off
1 Power domain on

RUN1 Power domain control during RUN1 mode
0 Power domain off
1 Power domain on

RUN2 Power domain control during RUN2 mode
0 Power domain off
1 Power domain on

RUN3 Power domain control during RUN3 mode
0 Power domain off
1 Power domain on

MPC5604B/C Microcontroller Reference Manual, Rev. 8

216 Freescale Semiconductor

10.3.1.2 Power Domain #1 Configuration Register (PCU_PCONF1)

This register defines for power domain #1 whether it is on or off in each device mode. The bit field
description is the same as in Table 10-3. As the platform, clock generation, and mode control reside in
power domain #1, this power domain is only powered down during the STANDBY mode. Therefore, none
of the bits is programmable. This register is available for completeness reasons.

The difference between PCU_PCONF0 and PCU_PCONF1 is the reset value of the STBY0 bit: During
the STANDBY mode, power domain #1 is disconnected from the power supply, and therefore
PCU_PCONF1.STBY0 is always ‘0’. Power domain #0 is always on, and therefore
PCU_PCONF0.STBY0 is ‘1’.

For further details about STANDBY mode, please see Section 10.4.4.2, “STANDBY Mode Transition.

HALT Power domain control during HALT mode
0 Power domain off
1 Power domain on

STOP Power domain control during STOP mode
0 Power domain off
1 Power domain on

STBY0 Power domain control during STANDBY mode
0 Power domain off
1 Power domain on

Address 0xC3FE_8004 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 10-3. Power Domain #1 Configuration Register (PCU_PCONF1)

Table 10-3. Power Domain Configuration Register Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 217

10.3.1.3 Power Domain #2 Configuration Register (PCU_PCONF2)

This register defines for power domain #2 whether it is on or off in each device mode. The bit field
description is the same as in Table 10-3.

10.3.1.4 Power Domain Status Register (PCU_PSTAT)

This register reflects the power status of all available power domains.

Address 0xC3FE_8008 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y

0 0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 10-4. Power Domain #2 Configuration Register (PCU_PCONF2)

Address 0xC3FE_8040 Access: Supervisor read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
D

2

P
D

1

P
D

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Figure 10-5. Power Domain Status Register (PCU_PSTAT)

Table 10-4. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

PDn Power status for power domain #n
0 Power domain is inoperable
1 Power domain is operable

MPC5604B/C Microcontroller Reference Manual, Rev. 8

218 Freescale Semiconductor

10.4 Functional Description

10.4.1 General

The MC_PCU controls all available power domains on a device mode basis. The PCU_PCONFn registers
specify during which system/user modes a power domain is powered up. The power state for each
individual power domain is reflected by the bits in the PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power state. The power
state is controlled by a state machine (FSM) for each individual power domain which ensures a clean and
safe state transition.

10.4.2 Reset / Power-On Reset

After any reset, the SoC will transition to the RESET mode during which all power domains are powered
up (see the MC_ME chapter). Once the reset sequence has been completed, the DRUN mode is entered
and software can begin the MC_PCU configuration.

10.4.3 MC_PCU Configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can change the
configuration for each power domain on a mode basis by programming the PCU_PCONFn registers.

Each power domain which is powered down is held in a reset state. Read/write accesses to peripherals in
those power domains will result in a transfer error.

10.4.4 Mode Transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power configurations for all
power domains. It compares the settings in the PCU_PCONFn registers for the new mode with the settings
for the current mode. If the configuration for a power domain differs between the modes, a power state
change request is generated. These requests are handled by a finite state machine to ensure a smooth and
safe transition from one power state to another.

10.4.4.1 DRUN, SAFE, TEST, RUN0…3, HALT, and STOP Mode Transition

The DRUN, SAFE, TEST, RUN0…3, HALT, and STOP modes allow an increased power saving. The
level of power saving is software-controllable via the settings in the PCU_PCONFn registers for power
domain #2 onwards. The settings for power domains #0 and #1 can not be changed. Therefore, power
domains #0 and #1 remain connected to the power supply for all modes beside STANDBY.

Figure 10-6 shows an example for a mode transition from RUN0 to HALT and back, which will result in
power domain #2 being powered down during the HALT mode. In this case, PCU_PCONF2.HALT is
programmed to be ‘0’.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 219

When the MC_PCU receives the mode change request to HALT mode, it starts its power-down phase.
During the power-down phase, clocks are disabled and the reset is asserted resulting in a loss of all
information for this power domain.

Then the power domain is disconnected from the power supply (power-down state).

When the MC_PCU receives a mode change request to RUN0, it starts its power-up phase if
PCU_PCONF2.RUN0 is ‘1’. The power domain is re-connected to the power supply, and the voltage in
power domain #2 will increase slowly. Once the voltage of power domain #2 is within an operable range,
its clocks are enabled, and its resets are deasserted (power-up state).

NOTE
It is possible that, due to a mode change, power-up is requested before a
power domain completed its power-down sequence. In this case, the
information in that power domain is lost.

10.4.4.2 STANDBY Mode Transition

STANDBY offers the maximum power saving. The level of power saving is software-controllable via the
settings in the PCU_PCONFn registers for power domain #2 onwards. Power domain #0 stays connected
to the power supply while power domain #1 is disconnected from the power supply. Amongst others power
domain #1 contains the platform and the MC_ME. Therefore this mode differs from all other user/system
modes.

Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY mode, all
power domains are powered up according to the settings in the PCU_PCONFn registers, and the DRUN
mode is entered. In DRUN mode, at least power domains #0 and #1 are powered.

new mode

power-down

RUN0

voltage in

PSTAT.PD2

HALT RUN0

Notes:

Not drawn to scale; PCONF2.RUN0 = 1; PCONF2.HALT = 0

current mode

power-up phase

power domain #2

RUN0 HALT RUN0

requested by ME

power-down state power-up statepower-up state
phase

Figure 10-6. MC_PCU Events During Power Sequences (non-STANDBY mode)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

220 Freescale Semiconductor

Figure 10-7 shows an example for a mode transition from RUN0 to STANDBY to DRUN. All power
domains which have PCU_PCONFn.STBY0 cleared will enter power-down phase. In this example only
power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the power down phase
for power domain #1. During the power down phase, clocks are disabled and reset is asserted resulting in
a loss of all information for this power domain. Then the power domain is disconnected from the power
supply (power-down state).

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The power domain is
re-connected to the power supply and the voltage in power domain #1 will increase slowly. Once the
voltage is in an operable range, clocks are enabled and the reset is be deasserted (power-up state).

NOTE
It is possible that due to a wakeup request, power-up is requested before a
power domain completed its power-down sequence. In this case, the
information in that power domain is lost.

10.4.4.3 Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a power saving
state. No software configuration is required to enable this power saving state. While a memory is residing
in this state an increased power saving is achieved. Data in the memories is retained.

new mode

power-down

RUN0

voltage in

PSTAT.PD1

STANDBY

Notes:

Not drawn to scale; PCONF1.RUN0 = 1; PCONF1.STBY0 = 0

current mode

power-up phase

power domain #1

RUN0 STANDBY DRUN

requested by ME

power-down state power-up statepower-up state
phase

Mode set due to reset being asserted to power domain #1

wakeup request

Figure 10-7. MC_PCU Events During Power Sequences (STANDBY mode)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 221

10.5 Initialization Information
To initialize the MC_PCU, the registers PCU_PCONF2… should be programmed. After programming is
done, those registers should no longer be changed.

10.6 Application Information

10.6.1 STANDBY Mode Considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time a power
domain is disconnected from the supply. Increased power is required when a power domain is re-connected
to the power supply. Additional power is required during restoring the information (e.g. in the platform).
Care should be taken that the time during which the SoC is operating in STANDBY mode is significantly
longer than the required time for restoring the information.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

222 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 223

Chapter 11
Voltage Regulators and Power Supplies

11.1 Voltage regulators
The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main supply is
(3.3 V–5 V ± 10%) and digital/regulated output supply is (1.2 V ± 10%). The voltage regulator used in
MPC5604B comprises three regulators.

• High power regulator (HPREG)

• Low power regulator (LPREG)

• Ultra low power regulator (ULPREG)

The HPREG and LPREG regulators are switched off during STANDBY mode to save consumption from
the regulator itself. In STANDBY mode, the supply is provided by the ULPREG regulator.

In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME chapter). In
this case, when current is low enough to be handled by LPREG alone, the HPREG regulator is switch-off
and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to the device in
order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the
board as near as possible to the associated pins.

The regulator has two digital domains, one for the high power regulator (HPREG) and the low power
regulator (LPREG) called “High Power domain” and another one for the ultra low power regulator
(ULPREG) called “Standby domain.” For each domain there is a low voltage detector for the 1.2 V output
voltage. Additionally there are two low voltage detectors for the main/input supply with different
thresholds, one at the 3.3 V level and the other one at the 5 V level.

11.1.1 High power regulator (HPREG)

The HPREG converts the 3.3 V–5 V input supply to a 1.2 V digital supply. For more information, see the
voltage regulator electrical characteristics section of the data sheet.

The regulator can be switched off by software. Refer to the main voltage regulator control bit (MVRON)
of the mode configuration registers in the mode entry module chapter of the reference manuals.

11.1.2 Low power regulator (LPREG)

The LPREG generates power for the device in the STOP mode, providing the output supply of 1.2 V. It
always sees the minimum external capacitance. The control part of the regulator can be used to disable the
low power regulator. It is managed by MC_ME.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

224 Freescale Semiconductor

11.1.3 Ultra low power regulator (ULPREG)

The ULPREG generates power for the standby domain as well as a part of the main domain and might or
might not see the external capacitance. The control circuit of ULPREG can be used to disable the ultra low
power regulator by software: This action is managed by MC_ME.

11.1.4 LVDs and POR

There are three kinds of LVD available:

1. LVD_MAIN for the 3.3 V–5 V input supply with thresholds at approximately 3 V level1

2. LVD_MAIN5 for the 3.3 V–5 V input supply with threshold at approximately 4.5 V level1

3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAIN5 sense the 3.3 V–5 V power supply for CORE, shared with IO ring
supply and indicate when the 3.3 V–5 V supply is stabilized.

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power domain and senses
the HPREG/LPREG output notifying that the 1.2 V output is stable. The other LVD_DIG is placed in the
standby domain and senses the standby 1.2 V supply level notifying that the 1.2 V output is stable. The
reference voltage used for all LVDs is generated by the low power reference generator and is trimmed for
LVD_DIG, using the bits LP[4:7]. Therefore, during the pre-trimming period, LVD_DIG exhibits higher
thresholds, whereas during post trimming, the thresholds come in the desired range. Power-down pins are
provided for LVDs. When LVDs are power-down, their outputs are pulled high.

POR is required to initialize the device during supply rise. POR works only on the rising edge of the main
supply. To ensure its functioning during the following rising edge of the supply, it is reset by the output of
the LVD_MAIN block when main supply reaches below the lower voltage threshold of the LVD_MAIN.

POR is asserted on power-up when Vdd supply is above VPORUP min (refer to data sheet for details). It
will be released only after Vdd supply is above VPORH (refer to data sheet for details). Vdd above VPORH
ensures power management module including internal LVDs modules are fully functional.

11.1.5 VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up and at exit from
low-power modes. A signal, indicating that Ultra Low Power domain is powered, is used at power-up to
release reset to temporization counter. At exit from low-power modes, the power-down for high power
regulator request signal is monitored by the digital interface and used to release reset to the temporization
counter. In both cases, on completion of the delay counter, a end-of-count signal is released, it is gated with
an other signal indicating main domain voltage fine in order to release the VREGOK signal. This is used
by MC_RGM to release the reset to the device. It manages other specific requirements, like the transition
between high power/low power mode to ultra low power mode avoiding a voltage drop below the
permissible threshold limit of 1.08 V.

The VREG digital interface also holds control register to mask 5 V LVD status coming from the voltage
regulator at the power-up.

1. See section “Voltage monitor electrical characteristics” of the data sheet for detailed information about this voltage value.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 225

11.1.6 Register description

The VREG_CTL register is mapped to the MC_PCU address space as described in Chapter 10, Power
Control Unit (MC_PCU).

11.2 Power supply strategy
From a power-routing perspective, the device is organized as follows.

The device provides four dedicated supply domains at package level:

1. HV (high voltage external power supply for I/Os and most analog module) — This must be
provided externally through VDD_HV/VSS_HV power pins. Voltage values should be aligned
with VDD/VSS. Refer to data sheet for details.

2. ADC (high voltage external power supply for ADC module) — This must be provided externally
through VDD_HV_ADC/VSS_HV_ADC power pins. Voltage values should be aligned with
VDD_HV_ADC/VSS_HV_ADC. Refer to data sheet for details.

3. BV (high voltage external power supply for voltage regulator module) — This must be provided
externally through VDD_BV_/VSS_BV power pins. Voltage values should be aligned with
VDD/VSS. Refer to data sheet for details.

Address: 0xC3FE_8080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5V
_L

V
D

_M
A

S
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 11-1. Voltage Regulator Control Register (VREG_CTL)

Table 11-1. VREG_CTL field descriptions

Field Description

5V_LVD_MASK Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘1’ by software to generate LVD
functional reset request to MC_RGM for 5 V trip.
1: 5 V LVD is masked
0: 5 V LVD is not masked.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

226 Freescale Semiconductor

4. LV (low voltage internal power supply for core, FMPLL and Flash digital logic) — This is
generated internally by embedded voltage regulator and provided to the core, FMPLL and Flash.
Three VDD_LV/VSS_LV pins pairs are provided to connect the three decoupling capacitances.
This is generated internally by internal voltage regulator but provided outside to connect stability
capacitor. Refer to data sheet for details.

The four dedicated supply domains are further divided within the package in order to reduce as much as
possible EMC and noise issues.

• HV_IO: High voltage pad supply

• HV_FLAn: High voltage Flash supply

• HV_OSC0REG1: High voltage external oscillator and regulator supply

• HV_ADR: High voltage reference for ADC module. Supplies are further star routed to reduce
impact of ADC resistive reference on ADC capacitive reference accuracy.

• HV_ADV: High voltage supply for ADC module

• BV: High voltage supply for voltage regulator ballast. These two ballast pads are used to supply
core and Flash. Each pad contains two ballasts to supply 80 mA and 20 mA respectively. Core is
hence supplied through two ballasts of 80 mA capability and CFlash and DFlash through two
20 mA ballasts. The HV supply for both ballasts is shorted through double bonding.

• LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through
double bonding.

• LV_FLAn: Low voltage supply for Flash module n. It is supplied with dedicated ballast and
shorted to LV_COR through double bonding.

• LV_PLL2: Low voltage supply for FMPLL

11.3 Power domain organization
Based on stringent requirements for current consumption in different operational modes, the device is
partitioned into different power domains. Organization into these power domains primarily means separate
power supplies which are separated from each other by use of power switches (switch SW1 for power
domain No. 1 and switch SW2 for power domain No. 2 as shown in Figure 11-2). These different separated
power supplies are hence enabling to switch off power to certain regions of the device to avoid even
leakage current consumption in logic supplied by the corresponding power supply.

This device employs three primary power domains, namely PD0, PD1 and PD2.

As PCU supports dynamic power down of domains based on different device mode, such a possible
domain is depicted below in dotted periphery.

Power domain organization and connections to the internal regulator are depicted in Figure 11-2.

1. Regulator ground is separated from oscillator ground and shorted to the LV ground through star routing
2. During production test, it is also possible to provide the VDD_LV externally through pins by configuring regulator in bypass
mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 227

VDD_LV_BKP
V

dd

PD0

PD1

PCU

HPVDD
ULPVDD

LPVDD

SW1

ip
e_

is
o0

SIRC

RGM

FIRC

VGATE

HV

P
O

R
1H

V
P

O
R

2H
V

n
by

p
as

s

H
P

P
D

L
P

P
D

Vss

VREG

API

CAN
sampler

WKPU

CFlash

DFlash

R
C

 D
ig

Wakeup Pads

S
IU

L

Option bits

Reset

platform

PA0

PA1

PA2

PH15

VDD12

330nF

CGM

CGL

ME

Peripheral
Set

FMPLL

Peripheral
Set

AVDDref

AVDDsupply

AVSSsupply

AVSSref

Vdd5_cfla

Vdd5_dlf

330nF

330nF

ADC

VDD_LV_COR VDD_LV_BKP

VDD_LV_BKP domain

VDD_LV_FLA0

ip
e_

pd

V
D

D
5B

VDD_LV_FLA1

8 KB SRAM

PD2

24 KB SRAM

SW2

Vss

PAx PBx PCx PEx PFx PGx
e200z0h

16 KB SRAM

JTAG

MPC5604B/C Microcontroller Reference Manual, Rev. 8

228 Freescale Semiconductor

Figure 11-2. Power domain organization

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 229

Chapter 12
Wakeup Unit (WKPU)

12.1 Overview
The Wakeup Unit supports 2 internal sources (WKPU[0:1]) and up to 181 external sources (WKPU[2:19])
that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests.
Figure 12-1 is the block diagram of the Wakeup Unit and its interfaces to other system components.

The wakeup vector mapping is shown in Table 12-1. All unused WKPU pins must use a pull resistor —
either pullup (internal or external) or pulldown (external) — to ensure no leakage from floating inputs.

1. Up to 18 external sources in 144-pin LQFP and 208BGA; up to 14 external sources in 100-pin LQFP

Table 12-1. Wakeup vector mapping

Wakeup
number

Port
SIU

PCR#

Port input
function1 (can

be used in
conjunction
with WKPU
function)

WKPU IRQ to
INTC IR

Q
#

WISR
Register

2 bit
position

Package

64
-p

in
 Q

F
P

10
0-

pi
n

Q
F

P

14
4-

pi
n

Q
F

P

20
8-

pi
n

B
G

A

WKPU0 API n/a3 — WakeUp_IRQ_0 46 EIF0 31 3 3 3 3

WKPU1 RTC n/a3 — EIF1 30 3 3 3 3

WKPU2 PA1 PCR1 NMI EIF2 29

WKPU3 PA2 PCR2 — EIF3 28

WKPU4 PB1 PCR17 CAN0-RX EIF4 27

WKPU5 PC11 PCR43 CAN1-RX,
CAN4-RX

EIF5 26 x4

WKPU6 PE0 PCR64 CAN5-RX EIF6 25 x4

WKPU7 PE9 PCR73 CAN2-RX,
CAN3-RX

EIF7 24 x4

WKPU8 PB10 PCR26 — WakeUp_IRQ_1 47 EIF8 23

WKPU9 PA4 PCR4 — EIF9 22

WKPU10 PA15 PCR15 — EIF10 21

WKPU11 PB3 PCR19 LIN0-RX EIF11 20

WKPU12 PC7 PCR39 LIN1-RX EIF12 19

WKPU13 PC9 PCR41 LIN2-RX EIF13 18

WKPU14 PE11 PCR75 LIN3-RX EIF14 17 x4

WKPU15 PF11 PCR91 — EIF15 16 x4 x4

MPC5604B/C Microcontroller Reference Manual, Rev. 8

230 Freescale Semiconductor

Figure 12-1. WKPU block diagram

WKPU16 PF13 PCR93 — WakeUp_IRQ_2 48 EIF16 15 x4 x4

WKPU17 PG3 PCR99 — EIF17 14 x4 x4

WKPU18 PG5 PCR101 — EIF18 13 x4 x4

WKPU19 PA0 PCR0 — EIF19 12

1 This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication
functions (such as CAN and LINFlex Rx) that could be used to wake up the microcontroller. DSPI pins are not included
because DSPI would typically be used in master mode.

2 WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER
3 Port not required to use timer functions.
4 Unavailable WKPU pins must use internal pullup enabled using WIPUER.

Table 12-1. Wakeup vector mapping (continued)

Wakeup
number

Port
SIU

PCR#

Port input
function1 (can

be used in
conjunction
with WKPU
function)

WKPU IRQ to
INTC IR

Q
#

WISR
Register

2 bit
position

Package

64
-p

in
 Q

F
P

10
0-

pi
n

Q
F

P

14
4-

pi
n

Q
F

P

20
8-

pi
n

B
G

A

IPS
BUS

Pads

Interrupt
Controller

Peripheral

Mode /
Power Control

IRQs

system wakeup

wakeup

0-19

Platform

0-2

NMI / Wakeup
- Configuration

IRQ / Wakeup
- Configuration

Wakeup Unit

IOMux

RTC, etc.
0-19

filter

filter

filter bypass

filter bypass

NMI enable

Bridge

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 231

12.2 Features
The Wakeup Unit supports these distinctive features:

• Non-maskable interrupt support with

— 1 NMI source with bypassable glitch filter

— Independent interrupt destination: non-maskable interrupt, critical interrupt, or machine check
request

— Edge detection

• External wakeup/interrupt support with

— 3 system interrupt vectors for up to 18 interrupt sources

— Analog glitch filter per each wakeup line

— Independent interrupt mask

— Edge detection

— Configurable system wakeup triggering from all interrupt sources

— Configurable pullup

• On-chip wakeup support

— 2 wakeup sources

— Wakeup status mapped to same register as external wakeup/interrupt status

12.3 External signal description
The Wakeup Unit has 18 signal inputs that can be used as external interrupt sources in normal RUN mode
or as system wakeup sources in all power down modes.

The 18 external signal inputs include one signal input that can be used as a non-maskable interrupt source
in normal RUN, HALT or STOP modes or a system wakeup source in STOP or STANDBY modes.

NOTE
The user should be aware that the Wake-up pins are enabled in ALL modes,
therefore, the Wake-up pins should be correctly terminated to ensure
minimal current consumption. Any unused Wake-up signal input should be
terminated by using an external pull-up or pull-down, or by internal pull-up
enabled at WKPU_WIPUER. Also, care has to be taken on packages where
the Wake-up signal inputs are not bonded. For these packages the user must
ensure the internal pull-up are enabled for those signals not bonded.

12.4 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

12.4.1 Memory map

Table 12-2 gives an overview on the WKPU registers implemented.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

232 Freescale Semiconductor

NOTE
Reserved registers will read as 0, writes will have no effect. If
SSCM_ERROR[RAE] is enabled, a transfer error will be issued when
trying to access completely reserved register space.

12.4.2 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

Table 12-2. WKPU memory map

Base address: 0xC3F9_4000

Address offset Register name Location

0x00 NMI Status Flag Register (NSR) on page 232

0x04 – 0x07 Reserved

0x08 NMI Configuration Register (NCR) on page 233

0x0C – 0x13 Reserved

0x14 Wakeup/Interrupt Status Flag Register (WISR) on page 234

0x18 Interrupt Request Enable Register (IRER) on page 235

0x1C Wakeup Request Enable Register (WRER) on page 235

0x20 – 0x27 Reserved

0x28 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) on page 236

0x2C Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) on page 236

0x30 Wakeup/Interrupt Filter Enable Register (WIFER) on page 237

0x34 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 237

Offset: 0x00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
NIF0

N
O

V
F

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-2. NMI Status Flag Register (NSR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 233

12.4.3 NMI Configuration Register (NCR)

This register holds the configuration bits for the non-maskable interrupt settings.

Table 12-3. NSR field descriptions

Field Description

NIF0 NMI Status Flag
If enabled (NREE0 or NFEE0 set), NIF0 causes an interrupt request.
1 An event as defined by NREE0 and NFEE0 has occurred
0 No event has occurred on the pad

NOVF0 NMI Overrun Status Flag
It will be a copy of the current NIF0 value whenever an NMI event occurs, thereby indicating to the
software that an NMI occurred while the last one was not yet serviced. If enabled (NREE0 or NFEE0
set), NOVF0 causes an interrupt request.
1 An overrun has occurred on NMI input
0 No overrun has occurred on NMI input

Offset: 0x08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
LO

C
K

0

NDSS0

N
W

R
E

0 0

N
R

E
E

0

N
F

E
E

0

NFE0
0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-3. NMI Configuration Register (NCR)

Table 12-4. NCR field descriptions

Field Description

NLOCK0 NMI Configuration Lock Register
Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.

NDSS0 NMI Destination Source Select
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated

MPC5604B/C Microcontroller Reference Manual, Rev. 8

234 Freescale Semiconductor

NOTE
Writing a ‘0’ to both NREE0 and NFEE0 disables the NMI functionality
completely (that is, no system wakeup or interrupt will be generated on any
pad activity)!

12.4.4 Wakeup/Interrupt Status Flag Register (WISR)

This register holds the wakeup/interrupt flags.

NWRE0 NMI Wakeup Request Enable
1 A set NIF0 bit or set NOVF0 bit causes a system wakeup request
0 System wakeup requests from the corresponding NIF0 bit are disabled
Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured. This

should be noted when booting from RESET or STANDBY mode as all registers will have been
cleared to their reset state.

NREE0 NMI Rising-edge Events Enable
1 Rising-edge event is enabled
0 Rising-edge event is disabled

NFEE0 NMI Falling-edge Events Enable
1 Falling-edge event is enabled
0 Falling-edge event is disabled

NFE0 NMI Filter Enable
Enable analog glitch filter on the NMI pad input.
1 Filter is enabled
0 Filter is disabled

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 EIF[19:0]1

1 EIF[18:15] are not available in all 100-pin packages.

W w1c

Reset 0

Figure 12-4. Wakeup/Interrupt Status Flag Register (WISR)

Table 12-5. WISR field descriptions

Field Description

EIF[x] External Wakeup/Interrupt WKPU[x] Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRER[x]), EIF[x]
causes an interrupt request.
1 An event as defined by WIREER and WIFEER has occurred
0 No event has occurred on the pad

Table 12-4. NCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 235

NOTE
Status bits associated with on-chip wakeup sources are located to the left of
the external wakeup/interrupt status bits and are read only. The wakeup for
these sources must be configured and cleared at the on-chip wakeup source.
Also, the configuration registers for the external interrupts/wakeups do not
have corresponding bits.

12.4.5 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to the interrupt
controller.

12.4.6 Wakeup Request Enable Register (WRER)

This register is used to enable the system wakeup messaging from the wakeup/interrupt pads to the mode
entry and power control modules.

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 EIRE[19:0]1

1 EIRE[18:15] are not available in all 100-pin packages.

W w1c

Reset 0

Figure 12-5. Interrupt Request Enable Register (IRER)

Table 12-6. IRER field descriptions

Field Description

EIRE[x] External Interrupt Request Enable x
1 A set EIF[x] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
WRE[19:0]1

1 WRE[18:15] are not available in all 100-pin packages.

W

Reset 0

Figure 12-6. Wakeup Request Enable Register (WRER)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

236 Freescale Semiconductor

12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding wakeup/interrupt pads.

NOTE
The RTC_API can only be configured on the rising edge.

.

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

This register is used to enable falling-edge triggered events on the corresponding wakeup/interrupt pads.

Table 12-7. WRER field descriptions

Field Description

WRE[x] External Wakeup Request Enable x
1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IREE[19:0]1

1 IREE[18:15] are not available in all 100-pin packages.

W

Reset 0

Figure 12-7. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

Table 12-8. WIREER field descriptions

Field Description

IREE[x] External Interrupt Rising-edge Events Enable x
1 Rising-edge event is enabled
0 Rising-edge event is disabled

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFEE[19:0]1

1 IFEE[18:15] are not available in all 100-pin packages.

W

Reset 0

Figure 12-8. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 237

12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter out glitches on
the inputs.

NOTE

There is no analog filter for the RTC_API.

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pullup on the corresponding interrupt pads to pull an unconnected
wakeup/interrupt input to a value of ‘1’.

Table 12-9. WIFEER field descriptions

Field Description

IFEEx External Interrupt Falling-edge Events Enable x
1 Falling-edge event is enabled
0 Falling-edge event is disabled

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFE[19:0]1

1 IFE[18:15] are not available in all 100-pin packages.

W

Reset 0

Figure 12-9. Wakeup/Interrupt Filter Enable Register (WIFER)

Table 12-10. WIFER field descriptions

Field Description

IFE[x] External Interrupt Filter Enable x
Enable analog glitch filter on the external interrupt pad input.
1 Filter is enabled
0 Filter is disabled

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IPUE[19:0]1

1 IPUE[18:15] are not available in all 100-pin packages.

W

Reset 0

Figure 12-10. Wakeup/Interrupt Pullup Enable Register (WIPUER)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

238 Freescale Semiconductor

12.5 Functional description

12.5.1 General

This section provides a complete functional description of the Wakeup Unit.

12.5.2 Non-maskable interrupts

The Wakeup Unit supports one non-maskable interrupt which is allocated to the following pins:

• 100-pin LQFP: Pin 7

• 144-pin LQFP: Pin 11

• 208-pin BGA: Pin F3

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The Wakeup Unit
supports the capturing of a second event per NMI input before the interrupt is cleared, thus reducing the
chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

NOTE
Glitch filter control and pad configuration should be done while the NMI is
disabled in order to avoid erroneous triggering by glitches caused by the
configuration process itself.

Table 12-11. WIPUER field descriptions

Field Description

IPUE[x] External Interrupt Pullup Enable x
1 Pullup is enabled
0 Pullup is disabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 239

Figure 12-11. NMI pad diagram

12.5.2.1 NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all configuration bits
for an NMI in a single byte (see Figure 12-3). The pad defined as an NMI can be configured by the user
to recognize interrupts with an active rising edge, an active falling edge or both edges being active. A
setting of having both edge events disabled results in no interrupt being detected and should not be
configured.

The active NMI edge is controlled by the user through the configuration of the NREE0 and NFEE0 bits.

NOTE
After reset, NREE0 and NFEE0 are set to ‘0’, therefore the NMI
functionality is disabled after reset and must be enabled explicitly by
software.

Once the pad’s NMI functionality has been enabled, the pad cannot be reconfigured in the IOMUX to
override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the NDSS0 field. See
Table 12-4 for details.

Glitch Filter

Edge Detect

Flag Overrun

Destination

N
M

I

cr
it

ic
al

 IR
Q

m
ac

h
in

e
ch

ec
k

CPU

Mode/
Pwr Ctl

N
D

S
S

0

N
W

R
E

0

N
R

E
E

0

N
F

E
E

0

N
F

E
0

NMI Configuration Register (NCR)

Wakeup Enable

MPC5604B/C Microcontroller Reference Manual, Rev. 8

240 Freescale Semiconductor

An NMI supports a status flag and an overrun flag which are located in the NSR register (see Figure 12-2).
The NIF0 and NOVF0 fields in this register are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register. The status flag is set whenever an NMI event is detected. The
overrun flag is set whenever an NMI event is detected and the status flag is set (that is, has not yet been
cleared).

NOTE
The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in
the NSR register. If the status bit is cleared and the overrun bit is still set, the
pending interrupt will not be cleared.

12.5.3 External wakeups/interrupts

The Wakeup Unit supports up to 18 external wakeup/interrupts which can be allocated to any pad
necessary at the SoC level. This allocation is fixed per SoC.

The Wakeup Unit supports up to three interrupt vectors to the interrupt controller of the SoC. Each
interrupt vector can support up to the number of external interrupt sources from the device pads with the
total across all vectors being equal to the number of external interrupt sources. Each external interrupt
source is assigned to exactly one interrupt vector. The interrupt vector assignment is sequential so that one
interrupt vector is for external interrupt sources 0 through N-1, the next is for N through N+M-1, and so
forth.

See Figure 12-12 for an overview of the external interrupt implementation for the example of three
interrupt vectors with up to eight external interrupt sources each.

Figure 12-12. External interrupt pad diagram

Interrupt
Vectors

Pads

WIREER[19:0]

Interrupt Edge Enable

WIFEER[19:0]
Falling

Rising
Edge Detection

Analog Glitch FilterWIFER[19:0]
Glitch Filter enable

Interrupt enable

OR OR OR

IRQ_19_16 IRQ_15_08 IRQ_07_00

Flag[19:16] Flag[15:8] WISR[19:0]Flag[7:0]

WRER[19:0]

Wakeup enable

M
od

e
/

P
w

r
C

tl
IRER[19:0]

RTC API

In
te

rr
up

t
C

on
tr

ol
le

r

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 241

All of the external interrupt pads within a single group have equal priority. It is the responsibility of the
user software to search through the group of sources in the most appropriate way for their application.

NOTE
Glitch filter control and pad configuration should be done while the external
interrupt line is disabled in order to avoid erroneous triggering by glitches
caused by the configuration process itself.

12.5.3.1 External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed using a single
rolled up register (Figure 12-5). A pad defined as an external interrupt can be configured by the user to
recognize external interrupts with an active rising edge, an active falling edge or both edges being active.

NOTE
Writing a ‘0’ to both IREE[x] and IFEE[x] disables the external interrupt
functionality for that pad completely (that is, no system wakeup or interrupt
will be generated on any activity on that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers WIREER and
WIFEER.

Each external interrupt supports an individual flag which is held in the flag register (WISR). The bits in
the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent overwriting of other
flags in the register.

12.5.4 On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups with the
external ones to generate a single wakeup to the system.

12.5.4.1 On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups are reported
along with external wakeups in the WISR register (see Figure 12-4 for details). Enabling and clearing of
these wakeups are done via the on-chip wakeup source’s own registers.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

242 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 243

Chapter 13
Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

13.1 Overview
The RTC/API is a free running counter used for time keeping applications. The RTC may be configured
to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low
power mode). If in a low power mode when the RTC interval is reached, the RTC first generates a wakeup
and then assert the interrupt request. The RTC also supports an autonomous periodic interrupt (API)
function used to generate a periodic wakeup request to exit a low power mode or an interrupt request.

13.2 Features
Features of the RTC/API include:

• 3 selectable counter clock sources

— SIRC (128 kHz)

— SXOSC (32 KHz)

— FIRC (16 MHz)

• Optional 512 prescaler and optional 32 prescaler

• 32-bit counter

— Supports times up to 1.5 months with 1 ms resolution

— Runs in all modes of operation

— Reset when disabled by software and by POR

• 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s resolution

• RTC compare value changeable while counter is running

• RTC status and control register are reset only by POR

• Autonomous periodic interrupt (API)

— 10-bit compare value to support wakeup intervals of 1.0 ms to 1 s

— Compare value changeable while counter is running

• Configurable interrupt for RTC match, API match, and RTC rollover

• Configurable wakeup event for RTC match, API match, and RTC rollover

MPC5604B/C Microcontroller Reference Manual, Rev. 8

244 Freescale Semiconductor

Figure 13-1. RTC/API block diagram

0
1

2
C

LK
S

E
L[

0:
1]

3

SIRC

FIRC

SXOSC

==

C
N

T
E

N

RTCCNT

RTCVAL

10:21

RTCF

RTCIE
RTC interrupt

offset reg

==
22:31

API wakeup

+

load

22:31

APIVAL

APIEN

reset

reset

32-bit counter

sync

sync

RTC wakeup

APIF

APIIE
API

sync

interrupt

ROVRF

sync

Reserved

di
v5

12

di
v3

2

di
v3

2e
n

di
v5

12
en

RTCIE

ROVREN

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 245

Figure 13-2. Clock gating for RTC clocks

13.3 Device-specific information
For MPC5604B, the device specific information is the following:

• SXOSC, FIRC and SIRC clocks are provided as counter clocks for the RTC. Default clock on reset
is SIRC divided by 4.

• The RTC will be reset on destructive reset, with the exception of software watchdog reset.

• The RTC provides a configurable divider by 512 to be optionally used when FIRC source is
selected.

13.4 Modes of operation

13.4.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power mode. In
normal operation, all RTC registers can read or written and the input isolation is disabled. The RTC/API

32-bit counter

CELL
C.G.

en

 SIRC

(cnten & clksel== 2’b00)

CELL

en

SXOSC

(cnten & clksel== 2’b01)

CELL

en

FIRC

(cnten & clksel== 2’b10)

CELL
C.G.

en

Reserved

(cnten & clksel== 2’b11)

C.G.

C.G.

0
1

2
C

LK
S

E
L[

0:
1]

3

CELL
C.G.

en

1

0

div 512

CELL
C.G.

en

1

0

div 32

div512en

div32en

C
N

T
E

N

MPC5604B/C Microcontroller Reference Manual, Rev. 8

246 Freescale Semiconductor

and associated interrupts are optionally enabled. In low power mode, the bus interface is disabled and the
input isolation is enabled. The RTC/API is enabled if enabled prior to entry into low power mode.

13.4.2 Debug mode

On entering into the debug mode the RTC counter freezes on the last valid count if the RTCC[FRZEN] is
set. On exit from debug mode counter continues from the frozen value.

13.5 Register descriptions
Table 13-1 lists the RTC/API registers.

13.5.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are accessible in
supervisor mode or user mode.

NOTE
RTCSUPV register is accessible only in supervisor mode.

Table 13-1. RTC/API register map

Base address: 0xC3FE_C000

Address offset Register Location

0x0 RTC Supervisor Control Register (RTCSUPV) on page 246

0x4 RTC Control Register (RTCC) on page 247

0x8 RTC Status Register (RTCS) on page 249

0xC RTC Counter Register (RTCCNT) on page 250

Offset: 0x0 Access: Read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
U

P
V

W

Reset 1 0

Figure 13-3. RTC Supervisor Control Register (RTCSUPV)

Table 13-2. RTCSUPV field descriptions

Field Description

SUPV RTC Supervisor Bit
0 All registers are accessible in both user as well as supervisor mode.
1 All other registers are accessible in supervisor mode only.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 247

13.5.2 RTC Control Register (RTCC)

The RTCC register contains:

• RTC counter enable

• RTC interrupt enable

• RTC clock source select

• RTC compare value

• API enable

• API interrupt enable

• API compare value

Offset: 0x4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
N

T
E

N

R
T

C
IE

F
R

Z
E

N

R
O

V
R

E
N

RTCVAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
P

IE
N

A
P

IIE CLKSEL

D
IV

51
2E

N

D
IV

32
E

N

APIVALW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-4. RTC Control Register (RTCC)

Table 13-3. RTCC field descriptions

Field Description

CNTEN Counter Enable
The CNTEN field enables the RTC counter. Making CNTEN bit 1’b0 has the effect of
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for
the RTC configuration and clock source selection to be updated without causing synchronization
issues.
1 Counter enabled
0 Counter disabled

RTCIE RTC Interrupt Enable
The RTCIE field enables interrupts requests to the system if RTCF is asserted.
1 RTC interrupts enabled
0 RTC interrupts disabled

FRZEN Freeze Enable
The counter freezes on entering the debug mode on the last valid count value if the FRZEN bit is
set. After coming out of the debug mode, the counter starts from the frozen value.
0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

248 Freescale Semiconductor

ROVREN Counter Roll Over Wakeup/Interrupt Enable
The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from
0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt
from a counter rollover.
1 RTC rollover wakeup/interrupt enabled
0 RTC rollover wakeup/interrupt disabled

RTCVAL RTC Compare Value
The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF. RTCVAL
can be updated when the counter is running.
Note: RTCVAL = 0 does not generate an interrupt.

APIEN Autonomous Periodic Interrupt Enable
The APIEN bit enables the autonomous periodic interrupt function.
1 API enabled
0 API disabled

APIIE API Interrupt Enable
The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 API interrupts enabled
0 API interrupts disabled

CLKSEL Clock Select
This field selects the clock source for the RTC. CLKSEL may only be updated when CNTEN is 0.
The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 SXOSC
01 SIRC
10 FIRC
11 Reserved

DIV512EN Divide by 512 enable
The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is
0.
0 Divide by 512 is disabled.
1 Divide by 512 is enabled.

DIV32EN Divide by 32 enable
The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.
0 Divide by 32 is disabled.
1 Divide by 32 is enabled.

APIVAL API Compare Value
The APIVAL field is compared with bits 22:31 of the RTC counter and if match asserts an
interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or API function is
undefined.
Note: API functionality starts only when APIVAL is non zero. The first API interrupt takes two more

cycles because of synchronization of APIVAL to the RTC clock. After that interrupts are
periodic in nature. The minimum supported value of APIVAL is 4.

Table 13-3. RTCC field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 249

13.5.3 RTC Status Register (RTCS)

The RTCS register contains:

• RTC interrupt flag

• API interrupt flag

• ROLLOVR Flag

Offset: 0x8 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

R
T

C
F 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

A
P

IF 0 0

R
O

V
R

F 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-5. RTC Status Register (RTCS)

Table 13-4. RTCS field descriptions

Field Description

RTCF RTC Interrupt Flag
The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL.
RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.
1 RTC counter matches RTCVAL
0 RTC counter is not equal to RTCVAL

APIF API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset
value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
1 API interrupt
0 No API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’b1 RTC counts

ROVRF Counter Roll Over Interrupt Flag
The ROVRF bit indicates that the RTC has rolled over from 0xffff_ffff to 0x0000_0000. ROVRF is
cleared by writing a 1 to ROVRF.
1 RTC has rolled over
0 RTC has not rolled over

MPC5604B/C Microcontroller Reference Manual, Rev. 8

250 Freescale Semiconductor

13.5.4 RTC Counter Register (RTCCNT)

The RTCCNT register contains the current value of the RTC counter.

13.6 RTC functional description
The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit (CNTEN when
negated asynchronously resets the counter and synchronously enables the counter when enabled). The
value of the counter may be read via the RTCCNT register. Note that due to the clock synchronization, the
RTCCNT value may actually represent a previous counter value. The difference between the counter and
the read value depends on ratio of counter clock and system clock. Maximum possible difference between
the two is 6 count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives the options for
clocking the RTC/API. The output of the clock mux can be optionally divided by combination of 512 and
32 to give a 1 ms RTC/API count period for different clock sources. Note that the RTCC[CNTEN] bit must
be disabled when the RTC/API clock source is switched.

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL] field, then
the RTCS[RTCF] interrupt flag bit is set (after proper clock synchronization). If the RTCC[RTCIE]
interrupt enable bit is set, then the RTC interrupt request is generated. The RTC supports interrupt requests
in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution. If there is a match while in low power mode then
the RTC will first generate a wakeup request to force a wakeup to run mode, then the RTCF flag will be set.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count of
0xFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the RTCC[ROVREN] bit. An RTC
counter rollover with this bit will cause a wakeup from low power mode. An interrupt request is generated
for an RTC counter rollover when both the RTCC[ROVREN] and RTCC[RTCIE] bits are set.

All the flags and counter values are synchronized with the system clock. It is assumed that the system clock
frequency is always more than or equal to the rtc_clk used to run the counter.

Offset: 0xC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RTCCNT

W

Reset 0

Figure 13-6. RTC Counter Register (RTCCNT)

Table 13-5. RTCCNTfield descriptions

Field Description

RTCCNT RTC Counter Value
Due to the clock synchronization, the RTCCNT value may actually represent a previous counter
value.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 251

13.7 API functional description
Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit RTCC[APIVAL]
field selects the time interval for triggering an interrupt and/or wakeup event. Since the RTC is a free
running counter, the APIVAL is added to the current count to calculate an offset. When the counter reaches
the offset count, a interrupt and/or wakeup request is generated. Then the offset value is recalculated and
again re-triggers a new request when the new value is reached. APIVAL may only be updated when APIEN
is disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper clock
synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the API interrupt request is
generated. If there is a match while in low power mode, then the API will first generate a wakeup request
to force a wakeup into normal operation, then the APIF flag will be set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

252 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 253

Chapter 14
CAN Sampler

14.1 Introduction
The CAN sampler peripheral has been designed to store the first identifier of CAN message “detected” on
the CAN bus while no precise clock (crystal) is running at that time on the device, typically in low power
modes (STOP, HALT or STANDBY) or in RUN mode with crystal switched off.

Depending on both CAN baud rate and low power mode used, it is possible to catch either the first or the
second CAN frame by sampling one CAN Rx port among six and storing all samples in internal registers.

After selection of the mode (first or second frame), the CAN sampler stores samples of the 48 bits or skips
the first frame and stores samples of the 48 bits of second frame using the 16 MHz fast internal RC
oscillator and the 5-bit clock prescaler.

After completion, software has to process the sampled data in order to rebuild the 48 minimal bits.

Figure 14-1. Extended CAN data frame

14.2 Main features
• Store 384 samples, equivalent to 48 CAN bit @ 8 samples/bit

• Sample frequency from 500 kHz up to 16 MHz, equivalent at 8 samples/bit to CAN baud rates of
62.5 Kbps to 2 Mbps

• User selectable CAN Rx sample port [CAN0RX-CAN5RX]

• 16 MHz fast internal RC oscillator clock

• 5-bit clock prescaler

• Configurable trigger mode (immediate, next frame)

• Flexible samples processing by software

• Very low power consumption

Base Identifier (11-bit)

SOF
SPR

Extended Identifier (18-bit)

IDE-bit

RTR-bit

r1

r0

Data
Length
Code

MPC5604B/C Microcontroller Reference Manual, Rev. 8

254 Freescale Semiconductor

14.3 Register description
The CAN sampler registers are listed in Table 14-1.

14.3.1 Control Register (CR)

Table 14-1. CAN sampler memory map

Base address: 0xFFE7_0000

Address offset Register Location

0x00 Control Register (CR) on page 254

0x04–0x30 Sample registers 0–11 on page 255

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

R
X

_C
O

M
P

LE
T

E

B
U

S
Y

A
C

T
IV

E
_C

K

0 0 0

M
O

D
E

CAN_RX_SEL BRP

C
A

N
_S

M
P

LR
_E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-2. Control Register (CR)

Table 14-2. CR field descriptions

Field Description

RX_COMPLETE 1: CAN frame is stored in the sample registers
0: CAN frame has not been stored in the sample registers

BUSY This bit indicates the sampling status
1: Sampling is ongoing
0: Sampling is complete or has not started

ACTIVE_CK This bit indicates which is current clock for sample registers, that is, xmem_ck.
1: RC_CLK is currently xmem_ck
0: ipg_clk_s is currently xmem_ck

MODE 0: Skip the first frame and sample and store the second frame (SF_MODE)
1: Sample and store the first frame (FF_MODE)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 255

14.3.2 Sample register n (n = 0..11)

CAN_RX_SEL This field determines which RX port is sampled. One Rx port can be selected per sampling
routine.
000: CAN0RX PB[1] is selected
001: CAN1RX PC[11] is selected
010: CAN2RX PE[9] is selected
011: CAN3RX PE[9] is selected
100: CAN4RX PC[11] is selected
101: CAN5RX PE[0] is selected
110: Reserved
111: Reserved

BRP Baud Rate Prescaler
This field is used to set the baud rate before going into STANDBY mode.
00000: Prescaler has 1
11111: Prescaler has 32

CAN_SMPLR_EN CAN Sampler Enable
This bit enables the CAN sampler before going into STANDBY or STOP mode.
0: CAN sampler is disabled
1: CAN sampler is enabled

Offsets: 0x04–0x30 (12 registers) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SR[31:16]

W

Reset The reset values are unknown. They will be filled only after the first CAN sampling.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SR[15:0]

W

Reset The reset values are unknown. They will be filled only after the first CAN sampling.

Figure 14-3. Sample register n

Table 14-2. CR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

256 Freescale Semiconductor

14.4 Functional description
As the CAN sampler is driven by the 16 MHz fast internal RC oscillator (or “FIRC”) to properly sample
the CAN identifier, two modes are possible depending on both the CAN baud rate and low power mode
used:

• Immediate sampling on falling edge detection (first CAN frame): This mode is used when the
FIRC is available in LP mode (for example, STOP or HALT).

• Sampling on next frame (second CAN frame): This mode is used when the FIRC is switched off
in LP mode (for example, STANDBY). Due to the start-up times of both the voltage regulator and
the FIRC (~10 µs), the CAN sampler would miss the first bits of a CAN identifier sent at 500 kbps.
Therefore, the first identifier is ignored and the sampling is performed on the first falling edge of
after interframe space.

The CAN sampler is in power domain 0 and maintains register settings throughout low power modes. The
CAN sampler performs sampling on a user-selected CAN Rx port among six Rx ports available, normally
when the device is in STANDBY or STOP mode, storing the samples in internal registers. The user is
required to configure the baud rate to achieve eight samples per CAN nominal bit. It does not perform any
sort of filtering on input samples. Thereafter the software must enable the sampler by setting the
CAN_SMPLR_EN bit in the CR register. It then becomes the master controller for accessing the internal
registers implemented for storing samples.

The CAN sampler, when enabled, waits for a low pulse on the selected Rx line, taking it as a valid bit of
the first CAN frame and generates the RC wakeup request which can be used to start the FIRC. Depending
upon the mode, it stores the first 8 samples of the 48 bits on selected Rx line or skips the first frame and
stores 8 bits for first 48 bits of second frame. In FF_MODE, it samples the CAN Rx line on the FIRC clock
and stores the 8 samples of first 48 bits (384 samples). In SF_MODE, it samples the Rx and waits for 11
consecutive dominant bits (11 * 8 samples), taking it as the end of first frame. It then waits for first low
pulse on the Rx, taking it as a valid Start of Frame (SOF) of the second frame. The sampler takes 384
samples (48 bytes * 8) using the FIRC clock (configuring 8 samples per nominal bit) of the second frame,
including the SOF bit. These samples are stored in consecutive addresses of the (12 x 32) internal registers.
The RX_COMPLETE bit is set to ‘1’, indicating that sampling is complete.

Software should now process the sampled data by first becoming master for accessing samples internal
registers by resetting the CAN_SMPLR_EN bit. The sampler will need to be enabled again to start waiting
for a new sampling routine.

14.4.1 Enabling/Disabling the CAN sampler

The CAN sampler is disabled on reset and the CPU is able to access the 12 registers used for storing
samples. The CAN sampler must be enabled before going into STANDBY or STOP mode by setting the
CAN_SMPLR_EN bit in the Control Register (CR) by writing ‘1’ to this bit.

In case of any activity on the selected Rx line, the sampler enables the 16 MHz fast internal RC oscillator.
When bit CAN_SMPLR_EN is reset to 0, the sampler should receive at last three FIRC clock pulses to
reset itself, after which the FIRC can be switched off.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 257

When the software attempts to access the sample registers’ contents it must first reset the
CAN_SMPLR_EN bit by writing a ‘0’. Before accessing the register contents it must monitor Active_CK
bit for ‘0’. When this bit is reset it can safely access the (12 x 32) sample registers. While shifting from
normal to sample mode and from sample to normal mode, the sample register signals must be static and
inactive to ensure the data is not corrupt.

14.4.2 Baud rate generation

Sampling is performed at a baud rate that is set by the software as a multiple of RC oscillator frequency of
62.5 ns (assuming RC is configured for high frequency mode, that is, 16 MHz). The user must set the baud
rate prescaler (BRP) such that eight samples per bit are achieved.

The baud rate setting must be made by software before going into STANDBY or STOP mode. This is done
by setting bits BRP[4:0] in the Control register. The reset value of BRP is 00000 and can be set to max.
11111 which gives a prescale value of BRP + 1, thus providing a BRP range of 1 to 32.

• Maximum bitrate supported for sampling is 2 Mbps using BRP as 1

• Minimum bitrate supported for sampling is 62.5 kbps using BRP as 32

For example, suppose the system is transmitting at 125 kbps. In this case, nominal bit period:

T=1/(125*103)s =8*10-3*10-3s = 8µs Eqn. 14-1

To achieve 8 samples per bit

Sample period= 8/8 µs = 1 µs

BRP = 1 µs/62.5 ns = 16. Thus in this case BRP = 01111

MPC5604B/C Microcontroller Reference Manual, Rev. 8

258 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 259

——— Core platform modules ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

260 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 261

Chapter 15
e200z0h Core

15.1 Overview
The e200 processor family is a set of CPU cores that implement cost-efficient versions of the
Power Architecture®. e200 processors are designed for deeply embedded control applications which
require low cost solutions rather than maximum performance.

The e200z0h processors integrate an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching is performed
by the branch unit to allow single-cycle branches in some cases.

The e200z0h core is a single-issue, 32-bit Power Architecture technology VLE-only design with 32-bit
general purpose registers (GPRs). All arithmetic instructions that execute in the core operate on data in the
general purpose registers (GPRs).

Instead of the base Power Architecture technology support, the e200z0h core only implements the VLE
(variable-length encoding) APU, providing improved code density.

15.2 Microarchitecture summary
The e200z0h processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage
1), Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory
Access (stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single
clock instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result feed-forward hardware, and
a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and
multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching from the BTB is performed to accelerate certain
taken branches in the e200z0h. Prefetched instructions are placed into an instruction buffer with 4entries
in e200z0h, each capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with successful target
prefetching have an effective execution time of one clock on e200z0h. All other taken branches have an
execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These

MPC5604B/C Microcontroller Reference Manual, Rev. 8

262 Freescale Semiconductor

instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a
dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture platform. The condition register consists of eight 4-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 263

15.3 Block diagram

15.4 Features
The following is a list of some of the key features of the e200z0h core:

• 32-bit Power Architecture VLE-only programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

Figure 15-1. e200z0h block diagram

CPU

CONTROL LOGIC

LOAD/

DATAADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNIT

DATA BUS INTERFACE UNIT

CONTROL

32 32 N

OnCE/NEXUS

CONTROL LOGIC

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNIT

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
32

N

MPC5604B/C Microcontroller Reference Manual, Rev. 8

264 Freescale Semiconductor

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Target Buffer

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and Flash memory via independent Instruction and Data bus interface units (BIUs)
(e200z0h only).

• Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

— Power saving modes: nap, sleep, and wait

— Dynamic power management of execution units

• Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

15.4.1 Instruction unit features

The features of the e200 Instruction unit are:

• 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up to two
16-bit VLE instructions per clock

• Instruction buffer with 4 entries in e200z0h, each holding a single 32-bit instruction, or a pair of
16-bit instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder supporting single cycle of execution of certain
branches, two cycles for all others

15.4.2 Integer unit features

The e200 integer unit supports single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 265

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing

• 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

15.4.3 Load/Store unit features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• 32-bit interface to memory (dedicated memory interface on e200z0h)

15.4.4 e200z0h system bus features

The features of the e200z0h system bus interface are as follows:

• Independent instruction and data buses

• AMBA1 AHB2 Lite Rev 2.0 specification with support for ARM v6 AMBA extensions

— Exclusive access monitor

— Byte lane strobes

— Cache allocate support

• 32-bit address bus plus attributes and control on each bus

• 32-bit read data bus for instruction interface

• Separate uni-directional 32-bit read data bus and 32-bit write data bus for data interface

• Overlapped, in-order accesses

15.4.5 Nexus 2+ features

The Nexus 2+ module is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with additional
Class 3 and Class 4 features available. The following features are implemented:

• Program Trace via Branch Trace Messaging (BTM)—Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool
to interpolate what transpires between the discontinuities. Thus, static code may be traced.

• Ownership Trace via Ownership Trace Messaging (OTM)—OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An Ownership Trace
Message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to the processor memory map via the JTAG port. This allows for enhanced
download/upload capabilities.

• Watchpoint Messaging via the auxiliary interface

1. Advanced Microcontroller Bus Architecture
2. Advanced High Performance Bus

MPC5604B/C Microcontroller Reference Manual, Rev. 8

266 Freescale Semiconductor

• Watchpoint Trigger enable of Program Trace Messaging

• Auxiliary interface for higher data input/output

— Configurable (min/max) Message Data Out pins (nex_mdo[n:0])

— One (1) or two (2) Message Start/End Out pins (nex_mseo_b[1:0])

— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event pin (nex_evto_b)

— One (1) Event In pin (nex_evti_b)

— One (1) MCKO (Message Clock Out) pin

• Registers for Program Trace, Ownership Trace and Watchpoint Trigger control

• All features controllable and configurable via the JTAG port

15.5 Core registers and programmer’s model
This section describes the registers implemented in the e200z0h cores. It includes an overview of registers
defined by the Power Architecture platform, highlighting differences in how these registers are
implemented in the e200 core, and provides a detailed description of e200-specific registers. Full
descriptions of the architecture-defined register set are provided in the Power Architecture specification.

The Power Architecture defines register-to-register operations for all computational instructions. Source
data for these instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other instructions. Data
is transferred between memory and registers with explicit load and store instructions only.

Figure 15-2, and Figure 15-1 show the e200 register set including the registers which are accessible while
in supervisor mode, and the registers which are accessible in user mode. The number to the right of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to access the register
(for example, the integer exception register (XER) is SPR 1).

NOTE
e200z0h is a 32-bit implementation of the Power Architecture specification.
In this document, register bits are sometimes numbered from bit 0 (Most
Significant Bit) to 31 (Least Significant Bit), rather than the Book E
numbering scheme of 32:63, thus register bit numbers for some registers in
Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 267

Figure 15-2. e200z0 SUPERVISOR Mode Program Model SPRs

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model SPRs

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

 DBCR31

SPR 308

SPR 309

SPR 310

SPR 561

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be
supported by other Power Architecture
processors.

2 - Optional registers defined by the Power
Architecture technology

3 - Read-only registers

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

Cache Registers

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

Memory Management Registers
Process ID

PID0 SPR 48

Configuration (read only)

SPR 1015MMUCFG

DVC1

DVC2

SPR 318

SPR 319

MPC5604B/C Microcontroller Reference Manual, Rev. 8

268 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 269

Chapter 16
Interrupt Controller (INTC)

16.1 Introduction
The INTC provides priority-based preemptive scheduling of interrupt service requests (ISRs). This
scheduling scheme is suitable for statically scheduled hard real-time systems. The INTC supports 142
interrupt requests. It is targeted to work with a Power Architecture technology processor and automotive
powertrain applications where the ISRs nest to multiple levels, but it also can be used with other processors
and applications.

For high priority interrupt requests in these target applications, the time from the assertion of the
peripheral’s interrupt request from the peripheral to when the processor is performing useful work to
service the interrupt request needs to be minimized. The INTC supports this goal by providing a unique
vector for each interrupt request source. It also provides 16 priorities so that lower priority ISRs do not
delay the execution of higher priority ISRs. Since each individual application will have different priorities
for each source of interrupt request, the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software configurable interrupt
requests. These same software configurable interrupt requests also can be used to break the work involved
in servicing an interrupt request into a high priority portion and a low priority portion. The high priority
portion is initiated by a peripheral interrupt request, but then the ISR can assert a software configurable
interrupt request to finish the servicing in a lower priority ISR. Therefore these software configurable
interrupt requests can be used instead of the peripheral ISR scheduling a task through the RTOS.

16.2 Features
• Supports 134 peripheral and 8 software-configurable interrupt request sources

• Unique 9-bit vector per interrupt source

• Each interrupt source can be programmed to one of 16 priorities

• Preemption

— Preemptive prioritized interrupt requests to processor

— ISR at a higher priority preempts ISRs or tasks at lower priorities

— Automatic pushing or popping of preempted priority to or from a LIFO

— Ability to modify the ISR or task priority; modifying the priority can be used to implement the
priority ceiling protocol for accessing shared resources.

• Low latency – 3 clocks from receipt of interrupt request from peripheral to interrupt request to
processor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

270 Freescale Semiconductor

16.3 Block diagram
Figure 16-1 provides a block diagram of the INTC.

Table 16-1. Interrupt sources available

Interrupt sources (142) Number available

Software 8

ECSM 1

Software Watchdog (SWT) 1

STM 4

Flash/SRAM ECC (SEC-DED) 2

Real Time Counter (RTC/API) 2

System Integration Unit Lite (SIUL) 2

WKPU 3

MC_ME 4

MC_RGM 1

FXOSC 1

PIT 6

ADC_0 3

FlexCAN_0 8

FlexCAN_1 8

FlexCAN_2 8

FlexCAN_3 8

FlexCAN_4 8

FlexCAN_5 8

LINFlex_0 3

LINFlex_1 3

LINFlex_2 3

LINFlex_3 3

DSPI_0 5

DSPI_1 5

DSPI_2 5

I2C_0 1

Enhanced Modular I/O Subsystem 0 (eMIOS_0) 14

eMIOS_1 14

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 271

Figure 16-1. INTC block diagram

16.4 Modes of operation

16.4.1 Normal mode

In normal mode, the INTC has two handshaking modes with the processor: software vector mode and
hardware vector mode.

16.4.1.1 Software vector mode

In software vector mode, software, that is the interrupt exception handler, must read a register in the INTC
to obtain the vector associated with the interrupt request to the processor. The INTC will use software
vector mode for a given processor when its associated HVEN bit in INTC_MCR is negated. The hardware
vector enable signal to processor 0 or processor 1 is driven as negated when its associated HVEN bit is
negated. The vector is read from INC_IACKR. Reading the INTC_IACKR negates the interrupt request
to the associated processor. Even if a higher priority interrupt request arrived while waiting for this
interrupt acknowledge, the interrupt request to the processor will negate for at least one clock. The reading
also pushes the PRI value in INTC_CPR onto the associated LIFO and updates PRI in the associated
INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt acknowledge signal
from the associated processor is ignored.

Hardware
Vector Enable

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

Peripheral
Interrupt
Requests

Module
Configuration

Register

Highest Priority4

Priority
Comparator

Slave
Interface

for Reads
& Writes

1Push/Update/Acknowledge

1

1

1Update Interrupt Vector

1

Interrupt
Request to
Processor

Memory Mapped Registers

Non-Memory Mapped Logic

End of
Interrupt
Register

Request
Selector

Priority
Arbitrator

Highest
Priority

Interrupt
Requests

n1 n1 Vector
Encoder

Interrupt
Vector

9
Processor 0

Interrupt
Acknowledge

Register

Interrupt
Vector

9n1

8

n1 x
4-bits

New
Priority

4

Current
Priority

4

Processor 0
Current
Priority

Register

Processor 0
Priority
LIFO

Pop

1

Lowest
Vector

Interrupt
Request

1
Vector Table

Entry Size

Pushed
Priority

4

Popped
Priority

4

Interrupt Acknowledge

Peripheral
Bus

MPC5604B/C Microcontroller Reference Manual, Rev. 8

272 Freescale Semiconductor

16.4.1.2 Hardware vector mode

In hardware vector mode, the hardware is the interrupt vector signal from the INTC in conjunction with a
processor with the capability use that vector. In hardware vector mode, this hardware causes the first
instruction to be executed in handling the interrupt request to the processor to be specific to that vector.
Therefore the interrupt exception handler is specific to a peripheral or software configurable interrupt
request rather than being common to all of them. The INTC uses hardware vector mode for a given
processor when the associated HVEN bit in the INTC_MCR is asserted. The hardware vector enable signal
to the associated processor is driven as asserted. When the interrupt request to the associated processor
asserts, the interrupt vector signal is updated. The value of that interrupt vector is the unique vector
associated with the preempting peripheral or software configurable interrupt request. The vector value
matches the value of the INTVEC field in the INTC_IACKR field in the INTC_IACKR, depending on
which processor was assigned to handle a given interrupt source.

The processor negates the interrupt request to the processor driven by the INTC by asserting the interrupt
acknowledge signal for one clock. Even if a higher priority interrupt request arrived while waiting for the
interrupt acknowledge, the interrupt request to the processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the associated PRI value in
the associated INTC_CPR register onto the associated LIFO and updates the associated PRI in the
associated INTC_CPR register with the new priority. This pushing of the PRI value onto the associated
LIFO and updating PRI in the associated INTC_CPR does not occur when the associated interrupt
acknowledge signal asserts and INTC_SSCIR0_3–INTC_SSCIR4_7 is written at a time such that the PRI
value in the associated INTC_CPR register would need to be pushed and the previously last pushed PRI
value would need to be popped simultaneously. In this case, PRI in the associated INTC_CPR is updated
with the new priority, and the associated LIFO is neither pushed or popped.

16.4.1.3 Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

16.4.1.4 Stop mode

The INTC supports STOP mode. The INTC can have its clock input disabled at any time by the clock
driver on the device. While its clocks are disabled, the INTC registers are not accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an interrupt request to
the processor. Since the INTC is not clocked in STOP mode, peripheral interrupt requests can not be used
as a wakeup source, unless the device supports that interrupt request as a wakeup source.

16.5 Memory map and register description

16.5.1 Module memory map

Table 16-2 shows the INTC memory map.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 273

16.5.2 Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any combination
of accessing the four bytes of a register with a single access is supported, provided that the access does not
cross a register boundary. These supported accesses include types and sizes of eight bits, aligned 16 bits,
misaligned 16 bits to the middle two bytes, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8 bits wide, they can be accessed with a single 16-bit or
32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless of the size of
the read. In either software or hardware vector mode, the size of a write to either
INTC_SSCIR0_3–INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of the write.

16.5.2.1 INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

Table 16-2. INTC memory map

Base address: 0xFFF4_8000

Address offset Register Location

0x0000 INTC Module Configuration Register (INTC_MCR) on page 273

0x0004 Reserved

0x0008 INTC Current Priority Register for Processor (INTC_CPR) on page 274

0x000C Reserved

0x0010 INTC Interrupt Acknowledge Register (INTC_IACKR) on page 276

0x0014 Reserved

0x0018 INTC End-of-Interrupt Register (INTC_EOIR) on page 277

0x001C Reserved

0x0020–0x0027 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

on page 277

0x0028–0x003C Reserved

0x0040–0x00D0 INTC Priority Select Registers
(INTC_PSR0_3–INTC_PSR208_210)1

1 The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in Figure 16-3.

on page 279

MPC5604B/C Microcontroller Reference Manual, Rev. 8

274 Freescale Semiconductor

16.5.2.2 INTC Current Priority Register for Processor (INTC_CPR)

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

V
T

E
S 0 0 0 0

H
V

E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-2. INTC Module Configuration Register (INTC_MCR)

Table 16-3. INTC_MCR field descriptions

Field Description

VTES Vector table entry size.
Controls the number of ‘0’s to the right of INTVEC in Section 16.5.2.3, “INTC Interrupt Acknowledge
Register (INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a
vectortable as in software vector mode, then the number of rightmost ‘0’s will determine the size of
each vector table entry. VTES impacts software vector mode operation but also affects
INTC_IACKR[INTVEC] position in both hardware vector mode and software vector mode.
0 4 bytes
1 8 bytes

HVEN Hardware vector enable.

Controls whether the INTC is in hardware vector mode or software vector mode. Refer to Section 16.4,
“Modes of operation, for the details of the handshaking with the processor in each mode.
0 Software vector mode
1 Hardware vector mode

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
PRI

W

Reset 0 1 1 1 1

Figure 16-3. INTC Current Priority Register (INTC_CPR)

Table 16-4. INTC_CPR field descriptions

Field Description

PRI Priority

PRI is the priority of the currently executing ISR according to the field values defined in Table 16-5.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 275

The INTC_CPR masks any peripheral or software configurable interrupt request set at the same or lower
priority as the current value of the INTC_CPR[PRI] field from generating an interrupt request to the
processor. When the INTC interrupt acknowledge register (INTC_IACKR) is read in software vector
mode or the interrupt acknowledge signal from the processor is asserted in hardware vector mode, the
value of PRI is pushed onto the LIFO, and PRI is updated with the priority of the preempting interrupt
request. When the INTC end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the
INTC_CPR’s PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. Refer to
Section 16.7.5, “Priority ceiling protocol.

NOTE
A store to modify the PRI field which closely precedes or follows an access
to a shared resource can result in a non-coherent access to that resource.
Refer to Section 16.7.5.2, “Ensuring coherency for example code to ensure
coherency.

Table 16-5. PRI values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority

MPC5604B/C Microcontroller Reference Manual, Rev. 8

276 Freescale Semiconductor

16.5.2.3 INTC Interrupt Acknowledge Register (INTC_IACKR)

The interrupt acknowledge register provides a value which can be used to load the address of an ISR from
a vector table. The vector table can be composed of addresses of the ISRs specific to their respective
interrupt vectors.

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[20:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[4:0]

INTVEC 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-4. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 0

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[19:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[3:0]

INTVEC 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-5. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 1

Table 16-6. INTC_IACKR field descriptions

Field Description

VTBA Vector Table Base Address
Can be the base address of a vector table of addresses of ISRs.

INTVEC Interrupt Vector
It is the vector of the peripheral or software configurable interrupt request that caused the interrupt
request to the processor. When the interrupt request to the processor asserts, the INTVEC is updated,
whether the INTC is in software or hardware vector mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 277

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must not be
speculatively read while in this mode. The side effects are the same regardless of the size of the read.
Reading the INTC_IACKR does not have side effects in hardware vector mode.

16.5.2.4 INTC End-of-Interrupt Register (INTC_EOIR)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt request. When the
INTC_EOIR is written, the priority last pushed on the LIFO is popped into INTC_CPR. An exception to
this behavior is described in Section 16.4.1.2, “Hardware vector mode. The values and size of data written
to the INTC_EOIR are ignored. The values and sizes written to this register neither update the
INTC_EOIR contents or affect whether the LIFO pops. For possible future compatibility, write four bytes
of all 0s to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

16.5.2.5 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

Offset: 0x0018 Access: Write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W See text

Reset 0

Figure 16-6. INTC End-of-Interrupt Register (INTC_EOIR)

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

0 0 0 0 0 0 0 0

C
LR

1

W SET0 SET1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

2 0 0 0 0 0 0 0

C
LR

3

W SET2 SET3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-7. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

MPC5604B/C Microcontroller Reference Manual, Rev. 8

278 Freescale Semiconductor

The software set/clear interrupt registers support the setting or clearing of software configurable interrupt
request. These registers contain eight independent sets of bits to set and clear a corresponding flag bit by
software. Excepting being set by software, this flag bit behaves the same as a flag bit set within a
peripheral. This flag bit generates an interrupt request within the INTC like a peripheral interrupt request.
Writing a 1 to SETx will leave SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect.
CLRx is the flag bit. Writing a 1 to CLRx clears it. Writing a 0 to CLRx has no effect. If a 1 is written
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of whether CLRx was
asserted before the write.

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

4 0 0 0 0 0 0 0

C
LR

5

W SET4 SET5

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

6 0 0 0 0 0 0 0

C
LR

7

W SET6 SET7

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-8. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Table 16-7. INTC_SSCIR[0:7] field descriptions

Field Description

SETx Set Flag Bits
Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SETx always will be read
as a 0.

CLRx Clear Flag Bits
CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its
corresponding SETx bit. Writing a 0 to CLRx has no effect.
0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 279

16.5.2.6 INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR208_210)

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PRI0 0 0 0 0 PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 PRI2 0 0 0 0 PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-9. INTC Priority Select Register 0–3 (INTC_PSR[0:3])

Offset: 0x0110 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PRI208

0 0 0 0
PRI209

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PRI210

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-10. INTC Priority Select Register 208-210 (INTC_PSR[208:210])

Table 16-8. INTC_PSR0_3–INTC_PSR208_210 field descriptions

Field Description

PRI Priority Select

PRIx selects the priority for interrupt requests. See Section 16.6, “Functional description.

Table 16-9. INTC Priority Select Register address offsets

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

INTC_PSR0_3 0x0040 INTC_PSR108_111 0x00AC

INTC_PSR4_7 0x0044 INTC_PSR112_115 0x00B0

INTC_PSR8_11 0x0048 INTC_PSR116_119 0x00B4

INTC_PSR12_15 0x004C INTC_PSR120_123 0x00B8

MPC5604B/C Microcontroller Reference Manual, Rev. 8

280 Freescale Semiconductor

16.6 Functional description
The functional description involves the areas of interrupt request sources, priority management, and
handshaking with the processor.

INTC_PSR16_19 0x0050 INTC_PSR124_127 0x00BC

INTC_PSR20_23 0x0054 INTC_PSR128_131 0x00C0

INTC_PSR24_27 0x0058 INTC_PSR132_135 0x00C4

INTC_PSR28_31 0x005C INTC_PSR136_139 0x00C8

INTC_PSR32_35 0x0060 INTC_PSR140_143 0x00CC

INTC_PSR36_39 0x0064 INTC_PSR144_147 0x00D0

INTC_PSR40_43 0x0068 INTC_PSR148_151 0x00D4

INTC_PSR44_47 0x006C INTC_PSR152_155 0x00D8

INTC_PSR48_51 0x0070 INTC_PSR156_159 0x00DC

INTC_PSR52_55 0x0074 INTC_PSR160_163 0x00E0

INTC_PSR56_59 0x0078 INTC_PSR164_167 0x00E4

INTC_PSR60_63 0x007C INTC_PSR168_171 0x00E8

INTC_PSR64_67 0x0080 INTC_PSR172_175 0x00EC

INTC_PSR68_71 0x0084 INTC_PSR176_179 0x00F0

INTC_PSR72_75 0x0088 INTC_PSR180_183 0x00F4

INTC_PSR76_79 0x008C INTC_PSR184_187 0x00F8

INTC_PSR80_83 0x0090 INTC_PSR188_191 0x00FC

INTC_PSR84_87 0x0094 INTC_PSR192_195 0x0100

INTC_PSR88_91 0x0098 INTC_PSR196_199 0x0104

INTC_PSR92_95 0x009C INTC_PSR200_203 0x0108

INTC_PSR96_99 0x00A0 INTC_PSR204_207 0x010C

INTC_PSR100_103 0x00A4 INTC_PSR208_210 0x0110

INTC_PSR104_107 0x00A8 — —

Table 16-9. INTC Priority Select Register address offsets (continued)

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 281

NOTE
The INTC has no spurious vector support. Therefore, if an asserted
peripheral or software settable interrupt request, whose PRIn value in
INTC_PSR0–INTC_PSR210 is higher than the PRI value in INTC_CPR,
negates before the interrupt request to the processor for that peripheral or
software settable interrupt request is acknowledged, the interrupt request to
the processor still can assert or will remain asserted for that peripheral or
software settable interrupt request. In this case, the interrupt vector will
correspond to that peripheral or software settable interrupt request. Also, the
PRI value in the INTC_CPR will be updated with the corresponding PRIn
value in INTC_PSRn. Furthermore, clearing the peripheral interrupt
request’s enable bit in the peripheral or, alternatively, setting its mask bit has
the same consequences as clearing its flag bit. Setting its enable bit or
clearing its mask bit while its flag bit is asserted has the same effect on the
INTC as an interrupt event setting the flag bit.

Table 16-10. Interrupt vector table

IRQ # Offset
Size

(bytes)
Interrupt Module

Section A (Core Section)

— 0x0000 16 Critical Input
(INTC software vector mode) / NMI

Core

— 0x0010 16 Machine check / NMI Core

— 0x0020 16 Data Storage Core

— 0x0030 16 Instruction Storage Core

— 0x0040 16 External Input
(INTC software vector mode)

Core

— 0x0050 16 Alignment Core

— 0x0060 16 Program Core

— 0x0070 16 Reserved Core

— 0x0080 16 System call Core

— 0x0090 96 Unused Core

— 0x00F0 16 Debug Core

— 0x0100 1792 Unused Core

Section B (On-Platform Peripherals)

0 0x0800 4 Software configurable flag 0 Software

1 0x0804 4 Software configurable flag 1 Software

2 0x0808 4 Software configurable flag 2 Software

3 0x080C 4 Software configurable flag 3 Software

4 0x0810 4 Software configurable flag 4 Software

MPC5604B/C Microcontroller Reference Manual, Rev. 8

282 Freescale Semiconductor

5 0x0814 4 Software configurable flag 5 Software

6 0x0818 4 Software configurable flag 6 Software

7 0x081C 4 Software configurable flag 7 Software

8 0x0820 4 Reserved

9 0x0824 4 Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |
Platform Flash Bank 1 Abort |
Platform Flash Bank 1 Stall |

ECSM

10 0x0828 4 Reserved

11 0x082C 4 Reserved

12 0x0830 4 Reserved

13 0x0834 4 Reserved

14 0x0838 4 Reserved

15 0x083C 4 Reserved

16 0x0840 4 Reserved

17 0x0844 4 Reserved

18 0x0848 4 Reserved

19 0x084C 4 Reserved

20 0x0850 4 Reserved

21 0x0854 4 Reserved

22 0x0858 4 Reserved

23 0x085C 4 Reserved

24 0x0860 4 Reserved

25 0x0864 4 Reserved

26 0x0868 4 Reserved

27 0x086C 4 Reserved

28 0x0870 4 Timeout SWT

29 0x0874 4 Reserved

30 0x0878 4 Match on channel 0 STM

31 0x087C 4 Match on channel 1 STM

32 0x0880 4 Match on channel 2 STM

33 0x0884 4 Match on channel 3 STM

34 0x0888 4 Reserved

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 283

35 0x088C 4 ECC_DBD_PlatformFlash |
ECC_DBD_PlatformRAM

Platform ECC Double Bit Detection

36 0x0890 4 ECC_SBC_PlatformFlash |
ECC_SBC_PlatformRAM

Platform ECC Single Bit Correction

37 0x0894 4 Reserved

Section C

38 0x0898 4 RTC RTC/API

39 0x089C 4 API RTC/API

40 0x08A0 4 Reserved

41 0x08A4 4 SIU External IRQ_0 SIUL

42 0x08A8 4 SIU External IRQ_1 SIUL

43 0x08AC 4 Reserved

44 0x08B0 4 Reserved

45 0x08B4 4 Reserved

46 0x08B8 4 WakeUp_IRQ_0 WKPU

47 0x08BC 4 WakeUp_IRQ_1 WKPU

48 0x08C0 4 WakeUp_IRQ_2 WKPU

49 0x08C4 4 Reserved

50 0x08C8 4 Reserved

51 0x08CC 4 Safe Mode Interrupt MC_ME

52 0x08D0 4 Mode Transition Interrupt MC_ME

53 0x08D4 4 Invalid Mode Interrupt MC_ME

54 0x08D8 4 Invalid Mode Config MC_ME

55 0x08DC 4 Reserved

56 0x08E0 4 Functional and destructive reset alternate
event interrupt (ipi_int)

MC_RGM

57 0x08E4 4 FXOSC counter expired (ipi_int_osc) FXOSC

58 0x08E8 4 Reserved

59 0x08EC 4 PITimer Channel 0 PIT

60 0x08F0 4 PITimer Channel 1 PIT

61 0x08F4 4 PITimer Channel 2 PIT

62 0x08F8 4 ADC_EOC ADC_0

63 0x08FC 4 ADC_ER ADC_0

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

284 Freescale Semiconductor

64 0x0900 4 ADC_WD ADC_0

65 0x0904 4 FlexCAN_ESR[ERR_INT] FlexCAN_0

66 0x0908 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_0

67 0x090C 4 Reserved

68 0x0910 4 FlexCAN_BUF_00_03 FlexCAN_0

69 0x0914 4 FlexCAN_BUF_04_07 FlexCAN_0

70 0x0918 4 FlexCAN_BUF_08_11 FlexCAN_0

71 0x091C 4 FlexCAN_BUF_12_15 FlexCAN_0

72 0x0920 4 FlexCAN_BUF_16_31 FlexCAN_0

73 0x0924 4 FlexCAN_BUF_32_63 FlexCAN_0

74 0x0928 4 DSPI_SR[TFUF]
DSPI_SR[RFOF]

DSPI_0

75 0x092C 4 DSPI_SR[EOQF] DSPI_0

76 0x0930 4 DSPI_SR[TFFF] DSPI_0

77 0x0934 4 DSPI_SR[TCF] DSPI_0

78 0x0938 4 DSPI_SR[RFDF] DSPI_0

79 0x093C 4 LINFlex_RXI LINFlex_0

80 0x0940 4 LINFlex_TXI LINFlex_0

81 0x0944 4 LINFlex_ERR LINFlex_0

82 0x0948 4 Reserved

83 0x094C 4 Reserved

84 0x0950 4 Reserved

85 0x0954 4 FlexCAN_ESR[ERR_INT] FlexCAN_1

86 0x0958 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_1

87 0x095C 4 Reserved

88 0x0960 4 FlexCAN_BUF_00_03 FlexCAN_1

89 0x0964 4 FlexCAN_BUF_04_07 FlexCAN_1

90 0x0968 4 FlexCAN_BUF_08_11 FlexCAN_1

91 0x096C 4 FlexCAN_BUF_12_15 FlexCAN_1

92 0x0970 4 FlexCAN_BUF_16_31 FlexCAN_1

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 285

93 0x0974 4 FlexCAN_BUF_32_63 FlexCAN_1

94 0x0978 4 DSPI_SR[TFUF]
DSPI_SR[RFOF]

DSPI_1

95 0x097C 4 DSPI_SR[EOQF] DSPI_1

96 0x0980 4 DSPI_SR[TFFF] DSPI_1

97 0x0984 4 DSPI_SR[TCF] DSPI_1

98 0x0988 4 DSPI_SR[RFDF] DSPI_1

99 0x098C 4 LINFlex_RXI LINFlex_1

100 0x0990 4 LINFlex_TXI LINFlex_1

101 0x0994 4 LINFlex_ERR LINFlex_1

102 0x0998 4 Reserved

103 0x099C 4 Reserved

104 0x09A0 4 Reserved

105 0x09A4 4 FlexCAN_[ERR_INT] FlexCAN_2

106 0x09A8 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_2

107 0x09AC 4 Reserved

108 0x09B0 4 FlexCAN_BUF_00_03 FlexCAN_2

109 0x09B4 4 FlexCAN_BUF_04_07 FlexCAN_2

110 0x09B8 4 FlexCAN_BUF_08_11 FlexCAN_2

111 0x09BC 4 FlexCAN_BUF_12_15 FlexCAN_2

112 0x09C0 4 FlexCAN_BUF_16_31 FlexCAN_2

113 0x09C4 4 FlexCAN_BUF_32_63 FlexCAN_2

114 0x09C8 4 DSPI_SR[TFUF]
DSPI_SR[RFOF]

DSPI_2

115 0x09CC 4 DSPI_SR[EOQF] DSPI_2

116 0x09D0 4 DSPI_SR[TFFF] DSPI_2

117 0x09D4 4 DSPI_SR[TCF] DSPI_2

118 0x09D8 4 DSPI_SR[RFDF] DSPI_2

119 0x09DC 4 LINFlex_RXI LINFlex_2

120 0x09E0 4 LINFlex_TXI LINFlex_2

121 0x09E4 4 LINFlex_ERR LINFlex_2

122 0x09E8 4 LINFlex_RXI LINFlex_3

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

286 Freescale Semiconductor

123 0x09EC 4 LINFlex_TXI LINFlex_3

124 0x09F0 4 LINFlex_ERR LINFlex_3

125 0x09F4 4 I2C_SR[IBAL]
I2C_SR[TCF]
I2C_SR[IAAS]

I2C_0

126 0x09F8 4 Reserved

127 0x09FC 4 PITimer Channel 3 PIT

128 0x0A00 4 PITimer Channel 4 PIT

129 0x0A04 4 PITimer Channel 5 PIT

130 0x0A08 4 Reserved

131 0x0A0C 4 Reserved

132 0x0A10 4 Reserved

133 0x0A14 4 Reserved

134 0x0A18 4 Reserved

135 0x0A1C 4 Reserved

136 0x0A20 4 Reserved

137 0x0A24 4 Reserved

138 0x0A28 4 Reserved

139 0x0A2C 4 Reserved

140 0x0A30 4 Reserved

141 0x0A34 4 EMIOS_GFR[F0,F1] eMIOS_0

142 0x0A38 4 EMIOS_GFR[F2,F3] eMIOS_0

143 0x0A3C 4 EMIOS_GFR[F4,F5] eMIOS_0

144 0x0A40 4 EMIOS_GFR[F6,F7] eMIOS_0

145 0x0A44 4 EMIOS_GFR[F8,F9] eMIOS_0

146 0x0A48 4 EMIOS_GFR[F10,F11] eMIOS_0

147 0x0A4C 4 EMIOS_GFR[F12,F13] eMIOS_0

148 0x0A50 4 EMIOS_GFR[F14,F15] eMIOS_0

149 0x0A54 4 EMIOS_GFR[F16,F17] eMIOS_0

150 0x0A58 4 EMIOS_GFR[F18,F19] eMIOS_0

151 0x0A5C 4 EMIOS_GFR[F20,F21] eMIOS_0

152 0x0A60 4 EMIOS_GFR[F22,F23] eMIOS_0

153 0x0A64 4 EMIOS_GFR[F24,F25] eMIOS_0

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 287

154 0x0A68 4 EMIOS_GFR[F26,F27] eMIOS_0

155 0x0A6C 4 Reserved

156 0x0A70 4 Reserved

Section D (Device specific vectors)

157 0x0A74 4 EMIOS_GFR[F0,F1] eMIOS_1

158 0x0A78 4 EMIOS_GFR[F2,F3] eMIOS_1

159 0x0A7C 4 EMIOS_GFR[F4,F5] eMIOS_1

160 0x0A80 4 EMIOS_GFR[F6,F7] eMIOS_1

161 0x0A84 4 EMIOS_GFR[F8,F9] eMIOS_1

162 0x0A88 4 EMIOS_GFR[F10,F11] eMIOS_1

163 0x0A8C 4 EMIOS_GFR[F12,F13] eMIOS_1

164 0x0A90 4 EMIOS_GFR[F14,F15] eMIOS_1

165 0x0A94 4 EMIOS_GFR[F16,F17] eMIOS_1

166 0x0A98 4 EMIOS_GFR[F18,F19] eMIOS_1

167 0x0A9C 4 EMIOS_GFR[F20,F21] eMIOS_1

168 0x0AA0 4 EMIOS_GFR[F22,F23] eMIOS_1

169 0x0AA4 4 EMIOS_GFR[F24,F25] eMIOS_1

170 0x0AA8 4 EMIOS_GFR[F26,F27] eMIOS_1

171 0x0AAC 4 Reserved

172 0x0AB0 4 Reserved

173 0x0AB4 4 FlexCAN_ESR FlexCAN_3

174 0x0AB8 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_3

175 0x0ABC 4 Reserved

176 0x0AC0 4 FlexCAN_BUF_0_3 FlexCAN_3

177 0x0AC4 4 FlexCAN_BUF_4_7 FlexCAN_3

178 0x0AC8 4 FlexCAN_BUF_8_11 FlexCAN_3

179 0x0ACC 4 FlexCAN_BUF_12_15 FlexCAN_3

180 0x0AD0 4 FlexCAN_BUF_16_31 FlexCAN_3

181 0x0AD4 4 FlexCAN_BUF_32_63 FlexCAN_3

182 0x0AD8 4 Reserved

183 0x0ADC 4 Reserved

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

288 Freescale Semiconductor

184 0x0AE0 4 Reserved

185 0x0AE4 4 Reserved

186 0x0AE8 4 Reserved

187 0x0AEC 4 Reserved

188 0x0AF0 4 Reserved

189 0x0AF4 4 Reserved

190 0x0AF8 4 FlexCAN_ESR FlexCAN_4

191 0x0AFC 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_4

192 0x0B00 4 Reserved

193 0x0B04 4 FlexCAN_BUF_0_3 FlexCAN_4

194 0x0B08 4 FlexCAN_BUF_4_7 FlexCAN_4

195 0x0B0C 4 FlexCAN_BUF_8_11 FlexCAN_4

196 0x0B10 4 FlexCAN_BUF_12_15 FlexCAN_4

197 0x0B14 4 FlexCAN_BUF_16_31 FlexCAN_4

198 0x0B18 4 FlexCAN_BUF_32_63 FlexCAN_4

199 0x0B1C 4 Reserved

200 0x0B20 4 Reserved

201 0x0B24 4 Reserved

202 0x0B28 4 FlexCAN_ESR FlexCAN_5

203 0x0B2C 4 FlexCAN_ESR_BOFF |
FlexCAN_Transmit_Warning |
FlexCAN_Receive_Warning

FlexCAN_5

204 0x0B30 4 Reserved

205 0x0B34 4 FlexCAN_BUF_0_3 FlexCAN_5

206 0x0B38 4 FlexCAN_BUF_4_7 FlexCAN_5

207 0x0B3C 4 FlexCAN_BUF_8_11 FlexCAN_5

208 0x0B40 4 FlexCAN_BUF_12_15 FlexCAN_5

209 0x0B44 4 FlexCAN_BUF_16_31 FlexCAN_5

210 0x0B48 4 FlexCAN_BUF_32_63 FlexCAN_5

211 0x0B4C 4 Reserved

212 0x0B50 4 Reserved

213 0x0B54 4 Reserved

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 289

16.6.1 Interrupt request sources

The INTC has two types of interrupt requests, peripheral and software configurable. These interrupt
requests can assert on any clock cycle.

16.6.1.1 Peripheral interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

External interrupts are handled by the SIU (see Section 19.6.3, “External interrupts).

16.6.1.2 Software configurable interrupt requests

An interrupt request is triggered by software by writing a 1 to a SETx bit in
INTC_SSCIR0_3–INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRx, resulting in the
interrupt request. The interrupt request is cleared by writing a 1 to the CLRx bit.

The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

16.6.1.3 Unique vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique 9-bit vector.
Software configurable interrupts 0–7 are assigned vectors 0–7 respectively. The peripheral interrupt
requests are assigned vectors 8 to as high as needed to include all the peripheral interrupt requests. The
peripheral interrupt request input ports at the boundary of the INTC block are assigned specific hardwired
vectors within the INTC (see Table 16-1).

16.6.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set in the INTC
Priority Select Registers (INTC_PSR0_3–INTC_PSR208_210). The result is compared to PRI in the
associated INTC_CPR. The results of those comparisons manage the priority of the ISR executed by the
associated processor. The associated LIFO also assists in managing that priority.

214 0x0B58 4 Reserved

215 0x0B5C 4 Reserved

216 0x0B60 4 Reserved

Table 16-10. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module

MPC5604B/C Microcontroller Reference Manual, Rev. 8

290 Freescale Semiconductor

16.6.2.1 Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 16-1 compare the
priority of the asserted interrupt requests to the current priority. If the priority of any asserted peripheral or
software configurable interrupt request is higher than the current priority for a given processor, then the
interrupt request to the processor is asserted. Also, a unique vector for the preempting peripheral or
software configurable interrupt request is generated for INTC interrupt acknowledge register
(INTC_IACKR), and if in hardware vector mode, for the interrupt vector provided to the processor.

16.6.2.1.1 Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the asserted interrupt
requests assigned to that processor, both peripheral and software configurable. The output of the priority
arbitrator subblock is the highest of those priorities assigned to a given processor. Also, any interrupt
requests which have this highest priority are output as asserted interrupt requests to the associated request
selector subblock.

16.6.2.1.2 Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then it is passed
as asserted to the associated vector encoder subblock. If multiple interrupt requests from the associated
priority arbitrator subblock are asserted, the only the one with the lowest vector is passed as asserted to the
associated vector encoder subblock. The lower vector is chosen regardless of the time order of the
assertions of the peripheral or software configurable interrupt requests.

16.6.2.1.3 Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt request from the
request selector subblock for the associated processor.

16.6.2.1.4 Priority Comparator subblock

The priority comparator subblock compares the highest priority output from the priority arbitrator
subblock with PRI in INTC_CPR. If the priority comparator subblock detects that this highest priority is
higher than the current priority, then it asserts the interrupt request to the associated processor. This
interrupt request to the processor asserts whether this highest priority is raised above the value of PRI in
INTC_CPR or the PRI value in INTC_CPR is lowered below this highest priority. This highest priority
then becomes the new priority which will be written to PRI in INTC_CPR when the interrupt request to
the processor is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not cause a
preemption because their PRIn will not be higher than PRI in INTC_CPR.

16.6.2.2 Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these priorities are
stacked within the INTC, if interrupts need to be enabled during the ISR, at the beginning of the interrupt
exception handler the PRI value in the INTC_CPR does not need to be loaded from the INTC_CPR and
stored onto the context stack. Likewise at the end of the interrupt exception handler, the priority does not
need to be loaded from the context stack and stored into the INTC_CPR.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 291

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in
softwarevector mode or the interrupt acknowledge signal from the processor is asserted in hardware vector
mode. The priority is popped into PRI in the INTC_CPR whenever the INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal to 15 will
not be preempted. Therefore, the LIFO supports the stacking of 15 priorities. However, the LIFO is only
14 entries deep. An entry for a priority of 0 is not needed because of how pushing onto a full LIFO and
popping an empty LIFO are treated. If the LIFO is pushed 15 or more times than it is popped, the priorities
first pushed are overwritten. A priority of 0 would be an overwritten priority. However, the LIFO will pop
‘0’s if it is popped more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is
regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

16.6.3 Handshaking with processor

16.6.3.1 Software vector mode handshaking

This section describes handshaking in software vector mode.

16.6.3.1.1 Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 16-11. The INTC
examines the peripheral and software configurable interrupt requests. When it finds an asserted peripheral
or software configurable interrupt request with a higher priority than PRI in the associated INTC_CPR, it
asserts the interrupt request to the processor. The INTVEC field in the associated INTC_IACKR is updated
with the preempting interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is asserted. The
rest of the handshaking is described in Section 16.4.1.1, “Software vector mode.

16.6.3.1.2 End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register (INTC_EOIR) must be
written.When written, the associated LIFO is popped so the preempted priority is restored into PRI of the
INTC_CPR. Before it is written, the peripheral or software configurable flag bit must be cleared so that
the peripheral or software configurable interrupt request is negated.

NOTE
To ensure proper operation across all Power Architecture® MCUs, execute
an MBAR or MSYNC instruction between the access to clear the flag bit and the
write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or software settable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request may no longer even be asserted. When PRI in INTC_CPR is lowered to the priority of the
preempted ISR, the interrupt request for the preempted ISR or any other asserted peripheral or software
settable interrupt request at or below that priority will not cause a preemption. Instead, after the restoration

MPC5604B/C Microcontroller Reference Manual, Rev. 8

292 Freescale Semiconductor

of the preempted context, the processor will return to the instruction address that it was to next execute
before it was preempted. This next instruction is part of the preempted ISR or the interrupt exception
handler’s prolog or epilog.

Figure 16-11. Software vector mode handshaking timing diagram

16.6.3.2 Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 16-12. As in
software vector mode, the INTC examines the peripheral and software settable interrupt requests, and
when it finds an asserted one with a higher priority than PRI in INTC_CPR, it asserts the interrupt request
to the processor. The INTVEC field in the INTC_IACKR is updated with the preempting peripheral or
software settable interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC field in the
INTC_IACKR. The rest of the handshaking is described in Section 16.7.2.2, “Hardware vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the INTC_EOIR, is
the same as in software vector mode. Refer to Section 16.6.3.1.2, “End of interrupt exception handler.

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR

Write INTC_EOIR

INTVEC in INTC_IACKR

PRI in INTC_CPR

Peripheral interrupt request 100

0 108

0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 293

Figure 16-12. Hardware vector mode handshaking timing diagram

16.7 Initialization/application information

16.7.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–INTC_PSR210)
will be zero, and PRI in INTC current priority register (INTC_CPR) will be 15. These reset values will
prevent the INTC from asserting the interrupt request to the processor. The enable or mask bits in the
peripherals are reset such that the peripheral interrupt requests are negated. An initialization sequence for
allowing the peripheral and software settable interrupt requests to cause an interrupt request to the
processor is:interrupt_request_initialization:

interrupt_request_initialization:
configure VTES and HVEN in INTC_MCR
configure VTBA in INTC_IACKR
raise the PRIn fields in INTC_PSRn
set the enable bits or clear the mask bits for the peripheral interrupt requests
lower PRI in INTC_CPR to zero
enable processor recognition of interrupts

16.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture™ assembly code.

0 108

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR

Write INTC_EOIR

INTVEC in INTC_IACKR

PRI in INTC_CPR

Peripheral interrupt request 100

0 108

MPC5604B/C Microcontroller Reference Manual, Rev. 8

294 Freescale Semiconductor

16.7.2.1 Software vector mode
interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1
lis r3,INTC_IACKR@ha # form adjusted upper half of INTC_IACKR address
lwz r3,INTC_IACKR@l(r3) # load INTC_IACKR, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC_IACKR contents into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1
.
.
.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

16.7.2.2 Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations which support
a hardware vector. This example assumes that each interrupt_exception_handlerx only has space for four
instructions, and therefore a branch to interrupt_exception_handler_continuedx is needed.

interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch to continue

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 295

interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC
blr # branch to epilog

16.7.3 ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current priority register
(INTC_CPR) having a value of 0. The RTOS will execute the tasks according to whatever priority scheme
that it may have, but that priority scheme is independent and has a lower priority of execution than the
priority scheme of the INTC. In other words, the ISRs execute above INTC_CPR priority 0 and outside
the control of the RTOS, the RTOS executes at INTC_CPR priority 0, and while the tasks execute at
different priorities under the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR while the shared resource is being accessed.

An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR210) has a value of 0 will
not cause an interrupt request to the processor, even if its peripheral or software settable interrupt request
is asserted. For a peripheral interrupt request, not setting its enable bit or disabling the mask bit will cause
it to remain negated, which consequently also will not cause an interrupt request to the processor. Since
the ISRs are outside the control of the RTOS, this ISR will not run unless called by another ISR or the
interrupt exception handler, perhaps after executing another ISR.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

296 Freescale Semiconductor

16.7.4 Order of execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software configurable interrupt requests. However, if multiple
peripheral or software configurable interrupt requests are asserted, more than one has the highest priority,
and that priority is high enough to cause preemption, the INTC selects the one with the lowest unique
vector regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 16-11 shows the order of execution of both ISRs with different priorities and the
same priority.

Table 16-11. Order of ISR execution example

Step
No.

Step description

Code Executing at End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081 ISR208 ISR308 ISR408

Interrupt
exception
handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at
priority 1 asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at
priority 4 is asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at
priority 3 is asserts.

X 4

5 Peripheral interrupt request 200 at
priority 3 is asserts.

X 4

6 ISR408 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

7 Interrupt taken. ISR208 starts to
execute, even though peripheral
interrupt request 300 asserted first.

X 3

8 ISR208 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

9 Interrupt taken. ISR308 starts to
execute.

X 3

10 ISR308 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

11 ISR108 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 0

12 RTOS continues execution. X 0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 297

16.7.5 Priority ceiling protocol

16.7.5.1 Elevating priority

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities of the ISRs
that share a resource. This protocol allows coherent accesses of the ISRs to that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR to 3, the ceiling of all of the ISR priorities. After they release the resource, the PRI value in
INTC_CPR can be lowered. If they do not raise their priority, ISR2 can preempt ISR1, and ISR3 can
preempt ISR1 or ISR2, possibly corrupting the shared resource. Another possible failure mechanism is
deadlock if the higher priority ISR needs the lower priority ISR to release the resource before it can
continue, but the lower priority ISR cannot release the resource until the higher priority ISR completes and
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time when
accessing a shared resource that all higher priority interrupts are blocked. For example, while ISR3 cannot
preempt ISR1 while it is accessing the shared resource, all of the ISRs with a priority higher than 3 can
preempt ISR1.

16.7.5.2 Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1 and ISR2 are both
running on the same core and both share a resource. ISR1 has a lower priority than ISR2. ISR1 is executing
and writes to the INTC_CPR. The instruction following this store is a store to a value in a shared coherent
data block. Either immediately before or at the same time as the first store, the INTC asserts the interrupt
request to the processor because the peripheral interrupt request for ISR2 has asserted. As the processor is
responding to the interrupt request from the INTC, and as it is aborting transactions and flushing its
pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that it can access the data
block coherently, but the data block has been corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corruption of a coherent data block, modifications to PRI in INTC_CPR can be made by those
system services with the code sequence:

disable processor recognition of interrupts
PRI modification
enable processor recognition of interrupts

16.7.6 Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling (RMS) or a
superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which have higher request rates
have higher priorities. In DMS, if the deadline is before the next time the ISR is requested, then the ISR is

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable
interrupt requests.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

298 Freescale Semiconductor

assigned a priority according to the time from the request for the ISR to the deadline, not from the time of
the request for the ISR to the next request for it.

For example, ISR1 executes every 100 µs, ISR2 executes every 200 µs, and ISR3 executes every 300 µs.
ISR1 has a higher priority than ISR2 which has a higher priority than ISR3; however, if ISR3 has a
deadline of 150 µs, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the ISRs should be
grouped with other ISRs that have similar deadlines. For example, a priority could be allocated for every
time the request rate doubles. ISRs with request rates around 1 ms would share a priority, ISRs with request
rates around 500 µs would share a priority, ISRs with request rates around 250 µs would share a priority,
etc. With this approach, a range of ISR request rates of 216 could be included, regardless of the number of
ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines. However, reducing
the number of priorities can reduce the size and latency through the interrupt controller. It also allows
easier management of ISRs with similar deadlines that share a resource. They do not need to use the PCP
to access the shared resource.

16.7.7 Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to schedule a
lower priority portion of an ISR and they may also be used by processors to interrupt other processors in
a multiple processor system.

16.7.7.1 Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in the INTC Priority Select Registers
(INTC_PSR0_3–INTC_PSR208_210), which becomes the PRI value in INTC_CPR with the interrupt
acknowledge. The ISR, however, can have a portion that does not need to be executed at this higher
priority. Therefore, executing the later portion that does not need to be executed at this higher priority can
prevent the execution of ISRs which do not have a higher priority than the earlier portion of the ISR but
do have a higher priority than what the later portion of the ISR needs. This preemptive scheduling
inefficiency reduces the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount
of time for an ISR to schedule a task. Therefore, a second option is for the ISR, after completing the higher
priority portion, to set a SETx bit in INTC_SSCIR0_3–INTC_SSCIR4_7. Writing a 1 to SETx causes a
software configurable interrupt request. This software configurable interrupt request will usually have a
lower PRIx value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After
generating a software settable interrupt request, the higher priority ISR completes. The lower priority ISR
is scheduled according to its priority. Execution of the higher priority ISR is not resumed after the
completion of the lower priority ISR.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 299

16.7.7.2 Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-processor
systems can schedule ISRs on the other processors. One application is that one processor wants to
command another processor to perform a piece of work and the initiating processor does not need to use
the results of that work. If the initiating processor is concerned that the processor executing the software
configurable ISR has not completed the work before asking it to again execute the ISR, it can check if the
corresponding CLRx bit in INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second
processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. To do this, the first processor writes a 1 to a SETx
bit on the second processor. After accessing the block of data, the second processor clears the
corresponding CLRx bit and then writes 1 to a SETx bit on the first processor, informing it that it can now
access the block of data.

16.7.8 Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose work spans
multiple priorities (see Section 16.7.7.1, “Scheduling a lower priority portion of an ISR) is to lower the
current priority. However, the INTC has a LIFO whose depth is determined by the number of priorities.

NOTE
Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s
corresponding PRI value in the INTC Priority Select Registers
(INTC_PSR0_3–INTC_PSR208_210) allows more preemptions than the
LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to avoid
preemptive scheduling inefficiencies.

16.7.9 Negating an interrupt request outside of its ISR

16.7.9.1 Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits and their corresponding interrupt
requests. This clearing as a side effect of servicing a peripheral interrupt request can cause the negation of
other peripheral interrupt requests besides the peripheral interrupt request whose ISR presently is
executing. This negating of a peripheral interrupt request outside of its ISR can be a desired effect.

16.7.9.2 Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag bits is because
it serviced those flag bits, and therefore the ISRs for these flag bits do not need to be executed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

300 Freescale Semiconductor

16.7.9.3 Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR execution or the
intentional clearing a flag bit, the priorities of the peripheral or software configurable interrupt requests for
these other flag bits must be selected properly. Their PRIx values in the INTC Priority Select Registers
(INTC_PSR0_3–INTC_PSR208_210) must be selected to be at or lower than the priority of the ISR that
cleared their flag bits. Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to the writing to
INTC_SSCIR0_3–INTC_SSCIR4_7 as the clearing of the flag bit that caused the present ISR to be
executed (see Section 16.6.3.1.2, “End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be cleared at any time,
regardless of the peripheral interrupt request’s PRIx value in INTC_PSRx_x.

16.7.10 Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even know how
deeply the LIFO is nested. However, if he wants to read the contents, such as in debug mode, they are not
memory mapped. The contents can be read by popping the LIFO and reading the PRI field in either
INTC_CPR. The code sequence is:

pop_lifo:
store to INTC_EOIR
load INTC_CPR, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push_lifo:
load stacked PRI value and store to INTC_CPR
load INTC_IACKR
if stacked PRI values are not depleted, branch to push_lifo

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 301

Chapter 17
Crossbar Switch (XBAR)

17.1 Introduction
This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous connections
between two master ports and three slave ports. XBAR supports a 32-bit address bus width and a 32-bit
data bus width at all master and slave ports.

The crossbar of MPC5604B is the same as the one of all other PPC55xx and PPC56xx products except that
it cannot be configured by software and that it has a hard-wired configuration.

17.2 Block diagram
Figure 17-1 shows a block diagram of the crossbar switch.

Figure 17-1. XBAR block diagram

Table 17-1 gives the crossbar switch port for each master and slave, and the assigned and fixed ID number
for each master. The table shows the master ID numbers as they relate to the master port numbers.

Table 17-1. XBAR switch ports for MPC5604B

Module
Port

Physical master ID
Type Logical number

e200z0 core–CPU instructions Master 0 0

e200z0 core–CPU data / Nexus Master 0 1

Flash memory Slave 0 —

Internal SRAM Slave 2 —

Peripheral bridges Slave 7 —

CPU

Crossbar Switch

Flash

Master modules

Slave modules

CPU data /

Internal Peripheral
bridges

instructions Nexus

memory SRAM

MPC5604B/C Microcontroller Reference Manual, Rev. 8

302 Freescale Semiconductor

17.3 Overview
The XBAR allows for concurrent transactions to occur from any master port to any slave port. It is possible
for all master ports and slave ports to be in use at the same time as a result of independent master requests.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions.

Requesting masters are granted access based on a fixed priority.

17.4 Features
• 2 master ports:

— Core: e200z0 core instructions

— Core: e200z0 core data / Nexus

• 3 slave ports

— Flash (refer to the flash memory chapter for information on accessing flash memory)

— Internal SRAM

— Peripheral bridges

• 32-bit address, 32-bit data paths

• Fully concurrent transfers between independent master and slave ports

• Fixed priority scheme and fixed parking strategy

17.5 Modes of operation

17.5.1 Normal mode

In normal mode, the XBAR provides the logic that controls crossbar switch configuration.

17.5.2 Debug mode

The XBAR operation in debug mode is identical to operation in normal mode.

17.6 Functional description
This section describes the functionality of the XBAR in more detail.

17.6.1 Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple masters to
communicate concurrently with multiple slaves. To maximize data throughput, it is essential to keep
arbitration delays to a minimum.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 303

This section examines data throughput from the point of view of masters and slaves, detailing when the
XBAR stalls masters, or inserts bubbles on the slave side.

17.6.2 General operation

When a master makes an access to the XBAR from an idle master state, the access is taken immediately
by the XBAR. If the targeted slave port of the access is available (that is, the requesting master is currently
granted ownership of the slave port), the access is immediately presented on the slave port. It is possible
to make single clock (zero wait state) accesses through the XBAR by a granted master. If the targeted slave
port of the access is busy or parked on a different master port, the requesting master receives wait states
until the targeted slave port can service the master request. The latency in servicing the request depends
on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master device has no
indication that it owns the slave port it is targeting. While the master does not have control of the slave port
it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different slave port has
completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has the following conditions:

• Outstanding request to slave port A that has a long response time

• Pending access to a different slave port B

• Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle of arbitration,
assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of that slave port
until it gives up the slave port by running an IDLE cycle, leaves that slave port for its next access, or loses
control of the slave port to a higher priority master with a request to the same slave port. However, because
all masters run a fixed-length burst transfer to a slave port, it retains control of the slave port until that
transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master which did the last transfer.

17.6.3 Master ports

A master access is taken if the slave port to which the access decodes is either currently servicing the
master or is parked on the master. In this case, the XBAR is completely transparent and the master access
is immediately transmitted on the slave bus and no arbitration delays are incurred. A master access stall if
the access decodes to a slave port that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting access to the slave
port, then only one clock of arbitration is incurred. If the slave port is currently serving another master of
a lower priority and the master has a higher priority than all other requesting masters, then the master gains
control over the slave port as soon as the data phase of the current access is completed. If the slave port is
currently servicing another master of a higher priority, then the master gains control of the slave port after

MPC5604B/C Microcontroller Reference Manual, Rev. 8

304 Freescale Semiconductor

the other master releases control of the slave port if no other higher priority master is also waiting for the
slave port.

A master access is responded to with an error if the access decodes to a location not occupied by a slave
port. This is the only time the XBAR directly responds with an error response. All other error responses
received by the master are the result of error responses on the slave ports being passed through the XBAR.

17.6.4 Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when masters are
actively making requests. To do this the XBAR must not insert any bubbles onto the slave bus unless
absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a master is actively
making a request. This occurs when a handoff of bus ownership occurs and there are no wait states from
the slave port. A requesting master which does not own the slave port is granted access after a one clock
delay.

17.6.5 Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). The following table shows
the priority levels assigned to each master (the lowest has highest priority).

17.6.6 Arbitration

XBAR supports only a fixed-priority comparison algorithm.

17.6.6.1 Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority level in the
XBAR_MPR. If two masters both request access to a slave port, the master with the highest priority in the
selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new requesting
master’s priority level is higher than that of the master that currently has control over the slave port (if any).
The slave port does an arbitration check at every clock edge to ensure that the proper master (if any) has
control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port, the higher priority master is granted control at the termination of any currently pending
access, assuming the pending transfer is not part of a burst transfer.

Table 17-2. Hardwired bus master priorities

Module
Port

Priority level
Type Number

e200z0 core–CPU instructions Master 0 7

e200z0 core–CPU data / Nexus Master 0 6

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 305

A new requesting master must wait until the end of the fixed-length burst transfer, before it is granted
control of the slave port. But if the new requesting master’s priority level is lower than that of the master
that currently has control of the slave port, the new requesting master is forced to wait until the master that
currently has control of the slave port is finished accessing the current slave port.

17.6.6.1.1 Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port parks always to
the last master (park-on-last). When parked on the last master, the slave port is passing that master’s signals
through to the slave bus. When the master accesses the slave port again, no other arbitration penalties are
incurred except that a one clock arbitration penalty is incurred for each access request to the slave port
made by another master port. All other masters pay a one clock penalty.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

306 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 307

Chapter 18
Memory Protection Unit (MPU)

18.1 Introduction
The Memory Protection Unit (MPU) provides hardware access control for all memory references
generated in the device. Using preprogrammed region descriptors which define memory spaces and their
associated access rights, the MPU concurrently monitors all system bus transactions and evaluates the
appropriateness of each transfer. Memory references that have sufficient access control rights are allowed
to complete, while references that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response.

The MPU module provides the following capabilities:

• Support for 8 program-visible 128-bit (4-word) region descriptors

— Each region descriptor defines a modulo-32 byte space, aligned anywhere in memory

– Region sizes can vary from a minimum of 32 bytes to a maximum of 4 Gbytes

— Two types of access control permissions defined in single descriptor word

– Processors have separate {read, write, execute} attributes for supervisor and user accesses

– Non-processor masters have {read, write} attributes

— Hardware-assisted maintenance of the descriptor valid bit minimizes coherency issues

— Alternate programming model view of the access control permissions word

• Memory-mapped platform device

— Interface to 3 slave XBAR ports: flash controller, system SRAM controller and peripherals bus

– Connections to the address phase address and attributes

– Typical location is immediately “downstream” of the platform’s crossbar switch

A simplified block diagram of the MPU module is shown in Figure 18-1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

308 Freescale Semiconductor

Figure 18-1. MPU block diagram

18.2 Features
The Memory Protection Unit implements a two-dimensional hardware array of memory region descriptors
and the crossbar slave XBAR ports to continuously monitor the legality of every memory reference
generated by each bus master in the system. The feature set includes:

• Support for 8 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 GB

— Access control definitions: 2 bus masters (processor cores) support the traditional {read, write,
execute} permissions with independent definitions for supervisor and user mode accesses

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter only the access rights of a descriptor

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software. See Section 18.6.2,
“Putting it all together and AHB error terminations,” for details and Section 18.8, “Application
information,” for an example.

• Support for 3 XBAR slave port connections: flash controller, system SRAM controller and
peripherals bus

PFlash

PRAM

PBRIDGE0

Core (z0hn2p)

XBAR MPU

s0

s2

s7

m0

m1

Platform

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 309

— MPU hardware continuously monitors every XBAR slave port access using the
preprogrammed memory region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit. In the event of an
access error, the XBAR reference is terminated with an error response and the MPU inhibits
the bus cycle being sent to the targeted slave device.

— 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes
and “detail” information

• Global MPU enable/disable control bit provides a mechanism to easily load region descriptors
during system startup or allow complete access rights during debug with the module disabled

18.3 Modes of operation
The MPU module does not support any special modes of operation. As a memory-mapped device located
on the platform’s high-speed system bus, it responds based strictly on the memory addresses of the
connected system buses. The peripheral bus is used to access the MPU’s programming model and the
memory protection functions are evaluated on a reference-by-reference basis using the addresses from the
XBAR system bus port(s).

Power dissipation is minimized when the MPU’s global enable/disable bit is cleared
(MPU_CESR[VLD] = 0).

18.4 External signal description
The MPU module does not include any external interface. The MPU’s internal interfaces include a
peripheral bus connection for accessing the programming model and multiple connections to the address
phase signals of the platform crossbar’s slave AHB ports. From a platform topology viewpoint, the MPU
module appears to be directly connected “downstream” from the crossbar switch with interfaces to the
XBAR slave ports.

18.5 Memory map and register description
The MPU module provides an IPS programming model mapped to an SPP-standard on-platform 16 KB
space. The programming model is partitioned into three groups: control/status registers, the data structure
containing the region descriptors and the alternate view of the region descriptor access control values.

The programming model can only be referenced using 32-bit (word) accesses. Attempted references using
different access sizes, to undefined (reserved) addresses, or with a non-supported access type (for example,
a write to a read-only register or a read of a write-only register) generate an IPS error termination.

Finally, the programming model allocates space for an MPU definition with 8 region descriptors and up to
3 XBAR slave ports, like flash controller, system SRAM controller and peripheral bus.

18.5.1 Memory map

The MPU programming model map is shown in Table 18-1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

310 Freescale Semiconductor

18.5.2 Register description

18.5.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status plus three bytes of configuration information. A global
MPU enable/disable bit is also included in this register.

Table 18-1. MPU memory map

Base address: 0xFFF1_1000

Address offset Register Location

0x000 MPU Control/Error Status Register (MPU_CESR) on page 310

0x004–0x00F Reserved

0x010 MPU Error Address Register, Slave Port 0 (MPU_EAR0) on page 311

0x014 MPU Error Detail Register, Slave Port 0 (MPU_EDR0) on page 312

0x018 MPU Error Address Register, Slave Port 1 (MPU_EAR1) on page 311

0x01C MPU Error Detail Register, Slave Port 1 (MPU_EDR1) on page 312

0x020 MPU Error Address Register, Slave Port 2 (MPU_EAR2) on page 311

0x024 MPU Error Detail Register, Slave Port 2 (MPU_EDR2) on page 312

0x028–0x3FF Reserved

0x400 MPU Region Descriptor 0 (MPU_RGD0) on page 314

0x410 MPU Region Descriptor 1 (MPU_RGD1) on page 314

0x420 MPU Region Descriptor 2 (MPU_RGD2) on page 314

0x430 MPU Region Descriptor 3 (MPU_RGD3) on page 314

0x440 MPU Region Descriptor 4 (MPU_RGD4) on page 314

0x450 MPU Region Descriptor 5 (MPU_RGD5) on page 314

0x460 MPU Region Descriptor 6 (MPU_RGD6) on page 314

0x470 MPU Region Descriptor 7 (MPU_RGD7) on page 314

0x480–0x7FF Reserved

0x800 MPU RGD Alternate Access Control 0 (MPU_RGDAAC0) on page 319

0x804 MPU RGD Alternate Access Control 1 (MPU_RGDAAC1) on page 319

0x808 MPU RGD Alternate Access Control 2 (MPU_RGDAAC2) on page 319

0x80C MPU RGD Alternate Access Control 3 (MPU_RGDAAC3) on page 319

0x810 MPU RGD Alternate Access Control 4 (MPU_RGDAAC4) on page 319

0x814 MPU RGD Alternate Access Control 5 (MPU_RGDAAC5) on page 319

0x818 MPU RGD Alternate Access Control 6 (MPU_RGDAAC6) on page 319

0x81C MPU RGD Alternate Access Control 7 (MPU_RGDAAC7) on page 319

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 311

18.5.2.2 MPU Error Address Register, Slave Port n (MPU_EARn)

When the MPU detects an access error on slave port n, the 32-bit reference address is captured in this
read-only register and the corresponding bit in the MPU_CESR[SPERR] field set. Additional information

Offset: 0x000 Access: Read/Partial Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SPERR[7:0] 1 0 0 0 HRL

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 1 0 0 0 * * * *

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NSP NRGD 0 0 0 0 0 0 0
VLD

W

Reset * * * * * * * * 0 0 0 0 0 0 0 0

Figure 18-2. MPU Control/Error Status Register (MPU_CESR)

Table 18-2. MPU_CESR field descriptions

Field Description

SPERRn Slave Port n Error, where the slave port number matches the bit number.
Each bit in this field represents a flag maintained by the MPU for signaling the presence of a captured
error contained in the MPU_EARn and MPU_EDRn registers. The individual bit is set when the
hardware detects an error and records the faulting address and attributes. It is cleared when the
corresponding bit is written as a logical one. If another error is captured at the exact same cycle as a
write of a logical one, this flag remains set. A “find first one” instruction (or equivalent) can be used to
detect the presence of a captured error.
0 The corresponding MPU_EARn/MPU_EDRn registers do not contain a captured error.
1 The corresponding MPU_EARn/MPU_EDRn registers do contain a captured error.

HRL Hardware Revision Level
This field specifies the MPU’s hardware and definition revision level. It can be read by software to
determine the functional definition of the module.

NSP Number of Slave Ports
This field specifies the number of slave ports [1–8] connected to the MPU.

NRGD Number of Region Descriptors
This field specifies the number of region descriptors implemented in the MPU. The defined encodings
include:
0b0000 8 region descriptors
0b0001 12 region descriptors
0b0010 16 region descriptors

VLD Valid
This bit provides a global enable/disable for the MPU.
0 The MPU is disabled.
1 The MPU is enabled.
While the MPU is disabled, all accesses from all bus masters are allowed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

312 Freescale Semiconductor

about the faulting access is captured in the corresponding MPU_EDRn register at the same time. Note this
register and the corresponding MPU_EDRn register contain the most recent access error; there are no
hardware interlocks with the MPU_CESR[SPERR] field as the error registers are always loaded upon the
occurrence of each protection violation.

18.5.2.3 MPU Error Detail Register, Slave Port n (MPU_EDRn)

When the MPU detects an access error on slave port n, 32 bits of error detail are captured in this read-only
register and the corresponding bit in the MPU_CESR[SPERR] field set. Information on the faulting
address is captured in the corresponding MPU_EARn register at the same time. Note that this register and
the corresponding MPU_EARn register contain the most recent access error; there are no hardware
interlocks with the MPU_CESR[SPERR] field as the error registers are always loaded upon the occurrence
of each protection violation.

Offsets: 0x010–0x020 (3 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EADDR [31:16]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EADDR [15:0]

W

Reset – – – – – – – – – – – – – – – –

Figure 18-3. MPU Error Address Register, Slave Port n (MPU_EARn)

Table 18-3. MPU_EARn field descriptions

Field Description

EADDR Error Address
This field is the reference address from slave port n that generated the access error.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 313

Offsets: 0x014–0x024 (3 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EACD

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EPID EMN EATTR ERW

W

Reset – – – – – – – – – – – – – – – –

Figure 18-4. MPU Error Detail Register, Slave Port n (MPU_EDRn)

Table 18-4. MPU_EDRn field descriptions

Field Description

EACD Error Access Control Detail
This field implements one bit per region descriptor and is an indication of the region descriptor hit
logically ANDed with the access error indication. The MPU performs a reference-by-reference
evaluation to determine the presence/absence of an access error. When an error is detected, the
hit-qualified access control vector is captured in this field.

If the MPU_EDRn register contains a captured error and the EACD field is all zeroes, this signals an
access that did not hit in any region descriptor. All non-zero EACD values signal references that hit in
a region descriptor(s), but failed due to a protection error as defined by the specific set bits. If only a
single EACD bit is set, then the protection error was caused by a single non-overlapping region
descriptor. If two or more EACD bits are set, then the protection error was caused in an overlapping set
of region descriptors.

EPID Error Process Identification
This field records the process identifier of the faulting reference. The process identifier is typically driven
only by processor cores; for other bus masters, this field is cleared.

EMN Error Master Number
This field records the logical master number of the faulting reference. This field is used to determine
the bus master that generated the access error.

EATTR Error Attributes
This field records attribute information about the faulting reference. The supported encodings are
defined as:
0b000 User mode, instruction access
0b001 User mode, data access
0b010Supervisor mode, instruction access
0b011Supervisor mode, data access
All other encodings are reserved. For non-core bus masters, the access attribute information is typically
wired to supervisor, data (0b011).

ERW Error Read/Write
This field signals the access type (read, write) of the faulting reference.
0 Read
1 Write

MPC5604B/C Microcontroller Reference Manual, Rev. 8

314 Freescale Semiconductor

18.5.2.4 MPU Region Descriptor n (MPU_RGDn)

Each 128-bit (16 byte) region descriptor specifies a given memory space and the access attributes
associated with that space. The descriptor definition is the very essence of the operation of the Memory
Protection Unit.

The region descriptors are organized sequentially in the MPU’s programming model and each of the four
32-bit words are detailed in the subsequent sections.

18.5.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the memory
region. Writes to this word clear the region descriptor’s valid bit (see Section 18.5.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3) for more information).

18.5.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address of the memory
region. Writes to this word clear the region descriptor’s valid bit (see Section 18.5.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3) for more information).

Offset: 0x400 + (16*n) + 0x0 (MPU_RGDn.Word0) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SRTADDR[26:11]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SRTADDR[10:0] 0 0 0 0 0

W

Reset – – – – – – – – – – – 0 0 0 0 0

Figure 18-5. MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0)

Table 18-5. MPU_RGDn.Word0 field descriptions

Field Description

SRTADDR Start Address
This field defines the most significant bits of the 0-modulo-32 byte start address of the memory
region.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 315

18.5.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory region. The
access control privileges are dependent on two broad classifications of bus masters. Bus masters 0–3 are
typically reserved for processor cores and the corresponding access control is a 6-bit field defining
separate privilege rights for user and supervisor mode accesses as well as the optional inclusion of a
process identification field within the definition. Bus masters 4–7 are typically reserved for data movement
engines and their capabilities are limited to separate read and write permissions. For these fields, the bus
master number refers to the logical master number defined as the XBAR hmaster[3:0] signal.

For the processor privilege rights, there are three flags associated with this function: {read, write, execute}.
In this context, these flags follow the traditional definition:

• Read (r) permission refers to the ability to access the referenced memory address using an operand
(data) fetch.

• Write (w) permission refers to the ability to update the referenced memory address using a store
(data) instruction.

• Execute (x) permission refers to the ability to read the referenced memory address using an
instruction fetch.

The evaluation logic defines the processor access type based on multiple AHB signals, as hwrite and
hprot[1:0].

For non-processor data movement engines (bus masters 4–7), the evaluation logic simply uses hwrite to
determine if the access is a read or write.

Offset: 0x400 + (16*n) + 0x4 (MPU_RGDn.Word1) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ENDADDR[26:11]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ENDADDR[10:0]

1 1 1 1 1

W

Reset – – – – – – – – – – – 1 1 1 1 1

Figure 18-6. MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)

Table 18-6. MPU_RGDn.Word1 field descriptions

Field Description

ENDADDR End Address
This field defines the most significant bits of the 31-modulo-32 byte end address of the memory
region. There are no hardware checks to verify that ENDADDR >= SRTADDR; it is software’s
responsibility to properly load these region descriptor fields.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

316 Freescale Semiconductor

Writes to this word clear the region descriptor’s valid bit (see Section 18.5.2.4.4, “MPU Region Descriptor
n, Word 3 (MPU_RGDn.Word3) for more information). Since it is also expected that system software may
adjust only the access controls within a region descriptor (MPU_RGDn.Word2) as different tasks execute,
an alternate programming view of this 32-bit entity is provided. If only the access controls are being
updated, this operation should be performed by writing to MPU_RGDAACn (Alternate Access Control n)
as stores to these locations do not affect the descriptor’s valid bit.

Offset: 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
7R

E

M
7W

E

M
6R

E

M
6W

E

M
5R

E

M
5W

E

M
4R

E

M
4W

E

M
3P

E

M3SM M3UM

M
2P

E

M
2S

M
[1

]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
2S

M
[0

]

M2UM

M
1P

E

M1SM M1UM

M
0P

E

M0SM M0UM
W

Reset – – – – – – – – – – – – – – – –

Figure 18-7. MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)

Table 18-7. MPU_RGDn.Word2 field descriptions

Field Description

M7RE Bus master 7 read enable
If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.

M7WE Bus master 7 write enable
If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.

M6RE Bus master 6 read enable
If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.

M6WE Bus master 6 write enable
If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.

M5RE Bus master 5 read enable
If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

M5WE Bus master 5 write enable
If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4RE Bus master 4 read enable
If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 317

M4WE Bus master 4 write enable
If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

M3PE Bus master 3 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM Bus master 3 supervisor mode access control
This field defines the access controls for bus master 3 when operating in supervisor mode. The M3SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M3UM for user mode

M3UM Bus master 3 user mode access control
This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE Bus master 2 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M2SM Bus master 2 supervisor mode access control
This field defines the access controls for bus master 2 when operating in supervisor mode. The M2SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M2UM for user mode

M2UM Bus master 2 user mode access control
This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus master 1 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M1SM Bus master 1 supervisor mode access control
This field defines the access controls for bus master 1 when operating in supervisor mode. The M1SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M1UM for user mode

Table 18-7. MPU_RGDn.Word2 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

318 Freescale Semiconductor

18.5.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and mask, plus the
region descriptor’s valid bit.

Since the region descriptor is a 128-bit entity, there are potential coherency issues as this structure is being
updated since multiple writes are required to update the entire descriptor. Accordingly, the MPU hardware
assists in the operation of the descriptor valid bit to prevent incoherent region descriptors from generating
spurious access errors. In particular, it is expected that a complete update of a region descriptor is typically
done with sequential writes to MPU_RGDn.Word0, then MPU_RGDn.Word1,... and finally
MPU_RGDn.Word3. The MPU hardware automatically clears the valid bit on any writes to words {0,1,2}
of the descriptor. Writes to this word set/clear the valid bit in a normal manner.

Since it is also expected that system software may adjust only the access controls within a region descriptor
(MPU_RGDn.Word2) as different tasks execute, an alternate programming view of this 32-bit entity is
provided. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (Alternate Access Control n) as stores to these locations do not affect the descriptor’s
valid bit.

M1UM Bus master 1 user mode access control
This field defines the access controls for bus master 1 when operating in user mode. The M1UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus master 0 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M0SM Bus master 0 supervisor mode access control
This field defines the access controls for bus master 0 when operating in supervisor mode. The M0SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M0UM for user mode

M0UM Bus master 0 user mode access control
This field defines the access controls for bus master 0 when operating in user mode. The M0UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Table 18-7. MPU_RGDn.Word2 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 319

18.5.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

As noted in Section 18.5.2.4.3, “MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2), it is expected
that since system software may adjust only the access controls within a region descriptor
(MPU_RGDn.Word2) as different tasks execute, an alternate programming view of this 32-bit entity is
desired. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (Alternate Access Control n) as stores to these locations do not affect the descriptor’s
valid bit.

The memory address therefore provides an alternate location for updating MPU_RGDn.Word2.

Offset: 0x400 + (16*n) + 0xC (MPU_RGDn.Word3) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PID PIDMASK

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-8. MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3)

Table 18-8. MPU_RGDn.Word3 field descriptions

Field Description

PID Process Identifier
This field specifies that the optional process identifier is to be included in the determination of whether
the current access hits in the region descriptor. This field is combined with the PIDMASK and included
in the region hit determination if MPU_RGDn.Word2[MxPE] is set.

PIDMASK Process Identifier Mask
This field provides a masking capability so that multiple process identifiers can be included as part of
the region hit determination. If a bit in the PIDMASK is set, then the corresponding bit of the PID is
ignored in the comparison. This field is combined with the PID and included in the region hit
determination if MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID
and PIDMASK, see Section 18.6.1.1, “Access evaluation – Hit determination.

VLD Valid
This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit,
while a write to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid
1 Region descriptor is valid

MPC5604B/C Microcontroller Reference Manual, Rev. 8

320 Freescale Semiconductor

Since the MPU_RGDAACn register is simply another memory mapping for MPU_RGDn.Word2, the field
definitions shown in Table 18-9 are identical to those presented in Table 18-7.

Offset: 0x800 + (4*n) (MPU_RGDAACn) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M

7R
E

M
7W

E

M
6R

E

M
6W

E

M
5R

E

M
5W

E

M
4R

E

M
4W

E

M
3P

E

M3SM M3UM

M
2P

E

M
2S

M
[1

]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
2S

M
[0

]

M2UM
M

1P
E

M1SM M1UM

M
0P

E

M0SM M0UM
W

Reset – – – – – – – – – – – – – – – –

Figure 18-9. MPU RGD Alternate Access Control n (MPU_RGDAACn)

Table 18-9. MPU_RGDAACn field descriptions

Field Description

M7RE Bus master 7 read enable.
If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.

M7WE Bus master 7 write enable
If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.

M6RE Bus master 6 read enable
If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.

M6WE Bus master 6 write enable
If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.

M5RE Bus master 5 read enable
If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

M5WE Bus master 5 write enable
If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4RE Bus master 4 read enable
If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

M4WE Bus master 4 write enable
If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 321

M3PE Bus master 3 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM Bus master 3 supervisor mode access control
This field defines the access controls for bus master 3 when operating in supervisor mode. The M3SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M3UM for user mode

M3UM Bus master 3 user mode access control
This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE Bus master 2 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M2SM Bus master 2 supervisor mode access control
This field defines the access controls for bus master 2 when operating in supervisor mode. The M2SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M2UM for user mode

M2UM Bus master 2 user mode access control
This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus master 1 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M1SM Bus master 1 supervisor mode access control
This 2-bit field defines the access controls for bus master 1 when operating in supervisor mode. The
M1SM field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M1UM for user mode

M1UM Bus master 1 user mode access control
This 3-bit field defines the access controls for bus master 1 when operating in user mode. The M1UM
field consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the
bit allows the given access type to occur; if cleared, an attempted access of that mode may be
terminated with an access error (if not allowed by any other descriptor) and the access not performed.

Table 18-9. MPU_RGDAACn field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

322 Freescale Semiconductor

18.6 Functional description
In this section, the functional operation of the MPU is detailed. In particular, subsequent sections discuss
the operation of the access evaluation macro as well as the handling of error-terminated bus cycles.

18.6.1 Access evaluation macro

As previously discussed, the basic operation of the MPU is performed in the access evaluation macro, a
hardware structure replicated in the two-dimensional connection matrix. As shown in Figure 18-10, the
access evaluation macro inputs the system bus address phase signals and the contents of a region descriptor
(RGDn) and performs two major functions: region hit determination (hit_b) and detection of an access
protection violation (error).

Figure 18-10. MPU access evaluation macro

M0PE Bus master 0 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M0SM Bus master 0 supervisor mode access control
This field defines the access controls for bus master 0 when operating in supervisor mode. The M0SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M0UM for user mode

M0UM Bus master 0 user mode access control
This field defines the access controls for bus master 0 when operating in user mode. The M0UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Table 18-9. MPU_RGDAACn field descriptions (continued)

Field Description

hit_b

start end

error

> >

RGDnSystem bus

hit & error hit_b | error

>= <=

r,w,x

address phase

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 323

Figure 18-10 is not intended to be a schematic of the actual access evaluation macro, but rather a
generalized block diagram showing the major functions included in this logic block.

18.6.1.1 Access evaluation – Hit determination

To evaluate the region hit determination, the MPU uses two magnitude comparators in conjunction with
the contents of a region descriptor: the current access must be included between the region's “start” and
“end” addresses and simultaneously the region's valid bit must be active.

Recall there are no hardware checks to verify that region's “end” address is greater then region's “start”
address, and it is software’s responsibility to properly load appropriate values into these fields of the region
descriptor.

In addition to this, the optional process identifier is examined against the region descriptor’s PID and
PIDMASK fields. In order to generate the pid_hit indication: the current PID with its PIDMASK must be
equal to the region's PID with its PIDMASK. Also the process identifier enable is take into account in this
comparison so that the MPU forces the pid_hit term to be asserted in the case of AHB bus master doesn't
provide its process identifier.

18.6.1.2 Access evaluation – Privilege violation determination

While the access evaluation macro is making the region hit determination, the logic is also evaluating if
the current access is allowed by the permissions defined in the region descriptor. The protection violation
logic then evaluates the access against the effective permissions using the specification shown in
Table 18-10.

As shown in Figure 18-10, the output of the protection violation logic is the error signal.

The access evaluation macro then uses the hit_b and error signals to form two outputs. The combined
(hit_b | error) signal is used to signal the current access is not allowed and (~hit_b & error) is used as the
input to MPU_EDRn (error detail register) in the event of an error.

Table 18-10. Protection violation definition

Description
Inputs Output

eff_rgd[r] eff_rgd[w] eff_rgd[x] Protection violation?

inst fetch read — — 0 yes, no x permission

inst fetch read — — 1 no, access is allowed

data read 0 — — yes, no r permission

data read 1 — — no, access is allowed

data write — 0 — yes, no w permission

data write — 1 — no, access is allowed

MPC5604B/C Microcontroller Reference Manual, Rev. 8

324 Freescale Semiconductor

18.6.2 Putting it all together and AHB error terminations

For each XBAR slave port being monitored, the MPU performs a reduction-AND of all the individual
(hit_b | error) terms from each access evaluation macro. This expression then terminates the bus cycle with
an error and reports a protection error for three conditions:

1. If the access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection violation, then a
protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection violations, then
a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying for
overlapping regions as this approach provides more flexibility to system software in region descriptor
assignments. For an example of the use of overlapping region descriptors, see Section 18.8, “Application
information.

In event of a protection error, the MPU requires two distinct actions:

1. Intercepting the error during the address phase (first cycle out of two) and cancelling the
transaction before it is seen by the slave device

2. Performing the required logic functions to force the standard 2-cycle AHB error response to
properly terminate the bus transaction and then providing the right values to the crossbar switch to
commit the transaction to other portions of the platform.

If, instead, the access is allowed, then the MPU simply passes all “original” signals to the slave device. In
this case, from a functionality point of view, the MPU is fully transparent.

18.7 Initialization information
The reset state of MPU_CESR[VLD] disables the entire module. Recall that, while the MPU is disabled,
all accesses from all bus masters are allowed. This state also minimizes the power dissipation of the MPU.
The power dissipation of each access evaluation macro is minimized when the associated region descriptor
is marked as invalid or when MPU_CESR[VLD] = 0.

Typically the appropriate number of region descriptors (MPU_RGDn) is loaded at system startup,
including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD] is set, enabling the
module. This approach allows all the loaded region descriptors to be enabled simultaneously. Recall if a
memory reference does not hit in any region descriptor, the attempted access is terminated with an error.

18.8 Application information
In an operational system, interfacing with the MPU can generally be classified into the following activities:

1. Creation of a new memory region requires loading the appropriate region descriptor into an
available register location. When a new descriptor is loaded into a RGDn, it would typically be
performed using four 32-bit word writes. As discussed in Section 18.5.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3), the hardware assists in the maintenance of the valid

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 325

bit, so if this approach is followed, there are no coherency issues associated with the multi-cycle
descriptor writes. Deletion/removal of an existing memory region is performed simply by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write to the
alternate version of the access control word (MPU_RGDAACn) would typically be performed.
Recall writes to the region descriptor using this alternate access control location do not affect the
valid bit, so there are, by definition, no coherency issues involved with the update. The access
rights associated with the memory region switch instantaneously to the new value as the IPS write
completes.

3. If the region’s start and end addresses are to be changed, this would typically be performed by
writing a minimum of three words of the region descriptor: MPU_RGDn.Word{0,1,3}, where the
writes to Word0 and Word1 redefine the start and end addresses respectively and the write to
Word3 re-enables the region descriptor valid bit. In many situations, all four words of the region
descriptor would be rewritten.

4. Typically, references to the MPU’s programming model would be restricted to supervisor mode
accesses from a specific processor(s), so a region descriptor would be specifically allocated for this
purpose with attempted accesses from other masters or while in user mode terminated with an error.

When the MPU detects an access error, the current bus cycle is terminated with an error response and
information on the faulting reference captured in the MPU_EARn and MPU_EDRn registers. The
error-terminated bus cycle typically initiates some type of error response in the originating bus master. For
example, the CPU errors will generate a core exception, whereas the DMA errors will generate a MPU
(external) interrupt. It is important to highlight that in case of DMA access violations the core will continue
to run, but if a core violation occurs the system will stop. In any event, the processor can retrieve the
captured error address and detail information simply be reading the MPU_E{A,D}Rn registers.
Information on which error registers contain captured fault data is signaled by MPU_CESR[SPERR].

MPC5604B/C Microcontroller Reference Manual, Rev. 8

326 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 327

Chapter 19
System Integration Unit Lite (SIUL)

19.1 Introduction
This chapter describes the System Integration Unit Lite (SIUL), which is used for the management of the
pads and their configuration. It controls the multiplexing of the alternate functions used on all pads as well
as being responsible for the management of the external interrupts to the device.

19.2 Overview
The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-purpose
input and output (GPIO) signals and external interrupts with trigger event configuration. Figure 19-1
provides a block diagram of the SIUL and its interfaces to other system components.

The module provides the capability to configure, read, and write to the device’s general-purpose I/O pads
that can be configured as either inputs or outputs.

• When a pad is configured as an input, the state of the pad (logic high or low) is obtained by reading
an associated data input register.

• When a pad is configured as an output, the value driven onto the pad is determined by writing to
an associated data output register. Enabling the input buffers when a pad is configured as an output
allows the actual state of the pad to be read.

• To enable monitoring of an output pad value, the pad can be configured as both output and input
so the actual pad value can be read back and compared with the expected value.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

328 Freescale Semiconductor

Figure 19-1. System Integration Unit Lite block diagram

IPS
BUS

Data

Pad Input

IO

Interrupt

Interrupt
Controller

IPS
Master

- Configuration
- Glitch Filter

Pad Configuration (IOMUXC)

Pad Config (PCRs)

GPIO Functionality

123(1)

123(1)

123(1)

16(2)

2

MUX
Pads

123(1)

SIUL Module

Interrupt Functionality

Notes:
1 Up to 123 I/O pins in 144-pin and 208-pin packages; up to 79 I/O pins in 100-pin packages
2 Up to 16 I/O pins in 144-pin and 208-pin packages; up to 12 I/O pins in 100-pin packages

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 329

19.3 Features
The System Integration Unit Lite supports these distinctive features:

• GPIO

— GPIO function on up to 123 I/O pins

— Dedicated input and output registers for most GPIO pins1

• External interrupts

— 2 system interrupt vectors for up to 16 interrupt sources

— 16 programmable digital glitch filters

— Independent interrupt mask

— Edge detection

• System configuration

— Pad configuration control

19.4 External signal description
Most device pads support multiple device functions. Pad configuration registers are provided to enable
selection between GPIO and other signals. These other signals, also referred to as alternate functions, are
typically peripheral functions.

GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate
configuration, all pins in a port can be read or written to in parallel with a single R/W access.

NOTE
In order to use GPIO port functionality, all pads in the port must be
configured as GPIO rather than as alternate functions.

Table 19-1 lists the external pins configurable via the SIUL.
(

1.Some device pins, e.g., analog pins, do not have both input and output functionality.

Table 19-1. SIUL signal properties

GPIO[0:122]1

category

1 GPIO[0:122] in 144-pin LQFP and 208 MAPBGA; GPIO[0:78] in 100-pin LQFP

Name
I/O

direction
Function

System configuration GPIO [0:19] [26:47] [60:122] Input/Output General-purpose input/output

GPIO [20:25] [48:59] Input Analog precise channels, low power oscillator
pins

External interrupt EIRQ[0:15]2

2 EIRQ[12:15] available only in 144-pin LQFP

Input Pins with External Interrupt Request
functionality. Please see the signal description
chapter of this reference manual for details.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

330 Freescale Semiconductor

19.4.1 Detailed signal descriptions

19.4.1.1 General-purpose I/O pins (GPIO[0:122])

The GPIO pins provide general-purpose input and output function. The GPIO pins are generally
multiplexed with other I/O pin functions. Each GPIO input and output is separately controlled by an input
(GPDIn_n) or output (GPDOn_n) register.

19.4.1.2 External interrupt request input pins (EIRQ[0:15])1

The EIRQ[0:15] pins are connected to the SIUL inputs. Rising- or falling-edge events are enabled by
setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

1. EIRQ[0:15] in 144-pin LQFP and 208 MAPBGA packages; EIRQ[0:11] in the 100-pin LQFP

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 331

19.5 Memory map and register description
This section provides a detailed description of all registers accessible in the SIUL module.

19.5.1 SIUL memory map

Table 19-2 gives an overview of the SIUL registers implemented.

Table 19-2. SIUL memory map

Base address: 0xC3F9_0000

Address offset Register Location

0x0000 Reserved

0x0004 MCU ID Register #1 (MIDR1) on page 333

0x0008 MCU ID Register #2 (MIDR2) on page 334

0x000C–0x0013 Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 335

0x0018 Interrupt Request Enable Register (IRER) on page 336

0x001C–0x0027 Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 336

0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 337

0x0030 Interrupt Filter Enable Register (IFER) on page 338

0x0034–0x003F Reserved

0x0040–0x0134 Pad Configuration Registers (PCR0–PCR122)1 on page 339

0x0136–0x04FF Reserved

0x0500–0x051C Pad Selection for Multiplexed Inputs Registers
(PSMI0_3–PSMI28_31)

on page 341

0x0520–0x05FF Reserved

0x0600–0x0678 GPIO Pad Data Output Registers
(GPDO0_3–GPDO120_123)2,3

on page 344

0x067C–0x07FF Reserved

0x0800–0x0878 GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)2,4 on page 345

0x087C–0x0BFF Reserved

0x0C00–0x0C0C Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3) on page 345

0x0C10–0x0C3F Reserved

0x0C40–0x0C4C Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3) on page 346

0x0C50–0x0C7F Reserved

0x0C80–0x0C9C Masked Parallel GPIO Pad Data Out Register
(MPGPDO0–MPGPDO7)

on page 347

MPC5604B/C Microcontroller Reference Manual, Rev. 8

332 Freescale Semiconductor

NOTE
A transfer error will be issued when trying to access completely reserved
register space.

19.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes using the
Register Protection module. The following registers can be protected:

• Interrupt Request Enable Register (IRER)

• Interrupt Rising-Edge Event Enable Register (IREER)

• Interrupt Falling-Edge Event Enable Register (IFEER)

• Interrupt Filter Enable Register (IFER),

• Pad Configuration Registers (PCR0–PCR122). Note that only the following registers can be
protected:

— PCR[0:15] (Port A)

— PCR[16:19] (Port B[0:3])

— PCR[34:47] (Port C[2:15])

• Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI28_31)

• Interrupt Filter Maximum Counter Registers (IFMC0–IFMC15). Note that only IFMC[0:15] can
be protected.

• Interrupt Filter Clock Prescaler Register (IFCPR)

0x0CA0–0x0FFF Reserved

0x1000–0x103C Interrupt Filter Maximum Counter Registers (IFMC0–IFMC15)5 on page 349

0x1040–0x107C Reserved

0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 349

0x1084–0x3FFF Reserved

1 PCR[0:122] is valid in the 144-pin LQFP and the 208 MAPBGA packages, while in the 100-pin LQFP packages is
PCR[0:78], so all the remaining registers are reserved.

2 Not all registers are used. The registers, although byte-accessible are allocated on 32-bit boundaries. There are
some unused registers at the end of the space. The number of unused registers is further reduced in packages with
reduced GPIO pin count.

3 GPDO[0:123] is valid in the 144-pin LQFP and the 208 MAPBGA packages, while in the 100-pin LQFP packages
is GPDO[0:76], so all the remaining registers are reserved.

4 GPDI[0:123] is valid in the 144-pin LQFP and the 208 MAPBGA packages, while in the 100-pin LQFP packages is
GPDI[0:76], so all the remaining registers are reserved.

5 IFMC[0:15] is valid in the 144-pin LQFP and the 208 MAPBGA packages, while in the 100-pin LQFP packages is
IFMC[0:11], so all the remaining registers are reserved.

Table 19-2. SIUL memory map (continued)

Base address: 0xC3F9_0000

Address offset Register Location

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 333

See the “Register Under Protection” appendix for more details.

19.5.3 Register descriptions

19.5.3.1 MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM[15:0]

W

Reset 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSP PKG 0 0 MAJOR_MASK MINOR_MASK

W

Reset 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Figure 19-2. MCU ID Register #1 (MIDR1)

Table 19-3. MIDR1 field descriptions

Field Description

PARTNUM[15:0] MCU Part Number, lower 16 bits
Device part number of the MCU.
0101_0110_0000_0001:128 KB
0101_0110_0000_0010: 256 KB
0101_0110_0000_0011: 320/384 KB
0101_0110_0000_0100: 512 KB
For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].

CSP Always reads back 0

PKG Package Settings
Can be read by software to determine the package type that is used for the particular device
as described below. Any values not explicitly specified are reserved.
0b00001: 64-pin LQFP
0b01001: 100-pin LQFP
0b01101: 144-pin LQFP

MAJOR_MASK Major Mask Revision
Counter starting at 0x0. Incremented each time there is a resynthesis.

MINOR_MASK Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

334 Freescale Semiconductor

19.5.3.2 MCU ID Register #2 (MIDR2)

19.5.3.3 Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

Offset: 0x0008 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SF FLASH_SIZE_1 FLASH_SIZE_2 0 0 0 0 0 0 0

W

Reset 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PARTNUM[23:16] 0 0 0 EE 0 0 0 0

W

Reset 0 1 0 0 0 0 1 0/1 0 0 0 1 01

1 Static bit fixed in hardware

01 01 0

Figure 19-3. MCU ID Register #2 (MIDR2)

Table 19-4. MIDR2 field descriptions

Field Description

SF Manufacturer
0 Freescale
1 Reserved

FLASH_SIZE_1 Coarse granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2
0011 128 KB
0100 256 KB
0101 512 KB

FLASH_SIZE_2 Fine granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2
0000 0 x (FLASH_SIZE_1 / 8)
0010 2 x (FLASH_SIZE_1 / 8)
0100 4 x (FLASH_SIZE_1 / 8)

PARTNUM
[23:16]

MCU Part Number, upper 8 bits containing the ASCII character within the MCU part number
0x42h: Character ‘B’ (Body controller)
0x43h: Character ‘C’ (Gateway)

For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].

EE Data Flash present
0 No Data Flash is present
1 Data Flash is present

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 335

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF[15:0]1

1 EIF[15:0] in 144-pin LQFP and the 208 MAPBGA packages; EIF[11:0] in 100-pin LQFP package.

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-4. Interrupt Status Flag Register (ISR)

Table 19-5. ISR field descriptions

Field Description

EIF[x] External Interrupt Status Flag x
This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[x]), EIF[x]
causes an interrupt request.
0 No interrupt event has occurred on the pad
1 An interrupt event as defined by IREER[x] and IFEER[x] has occurred

MPC5604B/C Microcontroller Reference Manual, Rev. 8

336 Freescale Semiconductor

19.5.3.4 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

19.5.3.5 Interrupt Rising-Edge Event Enable Register (IREER)

This register is used to enable rising-edge triggered events on the corresponding interrupt pads.

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IRE[15:0]1

1 IRE[15:0] in 144-pin LQFP and the 208 MAPBGA packages; IRE[11:0] in 100-pin LQFP package.

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-5. Interrupt Request Enable Register (IRER)

Table 19-6. IRER field descriptions

Field Description

IRE[x] External Interrupt Request Enable x
0 Interrupt requests from the corresponding ISR[EIF[x]] bit are disabled.
1 Interrupt requests from the corresponding ISR[EIF[x]] bit are enabled.

Offset:0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IREE[15:0]1

1 IREE[15:0] in 144-pin LQFP and 208 MAPBGA packages; IREE[11:0] in 100-pin LQFP package.

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-6. Interrupt Rising-Edge Event Enable Register (IREER)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 337

19.5.3.6 Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events on the corresponding interrupt pads.

NOTE
If both the IREER[IREE] and IFEER[IFEE] bits are cleared for the same
interrupt source, the interrupt status flag for the corresponding external
interrupt will never be set. If IREER[IREE] and IFEER[IFEE] bits are set
for the same source the interrupts are triggered by both rising edge events
and falling edge events.

Table 19-7. IREER field descriptions

Field Description

IREE[x] Enable rising-edge events to cause the ISR[EIF[x]] bit to be set.
0 Rising-edge event is disabled
1 Rising-edge event is enabled

Offset:0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IFEE[15:0]1

1 IFEE[15:0] in 144-pin LQFP and 208 MAPBGA packages; IFEE[11:0] in 100-pin LQFP package.

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-7. Interrupt Falling-Edge Event Enable Register (IFEER)

Table 19-8. IFEER field descriptions

Field Description

IFEE[x] Enable falling-edge events to cause the ISR[EIF[x]] bit to be set.
0 Falling-edge event is disabled
1 Falling-edge event is enabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

338 Freescale Semiconductor

19.5.3.7 Interrupt Filter Enable Register (IFER)

This register is used to enable a digital filter counter on the corresponding interrupt pads to filter out
glitches on the inputs.

19.5.3.8 Pad Configuration Registers (PCR0–PCR122)

The Pad Configuration Registers allow configuration of the static electrical and functional characteristics
associated with I/O pads. Each PCR controls the characteristics of a single pad.

Please note that input and output peripheral muxing are separate.

• For output pads:

— Select the appropriate alternate function in Pad Config Register (PCR)

— OBE is not required for functions other than GPIO

• For INPUT pads:

— Select the feature location from PSMI register

— Set the IBE bit in the appropriate PCR

• For normal GPIO (not alternate function):

— Configure PCR

— Read from GPDI or write to GPDO

Offset:0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IFE[15:0]1

1 IFE[15:0] in 144-pin LQFP and 208 MAPBGA packages; IFE[11:0] in 100-pin LQFP package.

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-8. Interrupt Filter Enable Register (IFER)

Table 19-9. IFER field descriptions

Field Description

IFE[x] Enable digital glitch filter on the interrupt pad input
0 Filter is disabled
1 Filter is enabled
See the IFMC field descriptions in Table 19-20 for details on how the filter works.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 339

NOTE
16/32-bit access is supported.

In addition to the bit map above, the following Table 19-11 describes the PCR depending on the pad type
(pad types are defined in the “Pad types” section of this reference manual). The bits in shaded fields are
not implemented for the particular I/O type. The PA field selecting the number of alternate functions may
or may not be present depending on the number of alternate functions actually mapped on the pad.

Offsets: Base + 0x0040 (PCR0)(123 registers)
Base + 0x0042 (PCR1)
...
Base + 0x0130 (PCR122)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SMC APC PA[1:0] OBE IBE

0 0
ODE

0 0
SRC WPE WPS

W

Reset 0 01

1 SMC and PA[1] are ‘1’ for JTAG pads

0 0 01 0 02

2 OBE is ‘1’ for TDO

03

3 IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS

0 0 0 0 0 0 03 14

4 WPS is ‘0’ for input only pad with analog feature and FAB

Figure 19-9. Pad Configuration Registers (PCRx)

Table 19-10. PCR bit implementation by pad type

Pad type
PCR bit No.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S, M, F (Pad
with GPIO
and digital
alternate
function)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

J (Pad with
GPIO and
analog
functionality
)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

I (Pad
dedicated to
ADC)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

MPC5604B/C Microcontroller Reference Manual, Rev. 8

340 Freescale Semiconductor

Table 19-11. PCRx field descriptions

Field Description

SMC Safe Mode Control.
This bit supports the overriding of the automatic deactivation of the output buffer of the associated
pad upon entering SAFE mode of the device.
0 In SAFE mode, the output buffer of the pad is disabled.
1 In SAFE mode, the output buffer remains functional.

APC Analog Pad Control.
This bit enables the usage of the pad as analog input.
0 Analog input path from the pad is gated and cannot be used
1 Analog input path switch can be enabled by the ADC

PA[1:0] Pad Output Assignment
This field is used to select the function that is allowed to drive the output of a multiplexed pad.
00 Alternative Mode 0 — GPIO
01 Alternative Mode 1 — See the signal description chapter
10 Alternative Mode 2 — See the signal description chapter
11 Alternative Mode 3 — See the signal description chapter

Note: Number of bits depends on the actual number of actual alternate functions. Please see data
sheet.

OBE Output Buffer Enable
This bit enables the output buffer of the pad in case the pad is in GPIO mode.
0 Output buffer of the pad is disabled when PA[1:0] = 00
1 Output buffer of the pad is enabled when PA[1:0] = 00

IBE Input Buffer Enable
This bit enables the input buffer of the pad.
0 Input buffer of the pad is disabled
1 Input buffer of the pad is enabled

ODE Open Drain Output Enable
This bit controls output driver configuration for the pads connected to this signal. Either open drain
or push/pull driver configurations can be selected. This feature applies to output pads only.
0 Pad configured for push/pull output
1 Pad configured for open drain

SRC Slew Rate Control
This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is
the following:
0 Pad configured as slow (default)
1 Pad is configured as medium or fast (depending on the pad)
Note: PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

WPE Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
connected to this signal.
0 Weak pull device disabled for the pad
1 Weak pull device enabled for the pad

WPS Weak Pull Up/Down Select
This bit controls whether weak pull up or weak pull down devices are used for the pads connected
to this signal when weak pull up/down devices are enabled.
0 Weak pull-down selected
1 Weak pull-up selected

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 341

19.5.3.9 Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI28_31)

In some cases, a peripheral input signal can be selected from more than one pin. For example, the
CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and PF[15]. Only one can be
active at a time. To select the pad to be used as input to the peripheral:

• Select the signal via the pad’s PCR register using the PA field.

• Specify the pad to be used via the appropriate PSMI field.

In order to multiplex different pads to the same peripheral input, the SIUL provides a register that controls
the selection between the different sources.

Offsets:0x0500–0x051C (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PADSEL0

0 0 0 0
PADSEL1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PADSEL2

0 0 0 0
PADSEL3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-10. Pad Selection for Multiplexed Inputs Register (PSMI0_3)

Table 19-12. PSMI0_3 field descriptions

Field Description

PADSEL0–3,
PADSEL4–7,

...
PADSEL28–31

Pad Selection Bits
Each PADSEL field selects the pad currently used for a certain input function. See Table 19-13.

Table 19-13. Peripheral input pin selection

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

PSMI0_3 PADSEL0 0x500 CAN1RX / FlexCAN_1 00: PCR[35]
01: PCR[43]
10: PCR[95]2

PADSEL1 0x501 CAN2RX / FlexCAN_2 00: PCR[73]
01: PCR[89]2

PADSEL23 0x502 CAN3RX / FlexCAN_3 00: PCR[36]
01: PCR[73]
10: PCR[89]2

PADSEL34 0x503 CAN4RX / FlexCAN_4 00: PCR[35]
01: PCR[43]
10: PCR[95]2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

342 Freescale Semiconductor

PSMI4_7 PADSEL44 0x504 CAN5RX / FlexCAN_5 00: PCR[64]
01: PCR[97]2

PADSEL5 0x505 SCK_0 / DSPI_0 00: PCR[14]
01: PCR[15]

PADSEL6 0x506 CS0_0 / DSPI_0 00: PCR[14]
01: PCR[15]
10: PCR[27]

PADSEL7 0x507 SCK_1 / DSPI_1 00: PCR[34]
01: PCR[68]
10: PCR[114]2

PSMI8_11 PADSEL8 0x508 SIN_1 / DSPI_1 00: PCR[36]
01: PCR[66]
10: PCR[112]2

PADSEL9 0x509 CS0_1 / DSPI_1 00: PCR[435]
01: PCR[61]
10: PCR[69]
11: PCR[115]2

PADSEL10 0x50A SCK_2 / DSPI_2 00: PCR[46]
01: PCR[78]2

10: PCR[105]2

PADSEL11 0x50B SIN_2 / DSPI_2 00: PCR[44]
01: PCR[76]

PSMI12_15 PADSEL12 0x50C CS0_2 / DSPI_2 00: PCR[47]
01: PCR[79]2

10: PCR[82]2

11: PCR[104]2

PADSEL13 0x50D E1UC[3] / eMIOS_0 00: PCR[3]
01: PCR[27]

PADSEL14 0x50E E0UC[4] / eMIOS_0 00: PCR[4]
01: PCR[28]

PADSEL15 0x50F E0UC[5] / eMIOS_0 00: PCR[5]
01: PCR[29]

PSMI16_19 PADSEL16 0x510 E0UC[6] / eMIOS_0 00: PCR[6]
01: PCR[30]

PADSEL17 0x511 E0UC[7] / eMIOS_0 00: PCR[7]
01: PCR[31]

PADSEL18 0x512 E0UC[10] / eMIOS_0 00: PCR[10]
01: PCR[80]2

PADSEL19 0x513 E0UC[11] / eMIOS_0 00: PCR[11]
01: PCR[81]2

Table 19-13. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 343

19.5.3.10 GPIO Pad Data Output Registers (GPDO0_3–GPDO120_123)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled separately with
a byte access.

PSMI20_23 PADSEL20 0x514 E0UC[12] / eMIOS_0 00: PCR[44]
01: PCR[82]2

PADSEL21 0x515 E0UC[13] / eMIOS_0 00: PCR[45]
01: PCR[83]2

PADSEL22 0x516 E0UC[14] / eMIOS_0 00: PCR[46]
01: PCR[84]2

PADSEL23 0x517 E0UC[22] / eMIOS_0 00: PCR[70]
01: PCR[72]
10: PCR[85]2

PSMI24_27 PADSEL24 0x518 E0UC[23] / eMIOS_0 00: PCR[71]
01: PCR[73]
10: PCR[86]2

PADSEL255 0x519 E0UC[24] / eMIOS_0 00: PCR[60]
01: PCR[106]2

PADSEL265 0x51A E0UC[25] / eMIOS_0 00: PCR[61]
01: PCR[107]2

PADSEL275 0x51B E0UC[26] / eMIOS_0 00: PCR[62]
01: PCR[108]2

PSMI28_31 PADSEL285 0x51C E0UC[27] / eMIOS_0 00: PCR[63]
01: PCR[109]2

PADSEL29 0x51D SCL / f_0 00: PCR[11]
01: PCR[19]

PADSEL30 0x51E SDA / I2C__0 00: PCR[10]
01: PCR[18]

PADSEL31 0x51F LIN3RX / LINFlex_3 00: PCR[8]
01: PCR[75]

1 See the signal description chapter of this reference manual for correspondence between PCR and
pinout

2 Not available in 100-pin LQFP
3 Not available on MPC5603B devices
4 Available only on MPC5604B 208 MAPBGA devices
5 Not available on MPC5602B and MPC5603B 100-pin devices

Table 19-13. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

344 Freescale Semiconductor

CAUTION

Toggling several IOs at the same time can significantly increase the current in a pad group. Caution must
be taken to avoid exceeding maximum current thresholds. Please see data sheet.

19.5.3.11 GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)

These registers are used to read the GPIO pad data with a byte access.

Offsets: 0x0600–0x0678 (31 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

O
[0

]

0 0 0 0 0 0 0

P
D

O
[1

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

O
[2

]

0 0 0 0 0 0 0

P
D

O
[3

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-11. Port GPIO Pad Data Output Register 0–3 (GPDO0_3)

Table 19-14. GPDO0_3 field descriptions

Field Description

PDO[x] Pad Data Out
This bit stores the data to be driven out on the external GPIO pad controlled by this register.
0 Logic low value is driven on the corresponding GPIO pad when the pad is configured as an

output
1 Logic high value is driven on the corresponding GPIO pad when the pad is configured as an

output

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 345

19.5.3.12 Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3)

MPC5604B devices ports are constructed such that they contain 16 GPIO pins, for example PortA[0..15].
Parallel port registers for input (PGPDI) and output (PGPDO) are provided to allow a complete port to be
written or read in one operation, dependent on the individual pad configuration.

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is also a masked
parallel port output register allowing the user to determine which pins within a port are written.

While very convenient and fast, this approach does have implications regarding current consumption for
the device power segment containing the port GPIO pads. Toggling several GPIO pins simultaneously can
significantly increase current consumption.

CAUTION
Caution must be taken to avoid exceeding maximum current thresholds
when toggling multiple GPIO pins simultaneously. Please see data sheet.

Table 19-16 shows the locations and structure of the PGPDOx registers.

Offsets: 0x0800–0x0878 (31 registers) Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0

P
D

I[0
]

0 0 0 0 0 0 0

P
D

I[1
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0

P
D

I[2
]

0 0 0 0 0 0 0

P
D

I[3
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-12. Port GPIO Pad Data Input Register 0–3 (GPDI0_3)

Table 19-15. GPDI0_3 field descriptions

Field Description

PDI[x] Pad Data In
This bit stores the value of the external GPIO pad associated with this register.
0 Value of the data in signal for the corresponding GPIO pad is logic low
1 Value of the data in signal for the corresponding GPIO pad is logic high

MPC5604B/C Microcontroller Reference Manual, Rev. 8

346 Freescale Semiconductor

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

For example in Table 19-16, the PGPDO0 register contains fields for Port A and Port B.

• Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, which is
mapped to Port A[15]

• Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, which is
mapped to Port B[15].

19.5.3.13 Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the previous
section (Section 19.5.3.12, “Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3)) but they are
used to read port pins simultaneously.

NOTE
The port pins to be read need to be configured as inputs but even if a single
pin within a port has IBE set, then you can still read that pin using the
parallel port register. However, this does mean you need to be very careful.

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but significantly
faster since as many as two ports can be read simultaneously with a single 32-bit read operation.

Table 19-17 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx register
contains two 16-bit fields, each field containing the values for a separate port.

Table 19-16. PGPDO0 – PGPDO3 register map

Offset1

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C00 PGPDO0 Port A Port B

0x0C04 PGPDO1 Port C Port D

0x0C08 PGPDO2 Port E Port F

0x0C0C PGPDO3 Port G Port H

Table 19-17. PGPDI0 – PGPDI3 register map

Offset1 Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C40 PGPDI0 Port A Port B

0x0C44 PGPDI1 Port C Port D

0x0C48 PGPDI2 Port E Port F

0x0C4C PGPDI3 Port G Port H

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 347

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

For example in Table 19-17, the PGPDI0 register contains fields for Port A and Port B.

• Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, which is
mapped to Port A[15]

• Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, which is
mapped to Port B[15].

19.5.3.14 Masked Parallel GPIO Pad Data Out Register (MPGPDO0–MPGPDO7)

The MPGPDOx registers are similar in operation to the PGPDOx ports described in Section 19.5.3.12,
“Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3), but with two significant differences:

• The MPGPDOx registers support masked port-wide changes to the data out on the pads of the
respective port. Masking effectively allows selective bitwise writes to the full 16-bit port.

• Each 32-bit MPGPDOx register is associated to only one port.

NOTE
The MPGPDOx registers may only be accessed with 32-bit writes. 8-bit or
16-bit writes will not modify any bits in the register and will cause a transfer
error response by the module. Read accesses return ‘0’.

Table 19-18 shows the locations and structure of the MPGPDOx registers. Each 32-bit MPGPDOx register
contains two 16-bit fields (MASKx and MPPDOx). The MASK field is a bitwise mask for its associated
port. The MPPDO0 field contains the data to be written to the port.

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Table 19-18. MPGPDO0 – MPGPDO7 register map

Offset1

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C80 MPGPDO0 MASK0 (Port A) MPPDO0 (Port A)

0x0C84 MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)

0x0C88 MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)

0x0C8C MPGPDO3 MASK3 (Port D) MPPDO3 (Port D)

0x0C90 MPGPDO4 MASK4 (Port E) MPPDO4 (Port E)

0x0C94 MPGPDO5 MASK5 (Port F) MPPDO5 (Port F)

0x0C98 MPGPDO6 MASK6 (Port G) MPPDO6 (Port G)

0x0C9C MPGPDO7 MASK7 (Port H) MPPDO7 (Port H)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

348 Freescale Semiconductor

For example in Table 19-18, the MPGPDO0 register contains field MASK0, which is the bitwise mask for
Port A and field MPPDO0, which contains data to be written to Port A.

• MPGPDO0[0] is the mask bit for Port A[0], MPGPDO0[1] is the mask bit for Port A[1] and so on,
through MPGPDO0[15], which is the mask bit for Port A[15]

• MPGPDO0[16] is the data bit mapped to Port A[0], MPGPDO0[17] is mapped to Port A[1] and so
on, through MPGPDO0[31], which is mapped to Port A[15].

CAUTION
Toggling several IOs at the same time can significantly increase the current
in a pad group. Caution must be taken to avoid exceeding maximum current
thresholds. Please see data sheet.

19.5.3.15 Interrupt Filter Maximum Counter Registers (IFMC0–IFMC15)

These registers are used to configure the filter counter associated with each digital glitch filter.

NOTE
For the pad transition to trigger an interrupt it must be steady for at least the
filter period.

Table 19-19. MPGPDO0..MPGPDO7 field descriptions

Field Description

MASKx
[15:0]

Mask Field
Each bit corresponds to one data bit in the MPPDOx register at the same bit location.
0 Associated bit value in the MPPDOxfield is ignored
1 Associated bit value in the MPPDOx field is written

MPPDOx
[15:0]

Masked Parallel Pad Data Out
Write the data register that stores the value to be driven on the pad in output mode.
Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data Output
Registers (GPDO0_3–GPDO120_123).
The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:
MPPDO[x][y] = PDO[(x*16)+y]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 349

19.5.3.16 Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all digital filter
counters in the SIUL.

Offset: 0x1000–0x103C) (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
MAXCNTx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-13. Interrupt Filter Maximum Counter Registers (IFMC0–IFMC15)

Table 19-20. IFMC field descriptions

Field Description

MAXCNTx Maximum Interrupt Filter Counter setting
Filter Period = T(CK)*MAXCNTx + n*T(CK)
Where (n can be 1 to 3)
MAXCNTx can be 0 to 15
T(CK): Prescaled Filter Clock Period, which is FIRC clock prescaled to IFCP value
T(FIRC): Basic Filter Clock Period: 62.5 ns (fFIRC = 16 MHz)

Offsets:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFCP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-14. Interrupt Filter Clock Prescaler Register (IFCPR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

350 Freescale Semiconductor

Table 19-21. IFCPR field descriptions

19.6 Functional description

19.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It provides a
consistent interface for all pads, both on a by-port and a by-bit basis. The pad configuration registers
(PCRn, see Section 19.5.3.8, “Pad Configuration Registers (PCR0–PCR122)) allow software control of
the static electrical characteristics of external pins with a single write. These are used to configure the
following pad features:

• Open drain output enable

• Slew rate control

• Pull control

• Pad assignment

• Control of analog path switches

• Safe mode behavior configuration

19.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 123 GPIO pads organized as ports that can be accessed for data reads and writes
as 32, 16 or 8-bit1.

NOTE
Ports are organized as groups of 16 GPIO pads, with the exception of Port J,
which has 5. A 32-bit R/W operation accesses two ports simultaneously. A
16-bit operation accesses a full port and an 8-bit access either the upper or
lower byte of a port.

As shown in Figure 19-15, all port accesses are identical with each read or write being performed only at
a different location to access a different port width.

Field Description

IFCP Interrupt Filter Clock Prescaler setting
Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)
T(FIRC) is the fast internal RC oscillator period.
IFCP can be 0 to 15.

1.There are exceptions. Some pads, e.g., precision analog pads, are input only.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 351

Figure 19-15. Data Port example arrangement showing configuration for different port width accesses

The SIUL has separate data input (GPDIn_n, see Section 19.5.3.11, “GPIO Pad Data Input Registers
(GPDI0_3–GPDI120_123)) and data output (GPDOn_n, see Section 19.5.3.10, “GPIO Pad Data Output
Registers (GPDO0_3–GPDO120_123)) registers for all pads, allowing the possibility of reading back an
input or output value of a pad directly. This supports the ability to validate what is present on the pad rather
than simply confirming the value that was written to the data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-pull or open
drain drive). Input registers are read-only and reflect the respective pad value.

When the pad is configured to use one of its alternate functions, the data input value reflects the respective
value of the pad. If a write operation is performed to the data output register for a pad configured as an
alternate function (non-GPIO), this write will not be reflected by the pad value until reconfigured to GPIO.

The allocation of what input function is connected to the pin is defined by the PSMI registers (PCRn, see
Section 19.5.3.9, “Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI28_31)).”

19.6.3 External interrupts

The SIUL supports 16 external interrupts, EIRQ0–EIRQ15. In the signal description chapter of this
reference manual, mapping is shown for external interrupts to pads.

The SIUL supports twointerrupt vectors to the interrupt controller. Each vector interrupt has eight external
interrupts combined together with the presence of flag generating an interrupt for that vector if enabled.
All of the external interrupt pads within a single group have equal priority.

See Figure 19-16 for an overview of the external interrupt implementation.

31 23

SIUL Base+ 0x0C00

15 7 0

SIUL Base+
15 7 0

SIUL Base+
15 7 0

SIUL Base+
7 0

0x0C03
SIUL Base+

7 0

0x0C02
SIUL Base+

7 0

0x0C01
SIUL Base+

7 0

0x0C00

0x0C02 0x0C00

32-bit Access (2 ports)

16-bit Access (full port) 16-bit Access (full port)

8-bit Access
(half port)

8-bit Access
(half port)

8-bit Access
(half port)

8-bit Access
(half port)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

352 Freescale Semiconductor

Figure 19-16. External interrupt pad diagram

1 This value is valid in the 144-pin LQFP and the 208-pin packages, while there are 12 interrupts in the 100-pin LQFP packages

Each interrupt can be enabled or disabled independently. This can be performed using the IRER. A pad
defined as an external interrupt can be configured to recognize interrupts with an active rising edge, an
active falling edge or both edges being active. A setting of having both edge events disabled is reserved
and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and IFEER.

Each external interrupt supports an individual flag which is held in the Interrupt Status Flag Register (ISR).
The bits in the ISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent overwriting of
other flags in the register.

19.7 Pin muxing
For pin muxing, please see the signal description chapter of this reference manual.

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Interrupt
Vectors

EIF[15:8]1 EIF[7:0]

IRE[15:0]1

Pads

IREE[15:0]1

Interrupt Edge Enable

IFEE[15:0]1
Falling

Rising
Edge Detection

Glitch Filter

IFE[15:0]1

MAXCOUNT[x]

IRQ Glitch Filter enable

Glitch filter Counter_n

IFCP[3:0]

Glitch filter Prescaler

Interrupt enable

OR OR

IRQ_15_081 IRQ_07_00

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 353

——— Communication modules ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

354 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 355

Chapter 20
Inter-Integrated Circuit Bus Controller Module (I2C)

20.1 Introduction

20.1.1 Overview

The Inter-Integrated Circuit (I2C™ or IIC) bus is a two wire bidirectional serial bus that provides a simple
and efficient method of data exchange between devices. It minimizes the number of external connections
to devices and does not require an external address decoder.

This bus is suitable for applications requiring occasional communications over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.

The interface is designed to operate up to 100 kbps in Standard Mode and 400 Kbps in Fast Mode. The
device is capable of operating at higher baud rates, up to a maximum of module clock/20 with reduced bus
loading. Actual baud rate can be less than the programmed baud rate and is dependent on the SCL rise
time. SCL rise time is dependent on the external pullup resistor value and bus loading. The maximum
communication length and the number of devices that can be connected are limited by a maximum bus
capacitance of 400 pF.

20.1.2 Features

The I2C module has the following key features:

• Compatible with I2C Bus standard

• Multi-master operation

• Software programmable for one of 256 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

Features currently not supported:

• No support for general call address

• Not compliant to ten-bit addressing

MPC5604B/C Microcontroller Reference Manual, Rev. 8

356 Freescale Semiconductor

20.1.3 Block diagram

The block diagram of the I2C module is shown in Figure 20-1.

Figure 20-1. I2C block diagram

20.2 External signal description
The Inter-Integrated Circuit (I2C) module has two external pins, SCL and SDA.

20.2.1 SCL

This is the bidirectional Serial Clock Line (SCL) of the module, compatible with the I2C-Bus specification.

20.2.2 SDA

This is the bidirectional Serial Data line (SDA) of the module, compatible with the I2C-Bus specification.

20.3 Memory map and register description

20.3.1 Module memory map

The memory map for the I2C module is given below in Table 20-1. The total address for each register is
the sum of the base address for the I2C module and the address offset for each register.

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

bus_clock

I2C

Registers

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 357

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As an example, the IBDF
register for the frequency divider is accessible by a 16-bit read/write to address Base + 0x000, but
performing a 16-bit access to Base + 0x001 is illegal.

20.3.2 I2C Bus Address Register (IBAD)

This register contains the address the I2C bus will respond to when addressed as a slave; note that it is not
the address sent on the bus during the address transfer.

Table 20-1. I2C memory map

Base address: 0xFFE3_0000

Address offset Register Location

0x0 I2C Bus Address Register (IBAD) on page 357

0x1 I2C Bus Frequency Divider Register (IBFD) on page 358

0x2 I2C Bus Control Register (IBCR) on page 364

0x3 I2C Bus Status Register (IBSR) on page 365

0x4 I2C Bus Data I/O Register (IBDR) on page 366

0x5 I2C Bus Interrupt Config Register (IBIC) on page 367

Offset 0x0 Access: Read/write any time

7 6 5 4 3 2 1 0

R
ADR

0

W

Reset 0 0 0 0 0 0 0 0

Figure 20-2. I2C Bus Address Register (IBAD)

Table 20-2. IBAD field descriptions

Field Description

ADR Slave Address. Specific slave address to be used by the I2C Bus module.
Note: The default mode of I2C Bus is slave mode for an address match on the bus.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

358 Freescale Semiconductor

20.3.3 I2C Bus Frequency Divider Register (IBFD)

Offset 0x1 Access: Read/write any time

7 6 5 4 3 2 1 0

R
IBC

W

Reset 0 0 0 0 0 0 0 0

Figure 20-3. I2C Bus Frequency Divider Register (IBFD)

Table 20-3. IBFD field descriptions

Field Description

IBC I-Bus Clock Rate. This field is used to prescale the clock for bit rate selection. The bit clock generator is
implemented as a prescale divider. The IBC bits are decoded to give the Tap and Prescale values as
follows:
7–6 select the prescaled shift register (see Table 20-4)
5–3 select the prescaler divider (see Table 20-5)
2–0 select the shift register tap point (see Table 20-6)

Table 20-4. I-Bus multiplier factor

IBC7–6 MUL

00 01

01 02

10 04

11 RESERVED

Table 20-5. I-Bus prescaler divider values

IBC5–3
scl2start
(clocks)

scl2stop
(clocks)

scl2tap
(clocks)

tap2tap
(clocks)

000 2 7 4 1

001 2 7 4 2

010 2 9 6 4

011 6 9 6 8

100 14 17 14 16

101 30 33 30 32

110 62 65 62 64

111 126 129 126 128

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 359

The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values shown
in the scl2tap column of Table 20-5. All subsequent tap points are separated by 2IBC5-3 as shown in the
tap2tap column in Table 20-5. The SCL Tap is used to generate the SCL period and the SDA Tap is used
to determine the delay from the falling edge of SCL to the change of state of SDA i.e. the SDA hold time.

Figure 20-4. SDA hold time

Table 20-6. I-Bus tap and prescale values

IBC2-0
SCL Tap
(clocks)

SDA Tap
(clocks)

000 5 1

001 6 1

010 7 2

011 8 2

100 9 3

101 10 3

110 12 4

111 15 4

 SCL Divider

SDA Hold

SCL

SDA

MPC5604B/C Microcontroller Reference Manual, Rev. 8

360 Freescale Semiconductor

Figure 20-5. SCL divider and SDA hold

The equation used to generate the divider values from the IBFD bits is:

SCL Divider = MUL x {2 x (scl2tap + [(SCL_Tap -1) x tap2tap] + 2)} Eqn. 20-1

The SDA hold delay is equal to the CPU clock period multiplied by the SDA Hold value shown in
Table 20-7. The equation used to generate the SDA Hold value from the IBFD bits is:

SDA Hold = MUL x {scl2tap + [(SDA_Tap - 1) x tap2tap] + 3} Eqn. 20-2

The equation for SCL Hold values to generate the start and stop conditions from the IBFD bits is:

SCL Hold(start) = MUL x [scl2start + (SCL_Tap - 1) x tap2tap] Eqn. 20-3

SCL Hold(stop) = MUL x [scl2stop + (SCL_Tap - 1) x tap2tap] Eqn. 20-4

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 361

Table 20-7. I2C divider and hold values

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

M
U

L
 =

 1

00 20 7 6 11
01 22 7 7 12
02 24 8 8 13
03 26 8 9 14
04 28 9 10 15
05 30 9 11 16
06 34 10 13 18
07 40 10 16 21
08 28 7 10 15
09 32 7 12 17
0A 36 9 14 19
0B 40 9 16 21
0C 44 11 18 23
0D 48 11 20 25
0E 56 13 24 29
0F 68 13 30 35
10 48 9 18 25
11 56 9 22 29
12 64 13 26 33
13 72 13 30 37
14 80 17 34 41
15 88 17 38 45
16 104 21 46 53
17 128 21 58 65
18 80 9 38 41
19 96 9 46 49
1A 112 17 54 57
1B 128 17 62 65
1C 144 25 70 73
1D 160 25 78 81
1E 192 33 94 97
1F 240 33 118 121
20 160 17 78 81
21 192 17 94 97
22 224 33 110 113
23 256 33 126 129
24 288 49 142 145
25 320 49 158 161
26 384 65 190 193
27 480 65 238 241
28 320 33 158 161
29 384 33 190 193
2A 448 65 222 225
2B 512 65 254 257
2C 576 97 286 289
2D 640 97 318 321
2E 768 129 382 385
2F 960 129 478 481
30 640 65 318 321
31 768 65 382 385
32 896 129 446 449
33 1024 129 510 513
34 1152 193 574 577
35 1280 193 638 641
36 1536 257 766 769
37 1920 257 958 961
38 1280 129 638 641
39 1536 129 766 769
3A 1792 257 894 897
3B 2048 257 1022 1025
3C 2304 385 1150 1153
3D 2560 385 1278 1281
3E 3072 513 1534 1537
3F 3840 513 1918 1921

MPC5604B/C Microcontroller Reference Manual, Rev. 8

362 Freescale Semiconductor

M
U

L
 =

 2

40 40 14 12 22
41 44 14 14 24
42 48 16 16 26
43 52 16 18 28
44 56 18 20 30
45 60 18 22 32
46 68 20 26 36
47 80 20 32 42
48 56 14 20 30
49 64 14 24 34
4A 72 18 28 38
4B 80 18 32 42
4C 88 22 36 46
4D 96 22 40 50
4E 112 26 48 58
4F 136 26 60 70
50 96 18 36 50
51 112 18 44 58
52 128 26 52 66
53 144 26 60 74
54 160 34 68 82
55 176 34 76 90
56 208 42 92 106
57 256 42 116 130
58 160 18 76 82
59 192 18 92 98
5A 224 34 108 114
5B 256 34 124 130
5C 288 50 140 146
5D 320 50 156 162
5E 384 66 188 194
5F 480 66 236 242
60 320 28 156 162
61 384 28 188 194
62 448 32 220 226
63 512 32 252 258
64 576 36 284 290
65 640 36 316 322
66 768 40 380 386
67 960 40 476 482
68 640 28 316 322
69 768 28 380 386
6A 896 36 444 450
6B 1024 36 508 514
6C 1152 44 572 578
6D 1280 44 636 642
6E 1536 52 764 770
6F 1920 52 956 962
70 1280 36 636 642
71 1536 36 764 770
72 1792 52 892 898
73 2048 52 1020 1026
74 2304 68 1148 1154
75 2560 68 1276 1282
76 3072 84 1532 1538
77 3840 84 1916 1922
78 2560 36 1276 1282
79 3072 36 1532 1538
7A 3584 68 1788 1794
7B 4096 68 2044 2050
7C 4608 100 2300 2306
7D 5120 100 2556 2562
7E 6144 132 3068 3074
7F 7680 132 3836 3842

Table 20-7. I2C divider and hold values (continued)

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 363

M
U

L
 =

 4

80 80 28 24 44
81 88 28 28 48
82 96 32 32 52
83 104 32 36 56
84 112 36 40 60
85 120 36 44 64
86 136 40 52 72
87 160 40 64 84
88 112 28 40 60
89 128 28 48 68
8A 144 36 56 76
8B 160 36 64 84
8C 176 44 72 92
8D 192 44 80 100
8E 224 52 96 116
8F 272 52 120 140
90 192 36 72 100
91 224 36 88 116
92 256 52 104 132
93 288 52 120 148
94 320 68 136 164
95 352 68 152 180
96 416 84 184 212
97 512 84 232 260
98 320 36 152 164
99 384 36 184 196
9A 448 68 216 228
9B 512 68 248 260
9C 576 100 280 292
9D 640 100 312 324
9E 768 132 376 388
9F 960 132 472 484
A0 640 68 312 324
A1 768 68 376 388
A2 896 132 440 452
A3 1024 132 504 516
A4 1152 196 568 580
A5 1280 196 632 644
A6 1536 260 760 772
A7 1920 260 952 964
A8 1280 132 632 644
A9 1536 132 760 772
AA 1792 260 888 900
AB 2048 260 1016 1028
AC 2304 388 1144 1156
AD 2560 388 1272 1284
AE 3072 516 1528 1540
AF 3840 516 1912 1924
30 2560 260 1272 1284
B1 3072 260 1528 1540
B2 3584 516 1784 1796
B3 4096 516 2040 2052
B4 4608 772 2296 2308
B5 5120 772 2552 2564
B6 6144 1028 3064 3076
B7 7680 1028 3832 3844
B8 5120 516 2552 2564
B9 6144 516 3064 3076
BA 7168 1028 3576 3588
BB 8192 1028 4088 4100
BC 9216 1540 4600 4612
BD 10240 1540 5112 5124
BE 12288 2052 6136 6148
BF 15360 2052 7672 7684

Table 20-7. I2C divider and hold values (continued)

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

364 Freescale Semiconductor

20.3.4 I2C Bus Control Register (IBCR)

Offset 0x2 Access: Read/write any time

7 6 5 4 3 2 1 0

R
MDIS IBIE MSSL TXRX NOACK

0
DMAEN

0

W RSTA

Reset 1 0 0 0 0 0 0 0

Figure 20-6. I2C Bus Control Register (IBCR)

Table 20-8. IBCR field descriptions

Field Description

MDIS Module disable. This bit controls the software reset of the entire I2C Bus module.
1 The module is reset and disabled. This is the power-on reset situation. When high, the interface is

held in reset, but registers can still be accessed. Status register bits (IBSR) are not valid when
module is disabled.

0 The I2C Bus module is enabled. This bit must be cleared before any other IBCR bits have any effect
Note: If the I2C Bus module is enabled in the middle of a byte transfer, the interface behaves as follows:

slave mode ignores the current transfer on the bus and starts operating whenever a subsequent
start condition is detected. Master mode will not be aware that the bus is busy, hence if a start
cycle is initiated then the current bus cycle may become corrupt. This would ultimately result in
either the current bus master or the I2C Bus module losing arbitration, after which, bus operation
would return to normal.

IBIE I-Bus Interrupt Enable.
1 Interrupts from the I2C Bus module are enabled. An I2C Bus interrupt occurs provided the IBIF bit in

the status register is also set.
0 Interrupts from the I2C Bus module are disabled. Note that this does not clear any currently pending
interrupt condition

MSSL Master/Slave mode select. Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START
signal is generated on the bus and the master mode is selected. When this bit is changed from 1 to 0,
a STOP signal is generated and the operation mode changes from master to slave. A STOP signal
should be generated only if the IBIF flag is set. MSSL is cleared without generating a STOP signal when
the master loses arbitration.
1 Master Mode
0 Slave Mode

TXRX Transmit/Receive mode select. This bit selects the direction of master and slave transfers. When
addressed as a slave this bit should be set by software according to the SRW bit in the status register.
In master mode this bit should be set according to the type of transfer required. Therefore, for address
cycles, this bit will always be high.
1 Transmit
0 Receive

NOACK Data Acknowledge disable. This bit specifies the value driven onto SDA during data acknowledge cycles
for both master and slave receivers. The I2C module will always acknowledge address matches,
provided it is enabled, regardless of the value of NOACK. Note that values written to this bit are only
used when the I2C Bus is a receiver, not a transmitter.
1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte of data

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 365

20.3.5 I2C Bus Status Register (IBSR)

RSTA Repeat Start. Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is
the current bus master. This bit will always be read as a low. Attempting a repeated start at the wrong
time, if the bus is owned by another master, will result in loss of arbitration.
1 Generate repeat start cycle
0 No effect

DMAEN DMA Enable. When this bit is set, the DMA TX and RX lines will be asserted when the I2C module
requires data to be read or written to the data register. No Transfer Done interrupts will be generated
when this bit is set, however an interrupt will be generated if the loss of arbitration or addressed as slave
conditions occur. The DMA mode is only valid when the I2C module is configured as a Master and the
DMA transfer still requires CPU intervention at the start and the end of each frame of data. See the DMA
Application Information section for more details.
1 Enable the DMA TX/RX request signals
0 Disable the DMA TX/RX request signals

Offset 0x3 Access: Read-write

7 6 5 4 3 2 1 0

R TCF IAAS IBB IBAL 0 SRW IBIF RXAK

W w1c w1c

Reset 1 0 0 0 0 0 0 0

Figure 20-7. I2C Bus Status Register (IBSR)

Table 20-9. IBSR Field Descriptions

Field Description

TCF Transfer complete. While one byte of data is being transferred, this bit is cleared. It is set by the falling
edge of the 9th clock of a byte transfer. Note that this bit is only valid during or immediately following a
transfer to the I2C module or from the I2C module.
1 Transfer complete
0 Transfer in progress

IAAS Addressed as a slave. When its own specific address (I-Bus Address Register) is matched with the
calling address, this bit is set. The CPU is interrupted provided the IBIE is set. Then the CPU needs to
check the SRW bit and set its Tx/Rx mode accordingly. Writing to the I-Bus Control Register clears this
bit.
1 Addressed as a slave
0 Not addressed

IBB Bus busy. This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a
STOP signal is detected, IBB is cleared and the bus enters idle state.
1 Bus is busy
0 Bus is Idle

Table 20-8. IBCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

366 Freescale Semiconductor

20.3.6 I2C Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to IBDR, a data transfer is initiated. The most significant bit
is sent first. In master receive mode, reading this register initiates next byte data receiving. In slave mode,
the same functions are available after an address match has occurred. Note that the IBCR[TXRX] field
must correctly reflect the desired direction of transfer in master and slave modes for the transmission to
begin. For instance, if the I2C is configured for master transmit but a master receive is desired, then reading
the IBDR will not initiate the receive.

IBAL Arbitration Lost. The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost.
Arbitration is lost in the following circumstances:
 • SDA is sampled low when the master drives a high during an address or data transmit cycle.
 • SDA is sampled low when the master drives a high during the acknowledge bit of a data receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.

SRW Slave Read/Write. When IAAS is set, this bit indicates the value of the R/W command bit of the calling
address sent from the master. This bit is only valid when the I-Bus is in slave mode, a complete address
transfer has occurred with an address match and no other transfers have been initiated. By
programming this bit, the CPU can select slave transmit/receive mode according to the command of the
master.
1 Slave transmit, master reading from slave
0 Slave receive, master writing to slave

IBIF I-Bus Interrupt Flag. The IBIF bit is set when one of the following conditions occurs:
 • Arbitration lost (IBAL bit set)
 • Byte transfer complete (TCF bit set - Check w/ design if this is the case (only TCF))
 • Addressed as slave (IAAS bit set)
 • NoAck from Slave (MS & Tx bits set)
 • I2C Bus going idle (IBB high-low transition and enabled by BIIE)
A processor interrupt request will be caused if the IBIE bit is set.

RXAK Received Acknowledge. This is the value of SDA during the acknowledge bit of a bus cycle. If the
received acknowledge bit (RXAK) is low, it indicates an acknowledge signal has been received after the
completion of 8 bits data transmission on the bus. If RXAK is high, it means no acknowledge signal is
detected at the 9th clock. This bit is valid only after transfer is complete.
1 No acknowledge received
0 Acknowledge received

Offset 0x4 Access: Read/write any time

7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0

Figure 20-8. I2C Bus Data I/O Register (IBDR)

Table 20-9. IBSR Field Descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 367

Reading the IBDR will return the last byte received while the I2C is configured in either master receive or
slave receive modes. The IBDR does not reflect every byte that is transmitted on the I2C bus, nor can
software verify that a byte has been written to the IBDR correctly by reading it back.

In master transmit mode, the first byte of data written to IBDR following assertion of MS/SL is used for
the address transfer and should comprise the calling address (in position D7–D1) concatenated with the
required R/W bit (in position D0).

20.3.7 I2C Bus Interrupt Config Register (IBIC)

20.4 Functional description

20.4.1 I-Bus protocol

The I2C Bus system uses a Serial Data line (SDA) and a Serial Clock Line (SCL) for data transfer. All
devices connected to it must have open drain or open collector outputs. A logical AND function is
exercised on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address transmission,
data transfer and STOP signal. They are described briefly in the following sections and illustrated in
Figure 20-10.

Offset 0x5 Access: Read/write any time

7 6 5 4 3 2 1 0

R BIIE1

1 This bit cannot be set in reset state, when I2C is in slave mode. It can be set to 1 only when I2C is in Master mode.
This information is missing from the spec.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

Figure 20-9. I2C Bus Interrupt Config Register (IBIC)

Table 20-10. IBIC field descriptions

Field Description

BIIE Bus Idle Interrupt Enable bit. This config bit can be used to enable the generation of an interrupt once
the I2C bus becomes idle. Once this bit is set, an IBB high-low transition will set the IBIF bit. This feature
can be used to signal to the CPU the completion of a STOP on the I2C bus.
1 Bus Idle Interrupts enabled
0 Bus Idle Interrupts disabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

368 Freescale Semiconductor

Figure 20-10. I2C bus transmission signals

20.4.1.1 START signal

When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 20-10, a
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves
out of their idle states.

Figure 20-11. Start and stop conditions

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address Read/ Data Byte

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write

SDA

 SCL

START condition STOP condition

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 369

20.4.1.2 Slave address transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer - the slave transmits data to the master

0 = Write transfer - the master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 20-10).

No two slaves in the system may have the same address. If the I2C Bus is master, it must not transmit an
address that is equal to its own slave address. The I2C Bus cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle the I2C Bus will revert to slave mode and operate
correctly, even if it is being addressed by another master.

20.4.1.3 Data transfer

Once successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 20-10. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte must be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. Therefore, one complete data byte transfer
needs nine clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means 'end
of data' to the slave, so the slave releases the SDA line for the master to generate a STOP or START signal.

20.4.1.4 STOP signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL is at logical “1” (see Figure 20-10).

The master can generate a STOP even if the slave has generated an acknowledge, at which point the slave
must release the bus.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

370 Freescale Semiconductor

20.4.1.5 Repeated START signal

As shown in Figure 20-10, a repeated START signal is a START signal generated without first generating
a STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

20.4.1.6 Arbitration procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus at the same time, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest one among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure. A bus master loses arbitration if it transmits logic “1” while another master transmits
logic “0”. The losing masters immediately switch over to slave receive mode and stop driving the SDA
output. In this case, the transition from master to slave mode does not generate a STOP condition.
Meanwhile, a status bit is set by hardware to indicate loss of arbitration.

20.4.1.7 Clock synchronization

Since wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and once a device's clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 20-12). When all
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.

Figure 20-12. I2C bus clock synchronization

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 371

20.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such cases, it halts the bus clock and forces
the master clock into wait state until the slave releases the SCL line.

20.4.1.9 Clock stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low, the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

20.4.2 Interrupts

20.4.2.1 General

The I2C uses only one interrupt vector.

20.4.2.2 Interrupt description

There are five types of internal interrupts in the I2C. The interrupt service routine can determine the
interrupt type by reading the Status Register.

I2C Interrupt can be generated on

• Arbitration Lost condition (IBAL bit set)

• Byte Transfer condition (TCF bit set and DMAEN bit not set)

• Address Detect condition (IAAS bit set)

• No Acknowledge from slave received when expected

• Bus Going Idle (IBB bit not set)

The I2C interrupt is enabled by the IBIE bit in the I2C Control Register. It must be cleared by writing ‘1’
to the IBIF bit in the interrupt service routine. The Bus Going Idle interrupt needs to be additionally
enabled by the BIIE bit in the IBIC register.

Table 20-11. Interrupt summary

Interrupt Offset Vector Priority Source Description

I2C
Interrupt

— — — IBAL, TCF,
IAAS, IBB bits in

IBSR register

When any of IBAL, TCF or IAAS bits is set an interrupt may
be caused based on Arbitration lost, Transfer Complete or
Address Detect conditions. If enabled by BIIE, the
deassertion of IBB can also cause an interrupt, indicating
that the bus is idle.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

372 Freescale Semiconductor

20.5 Initialization/application information

20.5.1 I2C programming examples

20.5.1.1 Initialization sequence

Reset will put the I2C Bus Control Register to its default state. Before the interface can be used to transfer
serial data, an initialization procedure must be carried out, as follows:

1. Update the Frequency Divider Register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.

2. Update the I2C Bus Address Register (IBAD) to define its slave address.

3. Clear the IBCR[MDIS] field to enable the I2C interface system.

4. Modify the bits of the I2C Bus Control Register (IBCR) to select Master/Slave mode,
Transmit/Receive mode and interrupt enable or not. Optionally also modify the bits of the I2C Bus
Interrupt Config Register (IBIC) to further refine the interrupt behavior.

20.5.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the 'master
transmitter' mode. If the device is connected to a multi-master bus system, the state of the I2C Bus Busy
bit (IBB) must be tested to check whether the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB, which is set to indicate the
direction of transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period, it may be necessary to wait until the I2C is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.

An example of the sequence of events which generates the START signal and transmits the first byte of
data (slave address) is shown below:

while (bit 5, IBSR ==1)// wait in loop for IBB flag to clear
bit4 and bit 5, IBCR = 1// set transmit and master mode, i.e. generate start condition
IBDR = calling_address// send the calling address to the data register
while (bit 5, IBSR ==0)// wait in loop for IBB flag to be set

20.5.1.3 Post-transfer software response

Transmission or reception of a byte will set the data transferring bit (TCF) to 1, which indicates one byte
communication is finished. The I2C Bus interrupt bit (IBIF) is set also; an interrupt will be generated if the
interrupt function is enabled during initialization by setting the IBIE bit. The IBIF (interrupt flag) can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit will be cleared to indicate data transfer in progress whenever data register is written to in
transmit mode, or during reading out from data register in receive mode. The TCF bit should not be used

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 373

as a data transfer complete flag as the flag timing is dependent on a number of factors including the I2C
bus frequency. This bit may not conclusively provide an indication of a transfer complete situation. It is
recommended that transfer complete situations are detected using the IBIF flag

Software may service the I2C I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Note that polling should monitor the IBIF bit rather than the TCF bit since their operation is
different when arbitration is lost.

Note that when a “Transfer Complete” interrupt occurs at the end of the address cycle, the master will
always be in transmit mode, i.e. the address is transmitted. If master receive mode is required, indicated
by R/W bit sent with slave calling address, then the Tx/Rx bit at Master side should be toggled at this stage.
If Master does not receive an ACK from Slave, then transmission must be re-initiated or terminated.

In slave mode, IAAS bit will get set in IBSR if Slave address (IBAD) matches the Master calling address.
This is an indication that Master-Slave data communication can now start. During address cycles
(IAAS=1), the SRW bit in the status register is read to determine the direction of the subsequent transfer
and the Tx/Rx bit is programmed accordingly. For slave mode data cycles (IAAS=0), the SRW bit is not
valid. The Tx/Rx bit in the control register should be read to determine the direction of the current transfer.

20.5.1.4 Transmit/receive sequence

Follow this sequence in case of Master Transmit(Address/Data):

1. Clear IBSR[IBIF].

2. Write data in Data Register (IBDR).

3. IBSR[TCF] bit will get cleared when transfer is in progress.

4. IBSR[TCF] bit will get set when transfer is complete.

5. Wait for IBSR[IBIF] to get set, then read IBSR register to determine its source:

— TCF = 1 i.e. transfer is complete.

— No Acknowledge condition (RXAK = 1) is found.

— IBB = 0 i.e. Bus has transitioned from Busy to Idle state.

— If IBB = 1, ignore check of Arbitration Loss (IBAL = 1).

— Ignore Address Detect (IAAS = 1) for Master mode (valid only for Slave mode).

6. f) Check RXAK in IBSR for an acknowledge from slave.

Follow this sequence in case of Slave Receive(Address/Data):

1. Clear IBSR[IBIF].

2. IBSR[TCF] will get cleared when transfer is in progress for address transfer.

3. IBSR[TCF] will get set when transfer is complete.

4. Wait for IBSR[IBIF] to get set. Then read IBSR register to determine its source:

— Address Detect has occurred (IAAS = 1) - determination of Slave mode.

5. Clear IBIF.

6. Wait until IBSR[TCF] bit gets cleared (that is, "Transfer under Progress" condition is reached for
data transfer).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

374 Freescale Semiconductor

7. Wait until IBSR[TCF] bit gets cleared(proof that Transfer Completes from "Transfer under
Progress" state).

8. Wait until IBSR[IBIF] bit gets set. To find its source, check if:

— TCF = 1 i.e. reception is complete

— IBSR[IBB] = 0, that is, bus has transitioned from Busy to Idle state

— Ignore Arbitration Loss (IBAL = 1) for IBB = 1

— Ignore No Acknowledge condition (RXAK = 1) for receiver

9. Read the Data Register (IBDR) to determine data received from Master.

Sequence followed in case of Slave Transmit (Steps 1–4 of Slave Receive for Address Detect, followed by
1–6 of Master Transmit for Data Transmit).

Sequence followed in case of Master Receive (Steps 1–6 of Master Transmit for Address dispatch,
followed by 5–8 of Slave Receive for Data Receive).

20.5.1.5 Generation of STOP

A data transfer ends with a STOP signal generated by the 'master' device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following is an example showing how
a stop condition is generated by a master transmitter.

if (tx_count == 0) or// check to see if all data bytes have been transmitted
 (bit 0, IBSR == 1) {// or if no ACK generated
 clear bit 5, IBCR// generate stop condition
 }
else {
IBDR = data_to_transmit// write byte of data to DATA register
 tx_count --// decrement counter
 }// return from interrupt

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data which can be done by setting the transmit acknowledge bit (TXAK)
before reading the 2nd last byte of data. Before reading the last byte of data, a STOP signal must first be
generated. The following is an example showing how a STOP signal is generated by a master receiver.

rx_count --// decrease the rx counter
if (rx_count ==1)// 2nd last byte to be read ?
 bit 3, IBCR = 1// disable ACK
if (rx_count == 0)// last byte to be read ?
 bit 5, IBCR = 0// generate stop signal
else
data_received = IBDR// read RX data and store

20.5.1.6 Generation of repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example is as shown.

bit 2, IBCR = 1// generate another start (restart)
IBDR == calling_address// transmit the calling address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 375

20.5.1.7 Slave mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be tested to check
if a calling of its own address has just been received. If IAAS is set, software should set the
transmit/receive mode select bit (Tx/Rx bit of IBCR) according to the R/W command bit (SRW). Writing
to the IBCR clears IAAS automatically. Note that the only time IAAS is read as set is from the interrupt
at the end of the address cycle where an address match occurred. Interrupts resulting from subsequent data
transfers will have IAAS cleared. A data transfer may now be initiated by writing information to IBDR for
slave transmits or dummy reading from IBDR in slave receive mode. The slave will drive SCL low
in-between byte transfers SCL is released when the IBDR is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an 'end of data' signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so that the master can generate a STOP signal.

20.5.1.8 Arbitration lost

If several masters try to engage the bus simultaneously, only one master wins and the others lose
arbitration. The devices that lost arbitration are immediately switched to slave receive mode by the
hardware. Their data output to the SDA line is stopped, but SCL is still generated until the end of the byte
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer
with IBAL=1 and MS/SL=0. If one master attempts to start transmission, while the bus is being engaged
by another master, the hardware will inhibit the transmission, switch the MS/SL bit from 1 to 0 without
generating a STOP condition, generate an interrupt to CPU and set the IBAL to indicate that the attempt
to engage the bus is failed. When considering these cases, the slave service routine should test the IBAL
first and the software should clear the IBAL bit if it is set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

376 Freescale Semiconductor

Figure 20-13. Flow-Chart of Typical I2C Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 377

Chapter 21
LIN Controller (LINFlex)

21.1 Introduction
The LINFlex (Local Interconnect Network Flexible) controller interfaces the LIN network and supports
the LIN protocol versions 1.3; 2.0 and 2.1; and J2602 in both Master and Slave modes. LINFlex includes
a LIN mode that provides additional features (compared to standard UART) to ease LIN implementation,
improve system robustness, minimize CPU load and allow slave node resynchronization.

21.2 Main features

21.2.1 LIN mode features
• Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

• Master mode with autonomous message handling

• Classic and enhanced checksum calculation and check

• Single 8-byte buffer for transmission/reception

• Extended frame mode for In-Application Programming (IAP) purposes

• Wake-up event on dominant bit detection

• True LIN field state machine

• Advanced LIN error detection

• Header, response and frame timeout

• Slave mode1

— Autonomous header handling

— Autonomous transmit/receive data handling

• LIN automatic resynchronization, allowing operation with 16 MHz fast internal RC oscillator as
clock source

• 16 identifier filters for autonomous message handling in Slave mode1

21.2.2 UART mode features
• Full duplex communication

• 8- or 9-bit with parity

• 4-byte buffer for reception, 4-byte buffer for transmission

• 8-bit counter for timeout management

21.2.3 Features common to LIN and UART
• Fractional baud rate generator

1. Only LINFlex0 supports slave mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

378 Freescale Semiconductor

• 3 operating modes for power saving and configuration registers lock:

— Initialization

— Normal

— Sleep

• 2 test modes:

— Loop Back

— Self Test

• Maskable interrupts

21.3 General description
The increasing number of communication peripherals embedded on microcontrollers, for example CAN,
LIN and SPI, requires more and more CPU resources for communication management. Even a 32-bit
microcontroller is overloaded if its peripherals do not provide high-level features to autonomously handle
the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still generates
a non-negligible load on the CPU if the LIN is implemented on a standard UART, as usually the case.

To minimize the CPU load in Master mode, LINFlex handles the LIN messages autonomously.

In Master mode, once the software has triggered the header transmission, LINFlex does not request any
software intervention until the next header transmission request in transmission mode or until the
checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlex requires software intervention only to:

• Trigger transmission or reception or data discard depending on the identifier

• Write data into the buffer (transmission mode) or read data from the buffer (reception mode) after
checksum reception

If filter mode is activated for Slave mode, LINFlex requires software intervention only to write data into
the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

• Configure LIN parameters (for example, baud rate or mode)

• Request transmissions

• Handle receptions

• Manage interrupts

• Configure LIN error and timeout detection

• Process diagnostic information

The message buffer stores transmitted or received LIN frames.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 379

Figure 21-1. LIN topology network

Figure 21-2. LINFlex block diagram

21.4 Fractional baud rate generation
The baud rates for the receiver and transmitter are both set to the same value as programmed in the
Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

LI
N

 m
as

te
r

no
de

LI
N

 s
la

ve
 n

od
e

1

LI
N

 s
la

ve
 n

od
e

n

LIN

LINLIN
Rx Tx

LIN
Transceiver

LINFlex
Controller

MCU

LIN Bus

Application

LIN PROTOCOL HANDLER

REGISTER MODEL / APPLICATION INTERFACE

LIN status

Baud rate

Filter configuration

Message

SLAVE

LIN control

CONFIGURATION

MESSAGE HANDLER

MASTER
MESSAGE HANDLER

Identifier Filters(1)

CONTROL STATUS

Buffer
Interface

1. Filter activation optional

MPC5604B/C Microcontroller Reference Manual, Rev. 8

380 Freescale Semiconductor

Eqn. 21-1

LFDIV is an unsigned fixed point number. The 12-bit mantissa is coded in the LINIBRR and the fraction
is coded in the LINFBRR.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register values:

Example 21-1. Deriving LFDIV from LINIBRR and LINFBRR register values

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 21-2. Programming LFDIV from LINIBRR and LINFBRR register values

To program LFDIV = 25.62d,

LINFBRR = 16 × 0.62 = 9.92, nearest real number 10d = 0xA

LINIBRR = mantissa (25.620d) = 25d = 0x19

NOTE
The baud counters are updated with the new value of the baud registers after
a write to LINIBRR. Hence the baud register value must not be changed
during a transaction. The LINFBRR (containing the Fraction bits) must be
programmed before the LINIBRR.

NOTE
LFDIV must be greater than or equal to 1.5d, i.e. LINIBRR = 1 and
LINFBRR = 8. Therefore, the maximum possible baudrate is
fperiph_set_1_clk / 24.

Table 21-1. Error calculation for programmed baud rates

Baud
rate

fperiph_set_1_clk = 64 MHz fperiph_set_1_clk = 16 MHz

Actual

Value programmed
in

the baud rate
register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rateLINIBRR LINFBRR LINIBRR LINFBRR

2400 2399.97 1666 11 –0.001 2399.88 416 11 –0.005

9600 9599.52 416 11 –0.005 9598.08 104 3 –0.02

10417 10416.7 384 0 –0.003 10416.7 96 0 –0.003

Tx/ Rx baud =
fperiph_set_1_clk

(16 × LFDIV)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 381

21.5 Operating modes
LINFlex has three main operating modes: Initialization, Normal and Sleep. After a hardware reset,
LINFlex is in Sleep mode to reduce power consumption. The software instructs LINFlex to enter
Initialization mode or Sleep mode by setting the INIT bit or SLEEP bit in the LINCR1.

Figure 21-3. LINFlex operating modes

19200 19201.9 208 5 0.01 19207.7 52 1 0.04

57600 57605.8 69 7 0.01 57554 17 6 –0.08

115200 115108 34 12 –0.08 115108 8 11 –0.08

230400 230216 17 6 –0.08 231884 4 5 0.644

460800 460432 8 11 –0.08 457143 2 3 –0.794

921600 927536 4 5 0.644 941176 1 1 2.124

Table 21-1. Error calculation for programmed baud rates (continued)

Baud
rate

fperiph_set_1_clk = 64 MHz fperiph_set_1_clk = 16 MHz

Actual

Value programmed
in

the baud rate
register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rateLINIBRR LINFBRR LINIBRR LINFBRR

SLEEP

INITIALIZATION

NORMAL

S
LE

E
P

SLEEP * IN
IT

RESET

SLEEP

LI
N

R
X

 D
O

M
I N

A
N

T

SLEEP * IN
IT

SLEEP * INIT

MPC5604B/C Microcontroller Reference Manual, Rev. 8

382 Freescale Semiconductor

21.5.1 Initialization mode

The software can be initialized while the hardware is in Initialization mode. To enter this mode the
software sets the INIT bit in the LINCR1.

To exit Initialization mode, the software clears the INIT bit.

While in Initialization mode, all message transfers to and from the LIN bus are stopped and the status of
the LIN bus output LINTX is recessive (high).

Entering Initialization mode does not change any of the configuration registers.

To initialize the LINFlex controller, the software selects the mode (LIN Master, LIN Slave or UART), sets
up the baud rate register and, if LIN Slave mode with filter activation is selected, initializes the identifier
list.

21.5.2 Normal mode

Once initilization is complete, software clears the INIT bit in the LINCR1 to put the hardware into Normal
mode.

21.5.3 Low power mode (Sleep)

To reduce power consumption, LINFlex has a low power mode called Sleep mode. To enter Sleep mode,
software sets the SLEEP bit in the LINCR1. In this mode, the LINFlex clock is stopped. Consequently, the
LINFlex will not update the status bits but software can still access the LINFlex registers.

LINFlex can be awakened (exit Sleep mode) either by software clearing the SLEEP bit or on detection of
LIN bus activity if automatic wake-up mode is enabled (AWUM bit is set).

On LIN bus activity detection, hardware automatically performs the wake-up sequence by clearing the
SLEEP bit if the AWUM bit in the LINCR1 is set. To exit from Sleep mode if the AWUM bit is cleared,
software clears the SLEEP bit when a wake-up event occurs.

21.6 Test modes
Two test modes are available to the user: Loop Back mode and Self Test mode. They can be selected by
the LBKM and SFTM bits in the LINCR1. These bits must be configured while LINFlex is in Initialization
mode. Once one of the two test modes has been selected, LINFlex must be started in Normal mode.

21.6.1 Loop Back mode

LINFlex can be put in Loop Back mode by setting the LBKM bit in the LINCR. In Loop Back mode, the
LINFlex treats its own transmitted messages as received messages.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 383

Figure 21-4. LINFlex in loop back mode

This mode is provided for self test functions. To be independent of external events, the LIN core ignores
the LINRX signal. In this mode, the LINFlex performs an internal feedback from its Tx output to its Rx
input. The actual value of the LINRX input pin is disregarded by the LINFlex. The transmitted messages
can be monitored on the LINTX pin.

21.6.2 Self Test mode

LINFlex can be put in Self Test mode by setting the LBKM and SFTM bits in the LINCR. This mode can
be used for a “Hot Self Test”, meaning the LINFlex can be tested as in Loop Back mode but without
affecting a running LIN system connected to the LINTX and LINRX pins. In this mode, the LINRX pin is
disconnected from the LINFlex and the LINTX pin is held recessive.

Figure 21-5. LINFlex in self test mode

21.7 Memory map and registers description

21.7.1 Memory map

See the “Memory map” chapter of this reference manual for the base addresses for the LINFlex modules.

Table 21-2 shows the LINFlex memory map.

LINTX LINRX

LINFlex

Tx Rx

LINFlex

LINTX LINRX

Tx Rx

= 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

384 Freescale Semiconductor

Table 21-2. LINFlex memory map

Address offset Register Location

0x0000 LIN control register 1 (LINCR1) on page 385

0x0004 LIN interrupt enable register (LINIER) on page 388

0x0008 LIN status register (LINSR) on page 389

0x000C LIN error status register (LINESR) on page 392

0x0010 UART mode control register (UARTCR) on page 393

0x0014 UART mode status register (UARTSR) on page 394

0x0018 LIN timeout control status register (LINTCSR) on page 396

0x001C LIN output compare register (LINOCR) on page 397

0x0020 LIN timeout control register (LINTOCR) on page 398

0x0024 LIN fractional baud rate register (LINFBRR) on page 398

0x0028 LIN integer baud rate register (LINIBRR) on page 399

0x002C LIN checksum field register (LINCFR) on page 400

0x0030 LIN control register 2 (LINCR2) on page 400

0x0034 Buffer identifier register (BIDR) on page 401

0x0038 Buffer data register LSB (BDRL)1 on page 402

0x003C Buffer data register MSB (BDRM)2 on page 403

0x0040 Identifier filter enable register (IFER) on page 404

0x0044 Identifier filter match index (IFMI) on page 405

0x0048 Identifier filter mode register (IFMR) on page 406

0x004C Identifier filter control register 0 (IFCR0) on page 407

0x0050 Identifier filter control register 1 (IFCR1) on page 408

0x0054 Identifier filter control register 2 (IFCR2) on page 408

0x0058 Identifier filter control register 3 (IFCR3) on page 408

0x005C Identifier filter control register 4 (IFCR4) on page 408

0x0060 Identifier filter control register 5 (IFCR5) on page 408

0x0064 Identifier filter control register 6 (IFCR6) on page 408

0x0068 Identifier filter control register 7 (IFCR7) on page 408

0x006C Identifier filter control register 8 (IFCR8) on page 408

0x0070 Identifier filter control register 9 (IFCR9) on page 408

0x0074 Identifier filter control register 10 (IFCR10) on page 408

0x0078 Identifier filter control register 11 (IFCR11) on page 408

0x007C Identifier filter control register 12 (IFCR12) on page 408

0x0080 Identifier filter control register 13 (IFCR13) on page 408

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 385

21.7.1.1 LIN control register 1 (LINCR1)

0x0084 Identifier filter control register 14 (IFCR14) on page 408

0x0088 Identifier filter control register 15 (IFCR15) on page 408

0x008C–0x000F Reserved

1 LSB: Least significant byte
2 MSB: Most significant byte

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CCD CFD LASE AWUM MBL BF SFTM LBKM MME SBDT RBLM SLEEP INIT

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

Figure 21-6. LIN control register 1 (LINCR1)

Table 21-3. LINCR1 field descriptions

Field Description

CCD Checksum calculation disable
This bit disables the checksum calculation (see Table 21-4).
0 Checksum calculation is done by hardware. When this bit is 0, the LINCFR is read-only.
1 Checksum calculation is disabled. When this bit is set the LINCFR is read/write. User can

program this register to send a software-calculated CRC (provided CFD is 0).
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD Checksum field disable
This bit disables the checksum field transmission (see Table 21-4).
0 Checksum field is sent after the required number of data bytes is sent.
1 No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE LIN Slave Automatic Resynchronization Enable
0 Automatic resynchronization disable.
1 Automatic resynchronization enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

Table 21-2. LINFlex memory map (continued)

Address offset Register Location

MPC5604B/C Microcontroller Reference Manual, Rev. 8

386 Freescale Semiconductor

AWUM Automatic Wake-Up Mode
This bit controls the behavior of the LINFlex hardware during Sleep mode.
0 The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR.
1 The Sleep mode is exited automatically by hardware on LINRX dominant state detection. The

SLEEP bit of the LINCR is cleared by hardware whenever WUF bit in the LINSR is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

MBL LIN Master Break Length
This field indicates the Break length in Master mode (see Table 21-5).
Note: This field can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

BF Bypass filter
0 No interrupt if identifier does not match any filter.
1 An RX interrupt is generated on identifier not matching any filter.
Note:
 • If no filter is activated, this bit is reserved and always reads 1.
 • This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM Self Test Mode
This bit controls the Self Test mode. For more details, see Section 21.6.2, Self Test mode.
0 Self Test mode disable.
1 Self Test mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM Loop Back Mode
This bit controls the Loop Back mode. For more details see Section 21.6.1, Loop Back mode.
0 Loop Back mode disable.
1 Loop Back mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode

MME Master Mode Enable
0 Slave mode enable.
1 Master mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT Slave Mode Break Detection Threshold
0 11-bit break.
1 10-bit break.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM Receive Buffer Locked Mode
0 Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming

message overwrites the previous one.
1 Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming

message is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP Sleep Mode Request
This bit is set by software to request LINFlex to enter Sleep mode.
This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and
the WUF bit in LINSR are set (see Table 21-6).

INIT Initialization Request
The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset,
LINFlex enters Normal mode when clearing the INIT bit (see Table 21-6).

Table 21-3. LINCR1 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 387

Table 21-4. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 21-5. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 21-6. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal

MPC5604B/C Microcontroller Reference Manual, Rev. 8

388 Freescale Semiconductor

21.7.1.2 LIN interrupt enable register (LINIER)

Offset: 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SZIE OCIE BEIE CEIE HEIE

0 0
FEIE BOIE LSIE WUIE DBFIE DBEIE DRIE DTIE HRIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-7. LIN interrupt enable register (LINIER)

Table 21-7. LINIER field descriptions

Field Description

SZIE Stuck at Zero Interrupt Enable
0 No interrupt when SZF bit in LINESR or UARTSR is set.
1 Interrupt generated when SZF bit in LINESR or UARTSR is set.

OCIE Output Compare Interrupt Enable
0 No interrupt when OCF bit in LINESR or UARTSR is set.
1 Interrupt generated when OCF bit in LINESR or UARTSR is set.

BEIE Bit Error Interrupt Enable
0 No interrupt when BEF bit in LINESR is set.
1 Interrupt generated when BEF bit in LINESR is set.

CEIE Checksum Error Interrupt Enable
0 No interrupt on Checksum error.
1 Interrupt generated when checksum error flag (CEF) in LINESR is set.

HEIE Header Error Interrupt Enable
0 No interrupt on Break Delimiter error, Synch Field error, Identifier field error.
1 Interrupt generated on Break Delimiter error, Synch Field error, Identifier field error.

FEIE Framing Error Interrupt Enable
0 No interrupt on Framing error.
1 Interrupt generated on Framing error.

BOIE Buffer Overrun Interrupt Enable
0 No interrupt on Buffer overrun.
1 Interrupt generated on Buffer overrun.

LSIE LIN State Interrupt Enable
0 No interrupt on LIN state change.
1 Interrupt generated on LIN state change.
This interrupt can be used for debugging purposes. It has no status flag but is reset when writing
‘1111’ into LINS[0:3] in the LINSR.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 389

21.7.1.3 LIN status register (LINSR)

WUIE Wake-up Interrupt Enable
0 No interrupt when WUF bit in LINSR or UARTSR is set.
1 Interrupt generated when WUF bit in LINSR or UARTSR is set.

DBFIE Data Buffer Full Interrupt Enable
0 No interrupt when buffer data register is full.
1 Interrupt generated when data buffer register is full.

DBEIE Data Buffer Empty Interrupt Enable
0 No interrupt when buffer data register is empty.
1 Interrupt generated when data buffer register is empty.

DRIE Data Reception Complete Interrupt Enable
0 No interrupt when data reception is completed.
1 Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set.

DTIE Data Transmitted Interrupt Enable
0 No interrupt when data transmission is completed.
1 Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR.

HRIE Header Received Interrupt Enable
0 No interrupt when a valid LIN header has been received.
1 Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR is set.

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LINS 0 0 RMB 0 RBSY RPS WUF DBFF DBEF DRF DTF HRF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 21-8. LIN status register (LINSR)

Table 21-7. LINIER field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

390 Freescale Semiconductor

t

Table 21-8. LINSR field descriptions

Field Description

LINS LIN modes / normal mode states

0000: Sleep mode
LINFlex is in Sleep mode to save power consumption.
0001: Initialization mode
LINFlex is in Initialization mode.

Normal mode states
0010: Idle
This state is entered on several events:
 • SLEEP bit and INIT bit in LINCR1 have been cleared by software,
 • A falling edge has been received on RX pin and AWUM bit is set,
 • The previous frame reception or transmission has been completed or aborted.
0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.
Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on

last bit state. If last bit is dominant new LIN state is Break, otherwise Idle.

In Master mode, Break transmission ongoing.
0100: Break Delimiter
In Slave mode, a valid Break has been detected. See Section 21.7.1.1, LIN control register 1
(LINCR1) for break length configuration (10-bit or 11-bit). Waiting for a rising edge.
In Master mode, Break transmission has been completed. Break Delimiter transmission is
ongoing.
0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit
time). Receiving Synch Field.
In Master mode, Synch Field transmission is ongoing.
0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving Identifier Field.
In Master mode, identifier transmission is ongoing.
0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR.
In Master mode, header transmission is completed.
1000: Data reception/transmission
Response reception/transmission is ongoing.
1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.
In UART mode, only the following states are flagged by the LIN state bits:
 • Init
 • Sleep
 • Idle
 • Data transmission/reception

RMB Release Message Buffer
0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data

received in the buffer.
This bit is cleared by hardware in Initialization mode.

RBSY Receiver Busy Flag
0 Receiver is idle
1 Reception ongoing
Note: In Slave mode, after header reception, if BIDR[DIR] = 0 and reception starts then this bit

is set. In this case, user cannot program LINCR2[DTRQ] = 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 391

RPS LIN receive pin state
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
on the LINRX pin when:
 • Slave is in Sleep mode
 • Master is in Sleep mode or idle state
This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is
generated if WUIE bit in LINIER is set.

DBFF Data Buffer Full Flag
This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended
frames (DFL > 7).
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

DBEF Data Buffer Empty Flag
This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting
extended frames (DFL > 7).
This bit must be cleared by software, once buffer has been filled again, in order to start
transmission.
This bit is reset by hardware in Initialization mode.

DRF Data Reception Completed Flag
This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
Note: This flag is not set in case of bit error or framing error.

DTF Data Transmission Completed Flag
This bit is set by hardware and indicates the data transmission is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
Note: This flag is not set in case of bit error if IOBE bit is reset.

HRF Header Reception Flag
This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.
This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.
Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is

to say:

 • All filters are inactive and BF bit in LINCR1 is set
 • No match in any filter and BF bit in LINCR1 is set
 • TX filter match

Table 21-8. LINSR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

392 Freescale Semiconductor

21.7.1.4 LIN error status register (LINESR)

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF BEF CEF SFEF BDEF IDPEF FEF BOF 0 0 0 0 0 0 NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-9. LIN error status register (LINESR)

Table 21-9. LINESR field descriptions

Field Description

SZF Stuck at Zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. If the dominant
state continues, SZF flag is set again after 87-bit time. It is cleared by software.

OCF Output Compare Flag
0 No output compare event occurred
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this

bit is set and IOT bit in LINTCSR is set, LINFlex moves to Idle state.
If LTOM bit in LINTCSR is set, then OCF is cleared by hardware in Initialization mode. If LTOM bit is
cleared, then OCF maintains its status whatever the mode is.

BEF Bit Error Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a bit error. This
error can occur during response field transmission (Slave and Master modes) or during header
transmission (in Master mode).
This bit is cleared by software.

CEF Checksum Error Flag
This bit is set by hardware and indicates that the received checksum does not match the hardware
calculated checksum.
This bit is cleared by software.
Note: This bit is never set if CCD or CFD bit in LINCR1 is set.

SFEF Synch Field Error Flag
This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch Field).

BDEF Break Delimiter Error Flag
This bit is set by hardware and indicates that the received Break Delimiter is too short (less than one
bit time).

IDPEF Identifier Parity Error Flag
This bit is set by hardware and indicates that a Identifier Parity error occurred.
Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER

is set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 393

21.7.1.5 UART mode control register (UARTCR)

FEF Framing Error Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit). This error can occur during reception of any data in the response field (Master or
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte
overwrites the buffer. It can be cleared by software.

NF Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
TDFL

0
RDFL

0 0 0 0
RXEN TXEN OP PCE WL UART

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-10. UART mode control register (UARTCR)

Table 21-10. UARTCR field descriptions

Field Description

TDFL Transmitter Data Field length
This field sets the number of bytes to be transmitted in UART mode. It can be programmed only
when the UART bit is set. TDFL[0:1] = Transmit buffer size – 1.
00 Transmit buffer size = 1.
01 Transmit buffer size = 2.
10 Transmit buffer size = 3.
11 Transmit buffer size = 4.

RDFL Receiver Data Field length
This field sets the number of bytes to be received in UART mode. It can be programmed only
when the UART bit is set. RDFL[0:1] = Receive buffer size – 1.
00 Receive buffer size = 1.
01 Receive buffer size = 2.
10 Receive buffer size = 3.
11 Receive buffer size = 4.

Table 21-9. LINESR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

394 Freescale Semiconductor

21.7.1.6 UART mode status register (UARTSR)

RXEN Receiver Enable
0 Receiver disable.
1 Receiver enable.
This bit can be programmed only when the UART bit is set.

TXEN Transmitter Enable
0 Transmitter disable.
1 Transmitter enable.
This bit can be programmed only when the UART bit is set.
Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

OP Odd Parity
0 Sent parity is even.
1 Sent parity is odd.
This bit can be programmed in Initialization mode only when the UART bit is set.

PCE Parity Control Enable
0 Parity transmit/check disable.
1 Parity transmit/check enable.
This bit can be programmed in Initialization mode only when the UART bit is set.

WL Word Length in UART mode
0 7-bit data + parity bit.
1 8-bit data (or 9-bit if PCE is set).
This bit can be programmed in Initialization mode only when the UART bit is set.

UART UART mode enable
0 LIN mode.
1 UART mode.
This bit can be programmed in Initialization mode only.

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 0 DRF DTF NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-11. UART mode status register (UARTSR)

Table 21-10. UARTCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 395

Table 21-11. UARTSR field descriptions

Field Description

SZF Stuck at Zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF OCF Output Compare Flag
0 No output compare event occurred.
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.
An interrupt is generated if the OCIE bit in LINIER register is set.

PE3 Parity Error Flag Rx3
This bit indicates if there is a parity error in the corresponding received byte (Rx3). See
Section 21.8.1.1, Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE2 Parity Error Flag Rx2
This bit indicates if there is a parity error in the corresponding received byte (Rx2). See
Section 21.8.1.1, Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE1 Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). See
Section 21.8.1.1, Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE0 Parity Error Flag Rx0
This bit indicates if there is a parity error in the corresponding received byte (Rx0). See
Section 21.8.1.1, Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

RMB Release Message Buffer
0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data

received in the buffer.
This bit is cleared by hardware in Initialization mode.

FEF Framing Error Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit).

BOF Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared.
If RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new
byte overwrites buffer. it can be cleared by software.

RPS LIN Receive Pin State
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
on the LINRX pin in Sleep mode.
This bit must be cleared by software. It is reset by hardware in Initialization mode.
An interrupt i generated if WUIE bit in LINIER is set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

396 Freescale Semiconductor

21.7.1.7 LIN timeout control status register (LINTCSR)

DRF Data Reception Completed Flag
This bit is set by hardware and indicates the data reception is completed, that is, the number of
bytes programmed in RDFL[0:1] in UARTCR have been received.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
An interrupt is generated if DRIE bit in LINIER is set.
Note: In UART mode, this flag is set in case of framing error, parity error or overrun.

DTF Data Transmission Completed Flag
This bit is set by hardware and indicates the data transmission is completed, that is, the number of
bytes programmed in TDFL[0:1] have been transmitted.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
An interrupt is generated if DTIE bit in LINIER is set.

NF Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
LTOM IOT TOCE

CNT

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 21-12. LIN timeout control status register (LINTCSR)

Table 21-12. LINTCSR field descriptions

Field Description

LTOM LIN timeout mode
0 LIN timeout mode (header, response and frame timeout detection).
1 Output compare mode.
This bit can be set/cleared in Initialization mode only.

IOT Idle on Timeout
0 LIN state machine not reset to Idle on timeout event.
1 LIN state machine reset to Idle on timeout event.
This bit can be set/cleared in Initialization mode only.

Table 21-11. UARTSR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 397

21.7.1.8 LIN output compare register (LINOCR)

TOCE Timeout counter enable
0 Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare

event.
1 Timeout counter enable. OCF bit is set if an output compare event occurs.
TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in
LIN timeout mode, then hardware takes control of TOCE bit.

CNT Counter Value
This field indicates the LIN timeout counter value.

Offset: 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OC21 OC11

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 If LINTCSR[LTOM] = 1, this field is read-only.

Figure 21-13. LIN output compare register (LINOCR)

Table 21-13. LINOCR field descriptions

Field Description

OC2 Output compare 2 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

OC1 Output compare 1 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

Table 21-12. LINTCSR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

398 Freescale Semiconductor

21.7.1.9 LIN timeout control register (LINTOCR)

21.7.1.10 LIN fractional baud rate register (LINFBRR)

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO

W

Reset 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0

Figure 21-14. LIN timeout control register (LINTOCR)

Table 21-14. LINTOCR field descriptions

Field Description

RTO Response timeout value
This field contains the response timeout duration (in bit time) for 1 byte.
The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 × TResponse_Nominal

HTO Header timeout value
This field contains the header timeout duration (in bit time). This value does not include the Break
and the Break Delimiter. The reset value is the 0x2C = 44, corresponding to THeader_Maximum.
Programming LINSR[MME] = 1 changes the HTO value to 0x1C = 28.
This field can be written only in Slave mode.

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-15. LIN fractional baud rate register (LINFBRR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 399

21.7.1.11 LIN integer baud rate register (LINIBRR)

Table 21-15. LINFBRR field descriptions

Field Description

DIV_F Fraction bits of LFDIV
The 4 fraction bits define the value of the fraction of the LINFlex divider (LFDIV).
Fraction (LFDIV) = Decimal value of DIV_F / 16.
This field can be written in Initialization mode only.

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DIV_M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-16. LIN integer baud rate register (LINIBRR)

Table 21-16. LINIBRR field descriptions

Field Description

DIV_M LFDIV mantissa
This field defines the LINFlex divider (LFDIV) mantissa value (see Table 21-17). This field can be
written in Initialization mode only.

Table 21-17. Integer baud rate selection

DIV_M[0:12] Mantissa

0x0000 LIN clock disabled

0x0001 1

... ...

0x1FFE 8190

ox1FFF 8191

MPC5604B/C Microcontroller Reference Manual, Rev. 8

400 Freescale Semiconductor

21.7.1.12 LIN checksum field register (LINCFR)

21.7.1.13 LIN control register 2 (LINCR2)

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-17. LIN checksum field register (LINCFR)

Table 21-18. LINCFR field descriptions

Field Description

CF Checksum bits
When LINCR1[CCD] = 0, this field is read-only. When LINCR1[CCD] = 1, this field is read/write.
See Table 21-4.

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
IOBE IOPE

0 0 0 0 0 0 0 0 0 0 0 0 0

W WURQ DDRQ DTRQ ABRQ HTRQ

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-18. LIN control register 2 (LINCR2)

Table 21-19. LINCR2 field descriptions

Field Description

IOBE Idle on Bit Error
0 Bit error does not reset LIN state machine.
1 Bit error reset LIN state machine.
This bit can be set/cleared in Initialization mode only.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 401

21.7.1.14 Buffer identifier register (BIDR)

IOPE Idle on Identifier Parity Error
0 Identifier Parity error does not reset LIN state machine.
1 Identifier Parity error reset LIN state machine.
This bit can be set/cleared in Initialization mode only.

WURQ Wake-up Generation Request
Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character
has been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit
cannot be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit
error is not checked when transmitting the wake-up request.

DDRQ Data Discard Request
Set by software to stop data reception if the frame does not concern the node. This bit is reset by
hardware once LINFlex has moved to idle state. In Slave mode, this bit can be set only when HRF
bit in LINSR is set and identifier did not match any filter.

DTRQ Data Transmission Request
Set by software in Slave mode to request the transmission of the LIN Data field stored in the Buffer
data register. This bit can be set only when HRF bit in LINSR is set.
Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when BIDR[DIR] = 1 and header transmission is
completed.

ABRQ Abort Request
Set by software to abort the current transmission.
Cleared by hardware when the transmission has been aborted. LINFlex aborts the transmission
at the end of the current bit.
This bit can also abort a wake-up request.
It can also be used in UART mode.

HTRQ Header Transmission Request
Set by software to request the transmission of the LIN header.
Cleared by hardware when the request has been completed or aborted.
This bit has no effect in UART mode.

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-19. Buffer identifier register (BIDR)

Table 21-19. LINCR2 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

402 Freescale Semiconductor

21.7.1.15 Buffer data register LSB (BDRL)

Table 21-20. BIDR field descriptions

Field Description

DFL Data Field Length
This field defines the number of data bytes in the response part of the frame.
DFL = Number of data bytes – 1.
Normally, LIN uses only DFL[2:0] to manage frames with a maximum of 8 bytes of data. Identifier
filters are compatible with DFL[2:0] only. DFL[5:3] are provided to manage extended frames.

DIR Direction
This bit controls the direction of the data field.
0 LINFlex receives the data and copies them in the BDR registers.
1 LINFlex transmits the data from the BDR registers.

CCS Classic Checksum
This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN

specification 2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and

earlier.
In LIN slave mode (MME bit cleared in LINCR1), this bit must be configured before the header
reception. If the slave has to manage frames with 2 types of checksum, filters must be configured.

ID Identifier
Identifier part of the identifier field without the identifier parity.

Offset: 0x0038 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-20. Buffer data register LSB (BDRL)

Table 21-21. BDRL field descriptions

Field Description

DATA3 Data Byte 3
Data byte 3 of the data field.

DATA2 Data Byte 2
Data byte 2 of the data field.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 403

21.7.1.16 Buffer data register MSB (BDRM)

DATA1 Data Byte 1
Data byte 1 of the data field.

DATA0 Data Byte 0
Data byte 0 of the data field.

Offset: 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-21. Buffer data register MSB (BDRM)

Table 21-22. BDRM field descriptions

Field Description

DATA7 Data Byte 7
Data byte 7 of the data field.

DATA6 Data Byte 6
Data byte 6 of the data field.

DATA5 Data Byte 5
Data byte 5 of the data field.

DATA4 Data Byte 4
Data byte 4 of the data field.

Table 21-21. BDRL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

404 Freescale Semiconductor

21.7.1.17 Identifier filter enable register (IFER)

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
FACT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-22. Identifier filter enable register (IFER)

Table 21-23. IFER field descriptions

Field Description

FACT Filter activation (see Table 21-24)
0 Filters 2n and 2n + 1 are deactivated.
1 Filters 2n and 2n + 1 are activated.
This field can be set/cleared in Initialization mode only.

Table 21-24. IFER[FACT] configuration

Bit Value Result

FACT[0] 0 Filters 0 and 1 are deactivated.

1 Filters 0 and 1 are activated.

FACT[1] 0 Filters 2 and 3 are deactivated.

1 Filters 2 and 3 are activated.

FACT[2] 0 Filters 4 and 5 are deactivated.

1 Filters 4 and 5 are activated.

FACT[3] 0 Filters 6 and 7 are deactivated.

1 Filters 6 and 7 are activated.

FACT[4] 0 Filters 8 and 9 are deactivated.

1 Filters 8 and 9 are activated.

FACT[5] 0 Filters 10 and 11 are deactivated.

1 Filters 10 and 11 are activated.

FACT[6] 0 Filters 12 and 13 are deactivated.

1 Filters 12 and 13 are activated.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 405

21.7.1.18 Identifier filter match index (IFMI)

FACT[7] 0 Filters 14 and 15 are deactivated.

1 Filters 14 and 15 are activated.

Address: Base + 0x0044 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI[0:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-23. Identifier filter match index (IFMI)

Table 21-25. IFMI field descriptions

Field Description

0:26 Reserved

IFMI[0:4]
27:31

Filter match index
This register contains the index corresponding to the received identifier. It can be used to directly
write or read the data in SRAM (see Section 21.8.2.2, Slave mode for more details).
When no filter matches, IFMI[0:4] = 0. When Filter n is matching, IFMI[0:4] = n + 1.

Table 21-24. IFER[FACT] configuration (continued)

Bit Value Result

MPC5604B/C Microcontroller Reference Manual, Rev. 8

406 Freescale Semiconductor

21.7.1.19 Identifier filter mode register (IFMR)

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-24. Identifier filter mode register (IFMR)

Table 21-26. IFMR field descriptions

Field Description

IFM Filter mode (see Table 21-27).
0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).

Table 21-27. IFMR[IFM] configuration

Bit Value Result

IFM[0] 0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1] 0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2] 0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

IFM[3] 0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4] 0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5] 0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).

IFM[6] 0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 407

21.7.1.20 Identifier filter control register (IFCR2n)

NOTE
This register can be written in Initialization mode only.

IFM[7] 0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Offsets : 0x004C–0x0084 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-25. Identifier filter control register (IFCR2n)

Table 21-28. IFCR2n field descriptions

Field Description

DFL Data Field Length
This field defines the number of data bytes in the response part of the frame.

DIR Direction
This bit controls the direction of the data field.
0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS Classic Checksum
This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification

2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and

earlier.

ID Identifier
Identifier part of the identifier field without the identifier parity.

Table 21-27. IFMR[IFM] configuration (continued)

Bit Value Result

MPC5604B/C Microcontroller Reference Manual, Rev. 8

408 Freescale Semiconductor

21.7.1.21 Identifier filter control register (IFCR2n + 1)

NOTE
This register can be written in Initialization mode only.

Offsets: 0x0050–0x0088 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-26. Identifier filter control register (IFCR2n + 1)

Table 21-29. IFCR2n + 1 field descriptions

Field Description

DFL Data Field Length
This field defines the number of data bytes in the response part of the frame.
DFL = Number of data bytes – 1.

DIR Direction
This bit controls the direction of the data field.
0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS Classic Checksum
This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN

specification 2.0 and higher.
1 Classic Checksum covering Data field only. This is compatible with LIN specification 1.3 and

earlier.

ID Identifier
Identifier part of the identifier field without the identifier parity

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 409

21.8 Functional description

21.8.1 UART mode

The main features in the UART mode are

• Full duplex communication

• 8- or 9-bit data with parity

• 4-byte buffer for reception, 4-byte buffer for transmission

• 8-bit counter for timeout management

8-bit data frames: The 8th bit can be a data or a parity bit. Even/Odd Parity can be selected by the Odd
Parity bit in the UARTCR. An even parity is set if the modulo-2 sum of the 7 data bits is 1. An odd parity
is cleared in this case.

Figure 21-27. UART mode 8-bit data frame

9-bit frames: The 9th bit is a parity bit. Even/Odd Parity can be selected by the Odd Parity bit in the
UARTCR. An even parity is set if the modulo-2 sum of the 8 data bits is 1. An odd parity is cleared in this
case.

Figure 21-28. UART mode 9-bit data frame

21.8.1.1 Buffer in UART mode

The 8-byte buffer is divided into two parts: one for receiver and one for transmitter as shown in
Table 21-30.

Start
bit D0 D7

Stop
bit

Byte Field

— Data bit
— Parity bit

D1 D2 D3 D4 D5 D6

Start
bit D0 D7 Stop

bit

Byte Field

— Parity bit

D1 D2 D3 D4 D5 D6 D8

MPC5604B/C Microcontroller Reference Manual, Rev. 8

410 Freescale Semiconductor

21.8.1.2 UART transmitter

In order to start transmission in UART mode, you must program the UART bit and the transmitter enable
(TXEN) bit in the UARTCR to 1. Transmission starts when DATA0 (least significant data byte) is
programmed. The number of bytes transmitted is equal to the value configured by UARTCR[TDFL] (see
Table 21-10).

The Transmit buffer is 4 bytes, hence a 4-byte maximum transmission can be triggered. Once the
programmed number of bytes has been transmitted, the UARTSR[DTF] bit is set. If UARTCR[TXEN] is
reset during a transmission then the current transmission is completed and no further transmission can be
invoked.

21.8.1.3 UART receiver

The UART receiver is active as soon as the user exits Initialization mode and programs
UARTCR[RXEN] = 1. There is a dedicated 4-byte data buffer for received data bytes. Once the
programmed number (RDFL bits) of bytes has been received, the UARTSR[DRF] bit is set. If the RXEN
bit is reset during a reception then the current reception is completed and no further reception can be
invoked until RXEN is set.

If a parity error occurs during reception of any byte, then the corresponding PEx bit in the UARTSR is set.
No interrupt is generated in this case. If a framing error occurs in any byte (UARTSR[FE] = 1) then an
interrupt is generated if the LINIER[FEIE] bit is set.

If the last received frame has not been read from the buffer (that is, RMB bit is not reset by the user) then
upon reception of the next byte an overrun error occurs (UARTSR[BOF] = 1) and one message will be
lost. Which message is lost depends on the configuration of LINCR1[RBLM].

• If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in the buffer
is overwritten by the new incoming message. In this case the latest message is always available to
the application.

• If the buffer lock function is enabled (LINCR1[RBLM] = 1) the most recent message is discarded
and the previous message is available in the buffer.

Table 21-30. Message buffer

Buffer data
register

LIN mode UART mode

BDRL[0:31] Transmit/Receive
buffer

DATA0[0:7] Transmit buffer Tx0

DATA1[0:7] Tx1

DATA2[0:7] Tx2

DATA3[0:7] Tx3

BDRM[0:31] DATA4[0:7] Receive buffer Rx0

DATA5[0:7] Rx1

DATA6[0:7] Rx2

DATA7[0:7] Rx3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 411

An interrupt is generated if the LINIER[BOIE] bit is set.

21.8.1.4 Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In UART mode, the LINFlex
controller acknowledges a clock gating request once the data transmission and data reception are
completed, that is, once the Transmit buffer is empty and the Receive buffer is full.

21.8.2 LIN mode

LIN mode comprises four submodes:

• Master mode

• Slave mode1

• Slave mode with identifier filtering1

• Slave mode with automatic resynchronization1

These submodes are described in the following pages.

21.8.2.1 Master mode

In Master mode the application uses the message buffer to handle the LIN messages. Master mode is
selected when the LINCR1[MME] bit is set.

21.8.2.1.1 LIN header transmission

According to the LIN protocol any communication on the LIN bus is triggered by the Master sending a
header. The header is transmitted by the Master task while the data is transmitted by the Slave task of a
node.

To transmit a header with LINFlex the application must set up the identifier, the data field length and
configure the message (direction and checksum type) in the BIDR before requesting the header
transmission by setting LINCR2[HTRQ].

21.8.2.1.2 Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the header, then the
slave task of the master has to send the data in the Response part of the LIN frame. Therefore, the
application must provide the data to LINFlex before requesting the header transmission. The application
stores the data in the message buffer BDR. According to the data field length, LINFlex transmits the data
and the checksum. The application uses the BDR[CCS] bit to configure the checksum type (classic or
enhanced) for each message.

If the response has been sent successfully, the LINSR[DTF] bit is set. In case of error, the DTF flag is not
set and the corresponding error flag is set in the LINESR (see Section 21.8.2.1.6, Error handling).

1. Only LINFlex0 supports slave mode

MPC5604B/C Microcontroller Reference Manual, Rev. 8

412 Freescale Semiconductor

It is possible to handle frames with a Response size larger than 8 bytes of data (extended frames). If the
data field length in the BIDR is configured with a value higher than 8 data bytes, the LINSR[DBEF] bit is
set after the first 8 bytes have been transmitted. The application has to update the buffer BDR before
resetting the DBEF bit. The transmission of the next bytes starts when the DBEF bit is reset.

After the last data byte (or the checksum byte) has been sent, the DTF flag is set.

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the application sets this bit
the response is sent by LINFlex (publisher). Resetting this bit configures the message buffer as subscriber.

21.8.2.1.3 Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding identifier. LINFlex
stores the data received from the slave in the message buffer and stores the message status in the LINSR.

If the response has been received successfully, the LINSR[DRF] is set. In case of error, the DRF flag is not
set and the corresponding error flag is set in the LINESR (see Section 21.8.2.1.6, Error handling).

It is possible to handle frames with a Response size larger than 8 bytes of data (extended frames). If the
data field length in the BIDR is configured with a value higher than 8 data bytes, the LINSR[DBFF] bit is
set once the first 8 bytes have been received. The application has to read the buffer BDR before resetting
the DBFF bit. Once the last data byte (or the checksum byte) has been received, the DRF flag is set.

21.8.2.1.4 Data discard

To discard data from a slave, the BIDR[DIR] bit must be reset and the LINCR2[DDRQ] bit must be set
before starting the header transmission.

21.8.2.1.5 Error detection

LINFlex is able to detect and handle LIN communication errors. A code stored in the LIN error status
register (LINESR) signals the errors to the software.

In Master mode, the following errors are detected:

• Bit error: During transmission, the value read back from the bus differs from the transmitted value.

• Framing error: A dominant state has been sampled on the stop bit of the currently received
character (synch field, identifier field or data field).

• Checksum error: The computed checksum does not match the received one.

• Response and Frame timeout: See Section 21.8.3, 8-bit timeout counter, for more details.

21.8.2.1.6 Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the frame after the
corrupted bit. LINFlex returns to idle state and an interrupt is generated if LINIER[BEIE] = 1.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex returns
immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex returns to idle
state. An interrupt is generated if LINIER[CEIE] = 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 413

21.8.2.2 Slave mode

In Slave mode the application uses the message buffer to handle the LIN messages. Slave mode is selected
when LINCR1[MME] = 0.

21.8.2.2.1 Data transmission (transceiver as publisher)

When LINFlex receives the identifier, the LINSR[HRF] is set and, if LINIER[HRIE] = 1, an RX interrupt
is generated. The software must read the received identifier in the BIDR, fill the BDR registers, specify
the data field length using the BIDR[DFL] and trigger the data transmission by setting the
LINCR2[DTRQ] bit.

One or several identifier filters can be configured for transmission by setting the IFCRx[DIR] bit and
activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in transmission and activated, and if the received identifier
matches the filter, a specific TX interrupt (instead of an RX interrupt) is generated.

Typically, the application has to copy the data from SRAM locations to the BDAR. To copy the data to the
right location, the application has to identify the data by means of the identifier. To avoid this and to ease
the access to the SRAM locations, the LINFlex controller provides a Filter Match Index. This index value
is the number of the filter that matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer that points to the right
data array in the SRAM area and copy this data to the BDAR (see Figure 21-30).

Using a filter avoids the software having to configure the direction, the data field length and the checksum
type in the BIDR. The software fills the BDAR and triggers the data transmission by programming
LINCR2[DTRQ] = 1.

If LINFlex cannot provide enough TX identifier filters to handle all identifiers the software has to transmit
data for, then a filter can be configured in mask mode (see Section 21.8.2.3, Slave mode with identifier
filtering) in order to manage several identifiers with one filter only.

21.8.2.2.2 Data reception (transceiver as subscriber)

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an RX
interrupt is generated. The software must read the received identifier in the BIDR and specify the data field
length using the BIDR[DFL] field before receiving the stop bit of the first byte of data field.

When the checksum reception is completed, an RX interrupt is generated to allow the software to read the
received data in the BDR registers.

One or several identifier filters can be configured for reception by programming IFCRx[DIR] = 0 and
activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in reception and activated, and if the received identifier
matches the filter, an RX interrupt is generated after the checksum reception only.

Typically, the application has to copy the data from the BDAR to SRAM locations. To copy the data to the
right location, the application has to identify the data by means of the identifier. To avoid this and to ease

MPC5604B/C Microcontroller Reference Manual, Rev. 8

414 Freescale Semiconductor

the access to the SRAM locations, the LINFlex controller provides a Filter Match Index. This index value
is the number of the filter that matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer that points to the right
data array in the SRAM area and copy this data from the BDAR to the SRAM (see Figure 21-30).

Using a filter avoids the software reading the ID value in the BIDR, and configuring the direction, the data
field length and the checksum type in the BIDR.

If LINFlex cannot provide enough RX identifier filters to handle all identifiers the software has to receive
the data for, then a filter can be configured in mask mode (see Section 21.8.2.3, Slave mode with identifier
filtering) in order to manage several identifiers with one filter only.

21.8.2.2.3 Data discard

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an RX
interrupt is generated. If the received identifier does not concern the node, you must program
LINCR2[DDRQ] = 1. LINFlex returns to idle state after bit DDRQ is set.

21.8.2.2.4 Error detection

In Slave mode, the following errors are detected:

• Header error: An error occurred during header reception (Break Delimiter error, Inconsistent
Synch Field, Header Timeout).

• Bit error: During transmission, the value read back from the bus differs from the transmitted value.

• Framing error: A dominant state has been sampled on the stop bit of the currently received
character (synch field, identifier field or data field).

• Checksum error: The computed checksum does not match the received one.

21.8.2.2.5 Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the frame after the
corrupted bit. LINFlex returns to idle state and an interrupt is generated if the BEIE bit in the LINIER is set.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex returns
immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex returns to idle
state. An interrupt is generated if LINIER[CEIE] = 1.

During header reception, a Break Delimiter error, an Inconsistent Synch Field or a Timeout error leads
LINFlex to discard the header. An interrupt is generated if LINIER[HEIE] = 1. LINFlex returns to idle
state.

21.8.2.2.6 Valid header

A received header is considered as valid when it has been received correctly according to the LIN protocol.

If a valid Break Field and Break Delimiter come before the end of the current header or at any time during
a data field, the current header or data is discarded and the state machine synchronizes on this new break.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 415

21.8.2.2.7 Valid message

A received or transmitted message is considered as valid when the data has been received or transmitted
without error according to the LIN protocol.

21.8.2.2.8 Overrun

Once the message buffer is full, the next valid message reception leads to an overrun and a message is lost.
The hardware sets the BOF bit in the LINSR to signal the overrun condition. Which message is lost
depends on the configuration of the RX message buffer:

• If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in the buffer
is overwritten by the new incoming message. In this case the latest message is always available to
the application.

• If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most recent message is discarded
and the previous message is available in the buffer.

21.8.2.3 Slave mode with identifier filtering

In the LIN protocol the identifier of a message is not associated with the address of a node but related to
the content of the message. Consequently a transmitter broadcasts its message to all receivers. On header
reception a slave node decides—depending on the identifier value—whether the software needs to receive
or send a response. If the message does not target the node, it must be discarded without software
intervention.

To fulfill this requirement, the LINFlex controller provides configurable filters in order to request software
intervention only if needed. This hardware filtering saves CPU resources that would otherwise be needed
by software for filtering.

21.8.2.3.1 Filter mode

Usually each of the eight IFCR registers filters one dedicated identifier, but this limits the number of
identifiers LINFlex can handle to the number of IFCR registers implemented in the device. Therefore, in
order to be able to handle more identifiers, the filters can be configured in mask mode.

In identifier list mode (the default mode), both filter registers are used as identifier registers. All bits of
the incoming identifier must match the bits specified in the filter register.

In mask mode, the identifier registers are associated with mask registers specifying which bits of the
identifier are handled as “must match” or as “don’t care”. For the bit mapping and registers organization,
please see Figure 21-29.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

416 Freescale Semiconductor

Figure 21-29. Filter configuration—register organization

21.8.2.3.2 Identifier filter mode configuration

The identifier filters are configured in the IFCRx registers. To configure an identifier filter the filter must
first be deactivated by programming IFER[FACT] = 0.. The identifier list or identifier mask mode for
the corresponding IFCRx registers is configured by the IFMR[IFM] bit. For each filter, the IFCRx register
configures the ID (or the mask), the direction (TX or RX), the data field length, and the checksum type.

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter generate a TX
interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter generate an RX
interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s) generate an RX
interrupt.

Table 21-31. Filter to interrupt vector correlation

Number of
active filters

Number of active filters
configured as TX

Number of active filters
configured as RX

Interrupt vector

0 0 0 RX interrupt on all identifiers

IFCRnIdentifier

IDBit Mapping

Identifier Filter Register Organization

15 0

DFL CCSDIR

Identifier Filter Configuration

IFCR2nIdentifier
Identifier IFCR2n + 1

IFM = 0

Identifier Filter Mode

IFCR2nIdentifier
Mask IFCR2n + 1

IFM = 1

Identifier List Mode

Mask Mode

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 417

Figure 21-30. Identifier match index

21.8.2.4 Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fperiph_set_1_clk tolerance is greater than
1.5%. This feature compensates a fperiph_set_1_clk deviation up to 14%, as specified in LIN standard.

This mode is similar to Slave mode as described in Section 21.8.2.2, Slave mode, with the addition of
automatic resynchronization enabled by the LASE bit. In this mode LINFlex adjusts the fractional baud
rate generator after each Synch Field reception.

Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN Break, the time duration between five falling
edges on RDI is sampled on fperiph_set_1_clk and the result of this measurement is stored in an internal 19-bit
register called SM (not user accessible) (see Figure 21-31). Then the LFDIV value (and its associated
registers LINIBRR and LINFBRR) are automatically updated at the end of the fifth falling edge. During

a
(a > 0)

a 0 — TX interrupt on identifiers
matching the filters,
— RX interrupt on all other
identifiers if BF bit is set, no RX
interrupt if BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

— TX interrupt on identifiers
matching the TX filters,
— RX interrupt on identifiers
matching the RX filters,
— all other identifiers discarded
(no interrupt)

b
(b > 0)

0 b — RX interrupt on identifiers
matching the filters,
— TX interrupt on all other
identifiers if BF bit is set, no TX
interrupt if BF bit is reset

Table 21-31. Filter to interrupt vector correlation

Number of
active filters

Number of active filters
configured as TX

Number of active filters
configured as RX

Interrupt vector

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
pointers

table

SRAM

@

+

MPC5604B/C Microcontroller Reference Manual, Rev. 8

418 Freescale Semiconductor

LIN Synch Field measurement, the LINFlex state machine is stopped and no data is transferred to the data
register.

Figure 21-31. LIN synch field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 12 bits in the LINIBRR and the
fraction is coded on 4 bits in the LINFBRR.

If LASE bit = 1 then LFDIV is automatically updated at the end of each LIN Synch Field.

Three internal registers (not user-accessible) manage the auto-update of the LINFlex divider (LFDIV):

• LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

• LFDIV_MEAS (results of the Field Synch measurement)

• LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a complete frame,
hardware reloads LFDIV with LFDIV_NOM.

21.8.2.4.1 Deviation error on the Synch Field

The deviation error is checked by comparing the current baud rate (relative to the slave oscillator) with the
received LIN Synch Field (relative to the master oscillator). Two checks are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling edge of the
Synch Field:

• If D1 > 14.84%, LHE is set.

• If D1 < 14.06%, LHE is not set.

• If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing between the
signal on LINFlex_RX pin the fperiph_set_1_clk clock.

The second check is based on a measurement of time between each falling edge of the Synch Field:

• If D2 > 18.75%, LHE is set.

• If D2 < 15.62%, LHE is not set.

• If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing between the
signal on LINFlex_RX pin the fperiph_set_1_clk clock.

LIN Break
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start
Bit

LIN Synch Field

Measurement = 8.TBR = SM.Tperiph_set_1_clk

LFDIV(n) LFDIV(n+1)

LFDIV = TBR / (16.Tperiph_set_1_clk) = Rounding (SM / 128)

Tperiph_set_1_clk = Clock period

TBR = baud rate period

TBR

TBR = 16.LFDIV.Tperiph_set_1_clk

SM = Synch Measurement Register (19 bits)

delim.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 419

Note that the LINFlex does not need to check if the next edge occurs slower than expected. This is covered
by the check for deviation error on the full synch byte.

21.8.2.5 Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In LIN mode, the LINFlex
controller acknowledges a clock gating request once the frame transmission or reception is completed.

21.8.3 8-bit timeout counter

21.8.3.1 LIN timeout mode

Setting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes read-only,
and OC1 and OC2 output compare values in the LINOCR are automatically updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the LINCR1[MME] bit), the 8-bit timeout counter will behave
differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or reception (that is, if
the data field length in the BIDR is configured with a value higher than 8 data bytes).

21.8.3.1.1 LIN Master mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values. Header timeout
value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (see Figure 21-32).

When LINFlex moves from Break delimiter state to Synch Field state (see Section 21.7.1.3, LIN status
register (LINSR)):

• OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

• OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame timeout value
for an 8-byte frame),

• the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header reception), OC1
is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 (response timeout value for an
8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check TResponse and
TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is reset.

If there is no response, frame timeout value does not take into account the DFL value, and an 8-byte
response (DFL = 7) is always assumed.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

420 Freescale Semiconductor

21.8.3.1.2 LIN Slave mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values. Header timeout
value is fixed to HTO.

OC1 checks THeader and TResponse and OC2 checks TFrame (see Figure 21-32).

When LINFlex moves from Break state to Break Delimiter state (see Section 21.7.1.3, LIN status register
(LINSR)):

• OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

• OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame timeout
value for an 8-byte frame)),

• The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header reception), OC1
is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 (response timeout value for an
8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check TResponse and
TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is reset.

Figure 21-32. Header and response timeout

21.8.3.2 Output compare mode

Programming LINTCSR[LTOM] = 0 enables the output compare mode. This mode allows the user to fully
customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1

OC2

Response
space

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 421

21.8.4 Interrupts

Table 21-32. LINFlex interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI 1

1 In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector
is RXI or TXI depending on the value of identifier received.

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI

Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt 2

2 For debug and validation purposes

LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

MPC5604B/C Microcontroller Reference Manual, Rev. 8

422 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 423

Chapter 22
FlexCAN

22.1 Introduction
The FlexCAN module is a communication controller implementing the CAN protocol according to the
CAN 2.0B protocol specification. A general block diagram is shown in Figure 22-1, which describes the
main sub-blocks implemented in the FlexCAN module, including two embedded memories, one for
storing Message Buffers (MB) and another one for storing Rx Individual Mask Registers. Support for up
to 64 Message Buffers is provided. The functions of the submodules are described in subsequent sections.

Figure 22-1. FlexCAN block diagram

22.1.1 Overview

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, version 2.0 B, which supports both standard and extended message frames.

288/544/1056-

Bus Interface Unit

max MB #

(0–63)

IP Bus Interface

CAN Message

CAN Tx

CAN Rx

MB1

MB0

MB62

MB63

Clocks, Address & Data buses,
Interrupt and Test Signals

Buffer
Management

Protocol
Interface

byte SRAM

Message
Buffer

Storage

64/128/256-

RXIMR1

RXIMR0

RXIMR62

RXIMR63

byte SRAM

ID Mask
Storage

MPC5604B/C Microcontroller Reference Manual, Rev. 8

424 Freescale Semiconductor

A flexible number of Message Buffers (16, 32 or 64) is also supported. The Message Buffers are stored in
an embedded SRAM dedicated to the FlexCAN module.

The CAN Protocol Interface (CPI) submodule manages the serial communication on the CAN bus,
requesting SRAM access for receiving and transmitting message frames, validating received messages and
performing error handling. The Message Buffer Management (MBM) submodule handles Message Buffer
selection for reception and transmission, taking care of arbitration and ID matching algorithms. The Bus
Interface Unit (BIU) submodule controls the access to and from the internal interface bus, in order to
establish connection to the CPU and to other blocks. Clocks, address and data buses, interrupt outputs and
test signals are accessed through the Bus Interface Unit.

22.1.2 FlexCAN module features

The FlexCAN module includes these distinctive features:

• Full implementation of the CAN protocol specification, version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— 0–8 bytes data length

— Programmable bit rate up to 1 Mbit/s

— Content-related addressing

• Flexible Message Buffers (up to 64) of zero to eight bytes data length

• Each MB configurable as Rx or Tx, all supporting standard and extended messages

• Individual Rx Mask Registers per Message Buffer

• Includes either 1056 bytes (64 MBs) of SRAM used for MB storage

• Includes either 256 bytes (64 MBs) of SRAM used for individual Rx Mask Registers

• Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 8 extended, 16
standard or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN version

• Programmable clock source to the CAN Protocol Interface, either bus clock or crystal oscillator

• Unused MB and Rx Mask Register space can be used as general purpose SRAM space

• Listen-only mode capability

• Programmable loop-back mode supporting self-test operation

• Programmable transmission priority scheme: lowest ID, lowest buffer number or highest priority

• Time Stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Short latency time due to an arbitration scheme for high-priority messages

• Low power mode

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 425

• Hardware cancellation on Tx message buffers

22.1.3 Modes of operation

The FlexCAN module has four functional modes: Normal Mode (User and Supervisor), Freeze Mode,
Listen-Only Mode and Loop-Back Mode. There is also a low power mode: Disable Mode.

• Normal Mode (User or Supervisor)

In Normal Mode, the module operates receiving and/or transmitting message frames, errors are
handled normally and all the CAN Protocol functions are enabled. User and Supervisor Modes
differ in the access to some restricted control registers.

• Freeze Mode

It is enabled when the FRZ bit in the MCR is asserted. If enabled, Freeze Mode is entered when
the HALT bit in MCR is set or when Debug Mode is requested at MCU level. In this mode, no
transmission or reception of frames is done and synchronicity to the CAN bus is lost. See
Section 22.4.10.1, “Freeze Mode for more information.

• Listen-Only Mode

The module enters this mode when the LOM bit in the Control Register is asserted. In this mode,
transmission is disabled, all error counters are frozen and the module operates in a CAN Error
Passive mode. Only messages acknowledged by another CAN station will be received. If FlexCAN
detects a message that has not been acknowledged, it will flag a BIT0 error (without changing the
REC), as if it was trying to acknowledge the message.

• Loop-Back Mode

The module enters this mode when the LPB bit in the Control Register is asserted. In this mode,
FlexCAN performs an internal loop back that can be used for self test operation. The bit stream
output of the transmitter is internally fed back to the receiver input. The Rx CAN input pin is
ignored and the Tx CAN output goes to the recessive state (logic ‘1’). FlexCAN behaves as it
normally does when transmitting and treats its own transmitted message as a message received
from a remote node. In this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN
frame acknowledge field to ensure proper reception of its own message. Both transmit and receive
interrupts are generated.

• Module Disable Mode

This low power mode is entered when the MDIS bit in the MCR is asserted. When disabled, the
module shuts down the clocks to the CAN Protocol Interface and Message Buffer Management
submodules. Exit from this mode is done by negating the MDIS bit in the MCR. See
Section 22.4.10.2, “Module Disable Mode for more information.

22.2 External signal description

22.2.1 Overview

The FlexCAN module has two I/O signals connected to the external MCU pins. These signals are
summarized in Table 22-1 and described in more detail in the next subsections.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

426 Freescale Semiconductor

22.2.2 Signal descriptions

22.2.2.1 CAN Rx

This pin is the receive pin from the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

22.2.2.2 CAN Tx

This pin is the transmit pin to the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

22.3 Memory map and register description
This section describes the registers and data structures in the FlexCAN module. The base address of the
module depends on the particular memory map of the MCU. The addresses presented here are relative to
the base address.

The address space occupied by FlexCAN has 96 bytes for registers starting at the module base address,
followed by MB storage space in embedded SRAM starting at address 0x0060, and an extra ID Mask
storage space in a separate embedded SRAM starting at address 0x0880.

22.3.1 FlexCAN memory mapping

The complete memory map for a FlexCAN module with 64 MBs capability is shown in Table 22-2. Each
individual register is identified by its complete name and the corresponding mnemonic. The access type
can be Supervisor (S) or Unrestricted (U). Most of the registers can be configured to have either Supervisor
or Unrestricted access by programming the SUPV bit in the MCR. These registers are identified as S/U in
the Access column of Table 22-2.

The IFLAG2 and IMASK2 registers are considered reserved space when FlexCAN is configured with 16
or 32 MBs. The Rx Global Mask (RXGMASK), Rx Buffer 14 Mask (RX14MASK) and the Rx Buffer 15
Mask (RX15MASK) registers are provided for backwards compatibility, and are not used when the BCC
bit in MCR is asserted.

The address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate embedded
memories. These two ranges are completely occupied by SRAM (1056 and 256 bytes, respectively) only
when FlexCAN is configured with 64 MBs. When it is configured with 16 MBs, the memory sizes are 288
and 64 bytes, so the address ranges 0x0180–0x047F and 0x08C0–0x097F are considered reserved space.

Table 22-1. FlexCAN signals

Signal name1

1 The actual MCU pins may have different names.

Direction Description

CAN Rx Input CAN receive pin

CAN Tx Output CAN transmit pin

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 427

When it is configured with 32 MBs, the memory sizes are 544 and 128 bytes, so the address ranges
0x0280–0x047F and 0x0900–0x097F are considered reserved space. Furthermore, if the BCC bit in MCR
is negated, then the whole Rx Individual Mask Registers address range (0x0880–0x097F) is considered
reserved space.

The FlexCAN module stores CAN messages for transmission and reception using a Message Buffer
structure. Each individual MB is formed by 16 bytes mapped on memory as described in Table 22-3.

Table 22-2. FlexCAN memory map

Base addresses:
0xFFFC_0000 (FlexCAN_0)
0xFFFC_4000 (FlexCAN_1)
0xFFFC_8000 (FlexCAN_2)
0xFFFC_C000 (FlexCAN_3)
0xFFFD_0000 (FlexCAN_4)
0xFFFD_4000 (FlexCAN_5)

Address offset Register Location

0x0000 Module Configuration (MCR) on page 433

0x0004 Control Register (CTRL) on page 437

0x0008 Free Running Timer (TIMER) on page 440

0x000C Reserved

0x0010 Rx Global Mask (RXGMASK) on page 441

0x0014 Rx Buffer 14 Mask (RX14MASK) on page 442

0x0018 Rx Buffer 15 Mask (RX15MASK) on page 443

0x001C Error Counter Register (ECR) on page 443

0x0020 Error and Status Register (ESR) on page 444

0x0024 Interrupt Masks 2 (IMASK2) on page 447

0x0028 Interrupt Masks 1 (IMASK1) on page 448

0x002C Interrupt Flags 2 (IFLAG2) on page 448

0x0030 Interrupt Flags 1 (IFLAG1) on page 449

0x0034–0x005F Reserved

0x0060–0x007F Reserved

0x0080–0x017F Message Buffers MB0–MB15

0x0180–0x027F Message Buffers MB16–MB31

0x0280–0x047F Message Buffers MB32–MB63

0x0480–0x087F Reserved

0x0880–0x08BF Rx Individual Mask Registers RXIMR0–RXIMR15 on page 450

0x08C0–0x08FF Rx Individual Mask Registers RXIMR16–RXIMR31 on page 450

0x0900–0x097F Rx Individual Mask Registers RXIMR32–RXIMR63 on page 450

MPC5604B/C Microcontroller Reference Manual, Rev. 8

428 Freescale Semiconductor

Table 22-3 shows a Standard/Extended Message Buffer (MB0) memory map, using 16 bytes total
(0x80–0x8F space).

22.3.2 Message buffer structure

The Message Buffer structure used by the FlexCAN module is represented in Table 22-2. Both Extended
and Standard Frames (29-bit Identifier and 11-bit Identifier, respectively) used in the CAN specification
(Version 2.0 Part B) are represented.

Table 22-3. Message buffer MB0 memory mapping

Address offset MB field

0x80 Control and Status (C/S)

0x84 Identifier Field

0x88–0x8F Data Field 0 – Data Field 7 (1 byte each)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x4 PRIO ID (Standard/Extended) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x

C

Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

= Unimplemented or Reserved

Figure 22-2. Message Buffer Structure

Table 22-4. Message Buffer Structure field description

Field Description

CODE Message Buffer Code
This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module itself, as
part of the message buffer matching and arbitration process. The encoding is shown in Table 22-5
and Table 22-6. See Section 22.4, “Functional description for additional information.

SRR Substitute Remote Request
Fixed recessive bit, used only in extended format. It must be set to ‘1’ by the user for transmission
(Tx Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It
can be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is
interpreted as arbitration loss.
1 = Recessive value is compulsory for transmission in Extended Format frames
0 = Dominant is not a valid value for transmission in Extended Format frames

IDE ID Extended Bit
This bit identifies whether the frame format is standard or extended.
1 = Frame format is extended
0 = Frame format is standard

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 429

RTR Remote Transmission Request
This bit is used for requesting transmissions of a data frame. If FlexCAN transmits this bit as ‘1’
(recessive) and receives it as ‘0’ (dominant), it is interpreted as arbitration loss. If this bit is
transmitted as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the FlexCAN module treats it
as bit error. If the value received matches the value transmitted, it is considered as a successful bit
transmission.
1 = Indicates the current MB has a Remote Frame to be transmitted
0 = Indicates the current MB has a Data Frame to be transmitted

LENGTH Length of Data in Bytes
This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset 0x8 through 0xF
of the MB space (see Table 22-2). In reception, this field is written by the FlexCAN module, copied
from the DLC (Data Length Code) field of the received frame. In transmission, this field is written by
the CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR=1, the
Frame to be transmitted is a Remote Frame and does not include the data field, regardless of the
Length field.

TIME STAMP Free-Running Counter Time Stamp
This 16-bit field is a copy of the Free-Running Timer, captured for Tx and Rx frames at the time when
the beginning of the Identifier field appears on the CAN bus.

PRIO Local priority
This 3-bit field is only used when LPRIO_EN bit is set in MCR and it only makes sense for Tx buffers.
These bits are not transmitted. They are appended to the regular ID to define the transmission
priority. See Section 22.4.4, “Arbitration process.

ID Frame Identifier
In Standard Frame format, only the 11 most significant bits (3 to 13) are used for frame identification
in both receive and transmit cases. The 18 least significant bits are ignored. In Extended Frame
format, all bits are used for frame identification in both receive and transmit cases.

DATA Data Field
Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received
from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the frame.

Table 22-5. Message buffer code for Rx buffers

Rx code
BEFORE

Rx new frame
Description

Rx code
AFTER

Rx new frame
Comment

0000 INACTIVE: MB is not active. — MB does not participate in the matching
process.

0100 EMPTY: MB is active and
empty.

0010 MB participates in the matching process. When
a frame is received successfully, the code is
automatically updated to FULL.

Table 22-4. Message Buffer Structure field description (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

430 Freescale Semiconductor

0010 FULL: MB is full. 0010 The act of reading the C/S word followed by
unlocking the MB does not make the code
return to EMPTY. It remains FULL. If a new
frame is written to the MB after the C/S word
was read and the MB was unlocked, the code
still remains FULL.

0110 If the MB is FULL and a new frame is
overwritten to this MB before the CPU had time
to read it, the code is automatically updated to
OVERRUN. Refer to Section 22.4.6, “Matching
process for details about overrun behavior.

0110 OVERRUN: a frame was
overwritten into a full buffer.

0010 If the code indicates OVERRUN but the CPU
reads the C/S word and then unlocks the MB,
when a new frame is written to the MB the code
returns to FULL.

0110 If the code already indicates OVERRUN, and
yet another new frame must be written, the MB
will be overwritten again, and the code will
remain OVERRUN. Refer to Section 22.4.6,
“Matching process for details about overrun
behavior.

0XY11 BUSY: FlexCAN is updating the
contents of the MB. The CPU
must not access the MB.

0010 An EMPTY buffer was written with a new frame
(XY was 01).

0110 A FULL/OVERRUN buffer was overwritten (XY
was 11).

1 Note that for Tx MBs (see Table 22-6), the BUSY bit should be ignored upon read, except when AEN bit is set in
the MCR.

Table 22-6. Message buffer code for Tx buffers

RTR
Initial Tx

code

Code after
successful

transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 — ABORT: MB was configured as Tx and CPU aborted the
transmission. This code is only valid when AEN bit in MCR is
asserted. MB does not participate in the arbitration process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the
MB automatically returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission,
the MB automatically becomes an Rx MB with the same ID.

Table 22-5. Message buffer code for Rx buffers (continued)

Rx code
BEFORE

Rx new frame
Description

Rx code
AFTER

Rx new frame
Comment

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 431

22.3.3 Rx FIFO structure

When the FEN bit is set in the MCR, the memory area from 0x80 to 0xFC (which is normally occupied by
MBs 0 to 7) is used by the reception FIFO engine. Table 22-3 shows the Rx FIFO data structure. The region
0x80–0x8C contains an MB structure which is the port through which the CPU reads data from the FIFO
(the oldest frame received and not read yet). The region 0x90–0xDC is reserved for internal use of the
FIFO engine. The region 0xE0–0xFC contains an 8-entry ID table that specifies filtering criteria for
accepting frames into the FIFO. Table 22-4 shows the three different formats that the elements of the ID
table can assume, depending on the IDAM field of the MCR. Note that all elements of the table must have
the same format. See Section 22.4.8, “Rx FIFO for more information.

0 1010 1010 Transmit a data frame whenever a remote request frame with the
same ID is received. This MB participates simultaneously in both
the matching and arbitration processes. The matching process
compares the ID of the incoming remote request frame with the ID
of the MB. If a match occurs this MB is allowed to participate in the
current arbitration process and the Code field is automatically
updated to ‘1110’ to allow the MB to participate in future arbitration
runs. When the frame is eventually transmitted successfully, the
Code automatically returns to ‘1010’ to restart the process again.

0 1110 1010 This is an intermediate code that is automatically written to the MB
by the MBM as a result of match to a remote request frame. The
data frame will be transmitted unconditionally once and then the
code will automatically return to ‘1010’. The CPU can also write
this code with the same effect.

Table 22-6. Message buffer code for Tx buffers (continued)

RTR
Initial Tx

code

Code after
successful

transmission
Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

432 Freescale Semiconductor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x80 S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x84 ID (Standard/Extended) ID (Extended)

0x88 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x8C Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90 Reserved

to

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

= Unimplemented or Reserved

Figure 22-3. Rx FIFO Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

R
E

M

E
X

T RXIDA
(Standard = 2-12, Extended = 2-30)

B

R
E

M

E
X

T RXIDB_0
(Standard =2-12, Extended = 2-15) R

E
M

E
X

T RXIDB_1
(Standard = 18-28, Extended = 18-31)

C RXIDC_0

(Std/Ext = 0-7)

RXIDC_1

(Std/Ext = 8-15)

RXIDC_2

(Std/Ext = 16-23)

RXIDC_3

(Std/Ext = 24-31)

= Unimplemented or Reserved

Figure 22-4. ID Table 0 – 7

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 433

22.3.4 Register description

The FlexCAN registers are described in this section in ascending address order.

22.3.4.1 Module Configuration Register (MCR)

This register defines global system configurations, such as the module operation mode (e.g., low power)
and maximum message buffer configuration. This register can be accessed at any time, however some
fields must be changed only during Freeze Mode. Find more information in the fields descriptions ahead.

Table 22-7. Rx FIFO Structure field description

Field Description

REM Remote Frame
This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.
1 = Remote Frames can be accepted and data frames are rejected
0 = Remote Frames are rejected and data frames can be accepted

EXT Extended Frame
Specifies whether extended or standard frames are accepted into the FIFO if they match the target
ID.
1 = Extended frames can be accepted and standard frames are rejected
0 = Extended frames are rejected and standard frames can be accepted

RXIDA Rx Frame Identifier (Format A)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, only
the 11 most significant bits (3 to 13)are used for frame identification. In the extended frame format,
all bits are used.

RXIDB_0,
RXIDB_1

Rx Frame Identifier (Format B)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, the 11
most significant bits (a full standard ID) (3 to 13)are used for frame identification. In the extended
frame format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0,
RXIDC_1,
RXIDC_2,
RXIDC_3

Rx Frame Identifier (Format C)
Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and extended frame
formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

434 Freescale Semiconductor

Offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
D

IS
FRZ FEN

H
A

LT

N
O

T
_R

D
Y

0

S
O

F
T

_R
S

T

F
R

Z
_A

C
K

S
U

P
V 0

W
R

N
_E

N

LP
M

_A
C

K

0 0

S
R

X
_D

IS

BCC

W

Reset Note
1

1 Reset value of this bit is different on various platforms. Consult the specific MCU documentation to determine its
value.

1 0 1 1 0 0
Note

2

2 Different on various platforms, but it is always the opposite of the MDIS reset value.

1 0 0
Note

3

3 Different on various platforms, but it is always the same as the MDIS reset value.

0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

LP
R

IO
_E

N

AEN

0 0

IDAM

0 0

MAXMBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 22-5. Module Configuration Register (MCR)

Table 22-8. MCR field descriptions

Field Description

MDIS Module Disable
This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the
clocks to the CAN Protocol Interface and Message Buffer Management submodules. This is the only
bit in MCR not affected by soft reset. See Section 22.4.10.2, “Module Disable Mode for more
information.
1 = Disable the FlexCAN module
0 = Enable the FlexCAN module

FRZ Freeze Enable
The FRZ bit specifies the FlexCAN behavior when the HALT bit in the MCR is set or when Debug
Mode is requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter Freeze Mode.
Negation of this bit field causes FlexCAN to exit from Freeze Mode.
1 = Enabled to enter Freeze Mode
0 = Not enabled to enter Freeze Mode

FEN FIFO Enable
This bit controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot
be used for normal reception and transmission because the corresponding memory region
(0x80–0xFF) is used by the FIFO engine. See Section 22.3.3, “Rx FIFO structure and
Section 22.4.8, “Rx FIFO for more information. This bit must be written in Freeze mode only.
1 = FIFO enabled
0 = FIFO not enabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 435

HALT Halt FlexCAN
Assertion of this bit puts the FlexCAN module into Freeze Mode. The CPU should clear it after
initializing the Message Buffers and Control Register. No reception or transmission is performed by
FlexCAN before this bit is cleared. While in Freeze Mode, the CPU has write access to the Error
Counter Register, that is otherwise read-only. Freeze Mode cannot be entered while FlexCAN is in
the low power mode. See Section 22.4.10.1, “Freeze Mode for more information.
1 = Enters Freeze Mode if the FRZ bit is asserted.
0 = No Freeze Mode request.

NOT_RDY FlexCAN Not Ready
This read-only bit indicates that FlexCAN is either in Disable Mode or Freeze Mode. It is negated
once FlexCAN has exited these modes.
1 = FlexCAN module is either in Disable Mode or Freeze Mode
0 = FlexCAN module is either in Normal Mode, Listen-Only Mode or Loop-Back Mode

SOFT_RST Soft Reset
When this bit is asserted, FlexCAN resets its internal state machines and some of the memory
mapped registers. The following registers are reset: MCR (except the MDIS bit), TIMER, ECR, ESR,
IMASK1, IMASK2, IFLAG1, IFLAG2. Configuration registers that control the interface to the CAN
bus are not affected by soft reset. The following registers are unaffected:
 • CTRL
 • RXIMR0–RXIMR63
 • RXGMASK, RX14MASK, RX15MASK
 • all Message Buffers
The SOFT_RST bit can be asserted directly by the CPU when it writes to the MCR, but it is also
asserted when global soft reset is requested at MCU level. Since soft reset is synchronous and has
to follow a request/acknowledge procedure across clock domains, it may take some time to fully
propagate its effect. The SOFT_RST bit remains asserted while reset is pending, and is
automatically negated when reset completes. Therefore, software can poll this bit to know when the
soft reset has completed.
Soft reset cannot be applied while clocks are shut down in the low power mode. The module should
be first removed from low power mode, and then soft reset can be applied.
1 = Resets the registers marked as “affected by soft reset” in Table 22-2
0 = No reset request

FRZ_ACK Freeze Mode Acknowledge
This read-only bit indicates that FlexCAN is in Freeze Mode and its prescaler is stopped. The Freeze
Mode request cannot be granted until current transmission or reception processes have finished.
Therefore the software can poll the FRZ_ACK bit to know when FlexCAN has actually entered
Freeze Mode. If Freeze Mode request is negated, then this bit is negated once the FlexCAN
prescaler is running again. If Freeze Mode is requested while FlexCAN is in the low power mode,
then the FRZ_ACK bit will only be set when the low power mode is exited. See Section 22.4.10.1,
“Freeze Mode for more information.
1 = FlexCAN in Freeze Mode, prescaler stopped
0 = FlexCAN not in Freeze Mode, prescaler running

SUPV Supervisor Mode
This bit configures some of the FlexCAN registers to be either in Supervisor or Unrestricted memory
space. The registers affected by this bit are marked as S/U in the Access Type column of Table 22-2.
Reset value of this bit is ‘1’, so the affected registers start with Supervisor access restrictions.This
bit should be written in Freeze mode only.
1 = Affected registers are in Supervisor memory space. Any access without supervisor permission
behaves as though the access was done to an unimplemented register location
0 = Affected registers are in Unrestricted memory space

Table 22-8. MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

436 Freescale Semiconductor

WRN_EN Warning Interrupt Enable
When asserted, this bit enables the generation of the TWRN_INT and RWRN_INT flags in the Error
and Status Register. If WRN_EN is negated, the TWRN_INT and RWRN_INT flags will always be
zero, independent of the values of the error counters, and no warning interrupt will ever be
generated. This bit must be written in Freeze mode only.
1 = TWRN_INT and RWRN_INT bits are set when the respective error counter transition from < 96
to 96.
0 = TWRN_INT and RWRN_INT bits are zero, independent of the values in the error counters.

LPM_ACK Low Power Mode Acknowledge
This read-only bit indicates that FlexCAN is in Disable Mode. This low power mode cannot be
entered until all current transmission or reception processes have finished, so the CPU can poll the
LPM_ACK bit to know when FlexCAN has actually entered low power mode. See Section 22.4.10.2,
“Module Disable Mode for more information.
1 = FlexCAN is in Disable Mode.
0 = FlexCAN is not in Disable Mode

SRX_DIS Self Reception Disable
This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is
asserted, frames transmitted by the module will not be stored in any MB, regardless if the MB is
programmed with an ID that matches the transmitted frame, and no interrupt flag or interrupt signal
will be generated due to the frame reception. This bit must be written in Freeze mode only.
1 = Self reception disabled
0 = Self reception enabled

BCC Backwards Compatibility Configuration
This bit is provided to support Backwards Compatibility with previous FlexCAN versions. When this
bit is negated, the following configuration is applied:
 • For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID

masking per MB, FlexCAN uses its previous masking scheme with RXGMASK, RX14MASK and
RX15MASK.

 • The reception queue feature is disabled. Upon receiving a message, if the first MB with a
matching ID that is found is still occupied by a previous unread message, FlexCAN will not look
for another matching MB. It will override this MB with the new message and set the CODE field
to ‘0110’ (overrun).

Upon reset this bit is negated, allowing legacy software to work without modification. This bit must
be written in Freeze mode only.
1 = Individual Rx masking and queue feature are enabled.
0 = Individual Rx masking and queue feature are disabled.

LPRIO_EN Local Priority Enable
This bit is provided for backwards compatibility reasons. It controls whether the local priority feature
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended
ID concept, the arbitration process is done based on the full 32-bit word, but the actual transmitted
ID still has 11-bit for standard frames and 29-bit for extended frames. This bit must be written in
Freeze mode only.
1 = Local Priority enabled
0 = Local Priority disabled

19
AEN

Abort Enable
This bit is supplied for backwards compatibility reasons. When asserted, it enables the Tx abort
feature. This feature guarantees a safe procedure for aborting a pending transmission, so that no
frame is sent in the CAN bus without notification. This bit must be written in Freeze mode only.
1 = Abort enabled
0 = Abort disabled

Table 22-8. MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 437

22.3.4.2 Control Register (CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, Loop-Back Mode, Listen-Only Mode, Bus Off recovery
behavior and interrupt enabling (Bus-Off, Error, Warning). It also determines the Division Factor for the
clock prescaler. This register can be accessed at any time, however some fields must be changed only
during either Disable Mode or Freeze Mode. Find more information in the fields descriptions ahead.

IDAM ID Acceptance Mode
This 2-bit field identifies the format of the elements of the Rx FIFO filter table, as shown in
Table 22-9. Note that all elements of the table are configured at the same time by this field (they are
all the same format). See Section 22.3.3, “Rx FIFO structure. This bit must be written in Freeze
mode only.

MAXMB Maximum Number of Message Buffers
This 6-bit field defines the maximum number of message buffers that will take part in the matching
and arbitration processes. The reset value (0x0F) is equivalent to 16 MB configuration. This field
must be changed only while the module is in Freeze Mode.

Maximum MBs in use = MAXMB + 1

Note: MAXMB must be programmed with a value smaller or equal to the number of available
Message Buffers, otherwise FlexCAN can transmit and receive wrong messages.

Table 22-9. IDAM coding

IDAM Format Explanation

00 A One full ID (standard or extended) per filter element

01 B Two full standard IDs or two partial 14-bit extended IDs per filter element

10 C Four partial 8-bit IDs (standard or extended) per filter element

11 D All frames rejected

Table 22-8. MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

438 Freescale Semiconductor

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
O

F
F

_M
S

K

E
R

R
_

M
S

K

C
LK

_S
R

C

LPB
T

W
R

N
_M

S
K

R
W

R
N

_M
S

K 0 0

SMP

B
O

F
F

_R
E

C

T
S

Y
N

LB
U

F

LOM PROPSEGW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-6. Control Register (CTRL)

Table 22-10. CTRL field descriptions

Field Description

PRESDIV Prescaler Division Factor
This field defines the ratio between the CPI clock frequency and the Serial Clock (Sclock) frequency.
The Sclock period defines the time quantum of the CAN protocol. For the reset value, the Sclock
frequency is equal to the CPI clock frequency. The Maximum value of this register is 0xFF, that gives
a minimum Sclock frequency equal to the CPI clock frequency divided by 256. For more information
refer to Section 22.4.9.4, “Protocol timing. This bit must be written in Freeze mode only.

Sclock frequency = CPI clock frequency / (PRESDIV + 1)

RJW Resync Jump Width
This field defines the maximum number of time quanta1 that a bit time can be changed by one
resynchronization. The valid programmable values are 0–3. This bit must be written in Freeze mode
only.

Resync Jump Width = RJW + 1.

PSEG1 PSEG1 — Phase Segment 1
This field defines the length of Phase Buffer Segment 1 in the bit time. The valid programmable
values are 0–7. This bit must be written in Freeze mode only.

Phase Buffer Segment 1 = (PSEG1 + 1) x Time-Quanta.

PSEG2 PSEG2 — Phase Segment 2
This field defines the length of Phase Buffer Segment 2 in the bit time. The valid programmable
values are 1–7. This bit must be written in Freeze mode only.

Phase Buffer Segment 2 = (PSEG2 + 1) x Time-Quanta.

BOFF_MSK Bus Off Mask
This bit provides a mask for the Bus Off Interrupt.
1= Bus Off interrupt enabled
0 = Bus Off interrupt disabled

ERR_MSK Error Mask
This bit provides a mask for the Error Interrupt.
1 = Error interrupt enabled
0 = Error interrupt disabled

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 439

CLK_SRC CAN Engine Clock Source
This bit selects the clock source to the CAN Protocol Interface (CPI) to be either the peripheral clock
(driven by the FMPLL) or the crystal oscillator clock. The selected clock is the one fed to the
prescaler to generate the Serial Clock (Sclock). In order to guarantee reliable operation, this bit
should only be changed while the module is in Disable Mode. See Section 22.4.9.4, “Protocol timing
for more information.
1 = The CAN engine clock source is the bus clock
0 = The CAN engine clock source is the oscillator clock

Note: This clock selection feature may not be available in all MCUs. A particular MCU may not have
a FMPLL, in which case it would have only the oscillator clock, or it may use only the FMPLL
clock feeding the FlexCAN module. In these cases, this bit has no effect on the module
operation.

LPB Loop Back
This bit configures FlexCAN to operate in Loop-Back Mode. In this mode, FlexCAN performs an
internal loop back that can be used for self test operation. The bit stream output of the transmitter
is fed back internally to the receiver input. The Rx CAN input pin is ignored and the Tx CAN output
goes to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when transmitting, and
treats its own transmitted message as a message received from a remote node. In this mode,
FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field, generating
an internal acknowledge bit to ensure proper reception of its own message. Both transmit and
receive interrupts are generated. This bit must be written in Freeze mode only.
1 = Loop Back enabled
0 = Loop Back disabled

TWRN_MSK Tx Warning Interrupt Mask
This bit provides a mask for the Tx Warning Interrupt associated with the TWRN_INT flag in the
Error and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read
as zero when WRN_EN is negated.
1 = Tx Warning Interrupt enabled
0 = Tx Warning Interrupt disabled

RWRN_MSK Rx Warning Interrupt Mask
This bit provides a mask for the Rx Warning Interrupt associated with the RWRN_INT flag in the
Error and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read
as zero when WRN_EN is negated.
1 = Rx Warning Interrupt enabled
0 = Rx Warning Interrupt disabled

SMP Sampling Mode
This bit defines the sampling mode of CAN bits at the Rx input. This bit must be written in Freeze
mode only.
1 = Three samples are used to determine the value of the received bit: the regular one (sample
point) and two preceding samples, a majority rule is used
0 = Just one sample is used to determine the bit value

Table 22-10. CTRL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

440 Freescale Semiconductor

22.3.4.3 Free Running Timer (TIMER)

This register represents a 16-bit free running counter that can be read and written by the CPU. The timer
starts from 0x0000 after Reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When

BOFF_REC Bus Off Recovery Mode
This bit defines how FlexCAN recovers from Bus Off state. If this bit is negated, automatic
recovering from Bus Off state occurs according to the CAN Specification 2.0B. If the bit is asserted,
automatic recovering from Bus Off is disabled and the module remains in Bus Off state until the bit
is negated by the user. If the negation occurs before 128 sequences of 11 recessive bits are
detected on the CAN bus, then Bus Off recovery happens as if the BOFF_REC bit had never been
asserted. If the negation occurs after 128 sequences of 11 recessive bits occurred, then FlexCAN
will resynchronize to the bus by waiting for 11 recessive bits before joining the bus. After negation,
the BOFF_REC bit can be re-asserted again during Bus Off, but it will only be effective the next time
the module enters Bus Off. If BOFF_REC was negated when the module entered Bus Off, asserting
it during Bus Off will not be effective for the current Bus Off recovery.
1 = Automatic recovering from Bus Off state disabled
0 = Automatic recovering from Bus Off state enabled, according to CAN Spec 2.0 part B

TSYN Timer Sync Mode
This bit enables a mechanism that resets the free-running timer each time a message is received
in Message Buffer 0. This feature provides means to synchronize multiple FlexCAN stations with a
special “SYNC” message (that is, global network time). If the FEN bit in MCR is set (FIFO enabled),
MB8 is used for timer synchronization instead of MB0. This bit must be written in Freeze mode only.
1 = Timer Sync feature enabled
0 = Timer Sync feature disabled

LBUF Lowest Buffer Transmitted First
This bit defines the ordering mechanism for Message Buffer transmission. When asserted, the
LPRIO_EN bit does not affect the priority arbitration. This bit must be written in Freeze mode only.
1 = Lowest number buffer is transmitted first
0 = Buffer with highest priority is transmitted first

LOM Listen-Only Mode
This bit configures FlexCAN to operate in Listen-Only Mode. In this mode, transmission is disabled,
all error counters are frozen and the module operates in a CAN Error Passive mode. Only messages
acknowledged by another CAN station will be received. If FlexCAN detects a message that has not
been acknowledged, it will flag a BIT0 error (without changing the REC), as if it was trying to
acknowledge the message. This bit must be written in Freeze mode only.
1 = FlexCAN module operates in Listen-Only Mode
0 = Listen-Only Mode is deactivated

PROPSEG Propagation Segment
This field defines the length of the Propagation Segment in the bit time. The valid
programmable values are 0–7. This bit must be written in Freeze mode only.
Propagation Segment Time = (PROPSEG + 1) * Time-Quanta.
Time-Quantum = one Sclock period.

1 One time quantum is equal to the Sclock period.

Table 22-10. CTRL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 441

there is no message on the bus, it counts using the previously programmed baud rate. During Freeze Mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the Time Stamp entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. All this is transparent to the
user, except for the fact that the data will take some time to be actually written to the register. If desired,
software can poll the register to discover when the data was actually written.

22.3.4.4 Rx Global Mask (RXGMASK)

This register is provided for legacy support and for low cost MCUs that do not have the individual masking
per Message Buffer feature. For MCUs supporting individual masks per MB, setting the BCC bit in MCR
causes the RXGMASK Register to have no effect on the module operation. For MCUs not supporting
individual masks per MB, this register is always effective.

RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have individual
mask registers. When the FEN bit in MCR is set (FIFO enabled), the RXGMASK also applies to all
elements of the ID filter table, except elements 6–7, which have individual masks.

Refer to Section 22.4.8, “Rx FIFO for important details on usage of RXGMASK on filtering process for
Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

Offset: 0x0008 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-7. Free Running Timer (TIMER)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

442 Freescale Semiconductor

22.3.4.5 Rx 14 Mask (RX14MASK)

This register is provided for legacy support and for low cost MCUs that do not have the individual masking
per Message Buffer feature. For MCUs supporting individual masks per MB, setting the BCC bit in MCR
causes the RX14MASK Register to have no effect on the module operation.

RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the FEN bit in
MCR is set (FIFO enabled), the RXG14MASK also applies to element 6 of the ID filter table. This register
has the same structure as the Rx Global Mask Register.

Refer to Section 22.4.8, “Rx FIFO for important details on usage of RX14MASK on filtering process for
Rx FIFO.

It must be programmed while the module is in Freeze Mode, and must not be modified when the module
is transmitting or receiving frames.

• Address Offset: 0x14

• Reset Value: 0xFFFF_FFFF

Offset: 0x0010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 22-8. Rx Global Mask Register (RXGMASK)

Table 22-11. RXGMASK field description

Field Description

MI31–MI0 Mask Bits
For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO, the
mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
1 = The corresponding bit in the filter is checked against the one received
0 = the corresponding bit in the filter is “don’t care”

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 443

22.3.4.6 Rx 15 Mask (RX15MASK)

This register is provided for legacy support and for low cost MCUs that do not have the individual masking
per Message Buffer feature. For MCUs supporting individual masks per MB, setting the BCC bit in MCR
causes the RX15MASK Register to have no effect on the module operation.

When the BCC bit is negated, RX15MASK is used as acceptance mask for the Identifier in Message Buffer
15. When the FEN bit in MCR is set (FIFO enabled), the RXG14MASK also applies to element 7 of the
ID filter table. This register has the same structure as the Rx Global Mask Register.

See Section 22.4.8, “Rx FIFO for important details on usage of RXG15MASK on filtering process for Rx
FIFO.

It must be programmed while the module is in Freeze Mode, and must not be modified when the module
is transmitting or receiving frames.

• Address Offset: 0x18

• Reset Value: 0xFFFF_FFFF

22.3.4.7 Error Counter Register (ECR)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: Transmit Error
Counter (TX_ERR_COUNTER field) and Receive Error Counter (RX_ERR_COUNTER field). The rules
for increasing and decreasing these counters are described in the CAN protocol and are completely
implemented in the FlexCAN module. Both counters are read only except in Freeze Mode, where they can
be written by the CPU.

Writing to the Error Counter Register while in Freeze Mode is an indirect operation. The data is first
written to an auxiliary register and then an internal request/acknowledge procedure across clock domains
is executed. All this is transparent to the user, except for the fact that the data will take some time to be
actually written to the register. If desired, software can poll the register to discover when the data was
actually written.

FlexCAN responds to any bus state as described in the protocol, e.g. transmit ‘Error Active’ or ‘Error
Passive’ flag, delay its transmission start time (‘Error Passive’) and avoid any influence on the bus when
in ‘Bus Off’ state. The following are the basic rules for FlexCAN bus state transitions.

• If the value of TX_ERR_COUNTER or RX_ERR_COUNTER increases to be greater than or
equal to 128, the FLT_CONF field in the Error and Status Register is updated to reflect ‘Error
Passive’ state.

• If the FlexCAN state is ‘Error Passive’, and either TX_ERR_COUNTER or RX_ERR_COUNTER
decrements to a value less than or equal to 127 while the other already satisfies this condition, the
FLT_CONF field in the Error and Status Register is updated to reflect ‘Error Active’ state.

• If the value of TX_ERR_COUNTER increases to be greater than 255, the FLT_CONF field in the
Error and Status Register is updated to reflect ‘Bus Off’ state, and an interrupt may be issued. The
value of TX_ERR_COUNTER is then reset to zero.

• If FlexCAN is in ‘Bus Off’ state, then TX_ERR_COUNTER is cascaded together with another
internal counter to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence,
TX_ERR_COUNTER is reset to zero and counts in a manner where the internal counter counts 11

MPC5604B/C Microcontroller Reference Manual, Rev. 8

444 Freescale Semiconductor

such bits and then wraps around while incrementing the TX_ERR_COUNTER. When
TX_ERR_COUNTER reaches the value of 128, the FLT_CONF field in the Error and Status
Register is updated to be ‘Error Active’ and both error counters are reset to zero. At any instance
of dominant bit following a stream of less than 11 consecutive recessive bits, the internal counter
resets itself to zero without affecting the TX_ERR_COUNTER value.

• If during system start-up, only one node is operating, then its TX_ERR_COUNTER increases in
each message it is trying to transmit, as a result of acknowledge errors (indicated by the ACK_ERR
bit in the Error and Status Register). After the transition to ‘Error Passive’ state, the
TX_ERR_COUNTER does not increment anymore by acknowledge errors. Therefore the device
never goes to the ‘Bus Off’ state.

• If the RX_ERR_COUNTER increases to a value greater than 127, it is not incremented further,
even if more errors are detected while being a receiver. At the next successful message reception,
the counter is set to a value between 119 and 127 to resume to ‘Error Active’ state.

22.3.4.8 Error and Status Register (ESR)

This register reflects various error conditions, some general status of the device and it is the source of four
interrupts to the CPU. The reported error conditions (bits 16–21) are those that occurred since the last time
the CPU read this register. The CPU read action clears bits 16–23. Bits 22–28 are status bits.

Most bits in this register are read only, except TWRN_INT, RWRN_INT, BOFF_INT, WAK_INT and
ERR_INT, that are interrupt flags that can be cleared by writing ‘1’ to them (writing ‘0’ has no effect). See
Section 22.4.11, “Interrupts for more details.

Offset: 0x001C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RX_ERR_COUNTER TX_ERR_COUNTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-9. Error Counter Register (ECR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 445

Offset: 0x0020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
W

R
N

_I
N

T

R
W

R
N

_I
N

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
IT

1_
 E

R
R

B
IT

0_
 E

R
R

A
C

K
_

E
R

R

C
R

C
_E

R
R

F
R

M
_E

R
R

S
T

F
_E

R
R

T
X

_W
R

N

R
X

_W
R

N

IDLE

T
X

R
X

FLT_CONF 0

B
O

F
F

_I
N

T

E
R

R
_

IN
T

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 22-10. Error and Status Register (ESR)

Table 22-12. ESR field descriptions

Field Description

TWRN_INT Tx Warning Interrupt Flag
If the WRN_EN bit in MCR is asserted, the TWRN_INT bit is set when the TX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Tx error counter reached 96. If the corresponding mask bit in the
Control Register (TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Tx error counter transition from < 96 to 96
0 = No such occurrence

RWRN_INT Rx Warning Interrupt Flag
If the WRN_EN bit in MCR is asserted, the RWRN_INT bit is set when the RX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Rx error counters reached 96. If the corresponding mask bit in the
Control Register (RWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Rx error counter transition from < 96 to 96
0 = No such occurrence

BIT1_ERR Bit1 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.
1 = At least one bit sent as recessive is received as dominant
0 = No such occurrence

Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node
sending a passive error flag that detects dominant bits.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

446 Freescale Semiconductor

BIT0_ERR Bit0 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.
1 = At least one bit sent as dominant is received as recessive
0 = No such occurrence

ACK_ERR Acknowledge Error
This bit indicates that an Acknowledge Error has been detected by the transmitter node, i.e., a
dominant bit has not been detected during the ACK SLOT.
1 = An ACK error occurred since last read of this register
0 = No such occurrence

CRC_ERR Cyclic Redundancy Check Error
This bit indicates that a CRC Error has been detected by the receiver node, i.e., the calculated CRC
is different from the received.
1 = A CRC error occurred since last read of this register.
0 = No such occurrence

FRM_ERR Form Error
This bit indicates that a Form Error has been detected by the receiver node, i.e., a fixed-form bit field
contains at least one illegal bit.
1 = A Form Error occurred since last read of this register
0 = No such occurrence

STF_ERR Stuffing Error
This bit indicates that a Stuffing Error has been detected.
1 = A Stuffing Error occurred since last read of this register.
0 = No such occurrence.

TX_WRN TX Error Warning
This bit indicates when repetitive errors are occurring during message transmission.
1 = TX_Err_Counter 96
0 = No such occurrence

RX_WRN Rx Error Warning
This bit indicates when repetitive errors are occurring during message reception.
1 = Rx_Err_Counter 96
0 = No such occurrence

IDLE CAN bus IDLE state
This bit indicates when CAN bus is in IDLE state.
1 = CAN bus is now IDLE
0 = No such occurrence

TXRX Current FlexCAN status (transmitting/receiving)
This bit indicates if FlexCAN is transmitting or receiving a message when the CAN bus is not in IDLE
state. This bit has no meaning when IDLE is asserted.
1 = FlexCAN is transmitting a message (IDLE = 0)
0 = FlexCAN is receiving a message (IDLE = 0)

FLT_CONF Fault Confinement State
This field indicates the Confinement State of the FlexCAN module, as shown in Table 22-13. If the
LOM bit in the Control Register is asserted, the FLT_CONF field will indicate “Error Passive”. Since
the Control Register is not affected by soft reset, the FLT_CONF field will not be affected by soft
reset if the LOM bit is asserted.

Table 22-12. ESR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 447

22.3.4.9 Interrupt Masks 2 Register (IMASK2)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (i.e. when the corresponding IFLAG2 bit is set).

BOFF_INT Bus Off’ Interrupt
This bit is set when FlexCAN enters ‘Bus Off’ state. If the corresponding mask bit in the Control
Register (BOFF_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing it
to ‘1’. Writing ‘0’ has no effect.
1 = FlexCAN module entered ‘Bus Off’ state
0 = No such occurrence

ERR_INT Error Interrupt
This bit indicates that at least one of the Error Bits (bits 16–21) is set. If the corresponding mask bit
in the Control Register (ERR_MSK) is set, an interrupt is generated to the CPU. This bit is cleared
by writing it to ‘1’.Writing ‘0’ has no effect.
1 = Indicates setting of any Error Bit in the Error and Status Register
0 = No such occurrence

Table 22-13. Fault confinement state

Value Meaning

00 Error Active

01 Error Passive

1X Bus Off

Offset: 0x0024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-11. Interrupt Masks 2 Register (IMASK2)

Table 22-12. ESR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

448 Freescale Semiconductor

22.3.4.10 Interrupt Masks 1 Register (IMASK1)

This register allows to enable or disable any number of a range of 32 Message Buffer Interrupts. It contains
one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an interrupt after
a successful transmission or reception (i.e., when the corresponding IFLAG1 bit is set).

22.3.4.11 Interrupt Flags 2 Register (IFLAG2)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding IFLAG2 bit. If the corresponding

Table 22-14. IMASK2 field descriptions

Field Description

BUF63M –
BUF32M

Buffer MBi Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB32 to MB63) Interrupt.
1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK2 Register can assert or negate an interrupt request, if
the corresponding IFLAG2 bit is set.

Offset: 0x0028 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-12. Interrupt Masks 1 Register (IMASK1)

Table 22-15. IMASK1 field descriptions

Field Description

BUF31M –
BUF0M

BUF31M–BUF0M — Buffer MBi Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB0 to MB31) Interrupt.
1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK1 Register can assert or negate an interrupt request, if
the corresponding IFLAG1 bit is set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 449

IMASK2 bit is set, an interrupt will be generated. The interrupt flag must be cleared by writing it to ‘1’.
Writing ‘0’ has no effect.

When the AEN bit in the MCR is set (Abort enabled), while the IFLAG2 bit is set for a MB configured as
Tx, the writing access done by CPU into the corresponding MB will be blocked.

22.3.4.12 Interrupt Flags 1 Register (IFLAG1)

This register defines the flags for 32 Message Buffer interrupts and FIFO interrupts. It contains one
interrupt flag bit per buffer. Each successful transmission or reception sets the corresponding IFLAG1 bit.
If the corresponding IMASK1 bit is set, an interrupt will be generated. The Interrupt flag must be cleared
by writing it to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in the MCR is set (Abort enabled), while the IFLAG1 bit is set for a MB configured as
Tx, the writing access done by CPU into the corresponding MB will be blocked.

When the FEN bit in the MCR is set (FIFO enabled), the function of the 8 least significant interrupt flags
(BUF7I – BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I indicate operating
conditions of the FIFO, while BUF4I to BUF0I are not used.

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-13. Interrupt Flags 2 Register (IFLAG2)

Table 22-16. IFLAG2 field descriptions

Field Description

BUF32I –
BUF63I

Buffer MBi Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB32 to MB63) interrupt.
1 = The corresponding buffer has successfully completed transmission or reception
0 = No such occurrence

MPC5604B/C Microcontroller Reference Manual, Rev. 8

450 Freescale Semiconductor

22.3.4.13 Rx Individual Mask Registers (RXIMR0–RXIMR63)

These registers are used as acceptance masks for ID filtering in Rx MBs and the FIFO. If the FIFO is not
enabled, one mask register is provided for each available Message Buffer, providing ID masking capability
on a per Message Buffer basis. When the FIFO is enabled (FEN bit in MCR is set), the first 8 Mask

Offset: 0x0030 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B
U

F
 3

1I

B
U

F
 3

0I

B
U

F
 2

9I

B
U

F
 2

8I

B
U

F
 2

7I

B
U

F
 2

6I

B
U

F
 2

5I

B
U

F
 2

4I

B
U

F
 2

3I

B
U

F
 2

2I

B
U

F
 2

1I

B
U

F
 2

0I

B
U

F
 1

9I

B
U

F
 1

8I

B
U

F
 1

7I

B
U

F
 1

6I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
U

F
 1

5I

B
U

F
 1

4I

B
U

F
 1

3I

B
U

F
 1

2I

B
U

F
 1

1I

B
U

F
 1

0I

B
U

F
 9

I

B
U

F
 8

I

B
U

F
 7

I

B
U

F
 6

I

B
U

F
 5

I

B
U

F
 4

I

B
U

F
 3

I

B
U

F
 2

I

B
U

F
 1

I

B
U

F
 0

I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-14. Interrupt Flags 1 Register (IFLAG1)

Table 22-17. IFLAG1 field descriptions

Field Description

BUF31I –
BUF8I

Buffer MBi Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB8 to MB31) interrupt.
1 = The corresponding MB has successfully completed transmission or reception
0 = No such occurrence

BUF7I Buffer MB7 Interrupt or “FIFO Overflow”
If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this flag
indicates an overflow condition in the FIFO (frame lost because FIFO is full).
1 = MB7 completed transmission/reception or FIFO overflow
0 = No such occurrence

BUF6I Buffer MB6 Interrupt or “FIFO Warning”
If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this flag
indicates that 5 out of 6 buffers of the FIFO are already occupied (FIFO almost full).
1 = MB6 completed transmission/reception or FIFO almost full
0 = No such occurrence

BUF5I Buffer MB5 Interrupt or “Frames available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this flag
indicates that at least one frame is available to be read from the FIFO.
1 = MB5 completed transmission/reception or frames available in the FIFO
0 = No such occurrence

BUF4I – BUF0I Buffer MBi Interrupt or “reserved”
If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is enabled, these
flags are not used and must be considered as reserved locations.
1 = Corresponding MB completed transmission/reception
0 = No such occurrence

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 451

Registers apply to the 8 elements of the FIFO filter table (on a one-to-one correspondence), while the rest
of the registers apply to the regular MBs, starting from MB8.

The Individual Rx Mask Registers are implemented in SRAM, so they are not affected by reset and must
be explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while
the module is in Freeze Mode. Out of Freeze Mode, write accesses are blocked and read accesses will
return “all zeros”. Furthermore, if the BCC bit in the MCR is negated, any read or write operation to these
registers results in access error.

22.4 Functional description

22.4.1 Overview

The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for transmitting and
receiving CAN frames. The mailbox system is composed by a set of up to 64 Message Buffers (MB) that
store configuration and control data, time stamp, message ID and data (see Section 22.3.2, “Message
buffer structure). The memory corresponding to the first 8 MBs can be configured to support a FIFO
reception scheme with a powerful ID filtering mechanism, capable of checking incoming frames against
a table of IDs (up to 8 extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its own
individual mask register. Simultaneous reception through FIFO and mailbox is supported. For mailbox
reception, a matching algorithm makes it possible to store received frames only into MBs that have the
same ID programmed on its ID field. A masking scheme makes it possible to match the ID programmed
on the MB with a range of IDs on received CAN frames. For transmission, an arbitration algorithm decides

Base + 0x0004

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

Figure 22-15. Rx Individual Mask Registers (RXIMR0 – RXIMR63)

Table 22-18. RXIMR0 – RXIMR63 field description

Field Description

MI31–MI0 Mask Bits
For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO, the
mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
1 = The corresponding bit in the filter is checked against the one received
0 = the corresponding bit in the filter is “don’t care”

MPC5604B/C Microcontroller Reference Manual, Rev. 8

452 Freescale Semiconductor

the prioritization of MBs to be transmitted based on the message ID (optionally augmented by 3 local
priority bits) or the MB ordering.

Before proceeding with the functional description, an important concept must be explained. A Message
Buffer is said to be “active” at a given time if it can participate in the matching and arbitration algorithms
that are happening at that time. An Rx MB with a ‘0000’ code is inactive (refer to Table 22-5). Similarly,
a Tx MB with a ‘1000’ or ‘1001’ code is also inactive (refer to Table 22-6). An MB not programmed with
‘0000’, ‘1000’ or ‘1001’ will be temporarily deactivated (will not participate in the current arbitration or
matching run) when the CPU writes to the C/S field of that MB (see Section 22.4.7.2, “Message buffer
deactivation).

22.4.2 Local priority transmission

The term local priority refers to the priority of transmit messages of the host node. This allows increased
control over the priority mechanism for transmitting messages. Table 22-2 shows the placement of PRIO
in the ID part of the message buffer.

An additional 3-bit field (PRIO) in the long-word ID part of the message buffer structure has been added
for local priority determination. They are prefixed to the regular ID to define the transmission priority.
These bits are not transmitted and are intended only for Tx buffers.

Perform the following to use the local priority feature:

1. Set the LPRIO_EN bit in the CANx_MCR.

2. Write the additional PRIO bits in the ID long-word of Tx message buffers when configuring the
Tx buffers.

With this extended ID concept, the arbitration process is based on the full 32-bit word. However, the actual
transmitted ID continues to have 11 bits for standard frames and 29 bits for extended frames.

22.4.3 Transmit process

In order to transmit a CAN frame, the CPU must prepare a Message Buffer for transmission by executing
the following procedure:

• If the MB is active (transmission pending), write an ABORT code (‘1001’) to the Code field of the
Control and Status word to request an abortion of the transmission, then read back the Code field
and the IFLAG register to check if the transmission was aborted (see Section 22.4.7.1,
“Transmission abort mechanism). If backwards compatibility is desired (AEN in MCR negated),
just write ‘1000’ to the Code field to inactivate the MB but then the pending frame may be
transmitted without notification (see Section 22.4.7.2, “Message buffer deactivation).

• Write the ID word.

• Write the data bytes.

• Write the Length, Control and Code fields of the Control and Status word to activate the MB.

Once the MB is activated in the fourth step, it will participate into the arbitration process and eventually
be transmitted according to its priority. At the end of the successful transmission, the value of the Free
Running Timer is written into the Time Stamp field, the Code field in the Control and Status word is

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 453

updated, a status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit. The new Code field after transmission depends on the code that
was used to activate the MB in step four (see Table 22-5 and Table 22-6 in Section 22.3.2, “Message buffer
structure). When the Abort feature is enabled (AEN in MCR is asserted), after the Interrupt Flag is asserted
for a MB configured as transmit buffer, the MB is blocked, therefore the CPU is not able to update it until
the Interrupt Flag be negated by CPU. It means that the CPU must clear the corresponding IFLAG before
starting to prepare this MB for a new transmission or reception.

22.4.4 Arbitration process

The arbitration process is an algorithm executed by the MBM that scans the whole MB memory looking
for the highest priority message to be transmitted. All MBs programmed as transmit buffers will be
scanned to find the lowest ID1 or the lowest MB number or the highest priority, depending on the LBUF
and LPRIO_EN bits on the Control Register. The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During Intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished

• When MBM is in Idle or Bus Off state and the CPU writes to the C/S word of any MB

• Upon leaving Freeze Mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is transmitted first.
When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is transmitted first but. If LBUF
is negated and LPRIO_EN is asserted, the PRIO bits augment the ID used during the arbitration process.
With this extended ID concept, arbitration is done based on the full 32-bit ID and the PRIO bits define
which MB should be transmitted first, therefore MBs with PRIO = 000 have higher priority. If two or more
MBs have the same priority, the regular ID will determine the priority of transmission. If two or more MBs
have the same priority (3 extra bits) and the same regular ID, the lowest MB will be transmitted first.

Once the highest priority MB is selected, it is transferred to a temporary storage space called Serial
Message Buffer (SMB), which has the same structure as a normal MB but is not user accessible. This
operation is called “move-out” and after it is done, write access to the corresponding MB is blocked (if the
AEN bit in MCR is asserted). The write access is released in the following events:

• After the MB is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the
CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the DLC (Data Length Code) value
is bigger.

1. Actually, if LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed inside the ID at the
same positions they are transmitted in the CAN frame.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

454 Freescale Semiconductor

22.4.5 Receive process

To be able to receive CAN frames into the mailbox MBs, the CPU must prepare one or more Message
Buffers for reception by executing the following steps:

• If the MB has a pending transmission, write an ABORT code (‘1001’) to the Code field of the
Control and Status word to request an abortion of the transmission, then read back the Code field
and the IFLAG register to check if the transmission was aborted (see Section 22.4.7.1,
“Transmission abort mechanism). If backwards compatibility is desired (AEN in MCR negated),
just write ‘1000’ to the Code field to inactivate the MB, but then the pending frame may be
transmitted without notification (see Section 22.4.7.2, “Message buffer deactivation). If the MB
already programmed as a receiver, just write ‘0000’ to the Code field of the Control and Status
word to keep the MB inactive.

• Write the ID word

• Write ‘0100’ to the Code field of the Control and Status word to activate the MB

Once the MB is activated in the third step, it will be able to receive frames that match the programmed ID.
At the end of a successful reception, the MB is updated by the MBM as follows:

• The value of the Free Running Timer is written into the Time Stamp field

• The received ID, Data (8 bytes at most) and Length fields are stored

• The Code field in the Control and Status word is updated (see Table 22-5 and Table 22-6 in
Section 22.3.2, “Message buffer structure)

• A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit

Upon receiving the MB interrupt, the CPU should service the received frame using the following
procedure:

• Read the Control and Status word (mandatory – activates an internal lock for this buffer)

• Read the ID field (optional – needed only if a mask was used)

• Read the Data field

• Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the CPU should
defer the access to the MB until this bit is negated. Reading the Free Running Timer is not mandatory. If
not executed the MB remains locked, unless the CPU reads the C/S word of another MB. Note that only a
single MB is locked at a time. The only mandatory CPU read operation is the one on the Control and Status
word to assure data coherency (see Section 22.4.7, “Data coherence).

The CPU should synchronize to frame reception by the status flag bit for the specific MB in one of the
IFLAG Registers and not by the Code field of that MB. Polling the Code field does not work because once
a frame was received and the CPU services the MB (by reading the C/S word followed by unlocking the
MB), the Code field will not return to EMPTY. It will remain FULL, as explained in Table 22-5. If the CPU
tries to workaround this behavior by writing to the C/S word to force an EMPTY code after reading the
MB, the MB is actually deactivated from any currently ongoing matching process. As a result, a newly
received frame matching the ID of that MB may be lost. In summary: never do polling by reading directly
the C/S word of the MBs. Instead, read the IFLAG registers.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 455

Note that the received ID field is always stored in the matching MB, thus the contents of the ID field in an
MB may change if the match was due to masking. Note also that FlexCAN does receive frames transmitted
by itself if there exists an Rx matching MB, provided the SRX_DIS bit in the MCR is not asserted. If
SRX_DIS is asserted, FlexCAN will not store frames transmitted by itself in any MB, even if it contains
a matching MB, and no interrupt flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the FIFO during
Freeze Mode (see Section 22.4.8, “Rx FIFO). Upon receiving the frames available interrupt from FIFO,
the CPU should service the received frame using the following procedure:

• Read the Control and Status word (optional – needed only if a mask was used for IDE and RTR
bits)

• Read the ID field (optional – needed only if a mask was used)

• Read the Data field

• Clear the frames available interrupt (mandatory – release the buffer and allow the CPU to read the
next FIFO entry)

22.4.6 Matching process

The matching process is an algorithm executed by the MBM that scans the MB memory looking for Rx
MBs programmed with the same ID as the one received from the CAN bus. If the FIFO is enabled, the
8-entry ID table from FIFO is scanned first and then, if a match is not found within the FIFO table, the
other MBs are scanned. In the event that the FIFO is full, the matching algorithm will always look for a
matching MB outside the FIFO region.

When the frame is received, it is temporarily stored in a hidden auxiliary MB called Serial Message Buffer
(SMB). The matching process takes place during the CRC field of the received frame. If a matching ID is
found in the FIFO table or in one of the regular MBs, the contents of the SMB will be transferred to the
FIFO or to the matched MB during the 6th bit of the End-Of-Frame field of the CAN protocol. This
operation is called “move-in”. If any protocol error (CRC, ACK, etc.) is detected, than the move-in
operation does not happen.

For the regular mailbox MBs, an MB is said to be “free to receive” a new frame if the following conditions
are satisfied:

• The MB is not locked (see Section 22.4.7.3, “Message buffer lock mechanism)

• The Code field is either EMPTY or else it is FULL or OVERRUN but the CPU has already serviced
the MB (read the C/S word and then unlocked the MB)

If the first MB with a matching ID is not “free to receive” the new frame, then the matching algorithm
keeps looking for another free MB until it finds one. If it cannot find one that is free, then it will overwrite
the last matching MB (unless it is locked) and set the Code field to OVERRUN (refer to Table 22-5 and
Table 22-6). If the last matching MB is locked, then the new message remains in the SMB, waiting for the
MB to be unlocked (see Section 22.4.7.3, “Message buffer lock mechanism).

Suppose, for example, that the FIFO is disabled and there are two MBs with the same ID, and FlexCAN
starts receiving messages with that ID. Let us say that these MBs are the second and the fifth in the array.
When the first message arrives, the matching algorithm will find the first match in MB number 2. The code

MPC5604B/C Microcontroller Reference Manual, Rev. 8

456 Freescale Semiconductor

of this MB is EMPTY, so the message is stored there. When the second message arrives, the matching
algorithm will find MB number 2 again, but it is not “free to receive”, so it will keep looking and find MB
number 5 and store the message there. If yet another message with the same ID arrives, the matching
algorithm finds out that there are no matching MBs that are “free to receive”, so it decides to overwrite the
last matched MB, which is number 5. In doing so, it sets the Code field of the MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a reception queue
(in addition to the full featured FIFO) to allow more time for the CPU to service the MBs. By programming
more than one MB with the same ID, received messages will be queued into the MBs. The CPU can
examine the Time Stamp field of the MBs to determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in previous versions of
the FlexCAN module. When the BCC bit in MCR is negated, the matching algorithm stops at the first MB
with a matching ID that it founds, whether this MB is free or not. As a result, the message queueing feature
does not work if the BCC bit is negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports individual
masking per MB. Please refer to Section 22.3.4.13, “Rx Individual Mask Registers
(RXIMR0–RXIMR63). During the matching algorithm, if a mask bit is asserted, then the corresponding
ID bit is compared. If the mask bit is negated, the corresponding ID bit is “don’t care”. Please note that the
Individual Mask Registers are implemented in SRAM, so they are not initialized out of reset. Also, they
can only be programmed if the BCC bit is asserted and while the module is in Freeze Mode.

FlexCAN also supports an alternate masking scheme with only three mask registers (RGXMASK,
RX14MASK and RX15MASK) for backwards compatibility. This alternate masking scheme is enabled
when the BCC bit in the MCR is negated.

22.4.7 Data coherence

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described
in Transmit process and Section 22.4.5, “Receive process. Any form of CPU accessing an MB structure
within FlexCAN other than those specified may cause FlexCAN to behave in an unpredictable way.

22.4.7.1 Transmission abort mechanism

The abort mechanism provides a safe way to request the abortion of a pending transmission. A feedback
mechanism is provided to inform the CPU if the transmission was aborted or if the frame could not be
aborted and was transmitted instead. In order to maintain backwards compatibility, the abort mechanism
must be explicitly enabled by asserting the AEN bit in the MCR.

In order to abort a transmission, the CPU must write a specific abort code (1001) to the Code field of the
Control and Status word. When the abort mechanism is enabled, the active MBs configured as trasmission
must be aborted first and then they may be updated. If the abort code is written to an MB that is currently
being transmitted, or to an MB that was already loaded into the SMB for transmission, the write operation
is blocked and the MB is not deactivated, but the abort request is captured and kept pending until one of
the following conditions are satisfied:

• The module loses the bus arbitration

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 457

• There is an error during the transmission

• The module is put into Freeze Mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is set in the
IFLAG register and an interrupt to the CPU is generated (if enabled). The abort request is automatically
cleared when the interrupt flag is set. In the other hand, if one of the above conditions is reached, the frame
is not transmitted, therefore the abort code is written into the Code field, the interrupt flag is set in the
IFLAG and an interrupt is (optionally) generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write operation is not
blocked, therefore the MB is updated and no interrupt flag is set. In this way the CPU just needs to read
the abort code to make sure the active MB was deactivated. Although the AEN bit is asserted and the CPU
wrote the abort code, in this case the MB is deactivated and not aborted, because the transmission did not
start yet. One MB is only aborted when the abort request is captured and kept pending until one of the
previous conditions are satisfied.

The abort procedure can be summarized as follows:

• CPU writes 1001 into the code field of the C/S word

• CPU reads the CODE field and compares it to the value that was written

• If the CODE field that was read is different from the value that was written, the CPU must read the
corresponding IFLAG to check if the frame was transmitted or it is being currently transmitted. If
the corresponding IFLAG is set, the frame was transmitted. If the corresponding IFLAG is reset,
the CPU must wait for it to be set, and then the CPU must read the CODE field to check if the MB
was aborted (CODE=1001) or it was transmitted (CODE=1000).

22.4.7.2 Message buffer deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the Control and
Status word of active MBs out of Freeze Mode. Any CPU write access to the Control and Status word of
an MB causes that MB to be excluded from the transmit or receive processes during the current matching
or arbitration round. The deactivation is temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data of that MB may no longer be coherent, therefore deactivation of that MB is done.

Even with the coherence mechanism described above, writing to the Control and Status word of active
MBs when not in Freeze Mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN will keep looking for another matching MB within the ones it has
not scanned yet. If it cannot find one, then the message will be lost. Suppose, for example, that two
MBs have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame will be lost even if the second matching MB
was “free to receive”.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

458 Freescale Semiconductor

• If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then FlexCAN
will look for another winner within the MBs that it has not scanned yet. Therefore, it may transmit
an MB with ID that may not be the lowest at the time because a lower ID might be present in one
of the MBs that it had already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted but no interrupt is issued and the Code field is not
updated. In order to avoid this situation, the abort procedures described in Section 22.4.7.1,
“Transmission abort mechanism should be used.

22.4.7.3 Message buffer lock mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When
the CPU reads the Control and Status word of an “active not empty” Rx MB, FlexCAN assumes that the
CPU wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.
The lock is released when the CPU reads the Free Running Timer (global unlock operation), or when it
reads the Control and Status word of another MB. The MB locking is done to prevent a new frame to be
written into the MB while the CPU is reading it.

NOTE
The locking mechanism only applies to Rx MBs which have a code different
than INACTIVE (‘0000’) or EMPTY1 (‘0100’). Also, Tx MBs cannot be
locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the array are
programmed with the same ID, and FlexCAN has already received and stored messages into these two
MBs. Suppose now that the CPU decides to read MB number 5 and at the same time another message with
the same ID is arriving. When the CPU reads the Control and Status word of MB number 5, this MB is
locked. The new message arrives and the matching algorithm finds out that there are no “free to receive”
MBs, so it decides to override MB number 5. However, this MB is locked, so the new message cannot be
written there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be written
to the MB. If the MB is not unlocked in time and yet another new message with the same ID arrives, then
the new message overwrites the one on the SMB and there will be no indication of lost messages either in
the Code field of the MB or in the Error and Status Register.

NOTE
The FlexCAN module has 2 SMBs thus if a message with another ID arrives
it is not lost. So overall the probability to lose message is very low unless a
series of messages with the same ID arrives, which is not common in
FlexCAN.

While the message is being moved-in from the SMB to the MB, the BUSY bit on the Code field is asserted.
If the CPU reads the Control and Status word and finds out that the BUSY bit is set, it should defer
accessing the MB until the BUSY bit is negated.

1. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior will be honored when
the BCC bit is negated.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 459

NOTE
If the BUSY bit is asserted or if the MB is empty, then reading the Control
and Status word does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its lock status
is negated and the MB is marked as invalid for the current matching round. Any pending message on the
SMB will not be transferred anymore to the MB.

22.4.8 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the MCR. The reset value of this bit is zero
to maintain software backwards compatibility with previous versions of the module that did not have the
FIFO feature. When the FIFO is enabled, the memory region normally occupied by the first 8 MBs
(0x80–0xFF) is now reserved for use of the FIFO engine (see Section 22.3.3, “Rx FIFO structure).
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the
received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer
structure at the beginning of the memory.

The FIFO can store up to 6 frames pending service by the CPU. An interrupt is sent to the CPU when new
frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame (accessing an
MB in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers the FIFO
engine to replace the MB in 0x80 with the next frame in the queue, and then issue another interrupt to the
CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW interrupt is issued to
the CPU and subsequent frames are not accepted until the CPU creates space in the FIFO by reading one
or more frames. A warning interrupt is also generated when 5 frames are accumulated in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of 8
32-bit registers that can be configured to one of the following formats (see also Section 22.3.3, “Rx FIFO
structure):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE
A chosen format is applied to all 8 registers of the filter table. It is not
possible to mix formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual Mask Registers
(RXIMR0 – RXIMR7), allowing very powerful filtering criteria to be defined. The rest of the RXIMR,
starting from RXIM8, continue to affect the regular MBs, starting from MB8. If the BCC bit is negated (or
if the RXIMR are not available for the particular MCU), then the FIFO filter table is affected by the legacy
mask registers as follows: element 6 is affected by RX14MASK, element 7 is affected by RX15MASK
and the other elements (0 to 5) are affected by RXGMASK.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

460 Freescale Semiconductor

22.4.9 CAN protocol related features

22.4.9.1 Remote frames

Remote frame is a special kind of frame. The user can program a MB to be a Request Remote Frame by
writing the MB as Transmit with the RTR bit set to ‘1’. After the Remote Request frame is transmitted
successfully, the MB becomes a Receive Message Buffer, with the same ID as before.

When a Remote Request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the Code field ‘1010’. If there is a matching ID, then this MB frame will be
transmitted. Note that if the matching MB has the RTR bit set, then FlexCAN will transmit a Remote
Frame as a response.

A received Remote Request Frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame should match.

In the case that a Remote Request Frame was received and matched an MB, this message buffer
immediately enters the internal arbitration process, but is considered as normal Tx MB, with no higher
priority. The data length of this frame is independent of the DLC field in the remote frame that initiated its
transmission.

If the Rx FIFO is enabled (bit FEN set in MCR), FlexCAN will not generate an automatic response for
Remote Request Frames that match the FIFO filtering criteria. If the remote frame matches one of the
target IDs, it will be stored in the FIFO and presented to the CPU. Note that for filtering formats A and B,
it is possible to select whether remote frames are accepted or not. For format C, remote frames are always
accepted (if they match the ID).

22.4.9.2 Overload frames

FlexCAN does transmit overload frames due to detection of following conditions on CAN bus:

• Detection of a dominant bit in the first/second bit of Intermission

• Detection of a dominant bit at the 7th bit (last) of End of Frame field (Rx frames)

• Detection of a dominant bit at the 8th bit (last) of Error Frame Delimiter or Overload Frame
Delimiter

22.4.9.3 Time stamp

The value of the Free Running Timer is sampled at the beginning of the Identifier field on the CAN bus,
and is stored at the end of “move-in” in the TIME STAMP field, providing network behavior with respect
to time.

Note that the Free Running Timer can be reset upon a specific frame reception, enabling network time
synchronization. Refer to TSYN description in Section 22.3.4.2, “Control Register (CTRL).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 461

22.4.9.4 Protocol timing

Figure 22-16 shows the structure of the clock generation circuitry that feeds the CAN Protocol Interface
(CPI) submodule. The clock source bit (CLK_SRC) in the CTRL Register defines whether the internal
clock is connected to the output of a crystal oscillator (Oscillator Clock) or to the Peripheral Clock
(generally from a FMPLL). In order to guarantee reliable operation, the clock source should be selected
while the module is in Disable Mode (bit MDIS set in the Module Configuration Register).

Figure 22-16. CAN engine clocking scheme

The crystal oscillator clock should be selected whenever a tight tolerance (up to 0.1%) is required in the
CAN bus timing. The crystal oscillator clock has better jitter performance than FMPLL generated clocks.

NOTE
This clock selection feature may not be available in all MCUs. A particular
MCU may not have a FMPLL, in which case it would have only the
oscillator clock, or it may use only the FMPLL clock feeding the FlexCAN
module. In these cases, the CLK_SRC bit in the CTRL Register has no
effect on the module operation.

The FlexCAN module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The Control Register has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 22.3.4.2, “Control Register (CTRL).

The PRESDIV field controls a prescaler that generates the Serial Clock (Sclock), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by the CAN engine.

A bit time is subdivided into three segments1 (reference Figure 22-17 and Table 22-19):

• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section

• Time Segment 1: This segment includes the Propagation Segment and the Phase Segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the CTRL
Register so that their sum (plus 2) is in the range of 4 to 16 time quanta

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the Bosch
CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Peripheral Clock (FMPLL)

Oscillator Clock (Xtal)
CLK_SRC

Prescaler
(1 .. 256)

SclockCPI Clock

fTq

fCANCLK

Prescaler ValueÞ
--=

MPC5604B/C Microcontroller Reference Manual, Rev. 8

462 Freescale Semiconductor

• Time Segment 2: This segment represents the Phase Segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CTRL Register (plus 1) to be 2 to 8 time quanta long

Figure 22-17. Segments within the bit time

Table 22-20 is an example of the CAN compliant segment settings and the related parameter values. It
refers to the official CAN specification.

Table 22-19. Time segment syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node samples the bus at this point. If the three samples per bit option is
selected, then this point marks the position of the third sample.

Table 22-20. CAN standard compliant bit time segment settings

Time segment 1 Time segment 2
 Resynchronization jump

width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

Bit Rate
fTq

number of Time QuantaÞ Þ Þ
---=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 463

NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an IPT (Information
Processing Time) of 2, which is the value implemented in the FlexCAN
module.

22.4.9.5 Arbitration and matching timing

During normal transmission or reception of frames, the arbitration, matching, move-in and move-out
processes are executed during certain time windows inside the CAN frame, as shown in Figure 22-18.

Figure 22-18. Arbitration, match and move time windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer memory during
the available time slot. In order to have sufficient time to do that, the following requirements must be
observed:

• A valid CAN bit timing must be programmed, as indicated in Table 22-20

• The peripheral clock frequency cannot be smaller than the oscillator clock frequency, i.e. the
FMPLL cannot be programmed to divide down the oscillator clock

• There must be a minimum ratio between the peripheral clock frequency and the CAN bit rate, as
specified in Table 22-21

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

Table 22-21. Minimum ratio between peripheral clock frequency and CAN bit rate

Number of message buffers Minimum ratio

16 8

32 8

64 16

Table 22-20. CAN standard compliant bit time segment settings (continued)

Time segment 1 Time segment 2
 Resynchronization jump

width

CRC (15) EOF (7) Interm

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

MPC5604B/C Microcontroller Reference Manual, Rev. 8

464 Freescale Semiconductor

A direct consequence of the first requirement is that the minimum number of time quanta per CAN bit must
be 8, so the oscillator clock frequency should be at least 8 times the CAN bit rate. The minimum frequency
ratio specified in Table 22-21 can be achieved by choosing a high enough peripheral clock frequency when
compared to the oscillator clock frequency, or by adjusting one or more of the bit timing parameters
(PRESDIV, PROPSEG, PSEG1, PSEG2). As an example, taking the case of 64 MBs, if the oscillator and
peripheral clock frequencies are equal and the CAN bit timing is programmed to have 8 time quanta per
bit, then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to one and
CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator clock frequencies
should be at least 2.

22.4.10 Modes of operation details

22.4.10.1 Freeze Mode

This mode is entered by asserting the HALT bit in the MCR or when the MCU is put into Debug Mode.
In both cases it is also necessary that the FRZ bit is asserted in the MCR and the module is not in low power
mode (Disable Mode). When Freeze Mode is requested during transmission or reception, FlexCAN does
the following:

• Waits to be in either Intermission, Passive Error, Bus Off or Idle state

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores the Rx input pin and drives the Tx pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the Error Counters Register, which is read-only in other modes

• Sets the NOT_RDY and FRZ_ACK bits in MCR

After requesting Freeze Mode, the user must wait for the FRZ_ACK bit to be asserted in MCR before
executing any other action, otherwise FlexCAN may operate in an unpredictable way. In Freeze mode, all
memory mapped registers are accessible.

Exiting Freeze Mode is done in one of the following ways:

• CPU negates the FRZ bit in the MCR

• The MCU is removed from Debug Mode and/or the HALT bit is negated

Once out of Freeze Mode, FlexCAN tries to resynchronize to the CAN bus by waiting for 11 consecutive
recessive bits.

22.4.10.2 Module Disable Mode

This low power mode is entered when the MDIS bit in the MCR is asserted. If the module is disabled
during Freeze Mode, it shuts down the clocks to the CPI and MBM submodules, sets the LPM_ACK bit
and negates the FRZ_ACK bit. If the module is disabled during transmission or reception, FlexCAN does
the following:

• Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission and then
checks it to be recessive

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 465

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Shuts down the clocks to the CPI and MBM submodules

• Sets the NOT_RDY and LPM_ACK bits in MCR

The Bus Interface Unit continues to operate, enabling the CPU to access memory mapped registers, except
the Free Running Timer, the Error Counter Register and the Message Buffers, which cannot be accessed
when the module is in Disable Mode. Exiting from this mode is done by negating the MDIS bit, which will
resume the clocks and negate the LPM_ACK bit.

22.4.11 Interrupts

The module can generate up to 69 interrupt sources (64 interrupts due to message buffers and 5 interrupts
due to Ored interrupts from MBs, Bus Off, Error, Tx Warning and Rx Warning). The number of actual
sources depends on the configured number of Message Buffers.

Each one of the message buffers can be an interrupt source, if its corresponding IMASK bit is set. There
is no distinction between Tx and Rx interrupts for a particular buffer, under the assumption that the buffer
is initialized for either transmission or reception. Each of the buffers has assigned a flag bit in the IFLAG
Registers. The bit is set when the corresponding buffer completes a successful transmission/reception and
is cleared when the CPU writes it to ‘1’ (unless another interrupt is generated at the same time).

NOTE
It must be guaranteed that the CPU only clears the bit causing the current
interrupt. For this reason, bit manipulation instructions (BSET) must not be
used to clear interrupt flags. These instructions may cause accidental
clearing of interrupt flags which are set after entering the current interrupt
service routine.

If the Rx FIFO is enabled (bit FEN on MCR set), the interrupts corresponding to MBs 0 to 7 have a
different behavior. Bit 7 of the IFLAG1 becomes the “FIFO Overflow” flag; bit 6 becomes the FIFO
Warning flag, bit 5 becomes the “Frames Available in FIFO flag” and bits 4–0 are unused. See
Section 22.3.4.12, “Interrupt Flags 1 Register (IFLAG1) for more information.

A combined interrupt for all MBs is also generated by an Or of all the interrupt sources from MBs. This
interrupt gets generated when any of the MBs generates an interrupt. In this case the CPU must read the
IFLAG Registers to determine which MB caused the interrupt.

The other 4 interrupt sources (Bus Off, Error, Tx Warning and Rx Warning) generate interrupts like the
MB ones, and can be read from the Error and Status Register. The Bus Off, Error, Tx Warning and Rx
Warning interrupt mask bits are located in the Control Register, and the Wake-Up interrupt mask bit is
located in the MCR.

22.4.12 Bus interface

The CPU access to FlexCAN registers are subject to the following rules:

• Read and write access to supervisor registers in User Mode results in access error.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

466 Freescale Semiconductor

• Read and write access to unimplemented or reserved address space also results in access error. Any
access to unimplemented MB or Rx Individual Mask Register locations results in access error. Any
access to the Rx Individual Mask Register space when the BCC bit in MCR is negated results in
access error.

• If MAXMB is programmed with a value smaller than the available number of MBs, then the
unused memory space can be used as general purpose SRAM space. Note that the Rx Individual
Mask Registers can only be accessed in Freeze Mode, and this is still true for unused space within
this memory. Note also that reserved words within SRAM cannot be used. As an example, suppose
FlexCAN is configured with 64 MBs and MAXMB is programmed with zero. The maximum
number of MBs in this case becomes one. The MB memory starts at 0x0060, but the space from
0x0060 to 0x007F is reserved (for SMB usage), and the space from 0x0080 to 0x008F is used by
the one MB. This leaves us with the available space from 0x0090 to 0x047F. The available memory
in the Mask Registers space would be from 0x0884 to 0x097F.

NOTE
Unused MB space must not be used as general purpose SRAM while
FlexCAN is transmitting and receiving CAN frames.

22.5 Initialization/Application information
This section provide instructions for initializing the FlexCAN module.

22.5.1 FlexCAN initialization sequence

The FlexCAN module may be reset in three ways:

• MCU level hard reset, which resets all memory mapped registers asynchronously

• MCU level soft reset, which resets some of the memory mapped registers synchronously (refer to
Table 22-2 to see what registers are affected by soft reset)

• SOFT_RST bit in MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The SOFT_RST bit remains
asserted while soft reset is pending, so software can poll this bit to know when the reset has completed.
Also, soft reset cannot be applied while clocks are shut down in the low power mode. The low power mode
should be exited and the clocks resumed before applying soft reset.

The clock source (CLK_SRC bit) should be selected while the module is in Disable Mode. After the clock
source is selected and the module is enabled (MDIS bit negated), FlexCAN automatically goes to Freeze
Mode. In Freeze Mode, FlexCAN is unsynchronized to the CAN bus, the HALT and FRZ bits in MCR are
set, the internal state machines are disabled and the FRZ_ACK and NOT_RDY bits in the MCR are set.
The Tx pin is in recessive state and FlexCAN does not initiate any transmission or reception of CAN
frames. Note that the Message Buffers and the Rx Individual Mask Registers are not affected by reset, so
they are not automatically initialized.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 467

For any configuration change/initialization it is required that FlexCAN is put into Freeze Mode (see
Section 22.4.10.1, “Freeze Mode). The following is a generic initialization sequence applicable to the
FlexCAN module:

• Initialize the Module Configuration Register

— Enable the individual filtering per MB and reception queue features by setting the BCC bit

— Enable the warning interrupts by setting the WRN_EN bit

— If required, disable frame self reception by setting the SRX_DIS bit

— Enable the FIFO by setting the FEN bit

— Enable the abort mechanism by setting the AEN bit

— Enable the local priority feature by setting the LPRIO_EN bit

• Initialize the Control Register

— Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW

— Determine the bit rate by programming the PRESDIV field

— Determine the internal arbitration mode (LBUF bit)

• Initialize the Message Buffers

— The Control and Status word of all Message Buffers must be initialized

— If FIFO was enabled, the 8-entry ID table must be initialized

— Other entries in each Message Buffer should be initialized as required

• Initialize the Rx Individual Mask Registers

• Set required interrupt mask bits in the IMASK Registers (for all MB interrupts) and in CTRL
Register (for Bus Off and Error interrupts)

• Negate the HALT bit in MCR

Starting with the last event, FlexCAN attempts to synchronize to the CAN bus.

22.5.2 FlexCAN addressing and SRAM size configurations

There are three SRAM configurations that can be implemented within the FlexCAN module. The possible
configurations are:

• For 16 MBs: 288 bytes for MB memory and 64 bytes for Individual Mask Registers

• For 32 MBs: 544 bytes for MB memory and 128 bytes for Individual Mask Registers

• For 64 MBs: 1056 bytes for MB memory and 256 bytes for Individual Mask Registers

In each configuration the user can program the maximum number of MBs that will take part in the
matching and arbitration processes using the MAXMB field in the MCR. For 16 MB configuration,
MAXMB can be any number between 0–15. For 32 MB configuration, MAXMB can be any number
between 0–31. For 64 MB configuration, MAXMB can be any number between 0–63.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

468 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 469

Chapter 23
Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction
This chapter describes the Deserial Serial Peripheral Interface (DSPI), which provides a synchronous
serial bus for communication between the MCU and an external peripheral device.

The MPC5604B has three identical DSPI modules (DSPI_0, DSPI_1 and DSPI_2). The “x” appended to
signal names signifies the module to which the signal applies. Thus CS0_x specifies that the CS0 signal
applies to DSPI module 0, 1, etc.

A block diagram of the DSPI is shown in Figure 23-1.

Figure 23-1. DSPI block diagram

The register content is transmitted using an SPI protocol.

CMD

Interrupt control

TX FIFO RX FIFO

TX data RX data

16

16

Shift register SOUT_x

SPI

SPI baud rate,
delay and transfer

control

SIN_x

SCK_x

CS0_x

CS1:4_x

CS5_x

INTC

4

MPC5604B/C Microcontroller Reference Manual, Rev. 8

470 Freescale Semiconductor

For queued operations the SPI queues reside in internal SRAM which is external to the DSPI. Data
transfers between the queues and the DSPI FIFOs are accomplished through host software.

Figure 23-2 shows a DSPI with external queues in internal SRAM.

Figure 23-2. DSPI with queues

23.2 Features
The DSPI supports these SPI features:

• Full-duplex, three-wire synchronous transfers

• Master and slave mode

• Buffered transmit and receive operation using the TX and RX FIFOs, with depths of four entries

• Visibility into TX and RX FIFOs for ease of debugging

• FIFO bypass mode for low-latency updates to SPI queues

• Programmable transfer attributes on a per-frame basis

— 6 clock and transfer attribute registers

— Serial clock with programmable polarity and phase

— Programmable delays

– CS to SCK delay

– SCK to CS delay

– Delay between frames

— Programmable serial frame size of 4 to 16 bits, expandable with software control

— Continuously held chip select capability

• Up to 6 peripheral chip selects, expandable to 64 with external demultiplexer

• Deglitching support for up to 32 peripheral chip selects with external demultiplexer

• 6 interrupt conditions:

Internal SRAM

TX queue

RX queue

Address/control

TX FIFO

DSPI

RX FIFO

RX data

TX data

TX data RX data

Shift register

Address/control
Host CPU

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 471

– End of queue reached (EOQF)

– TX FIFO is not full (TFFF)

– Transfer of current frame complete (TCF)

– RX FIFO is not empty (RFDF)

– FIFO overrun (attempt to transmit with an empty TX FIFO or serial frame received while
RX FIFO is full) (RFOF) or (TFUF)

• Modified SPI transfer formats for communication with slower peripheral devices

• Supports all functional modes from QSPI subblock of QSMCM (MPC500 family)

• Continuous serial communications clock (SCK)

23.3 Modes of operation
The DSPI has four modes of operation. These modes can be divided into two categories:

• Module-specific: Master, Slave, and Module Disable modes

• MCU-specific: Debug mode

The module-specific modes are entered by host software writing to a register. The MCU-specific mode is
controlled by signals external to the DSPI. An MCU-specific mode is a mode that the entire device may
enter, in parallel to the DSPI being in one of its module-specific modes.

23.3.1 Master mode

Master mode allows the DSPI to initiate and control serial communication. In this mode the SCK, CSn and
SOUT signals are controlled by the DSPI and configured as outputs.

For more information, see Section 23.6.1.1, Master mode.

23.3.2 Slave mode

Slave mode allows the DSPI to communicate with SPI bus masters. In this mode the DSPI responds to
externally controlled serial transfers. The DSPI cannot initiate serial transfers in slave mode. In slave
mode, the SCK signal and the CS0_x signal are configured as inputs and provided by a bus master. CS0_x
must be configured as input and pulled high. If the internal pullup is being used then the appropriate bits
in the relevant SIU_PCR must be set (SIU_PCR [WPE = 1], [WPS = 1]).

For more information, see Section 23.6.1.2, Slave mode.

23.3.3 Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPIx_MCR is set.

For more information, see Section 23.6.1.3, Module Disable mode.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

472 Freescale Semiconductor

23.3.4 Debug mode

Debug mode is used for system development and debugging. If the device enters debug mode while the
FRZ bit in the DSPIx_MCR is set, the DSPI halts operation on the next frame boundary. If the device enters
debug mode while the FRZ bit is cleared, the DSPI behavior is unaffected and remains dictated by the
module-specific mode and configuration of the DSPI.

For more information, see Section 23.6.1.4, Debug mode.

23.4 External signal description

23.4.1 Signal overview

Table 23-1 lists off-chip DSPI signals.

23.4.2 Signal names and descriptions

23.4.2.1 Peripheral Chip Select / Slave Select (CS0_x)

In master mode, the CS0_x signal is a peripheral chip select output that selects the slave device to which
the current transmission is intended.

In slave mode, the CS0_x signal is a slave select input signal that allows an SPI master to select the DSPI
as the target for transmission. CS0_x must be configured as input and pulled high. If the internal pullup is
being used then the appropriate bits in the relevant SIU_PCR must be set (SIU_PCR [WPE = 1],
[WPS = 1]).

Set the IBE and OBE bits in the SIU_PCR for all CS0_x pins when the DSPI chip select or slave select
primary function is selected for that pin. When the pin is used for DSPI master mode as a chip select output,
set the OBE bit. When the pin is used in DSPI slave mode as a slave select input, set the IBE bit.

Table 23-1. Signal properties

Name I/O type
Function

Master mode Slave mode

CS0_x Output / input Peripheral chip select 0 Slave select

CS1:3_x Output Peripheral chip select 1–3 Unused1

1 The SIUL allows you to select alternate pin functions for the device.

CS4_x Output Peripheral chip select 4 Master trigger

CS5_x Output Peripheral chip select 5 /
Peripheral chip select strobe

Unused1

SIN_x Input Serial data in Serial data in

SOUT_x Output Serial data out Serial data out

SCK_x Output / input Serial clock (output) Serial clock (input)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 473

23.4.2.2 Peripheral Chip Selects 1–3 (CS1:3_x)

CS1:3_x are peripheral chip select output signals in master mode. In slave mode these signals are not used.

23.4.2.3 Peripheral Chip Select 4 (CS4_x)

CS4_x is a peripheral chip select output signal in master mode.

23.4.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe
(CS5_x)

CS5_x is a peripheral chip select output signal. When the DSPI is in master mode and PCSSE bit in the
DSPIx_MCR is cleared, the CS5_x signal is used to select the slave device that receives the current
transfer.

CS5_x is a strobe signal used by external logic for deglitching of the CS signals. When the DSPI is in
master mode and the PCSSE bit in the DSPIx_MCR is set, the CS5_x signal indicates the timing to decode
CS0:4_x signals, which prevents glitches from occurring.

CS5_x is not used in slave mode.

23.4.2.5 Serial Input (SIN_x)

SIN_x is a serial data input signal.

23.4.2.6 Serial Output (SOUT_x)

SOUT_x is a serial data output signal.

23.4.2.7 Serial Clock (SCK_x)

SCK_x is a serial communication clock signal. In master mode, the DSPI generates the SCK. In slave
mode, SCK_x is an input from an external bus master.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

474 Freescale Semiconductor

23.5 Memory map and register description

23.5.1 Memory map

Table 23-2 shows the DSPI memory map.

Table 23-2. DSPI memory map

Base addresses:
0xFFF9_0000 (DSPI_0)
0xFFF9_4000 (DSPI_1)
0xFFF9_8000 (DSPI_2)

Address offset Register Location

0x00 DSPI Module Configuration Register (DSPIx_MCR) on page 475

0x04 Reserved

0x08 DSPI Transfer Count Register (DSPIx_TCR) on page 478

0x0C DSPI Clock and Transfer Attributes Register 0 (DSPIx_CTAR0) on page 478

0x10 DSPI Clock and Transfer Attributes Register 1 (DSPIx_CTAR1) on page 478

0x14 DSPI Clock and Transfer Attributes Register 2 (DSPIx_CTAR2) on page 478

0x18 DSPI Clock and Transfer Attributes Register 3 (DSPIx_CTAR3) on page 478

0x1C DSPI Clock and Transfer Attributes Register 4 (DSPIx_CTAR4) on page 478

0x20 DSPI Clock and Transfer Attributes Register 5 (DSPIx_CTAR5) on page 478

0x24–0x28 Reserved

0x2C DSPI Status Register (DSPIx_SR) on page 486

0x30 DSPI Interrupt Request Enable Register (DSPIx_RSER) on page 488

0x34 DSPI Push TX FIFO Register (DSPIx_PUSHR) on page 490

0x38 DSPI Pop RX FIFO Register (DSPIx_POPR) on page 492

0x3C DSPI Transmit FIFO Register 0 (DSPIx_TXFR0) on page 493

0x40 DSPI Transmit FIFO Register 1 (DSPIx_TXFR1) on page 493

0x44 DSPI Transmit FIFO Register 2 (DSPIx_TXFR2) on page 493

0x48 DSPI Transmit FIFO Register 3 (DSPIx_TXFR3) on page 493

0x4C–0x78 Reserved

0x7C DSPI Receive FIFO Register 0 (DSPIx_RXFR0) on page 493

0x80 DSPI Receive FIFO Register 1 (DSPIx_RXFR1) on page 493

0x84 DSPI Receive FIFO Register 2 (DSPIx_RXFR2) on page 493

0x88 DSPI Receive FIFO Register 3 (DSPIx_RXFR3) on page 493

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 475

23.5.2 DSPI Module Configuration Register (DSPIx_MCR)

The DSPIx_MCR contains bits which configure attributes of the DSPI operation. The values of the HALT
and MDIS bits can be changed at any time, but their effect begins on the next frame boundary. The HALT
and MDIS bits in the DSPIx_MCR are the only bit values software can change while the DSPI is running.

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

T
R

C
O

N
T

_S
C

K
E

DCONF FRZ

M
T

F
E

P
C

S
S

E

R
O

O
E

0 0

P
C

S
IS

5

P
C

S
IS

4

P
C

S
IS

3

P
C

S
IS

2

P
C

S
IS

1

P
C

S
IS

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

MDIS

D
IS

_T
X

F

D
IS

_R
X

F

C
LR

_T
X

F

C
LR

_R
X

F

SMPL_PT

0 0 0 0 0 0 0

HALTW

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 23-3. DSPI Module Configuration Register (DSPIx_MCR)

Table 23-3. DSPIx_MCR field descriptions

Field Description

MSTR Master/slave mode select
Configures the DSPI for master mode or slave mode.

0 DSPI is in slave mode
1 DSPI is in master mode

CONT_SCKE Continuous SCK enable
Enables the serial communication clock (SCK) to run continuously. See Section 23.6.6,
Continuous serial communications clock, for details.
0 Continuous SCK disabled
1 Continuous SCK enabled
Note: If the FIFO is enabled with continuous SCK mode, the TX-FIFO should be cleared before

setting the CONT_SCKE bit, and only the CTAR0 register should be used to transfer
attributes; otherwise, a change in SCK frequency occurs.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

476 Freescale Semiconductor

DCONF DSPI configuration
The following table lists the DCONF values for the various configurations.

FRZ Freeze
Enables the DSPI transfers to be stopped on the next frame boundary when the device enters
debug mode.

0 Do not halt serial transfers
1 Halt serial transfers

MTFE Modified timing format enable
Enables a modified transfer format to be used. See Section 23.6.5.4, Modified SPI transfer
format (MTFE = 1, CPHA = 1), for more information.

0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

PCSSE Peripheral chip select strobe enable
Enables the CS5_x to operate as a CS strobe output signal.
See Section 23.6.4.5, Peripheral chip select strobe enable (CS5_x), for more information.

0 CS5_x is used as the Peripheral chip select 5 signal
1 CS5_x as an active-low CS strobe signal

ROOE Receive FIFO overflow overwrite enable
Enables an RX FIFO overflow condition to ignore the incoming serial data or to overwrite
existing data. If the RX FIFO is full and new data is received, the data from the transfer that
generated the overflow is ignored or put in the shift register.

If the ROOE bit is set, the incoming data is put in the shift register. If the ROOE bit is cleared,
the incoming data is ignored. See Section 23.6.7.6, Receive FIFO Overflow Interrupt Request
(RFOF), for more information.

0 Incoming data is ignored
1 Incoming data is put in the shift register

PCSISn Peripheral chip select inactive state
Determines the inactive state of the CS0_x signal. CS0_x must be configured as inactive high
for slave mode operation.

0 The inactive state of CS0_x is low
1 The inactive state of CS0_x is high

Table 23-3. DSPIx_MCR field descriptions (continued)

Field Description

DCONF Configuration

00 SPI

01 Invalid value

10 Invalid value

11 Invalid value

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 477

MDIS Module disable
Allows the clock to stop to the non-memory mapped logic in the DSPI, effectively putting the
DSPI in a software controlled power-saving state. See Section 23.6.8, Power saving features
for more information.

0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

DIS_TXF Disable transmit FIFO
Enables and disables the TX FIFO. When the TX FIFO is disabled, the transmit part of the DSPI
operates as a simplified double-buffered SPI. See Section 23.6.3.3, FIFO disable operation for
details.

0 TX FIFO is enabled
1 TX FIFO is disabled

DIS_RXF Disable receive FIFO
Enables and disables the RX FIFO. When the RX FIFO is disabled, the receive part of the DSPI
operates as a simplified double-buffered SPI. See Section 23.6.3.3, FIFO disable operation for
details.
0 RX FIFO is enabled
1 RX FIFO is disabled

CLR_TXF Clear TX FIFO. CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX
FIFO Counter. The CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO Counter
1 Clear the TX FIFO Counter

CLR_RXF Clear RX FIFO. CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the
RX Counter. The CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter
1 Clear the RX FIFO Counter

SMPL_PT Sample point
Allows the host software to select when the DSPI master samples SIN in modified transfer
format. Figure 23-18 shows where the master can sample the SIN pin. The following table lists
the delayed sample points.

HALT Halt
Provides a mechanism for software to start and stop DSPI transfers. See Section 23.6.2, Start
and stop of DSPI transfers, for details on the operation of this bit.
0 Start transfers
1 Stop transfers

Table 23-3. DSPIx_MCR field descriptions (continued)

Field Description

SMPL_PT
Number of system clock cycles between

odd-numbered edge of SCK_x and sampling of SIN_x

00 0

01 1

10 2

11 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

478 Freescale Semiconductor

23.5.3 DSPI Transfer Count Register (DSPIx_TCR)

The DSPIx_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management. The user must not write to the DSPIx_TCR while the DSPI is
running.

23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

The DSPI modules each contain six clock and transfer attribute registers (DSPIx_CTARn) which are used
to define different transfer attribute configurations. Each DSPIx_CTAR controls:

• Frame size

• Baud rate and transfer delay values

• Clock phase

• Clock polarity

• MSB or LSB first

DSPIx_CTARs support compatibility with the QSPI module in the MPC5604B family of MCUs. At the
initiation of an SPI transfer, control logic selects the DSPIx_CTAR that contains the transfer’s attributes.
Do not write to the DSPIx_CTARs while the DSPI is running.

In master mode, the DSPIx_CTARn registers define combinations of transfer attributes such as frame size,
clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the bit

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPI_TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-4. DSPI Transfer Count Register (DSPIx_TCR)

Table 23-4. DSPIx_TCR field descriptions

Field Description

SPI_TCNT SPI transfer counter
Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field is incremented every time
the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that
value. SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the
executing SPI command. The transfer counter ‘wraps around,’ incrementing the counter past 65535
resets the counter to zero.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 479

fields in the DSPIx_CTAR0 and DSPIx_CTAR1 registers are used to set the slave transfer attributes. See
the individual bit descriptions for details on which bits are used in slave modes.

When the DSPI is configured as an SPI master, the CTAS field in the command portion of the TX FIFO
entry selects which of the DSPIx_CTAR registers is used on a per-frame basis. When the DSPI is
configured as an SPI bus slave, the DSPIx_CTAR0 register is used.

.

Offsets: 0x0C–0x20 (6 registers) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ

C
P

O
L

C
P

H
A

LS
B

F
E

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-5. DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

Table 23-5. DSPIx_CTARn field descriptions

Field Descriptions

DBR Double Baud Rate
The DBR bit doubles the effective baud rate of the Serial Communications Clock (SCK). This field is only
used in Master Mode. It effectively halves the Baud Rate division ratio supporting faster frequencies and
odd division ratios for the Serial Communications Clock (SCK). When the DBR bit is set, the duty cycle
of the Serial Communications Clock (SCK) depends on the value in the Baud Rate Prescaler and the
Clock Phase bit as listed in Table 23-12. See the BR[0:3] field description for details on how to compute
the baud rate. If the overall baud rate is divide by two or divide by three of the system clock then neither
the Continuous SCK Enable or the Modified Timing Format Enable bits should be set.
0 The baud rate is computed normally with a 50/50 duty cycle
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler

FMSZ Frame Size
The FMSZ field selects the number of bits transferred per frame. The FMSZ field is used in Master Mode
and Slave Mode. Table 23-13 lists the frame size encodings.

CPOL Clock Polarity
The CPOL bit selects the inactive state of the Serial Communications Clock (SCK). This bit is used in
both Master and Slave Mode. For successful communication between serial devices, the devices must
have identical clock polarities. When the Continuous Selection Format is selected, switching between
clock polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device
interpreting the switch of clock polarity as a valid clock edge.
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

MPC5604B/C Microcontroller Reference Manual, Rev. 8

480 Freescale Semiconductor

CPHA Clock Phase
The CPHA bit selects which edge of SCK causes data to change and which edge causes data to be

captured. This bit is used in both Master and Slave Mode. For successful communication between
serial devices, the devices must have identical clock phase settings. Continuous SCK is only
supported for CPHA = 1.

0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

LSBFE LSB First
The LSBFE bit selects if the LSB or MSB of the frame is transferred first. This bit is only used in Master
Mode.
0 Data is transferred MSB first
1 Data is transferred LSB first

PCSSCK PCS to SCK Delay Prescaler
The PCSSCK field selects the prescaler value for the delay between assertion of PCS and the first edge
of the SCK. This field is only used in Master Mode. The table below lists the prescaler values. See the
CSSCK field description for details on how to compute the PCS to SCK delay.

PASC After SCK Delay Prescaler
The PASC field selects the prescaler value for the delay between the last edge of SCK and the negation
of PCS. This field is only used in Master Mode. The table below lists the prescaler values. See the
ASC[0:3] field description for details on how to compute the After SCK delay.

Table 23-5. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PCSSCK PCS to SCK delay prescaler value

00 1

01 3

10 5

11 7

PASC After SCK delay prescaler value

00 1

01 3

10 5

11 7

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 481

PDT Delay after Transfer Prescaler
The PDT field selects the prescaler value for the delay between the negation of the PCS signal at the
end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field is only used
in Master Mode. The table below lists the prescaler values. See the DT[0:3] field description for details
on how to compute the delay after transfer.

PBR Baud Rate Prescaler
The PBR field selects the prescaler value for the baud rate. This field is only used in Master Mode. The
Baud Rate is the frequency of the Serial Communications Clock (SCK). The system clock is divided by
the prescaler value before the baud rate selection takes place. The Baud Rate Prescaler values are
listed in the table below. See the BR[0:3] field description for details on how to compute the baud rate.

CSSCK PCS to SCK Delay Scaler
The CSSCK field selects the scaler value for the PCS to SCK delay. This field is only used in Master
Mode. The PCS to SCK Delay is the delay between the assertion of PCS and the first edge of the SCK.
Table 23-14 list the scaler values.The PCS to SCK Delay is a multiple of the system clock period and it
is computed according to the following equation:

Eqn. 23-1

See Section 23.6.4.2, CS to SCK delay (tCSC),” for more details.

ASC After SCK Delay Scaler
The ASC field selects the scaler value for the After SCK Delay. This field is only used in Master Mode.
The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. Table 23-15
lists the scaler values.The After SCK Delay is a multiple of the system clock period, and it is computed
according to the following equation:

Eqn. 23-2

See Section 23.6.4.3, After SCK delay (tASC),” for more details.

Table 23-5. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PDT Delay after transfer prescaler value

00 1

01 3

10 5

11 7

PBR Baud rate prescaler value

00 2

01 3

10 5

11 7

tCSC
1

fSYS
----------- PCSSCK CSSCK=

tASC
1

fSYS
----------- PASC ASC=

MPC5604B/C Microcontroller Reference Manual, Rev. 8

482 Freescale Semiconductor

DT Delay after Transfer Scaler
The DT field selects the Delay after Transfer Scaler. This field is only used in Master Mode. The Delay
after Transfer is the time between the negation of the PCS signal at the end of a frame and the assertion
of PCS at the beginning of the next frame. Table 23-16 lists the scaler values. In the Continuous Serial
Communications Clock operation the DT value is fixed to one TSCK. The Delay after Transfer is a
multiple of the system clock period and it is computed according to the following equation:

Eqn. 23-3

See Section 23.6.4.4, Delay after transfer (tDT),” for more details.

BR Baud Rate Scaler
The BR field selects the scaler value for the baud rate. This field is only used in Master Mode. The
prescaled system clock is divided by the Baud Rate Scaler to generate the frequency of the SCK.
Table 23-17 lists the Baud Rate Scaler values.The baud rate is computed according to the following
equation:

Eqn. 23-4

See Section 23.6.4.2, CS to SCK delay (tCSC),” for more details.

Table 23-6. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 23-7. DSPI transfer frame size

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

Table 23-5. DSPIx_CTARn field descriptions (continued)

Field Descriptions

tDT
1

fSYS
----------- PDT DT=

SCK baud rate
fSYS

PBR
------------ 1 DBR+

BR
----------------------=

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 483

0110 7 1110 15

0111 8 1111 16

Table 23-8. DSPI PCS to SCK delay scaler

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 23-9. DSPI After SCK delay scaler

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 23-10. DSPI delay after transfer scaler

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

Table 23-7. DSPI transfer frame size (continued)

FMSZ Frame size FMSZ Frame size

MPC5604B/C Microcontroller Reference Manual, Rev. 8

484 Freescale Semiconductor

0110 128 1110 32768

0111 256 1111 65536

Table 23-11. DSPI baud rate scaler

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 23-12. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 23-13. DSPI transfer frame size

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

Table 23-10. DSPI delay after transfer scaler (continued)

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 485

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Table 23-14. DSPI PCS to SCK delay scaler

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 23-15. DSPI After SCK delay scaler

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 23-16. DSPI delay after transfer scaler

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

Table 23-13. DSPI transfer frame size (continued)

FMSZ Frame size FMSZ Frame size

MPC5604B/C Microcontroller Reference Manual, Rev. 8

486 Freescale Semiconductor

23.5.5 DSPI Status Register (DSPIx_SR)

The DSPIx_SR contains status and flag bits. The bits are set by the hardware and reflect the status of the
DSPI and indicate the occurrence of events that can generate interrupt requests. Software can clear flag
bits in the DSPIx_SR by writing a ‘1’ to clear it (w1c). Writing a ‘0’ to a flag bit has no effect. This register
may not be writable in Module Disable mode due to the use of power saving mechanisms.

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 23-17. DSPI baud rate scaler

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Offset: 0x2C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TCF

T
X

R
X

S

0

E
O

Q
F

TFUF 0 TFFF 0 0 0 0 0

R
F

O
F

0

R
F

D
F

0

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-6. DSPI Status Register (DSPIx_SR)

Table 23-16. DSPI delay after transfer scaler (continued) (continued)

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 487

Table 23-18. DSPIx_SR field descriptions

Field Description

TCF Transfer complete flag
Indicates that all bits in a frame have been shifted out. The TCF bit is set after the last incoming
databit is sampled, but before the tASC delay starts. See Section 23.6.5.1, Classic SPI transfer format
(CPHA = 0) for details.

0 Transfer not complete
1 Transfer complete

TXRXS TX and RX status
Reflects the status of the DSPI. See Section 23.6.2, Start and stop of DSPI transfers for information
on what clears and sets this bit.

0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

EOQF End of queue flag
Indicates that transmission in progress is the last entry in a queue. The EOQF bit is set when TX FIFO
entry has the EOQ bit set in the command halfword and the end of the transfer is reached. See
Section 23.6.5.1, Classic SPI transfer format (CPHA = 0) for details.

When the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executing command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode.

TFUF Transmit FIFO underflow flag
Indicates that an underflow condition in the TX FIFO has occurred. The transmit underflow condition
is detected only for DSPI modules operating in slave mode and SPI configuration. The TFUF bit is
set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and a transfer is initiated by
an external SPI master.

0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

TFFF Transmit FIFO fill flag
Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request more entries to
be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be
cleared by writing ‘1’ to it, or an by acknowledgement from the Edam controller when the TX FIFO is
full.

0 TX FIFO is full
1 TX FIFO is not full

RFOF Receive FIFO overflow flag
Indicates that an overflow condition in the RX FIFO has occurred. The bit is set when the RX FIFO
and shift register are full and a transfer is initiated.

0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

MPC5604B/C Microcontroller Reference Manual, Rev. 8

488 Freescale Semiconductor

23.5.6 DSPI Interrupt Request Enable Register (DSPIx_RSER)

The DSPIx_RSER enables flag bits in the DSPIx_SR to generate interrupt requests.

Do not write to the DSPIx_RSER while the DSPI is running.

RFDF Receive FIFO drain flag
Indicates that the RX FIFO can be drained. Provides a method for the DSPI to request that entries
be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be
cleared by writing ‘1’ to it, or by acknowledgement from the Edam controller when the RX FIFO is
empty.

0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPIx_POPR register is

read.

TXCTR TX FIFO counter
Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the DSPI
_PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the
SPI data is transferred to the shift register.

TXNXTPTR Transmit next pointer
Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is
updated every time SPI data is transferred from the TX FIFO to the shift register. See
Section 23.6.3.4, Transmit First In First Out (TX FIFO) buffering mechanism for more details.

RXCTR RX FIFO counter
Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the DSPI
_POPR is read. The RXCTR is incremented after the last incoming databit is sampled, but before the
tASC delay starts. See Section 23.6.5.1, Classic SPI transfer format (CPHA = 0) for details.

POPNXTPT
R

Pop next pointer
Contains a pointer to the RX FIFO entry that is returned when the DSPIx_POPR is read. The
POPNXTPTR is updated when the DSPIx_POPR is read. See Section 23.6.3.5, Receive First In First
Out (RX FIFO) buffering mechanism for more details.

Table 23-18. DSPIx_SR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 489

Offset:0x30 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
T

C
F

_R
E 0 0

E
O

Q
F

_R
E

T
F

U
F

_R
E 0

T
F

F
F

_R
E

T
F

F
F

_D
IR

S 0 0 0 0

R
F

O
F

_R
E 0

R
F

D
F

_R
E

R
F

D
F

_D
IR

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-7. DSPI Interrupt Request Enable Register (DSPIx_RSER)

Table 23-19. DSPIx_RSER field descriptions

Field Description

TCF_RE Transmission complete request enable
Enables TCF flag in the DSPIx_SR to generate an interrupt request.

0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

EOQF_RE DSPI finished request enable
Enables the EOQF flag in the DSPIx_SR to generate an interrupt request.

0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

TFUF_RE Transmit FIFO underflow request enable
The TFUF_RE bit enables the TFUF flag in the DSPIx_SR to generate an interrupt request.

0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

TFFF_RE Transmit FIFO fill request enable
Enables the TFFF flag in the DSPIx_SR to generate a request. The TFFF_DIRS bit selects an
interrupt request.

0 TFFF interrupt requests are disabled
1 TFFF interrupt requests are enabled

TFFF_DIRS Transmit FIFO fill interrupt request select
Selects an interrupt request. When the TFFF flag bit in the DSPIx_SR is set, and the TFFF_RE bit in
the DSPIx_RSER is set, this bit selects an interrupt request.

0 Interrupt request is selected
1 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

490 Freescale Semiconductor

23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

The DSPIx_PUSHR provides a means to write to the TX FIFO. Data written to this register is transferred
to the TX FIFO. See Section 23.6.3.4, Transmit First In First Out (TX FIFO) buffering mechanism, for
more information. Write accesses of 8 or 16 bits to the DSPIx_PUSHR transfers 32 bits to the TX FIFO.

NOTE
TXDATA is used in master and slave modes.

RFOF_RE Receive FIFO overflow request enable
Enables the RFOF flag in the DSPIx_SR to generate an interrupt requests.

0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

RFDF_RE Receive FIFO drain request enable
Enables the RFDF flag in the DSPIx_SR to generate a request. The RFDF_DIRS bit selects an
interrupt request.

0 RFDF interrupt requests are disabled
1 RFDF interrupt requests are enabled

RFDF_DIRS Receive FIFO drain interrupt request select
Selects an interrupt request. When the RFDF flag bit in the DSPIx_SR is set, and the RFDF_RE bit
in the DSPIx_RSER is set, the RFDF_DIRS bit selects an interrupt request.

0 Interrupt request is selected
1 Reserved

Offset:0x34 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
O

N
T

CTAS EOQ

C
T

C
N

T 0 0
0 0

P
C

S
5

P
C

S
4

P
C

S
3

P
C

S
2

P
C

S
1

P
C

S
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-8. DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

Table 23-19. DSPIx_RSER field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 491

Table 23-20. DSPIx_PUSHR field descriptions

Field Description

CONT Continuous peripheral chip select enable
Selects a continuous selection format. The bit is used in SPI master mode. The bit enables the selected
CS signals to remain asserted between transfers. See Section 23.6.5.5, Continuous selection format,
for more information.

0 Return peripheral chip select signals to their inactive state between transfers
1 Keep peripheral chip select signals asserted between transfers

CTAS Clock and transfer attributes select
Selects which of the DSPIx_CTARs is used to set the transfer attributes for the SPI frame. In SPI slave
mode, DSPIx_CTAR0 is used. The following table shows how the CTAS values map to the
DSPIx_CTARs. There are eight DSPIx_CTARs in the device DSPI implementation.
Note: Use in SPI master mode only.

EOQ End of queue
Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a
queue. At the end of the transfer the EOQF bit in the DSPIx_SR is set.

0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer
Note: Use in SPI master mode only.

CTCNT Clear SPI_TCNT
Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the
SPI_TCNT field in the DSPIx_TCR. The SPI_TCNT field is cleared before transmission of the current
SPI frame begins.

0 Do not clear SPI_TCNT field in the DSPIx_TCR
1 Clear SPI_TCNT field in the DSPIx_TCR
Note: Use in SPI master mode only.

CTAS
Use clock and transfer

attributes from

000 DSPIx_CTAR0

001 DSPIx_CTAR1

010 DSPIx_CTAR2

011 DSPIx_CTAR3

100 DSPIx_CTAR4

101 DSPIx_CTAR5

110 Reserved

111 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

492 Freescale Semiconductor

23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR)

The DSPIx_POPR allows you to read the RX FIFO. See Section 23.6.3.5, Receive First In First Out (RX
FIFO) buffering mechanism for a description of the RX FIFO operations. Eight or 16-bit read accesses to
the DSPIx_POPR fetch the RX FIFO data, and update the counter and pointer.

NOTE
Reading the RX FIFO field fetches data from the RX FIFO. Once the RX
FIFO is read, the read data pointer is moved to the next entry in the RX
FIFO. Therefore, read DSPIx_POPR only when you need the data. For
compatibility, configure the TLB entry for DSPIx_POPR as guarded.

PCSx Peripheral chip select x
Selects which CSx signals are asserted for the transfer.

0 Negate the CSx signal
1 Assert the CSx signal
Note: Use in SPI master mode only.

TXDATA Transmit data
Holds SPI data for transfer according to the associated SPI command.

Note: Use TXDATA in master and slave modes.

Offset:0x38 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-9. DSPI POP RX FIFO Register (DSPIx_POPR)

Table 23-21. DSPIx_POPR field descriptions

Field Description

RXDATA Received data
The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the pop next data pointer
(POPNXTPTR).

Table 23-20. DSPIx_PUSHR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 493

23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn)

The DSPIx_TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is
an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the DSPIx_TXFRn
registers does not alter the state of the TX FIFO. The MCU uses four registers to implement the TX FIFO,
that is DSPIx_TXFR0–DSPIx_TXFR3 are used.

23.5.9.1 DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

The DSPIx_RXFRn registers provide visibility into the RX FIFO for debugging purposes. Each register is
an entry in the RX FIFO. The DSPIx_RXFR registers are read-only. Reading the DSPIx_RXFRn registers
does not alter the state of the RX FIFO. The device uses four registers to implement the RX FIFO, that is
DSPIx_RXFR0–DSPIx_RXFR3 are used.

Offsets: 0x3C–0x48 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-10. DSPI Transmit FIFO Register 0–3 (DSPIx_TXFRn)

Table 23-22. DSPIx_TXFRn field descriptions

Field Description

TXCMD Transmit command
Contains the command that sets the transfer attributes for the SPI data. See Section 23.5.7, DSPI PUSH
TX FIFO Register (DSPIx_PUSHR), for details on the command field.

TXDATA Transmit data
Contains the SPI data to be shifted out.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

494 Freescale Semiconductor

23.6 Functional description
The DSPI supports full-duplex, synchronous serial communications between the MCU and peripheral
devices. All communications are through an SPI-like protocol.

The DSPI has one configuration, namely serial peripheral interface (SPI), in which the DSPI operates as
a basic SPI or a queued SPI.

The DCONF field in the DSPIx_MCR register determines the DSPI configuration. See Table 23-3 for the
DSPI configuration values.

The DSPIx_CTAR0–DSPIx_CTAR5 registers hold clock and transfer attributes.The SPI configuration can
select which CTAR to use on a frame by frame basis by setting the CTAS field in the DSPIx_PUSHR.

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by the SOUT_x
and SIN_x signals to form a distributed 32-bit register. When a data transfer operation is performed, data
is serially shifted a pre-determined number of bit positions. Because the registers are linked, data is
exchanged between the master and the slave; the data that was in the master’s shift register is now in the
shift register of the slave, and vice versa. At the end of a transfer, the TCF bit in the DSPIx_SR is set to
indicate a completed transfer. Figure 23-12 illustrates how master and slave data is exchanged.

Offsets: 0x7C–0x88 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-11. DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

Table 23-23. DSPIx_RXFRn field description

Field Description

RXDATA Receive data
Contains the received SPI data.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 495

Figure 23-12. SPI serial protocol overview

The DSPI has six peripheral chip select (CSx) signals that are be used to select which of the slaves to
communicate with.

Transfer protocols and timing properties are shared by the three DSPI configurations; these properties are
described independently of the configuration in Section 23.6.5, Transfer formats. The transfer rate and
delay settings are described in Section 23.6.4, DSPI baud rate and clock delay generation.

See Section 23.6.8, Power saving features, for information on the power-saving features of the DSPI.

23.6.1 Modes of operation

The DSPI modules have the following available distinct modes:

• Master mode

• Slave mode

• Module Disable mode

• Debug mode

Master, slave, and module disable modes are module-specific modes whereas debug mode is
device-specific.

The module-specific modes are determined by bits in the DSPIx_MCR. Debug mode is a mode that the
entire device can enter in parallel with the DSPI being configured in one of its module-specific modes.

23.6.1.1 Master mode

In master mode the DSPI can initiate communications with peripheral devices. The DSPI operates as bus
master when the MSTR bit in the DSPIx_MCR is set. The serial communications clock (SCK) is
controlled by the master DSPI. All three DSPI configurations are valid in master mode.

In SPI configuration, master mode transfer attributes are controlled by the SPI command in the current TX
FIFO entry. The CTAS field in the SPI command selects which of the eight DSPIx_CTARs are used to set
the transfer attributes. Transfer attribute control is on a frame by frame basis.

See Section 23.6.3, Serial peripheral interface (SPI) configuration for more details.

DSPI Master

Shift register

Baud rate generator

DSPI Slave

Shift register
SOUT_xSIN_x

SOUT_x SIN_x

SCK_x SCK_x

CS_x CS0_x

MPC5604B/C Microcontroller Reference Manual, Rev. 8

496 Freescale Semiconductor

23.6.1.2 Slave mode

In slave mode the DSPI responds to transfers initiated by an SPI master. The DSPI operates as bus slave
when the MSTR bit in the DSPIx_MCR is negated. The DSPI slave is selected by a bus master by having
the slave’s CS0_x asserted. In slave mode the SCK is provided by the bus master. All transfer attributes
are controlled by the bus master, except the clock polarity, clock phase and the number of bits to transfer
which must be configured in the DSPI slave to communicate correctly.

23.6.1.3 Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPIx_MCR is set.

See Section 23.6.8, Power saving features, for more details on the module disable mode.

23.6.1.4 Debug mode

The debug mode is used for system development and debugging. If the MCU enters debug mode while the
FRZ bit in the DSPIx_MCR is set, the DSPI stops all serial transfers and enters a stopped state. If the MCU
enters debug mode while the FRZ bit is cleared, the DSPI behavior is unaffected and remains dictated by
the module-specific mode and configuration of the DSPI. The DSPI enters debug mode when a debug
request is asserted by an external controller.

See Figure 23-13 for a state diagram.

23.6.2 Start and stop of DSPI transfers

The DSPI has two operating states: STOPPED and RUNNING. The states are independent of DSPI
configuration. The default state of the DSPI is STOPPED. In the STOPPED state no serial transfers are
initiated in master mode and no transfers are responded to in slave mode. The STOPPED state is also a
safe state for writing the various configuration registers of the DSPI without causing undetermined results.
The TXRXS bit in the DSPIx_SR is cleared in this state. In the RUNNING state, serial transfers take place.
The TXRXS bit in the DSPIx_SR is set in the RUNNING state.

Figure 23-13 shows a state diagram of the start and stop mechanism.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 497

Figure 23-13. DSPI start and stop state diagram

The transitions are described in Table 23-24.

State transitions from RUNNING to STOPPED occur on the next frame boundary if a transfer is in
progress, or on the next system clock cycle if no transfers are in progress.

23.6.3 Serial peripheral interface (SPI) configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer
attributes. The DSPI is in SPI configuration when the DCONF field in the DSPIx_MCR is 0b00. The SPI
frames can be from 4 to 16 bits long. The data to be transmitted can come from queues stored in SRAM
external to the DSPI. Host software can transfer the SPI data from the queues to a first-in first-out (FIFO)
buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer. Host software transfers
the received data from the RX FIFO to memory external to the DSPI.

The FIFO buffer operations are described in Section 23.6.3.4, Transmit First In First Out (TX FIFO)
buffering mechanism, and Section 23.6.3.5, Receive First In First Out (RX FIFO) buffering mechanism.

Table 23-24. State transitions for start and stop of DSPI transfers

Transition
No.

Current state Next state Description

0 RESET STOPPED Generic power-on-reset transition

1 STOPPED RUNNING The DSPI starts (transitions from STOPPED to RUNNING) when all
of the following conditions are true:

 • EOQF bit is clear
 • Debug mode is unselected or the FRZ bit is clear
 • HALT bit is clear

2 RUNNING STOPPED The DSPI stops (transitions from RUNNING to STOPPED) after the
current frame for any one of the following conditions:

 • EOQF bit is set
 • Debug mode is selected and the FRZ bit is set
 • HALT bit is set

RUNNING
TXRXS = 1

STOPPED
TXRXS = 0

RESET

Power-on-Reset 0

1

2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

498 Freescale Semiconductor

The interrupt request conditions are described in Section 23.6.7, Interrupt requests.

The SPI configuration supports two module-specific modes; master mode and slave mode. The FIFO
operations are similar for the master mode and slave mode. The main difference is that in master mode the
DSPI initiates and controls the transfer according to the fields in the SPI command field of the TX FIFO
entry. In slave mode the DSPI only responds to transfers initiated by a bus master external to the DSPI and
the SPI command field of the TX FIFO entry is ignored.

23.6.3.1 SPI Master mode

In SPI master mode the DSPI initiates the serial transfers by controlling the serial communications clock
(SCK_x) and the peripheral chip select (CSx) signals. The SPI command field in the executing TX FIFO
entry determines which CTARs are used to set the transfer attributes and which CSx signal to assert. The
command field also contains various bits that help with queue management and transfer protocol. The data
field in the executing TX FIFO entry is loaded into the shift register and shifted out on the serial out
(SOUT_x) pin. In SPI master mode, each SPI frame to be transmitted has a command associated with it
allowing for transfer attribute control on a frame by frame basis.

See Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR), for details on the SPI command
fields.

23.6.3.2 SPI Slave mode

In SPI slave mode the DSPI responds to transfers initiated by an SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for
successful communication with an SPI master. The SPI slave mode transfer attributes are set in the
DSPIx_CTAR0.

23.6.3.3 FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The TX and RX FIFOs are
disabled separately. The TX FIFO is disabled by writing a ‘1’ to the DIS_TXF bit in the DSPIx_MCR. The
RX FIFO is disabled by writing a ‘1’ to the DIS_RXF bit in the DSPIx_MCR.

The FIFO disable mechanisms are transparent to the user and to host software; transmit data and
commands are written to the DSPIx_PUSHR and received data is read from the DSPIx_POPR. When the
TX FIFO is disabled, the TFFF, TFUF, and TXCTR fields in DSPIx_SR behave as if there is a one-entry
FIFO but the contents of the DSPIx_TXFRs and TXNXTPTR are undefined. When the RX FIFO is
disabled, the RFDF, RFOF, and RXCTR fields in the DSPIx_SR behave as if there is a one-entry FIFO but
the contents of the DSPIx_RXFRs and POPNXTPTR are undefined.

Disable the TX and RX FIFOs only if the FIFO must be disabled as a requirement of the application's
operating mode. A FIFO must be disabled before it is accessed. Failure to disable a FIFO prior to a first
FIFO access is not supported, and can result in incorrect results.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 499

23.6.3.4 Transmit First In First Out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
four entries, each consisting of a command field and a data field. SPI commands and data are added to the
TX FIFO by writing to the DSPI push TX FIFO register (DSPIx_PUSHR). TX FIFO entries can only be
removed from the TX FIFO by being shifted out or by flushing the TX FIFO. For more information on
DSPIx_PUSHR, see Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR).

The TX FIFO counter field (TXCTR) in the DSPI status register (DSPIx_SR) indicates the number of valid
entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data is
transferred into the shift register from the TX FIFO.

See Section 23.5.5, DSPI Status Register (DSPIx_SR) for more information on DSPIx_SR.

The TXNXTPTR field indicates which TX FIFO entry is transmitted during the next transfer. The
TXNXTPTR contains the positive offset from DSPIx_TXFR0 in number of 32-bit registers. For example,
TXNXTPTR equal to two means that the DSPIx_TXFR2 contains the SPI data and command for the next
transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the
shift register.

23.6.3.4.1 Filling the TX FIFO

Host software can add (push) entries to the TX FIFO by writing to the DSPIx_PUSHR. When the TX FIFO
is not full, the TX FIFO fill flag (TFFF) in the DSPIx_SR is set. The TFFF bit is cleared when the TX FIFO
is full or alternatively by host software writing a ‘1’ to the TFFF in the DSPIx_SR. The TFFF then
generates an interrupt request.

See Section 23.6.7.2, Transmit FIFO Fill Interrupt Request (TFFF), for details.

The DSPI ignores attempts to push data to a full TX FIFO; that is, the state of the TX FIFO is unchanged.
No error condition is indicated.

23.6.3.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO counter
is decremented by one. At the end of a transfer, the TCF bit in the DSPIx_SR is set to indicate the
completion of a transfer. The TX FIFO is flushed by writing a ‘1’ to the CLR_TXF bit in DSPIx_MCR.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is
empty, the transmit FIFO underflow flag (TFUF) in the slave’s DSPIx_SR is set.

See Section 23.6.7.4, Transmit FIFO Underflow Interrupt Request (TFUF), for details.

23.6.3.5 Receive First In First Out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four received
SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer when the received data
in the shift register is transferred into the RX FIFO. SPI data is removed (popped) from the RX FIFO by

MPC5604B/C Microcontroller Reference Manual, Rev. 8

500 Freescale Semiconductor

reading the DSPIx_POPR register. RX FIFO entries can only be removed from the RX FIFO by reading
the DSPIx_POPR or by flushing the RX FIFO.

See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on the
DSPIx_POPR.

The RX FIFO counter field (RXCTR) in the DSPI status register (DSPIx_SR) indicates the number of
valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR is read or SPI data is
copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPIx_SR points to the RX FIFO entry that is returned when the
DSPIx_POPR is read. The POPNXTPTR contains the positive, 32-bit word offset from DSPIx_RXFR0.
For example, POPNXTPTR equal to two means that the DSPIx_RXFR2 contains the received SPI data
that is returned when DSPIx_POPR is read. The POPNXTPTR field is incremented every time the
DSPIx_POPR is read. POPNXTPTR rolls over every four frames on the MCU.

23.6.3.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred
to the RX FIFO the RX FIFO counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPIx_SR is set
indicating an overflow condition. Depending on the state of the ROOE bit in the DSPIx_MCR, the data
from the transfer that generated the overflow is ignored or put in the shift register. If the ROOE bit is set,
the incoming data is put in the shift register. If the ROOE bit is cleared, the incoming data is ignored.

23.6.3.5.2 Draining the RX FIFO

Host software can remove (pop) entries from the RX FIFO by reading the DSPIx_POPR. A read of the
DSPIx_POPR decrements the RX FIFO counter by one. Attempts to pop data from an empty RX FIFO are
ignored, the RX FIFO counter remains unchanged. The data returned from reading an empty RX FIFO is
undetermined.

See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on DSPIx_POPR.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPIx_SR is set. The RFDF bit
is cleared when the RX_FIFO is empty; alternatively the RFDF bit can be cleared by the host writing a ‘1’
to it.

23.6.4 DSPI baud rate and clock delay generation

The SCK_x frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option of doubling the baud rate.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 501

Figure 23-14 shows conceptually how the SCK signal is generated.

Figure 23-14. Communications clock prescalers and scalers

23.6.4.1 Baud rate generator

The baud rate is the frequency of the serial communication clock (SCK_x). The system clock is divided
by a baud rate prescaler (defined by DSPIx_CTAR[PBR]) and baud rate scaler (defined by
DSPIx_CTAR[BR]) to produce SCK_x with the possibility of doubling the baud rate. The DBR, PBR, and
BR fields in the DSPIx_CTARs select the frequency of SCK_x using the following formula:

Table 23-25 shows an example of a computed baud rate.

23.6.4.2 CS to SCK delay (tCSC)

The CS_x to SCK_x delay is the length of time from assertion of the CS_x signal to the first SCK_x edge.
See Figure 23-16 for an illustration of the CS_x to SCK_x delay. The PCSSCK and CSSCK fields in the
DSPIx_CTARn registers select the CS_x to SCK_x delay, and the relationship is expressed by the
following formula:

Table 23-26 shows an example of the computed CS to SCK_x delay.

Table 23-25. Baud rate computation example

fSYS PBR Prescaler value BR Scaler value DBR value Baud rate

64 MHz 0b00 2 0b0000 2 0 16 Mbit/s

20 MHz 0b00 2 0b0000 2 1 10 Mbit/s

Table 23-26. CS to SCK delay computation example

PCSSCK Prescaler value CSSCK Scaler value fSYS CS to SCK delay

0b01 3 0b0100 32 64 MHz 1.5 µs

Prescaler
1

Scaler
1 + DBR

System Clock SCK_x

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--¥=

tCSC =
fSYS

CSSCK PCSSCK1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

502 Freescale Semiconductor

23.6.4.3 After SCK delay (tASC)

The after SCK_x delay is the length of time between the last edge of SCK_x and the negation of CS_x. See
Figure 23-16 and Figure 23-17 for illustrations of the after SCK_x delay. The PASC and ASC fields in the
DSPIx_CTARn registers select the after SCK delay. The relationship between these variables is given in
the following formula:

Table 23-27 shows an example of the computed after SCK delay.

23.6.4.4 Delay after transfer (tDT)

The delay after transfer is the length of time between negation of the CSx signal for a frame and the
assertion of the CSx signal for the next frame. The PDT and DT fields in the DSPIx_CTARn registers
select the delay after transfer.

See Figure 23-16 for an illustration of the delay after transfer.

The following formula expresses the PDT/DT/delay after transfer relationship:

Table 23-28 shows an example of the computed delay after transfer.

23.6.4.5 Peripheral chip select strobe enable (CS5_x)

The CS5_x signal provides a delay to allow the CSx signals to settle after transitioning thereby avoiding
glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPIx_MCR, CS5_x provides a
signal for an external demultiplexer to decode the CS4_x signals into as many as 32 glitch-free CSx
signals.

Table 23-27. After SCK delay computation example

PASC Prescaler value ASC Scaler value fSYS After SCK delay

0b01 3 0b0100 32 64 MHz 1.5 µs

Table 23-28. Delay after transfer computation example

PDT Prescaler value DT Scaler value fSYS Delay after transfer

0b01 3 0b1110 32768 64 MHz 1.54 ms

tASC =
fSYS

ASC PASC1

 tDT =
 fSYS

DT PDT
1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 503

Figure 23-15 shows the timing of the CS5_x signal relative to CS signals.

Figure 23-15. Peripheral chip select strobe timing

The delay between the assertion of the CSx signals and the assertion of CS5_x is selected by the PCSSCK
field in the DSPIx_CTAR based on the following formula:

At the end of the transfer the delay between CS5_x negation and CSx negation is selected by the PASC
field in the DSPIx_CTAR based on the following formula:

Table 23-29 shows an example of the computed tPCSSCK delay.

Table 23-30 shows an example of the computed the tPASC delay.

23.6.5 Transfer formats

The SPI serial communication is controlled by the serial communications clock (SCK_x) signal and the
CSx signals. The SCK_x signal provided by the master device synchronizes shifting and sampling of the
data by the SIN_x and SOUT_x pins. The CSx signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer attributes
registers (DSPIx_CTARn) select the polarity and phase of the serial clock, SCK_x. The polarity bit selects

Table 23-29. Peripheral chip select strobe assert computation example

PCSSCK Prescaler fSYS Delay before transfer

0b11 7 64 MHz 109.4 ns

Table 23-30. Peripheral chip select strobe negate computation example

PASC Prescaler fSYS Delay after transfer

0b11 7 64 MHz 109.4 ns

CS5_x

CSx

tPCSSCK tPASC

 tPCSSCK = PCSSCK
fSYS

1

 tPASC = PASC
fSYS

1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

504 Freescale Semiconductor

the idle state of the SCK_x. The clock phase bit selects if the data on SOUT_x is valid before or on the first
SCK_x edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPIx_CTAR0 (SPI slave mode) select the
polarity and phase of the serial clock. Even though the bus slave does not control the SCK signal, clock
polarity, clock phase and number of bits to transfer must be identical for the master device and the slave
device to ensure proper transmission.

The DSPI supports four different transfer formats:

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified transfer format with CPHA = 0

• Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle
to give the peripheral more setup time. The MTFE bit in the DSPIx_MCR selects between classic SPI
format and modified transfer format. The classic SPI formats are described in Section 23.6.5.1, Classic SPI
transfer format (CPHA = 0) and Section 23.6.5.2, Classic SPI transfer format (CPHA = 1). The modified
transfer formats are described in Section 23.6.5.3, Modified SPI transfer format (MTFE = 1, CPHA = 0)
and Section 23.6.5.4, Modified SPI transfer format (MTFE = 1, CPHA = 1).

In the SPI configuration, the DSPI provides the option of keeping the CS signals asserted between frames.
See Section 23.6.5.5, Continuous selection format for details.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 505

23.6.5.1 Classic SPI transfer format (CPHA = 0)

The transfer format shown in Figure 23-16 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample their
SIN_x pins on the odd-numbered SCK_x edges and change the data on their SOUT_x pins on the
even-numbered SCK_x edges.

Figure 23-16. DSPI transfer timing diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUT_x pin and asserting the
appropriate peripheral chip select signals to the slave device. The slave responds by placing its first data
bit on its SOUT_x pin. After the tCSC delay has elapsed, the master outputs the first edge of SCK_x. This
is the edge used by the master and slave devices to sample the first input data bit on their serial data input
signals. At the second edge of the SCK_x the master and slave devices place their second data bit on their
serial data output signals. For the rest of the frame the master and the slave sample their SIN_x pins on the
odd-numbered clock edges and changes the data on their SOUT_x pins on the even-numbered clock edges.
After the last clock edge occurs a delay of tASC is inserted before the master negates the CS signals. A
delay of tDT is inserted before a new frame transfer can be initiated by the master.

For the CPHA = 0 condition of the master, TCF and EOQF are set and the RXCTR counter is updated at
the next to last serial clock edge of the frame (edge 15) of Figure 23-16.

For the CPHA = 0 condition of the slave, TCF is set and the RXCTR counter is updated at the last serial
clock edge of the frame (edge 16) of Figure 23-16.

SCK
(CPOL = 0)

PCSx / SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT /
Slave SIN

Master SIN /
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = CSCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

MPC5604B/C Microcontroller Reference Manual, Rev. 8

506 Freescale Semiconductor

23.6.5.2 Classic SPI transfer format (CPHA = 1)

This transfer format shown in Figure 23-17 is used to communicate with peripheral SPI slave devices that
require the first SCK_x edge before the first data bit becomes available on the slave SOUT_x pin. In this
format the master and slave devices change the data on their SOUT_x pins on the odd-numbered SCK_x
edges and sample the data on their SIN_x pins on the even-numbered SCK_x edges.

Figure 23-17. DSPI transfer timing diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the CSx signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCK_x edge and at the same time places valid data on the master SOUT_x
pin. The slave responds to the first SCK_x edge by placing its first data bit on its slave SOUT_x pin.

At the second edge of the SCK_x the master and slave sample their SIN_x pins. For the rest of the frame
the master and the slave change the data on their SOUT_x pins on the odd-numbered clock edges and
sample their SIN_x pins on the even-numbered clock edges. After the last clock edge occurs a delay of
tASC is inserted before the master negates the CSx signal. A delay of tDT is inserted before a new frame
transfer can be initiated by the master.

For CPHA = 1 the master EOQF and TCF and slave TCF are set at the last serial clock edge (edge 16) of
Figure 23-17. For CPHA = 1 the master and slave RXCTR counters are updated on the same clock edge.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

PCSx / SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = CS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last SCK edge of frame (edge 16)

16

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 507

23.6.5.3 Modified SPI transfer format (MTFE = 1, CPHA = 0)

In this modified transfer format both the master and the slave sample later in the SCK period than in classic
SPI mode to allow for delays in device pads and board traces. These delays become a more significant
fraction of the SCK period as the SCK period decreases with increasing baud rates.

NOTE
For the modified transfer format to operate correctly, you must thoroughly
analyze the SPI link timing budget.

The master and the slave place data on the SOUT_x pins at the assertion of the CSx signal. After the CSx
to SCK_x delay has elapsed the first SCK_x edge is generated. The slave samples the master SOUT_x
signal on every odd numbered SCK_x edge. The slave also places new data on the slave SOUT_x on every
odd numbered clock edge.

The master places its second data bit on the SOUT_x line one system clock after odd numbered SCK_x
edge. The point where the master samples the slave SOUT_x is selected by writing to the SMPL_PT field
in the DSPIx_MCR. Table 23-31 lists the number of system clock cycles between the active edge of
SCK_x and the master sample point for different values of the SMPL_PT bit field. The master sample point
can be delayed by one or two system clock cycles.

Table 23-31. Delayed master sample point

SMPL_PT
Number of system clock cycles between odd-numbered edge of SCK and

sampling of SIN

00 0

01 1

10 2

11 Invalid value

MPC5604B/C Microcontroller Reference Manual, Rev. 8

508 Freescale Semiconductor

Figure 23-18 shows the modified transfer format for CPHA = 0. Only the condition where CPOL = 0 is
illustrated. The delayed master sample points are indicated with a lighter shaded arrow.

Figure 23-18. DSPI modified transfer format (MTFE = 1, CPHA = 0, fSCK = fSYS / 4)

23.6.5.4 Modified SPI transfer format (MTFE = 1, CPHA = 1)

At the start of a transfer the DSPI asserts the CS signal to the slave device. After the CS to SCK delay has
elapsed the master and the slave put data on their SOUT pins at the first edge of SCK. The slave samples
the master SOUT signal on the even numbered edges of SCK. The master samples the slave SOUT signal
on the odd numbered SCK edges starting with the third SCK edge. The slave samples the last bit on the
last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after the last edge
of SCK. No clock edge is visible on the master SCK pin during the sampling of the last bit. The SCK to
CS delay must be greater or equal to half of the SCK period.

NOTE
For the modified transfer format to operate correctly, you must thoroughly
analyze the SPI link timing budget.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

CSx

tASC

SCK

Master sample

Slave SOUT

Master SOUT

System clock
System clock

Slave sample

tCSC

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 509

Figure 23-19 shows the modified transfer format for CPHA = 1. Only the condition where CPOL = 0 is
described.

Figure 23-19. DSPI modified transfer format (MTFE = 1, CPHA = 1, fSCK = fSYS / 4)

23.6.5.5 Continuous selection format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The continuous selection format provides the flexibility to
handle both cases. The continuous selection format is enabled for the SPI configuration by setting the
CONT bit in the SPI command.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states in between
frames. The idle states of the chip select signals are selected by the PCSIS field in the DSPIx_MCR.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

CS

tASC

SCK

Master sample

Master SOUT

Slave SOUT

Slave sample

tCSC

MPC5604B/C Microcontroller Reference Manual, Rev. 8

510 Freescale Semiconductor

Figure 23-20 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 0.

Figure 23-20. Example of non-continuous format (CPHA = 1, CONT = 0)

When the CONT = 1 and the CS signal for the next transfer is the same as for the current transfer, the CS
signal remains asserted for the duration of the two transfers. The delay between transfers (tDT) is not
inserted between the transfers.

Figure 23-21 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 1.

Figure 23-21. Example of continuous transfer (CPHA = 1, CONT = 1)

In Figure 23-21, the period length at the start of the next transfer is the sum of tASC and tCSC; that is, it
does not include a half-clock period. The default settings for these provide a total of four system clocks.
In many situations, tASC and tCSC must be increased if a full half-clock period is required.

Switching CTARs between frames while using continuous selection can cause errors in the transfer. The
CS signal must be negated before CTAR is switched.

SCK
(CPOL = 0)

CSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

CS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.

Master SIN

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 511

When the CONT bit = 1 and the CS signals for the next transfer are different from the present transfer, the
CS signals behave as if the CONT bit was not set.

NOTE
You must fill the TXFIFO with the number of entries that will be
concatenated together under one PCS assertion for both master and slave
before the TXFIFO becomes empty. For example; while transmitting in
master mode, ensure that the last entry in the TXFIFO, after which TXFIFO
becomes empty, has CONT = 0 in the command frame.

When operating in slave mode, ensure that when the last-entry in the
TXFIFO is completely transmitted (i.e. the corresponding TCF flag is
asserted and TXFIFO is empty) the slave is deselected for any further serial
communication; otherwise, an underflow error occurs.

23.6.5.6 Clock polarity switching between DSPI transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated by the change
in the idle state of the clock occurs one system clock before the assertion of the chip select for the next
frame.

See Section 23.5.4, DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn).

In Figure 23-22, time ‘A’ shows the one clock interval. Time ‘B’ is user programmable from a minimum
of two system clocks.

Figure 23-22. Polarity switching between frames

23.6.6 Continuous serial communications clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPIx_MCR. Continuous SCK is valid
in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 is ignored if the CONT_SCKE bit is
set. Continuous SCK is supported for modified transfer format.

CS

System clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B

MPC5604B/C Microcontroller Reference Manual, Rev. 8

512 Freescale Semiconductor

Clock and transfer attributes for the continuous SCK mode are set according to the following rules:

• The TX FIFO must be cleared before initiating any SPI configuration transfer.

• When the DSPI is in SPI configuration, CTAR0 is used initially. At the start of each SPI frame
transfer, the CTAR specified by the CTAS for the frame should be CTAR0.

• In all configurations, the currently selected CTAR remains in use until the start of a frame with a
different CTAR specified, or the continuous SCK mode is terminated.

The device is designed to use the same baud rate for all transfers made while using the continuous SCK.
Switching clock polarity between frames while using continuous SCK can cause errors in the transfer.
Continuous SCK operation is not guaranteed if the DSPI is put into module disable mode.

Enabling continuous SCK disables the CS to SCK delay and the After SCK delay. The delay after transfer
is fixed at one SCK cycle. Figure 23-23 shows timing diagram for continuous SCK format with continuous
selection disabled.

NOTE
When in Continuous SCK mode, always use CTAR0 for the SPI transfer,
and clear the TXFIFO using the MCR[CLR_TXF] field before initiating
transfer.

Figure 23-23. Continuous SCK timing diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set, CS remains asserted between the transfers when the CS signal
for the next transfer is the same as for the current transfer. Figure 23-24 shows timing diagram for
continuous SCK format with continuous selection enabled.

SCK
(CPOL = 0)

CS

SCK
(CPOL = 1)

Master SOUT

tDT
tDT = 1 SCK

Master SIN

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 513

Figure 23-24. Continuous SCK timing diagram (CONT=1)

SCK
(CPOL = 0)

CS

SCK
(CPOL = 1)

Master SOUT

Master SIN

Transfer 1 Transfer 2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

514 Freescale Semiconductor

23.6.7 Interrupt requests

The DSPI has five conditions that can generate interrupt requests.

Table 23-32 lists the five conditions.

Each condition has a flag bit and a request enable bit. The flag bits are described in the Section 23.5.5,
DSPI Status Register (DSPIx_SR) and the request enable bits are described in the Section 23.5.6, DSPI
Interrupt Request Enable Register (DSPIx_RSER). The TX FIFO fill flag (TFFF) and RX FIFO drain flag
(RFDF) generate interrupt requests depending on the TFFF_DIRS and RFDF_DIRS bits in the
DSPIx_RSER.

23.6.7.1 End of Queue Interrupt Request (EOQF)

The end of queue request indicates that the end of a transmit queue is reached. The end of queue request
is generated when the EOQ bit in the executing SPI command is asserted and the EOQF_RE bit in the
DSPIx_RSER is set. See the EOQ bit description in Section 23.5.5, DSPI Status Register (DSPIx_SR). See
Figure 23-16 and Figure 23-17 that illustrate when EOQF is set.

23.6.7.2 Transmit FIFO Fill Interrupt Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the TFFF_RE bit in the DSPIx_RSER is set. The TFFF_DIRS bit in the DSPIx_RSER is used to
generate an interrupt request.

23.6.7.3 Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The transfer complete
request is generated at the end of each frame transfer when the TCF_RE bit is set in the DSPIx_RSER. See
the TCF bit description in Section 23.5.5, DSPI Status Register (DSPIx_SR). See Figure 23-16 and
Figure 23-17 that illustrate when TCF is set.

Table 23-32. Interrupt request conditions

Condition Flag

End of transfer queue has been reached (EOQ) EOQF

Current frame transfer is complete TCF

TX FIFO underflow has occurred TFUF

RX FIFO overflow occurred RFOF

A FIFO overrun occurred1

1 The FIFO overrun condition is created by ORing the TFUF and RFOF flags together.

TFUF ORed with RFOF

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 515

23.6.7.4 Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI modules operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in slave mode and SPI
configuration is empty, and a transfer is initiated from an external SPI master. If the TFUF bit is set while
the TFUF_RE bit in the DSPIx_RSER is set, an interrupt request is generated.

23.6.7.5 Receive FIFO Drain Interrupt Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO drain request
is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the
DSPIx_RSER is set. The RFDF_DIRS bit in the DSPIx_RSER is used to generate an interrupt request.

23.6.7.6 Receive FIFO Overflow Interrupt Request (RFOF)

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has occurred. A
receive FIFO overflow request is generated when RX FIFO and shift register are full and a transfer is
initiated. The RFOF_RE bit in the DSPIx_RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPIx_MCR, the data from the transfer that generated the
overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is
shifted in to the shift register. If the ROOE bit is negated, the incoming data is ignored.

23.6.7.7 FIFO Overrun Request (TFUF) or (RFOF)

The FIFO overrun request indicates that at least one of the FIFOs in the DSPI has exceeded its capacity.
The FIFO overrun request is generated by logically OR’ing together the RX FIFO overflow and TX FIFO
underflow signals.

23.6.8 Power saving features

The DSPI supports the following power-saving strategies:

• Module disable mode—clock gating of non-memory mapped logic

• Clock gating of slave interface signals and clock to memory-mapped logic

23.6.8.1 Module Disable mode

Module disable mode is a module-specific mode that the DSPI can enter to save power. Host software can
initiate the module disable mode by writing a ‘1’ to the MDIS bit in the DSPIx_MCR. In module disable
mode, the DSPI is in a dormant state, but the memory mapped registers are still accessible. Certain read
or write operations have a different affect when the DSPI is in the module disable mode. Reading the RX
FIFO pop register does not change the state of the RX FIFO. Likewise, writing to the TX FIFO push
register does not change the state of the TX FIFO. Clearing either of the FIFOs does not have any effect
in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPIx_MCR does not
have any affect in the module disable mode. In the module disable mode, all status bits and register flags
in the DSPI return the correct values when read, but writing to them has no affect. Writing to the

MPC5604B/C Microcontroller Reference Manual, Rev. 8

516 Freescale Semiconductor

DSPIx_TCR during module disable mode does not have an effect. Interrupt request signals cannot be
cleared while in the module disable mode.

23.6.8.2 Slave interface signal gating

The DSPI module enable signal is used to gate slave interface signals such as address, byte enable,
read/write and data. This prevents toggling slave interface signals from consuming power unless the DSPI
is accessed.

23.7 Initialization and application information

23.7.1 How to change queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of queue
management. Queues are primarily supported in SPI configuration. This section presents an example of
how to change queues for the DSPI.

1. The last command word from a queue is executed. The EOQ bit in the command word is set to
indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ
flag (EOQF) in the DSPIx_SR is set.

3. The setting of the EOQF flag disables both serial transmission, and serial reception of data, putting
the DSPI in the STOPPED state. The TXRXS bit is negated to indicate the STOPPED state.

4. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the
RXCNT in DSPIx_SR or by checking RFDF in the DSPIx_SR after each read operation of the
DSPIx_POPR.

5. Flush TX FIFO by writing a ‘1’ to the CLR_TXF bit in the DSPIx_MCR register and flush the RX
FIFO by writing a ‘1’ to the CLR_RXF bit in the DSPIx_MCR register.

6. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new
queue or via CPU writing directly to SPI_TCNT field in the DSPIx_TCR.

7. Enable serial transmission and serial reception of data by clearing the EOQF bit.

23.7.2 Baud rate settings

Table 23-33 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPIx_CTARs. The values are calculated at a 64 MHz system
frequency.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 517

Table 23-33. Baud rate values

Baud rate divider prescaler values
(DSPI_CTAR[PBR])

2 3 5 7
B

au
d

 r
at

e
sc

al
er

 v
al

u
es

 (
D

S
P

I_
C

TA
R

[B
R

])

2 16.0 MHz 10.7 MHz 6.4 MHz 4.57 MHz

4 8 MHz 5.33 MHz 3.2 MHz 2.28 MHz

6 5.33 MHz 3.56 MHz 2.13 MHz 1.52 MHz

8 4 MHz 2.67 MHz 1.60 MHz 1.15 MHz

16 2 MHz 1.33 MHz 800 kHz 571 kHz

32 1 MHz 670 kHz 400 kHz 285 kHz

64 500 kHz 333 kHz 200 kHz 142 kHz

128 250 kHz 166 kHz 100 kHz 71.7 kHz

256 125 kHz 83.2 kHz 50 kHz 35.71 kHz

512 62.5 kHz 41.6 kHz 25 kHz 17.86 kHz

1024 31.2 kHz 20.8 kHz 12.5 kHz 8.96 kHz

2048 15.6 kHz 10.4 kHz 6.25 kHz 4.47 kHz

4096 7.81 kHz 5.21 kHz 3.12 kHz 2.23 kHz

8192 3.90 kHz 2.60 kHz 1.56 kHz 1.11 kHz

16384 1.95 kHz 1.31 kHz 781 Hz 558 Hz

32768 979 Hz 653 Hz 390 Hz 279 Hz

MPC5604B/C Microcontroller Reference Manual, Rev. 8

518 Freescale Semiconductor

23.7.3 Delay settings

Table 23-34 shows the values for the delay after transfer (tDT) that can be generated based on the prescaler
values and the scaler values set in the DSPIx_CTARs. The values calculated assume a 64 MHz system
frequency.

23.7.4 Calculation of FIFO pointer addresses

The user has complete visibility of the TX and RX FIFO contents through the FIFO registers, and valid
entries can be identified through a memory mapped pointer and a memory mapped counter for each FIFO.
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is
the transmit next pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the pop next pointer
(POPNXTPTR).

Table 23-34. Delay values

Delay prescaler values (DSPI_CTAR[PDT])

1 3 5 7

D
el

ay
 s

ca
le

r
va

lu
es

 (
D

S
P

I_
C

TA
R

[D
T

])

2 31.25 ns 93.75 ns 156.25 ns 218.75 ns

4 62.5 ns 187.5 ns 312.5 ns 437.5 ns

8 125 ns 375 ns 625 ns 875 ns

16 250 ns 750 ns 1.25 µs 1.75 µs

32 0.5 µs 1.5 µs 2.5 µs 3.5 µs

64 1 µs 3 µs 5 µs 7 µs

128 2 µs 6 µs 10 µs 14 µs

256 4 µs 12 µs 20 µs 28 µs

512 8 µs 24 µs 40 µs 56 µs

1024 16 µs 48 µs 80 µs 112 µs

2048 32 µs 96 µs 160 µs 224 µs

4096 64 µs 192 µs 320 µs 448 µs

8192 128 µs 384 µs 640 µs 896 µs

16384 256 µs 768 µs 1.28 ms 1.79 ms

32768 512 µs 1.54 ms 2.56 ms 3.58 ms

65536 1.02 ms 3.07 ms 5.12 ms 7.17 ms

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 519

See Section 23.6.3.4, Transmit First In First Out (TX FIFO) buffering mechanism, and Section 23.6.3.5,
Receive First In First Out (RX FIFO) buffering mechanism, for details on the FIFO operation. The TX
FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO.

Figure 23-25 illustrates the concept of first-in and last-in FIFO entries along with the FIFO counter.

Figure 23-25. TX FIFO pointers and counter

23.7.4.1 Address calculation for the first-in entry and last-in
entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in entry address = TXFIFO base + 4 (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-in entry address = TXFIFO base + 4 x [(TXCTR + TXNXTPTR - 1) modulo TXFIFO depth]

where:
TXFIFO base = base address of transmit FIFO

TXCTR = transmit FIFO counter

TXNXTPTR = transmit next pointer

TX FIFO depth = transmit FIFO depth, implementation specific

23.7.4.2 Address calculation for the first-in entry and last-in
entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in entry address = RXFIFO base + 4 x (POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Last-in entry address = RXFIFO base + 4 x [(RXCTR + POPNXTPTR - 1) modulo RXFIFO depth]

Entry C

Entry A (first in)

– 1

Entry B

Entry D (last in)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

520 Freescale Semiconductor

where:
RXFIFO base = base address of receive FIFO

RXCTR = receive FIFO counter

POPNXTPTR = pop next pointer

RX FIFO depth = receive FIFO depth, implementation specific

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 521

——— Timers ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

522 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 523

Chapter 24
Timers

24.1 Introduction
This chapter describes the timer modules implemented on the microcontroller:

• System Timer Module (STM)

• Enhanced Modular IO Subsystem (eMIOS)

• Periodic Interrupt Timer (PIT)

The microcontroller also has a Real Time Clock / Autonomous Periodic Interrupt (RTC/API) module. The
main purpose of this is to provide a periodic device wakeup source.

24.2 Technical overview
This section gives a technical overview of each of the timers as well as detailing the pins that can be used
to access the timer peripherals if applicable.

Figure 24-1 details the interaction between the timers and the eDMA, INTC, CTU, and ADC.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

524 Freescale Semiconductor

Figure 24-1. Interaction between timers and relevant peripherals

INTC

eMIOS 0 CTU

eMIOS0
CH[0..22, 24]

eMIOS 1

Trigger
[0..22, 24]

Trigger
[32..54, 56]

PIT

Trigger [23]
PIT_CH[3]

eMIOS1
CH[0..22, 24]

CH[0..27]

CH[0..27]

IRQ[141..154]
eMIOS0

CH[0..27]*

IRQ[157..170]
eMIOS1

CH[0..27]*

IRQ[59..61,
127..129]

PIT[0..2, 3..5]

PIT[0..5]

ADC 0

(10-bit)

24

24

1

14

14

6

PIT_CH[2]

PIT Trigger for INJECTED ADC Conversions

1

CTU triggers for
all ADC channels

Single ADC
conversion per
CTU channel

Note*

There are 14 interrupt requests from the eMIOS to the INTC. eMIOS
channels are routed to the interrupt controller in pairs for example
CH[0,1] CH[2,3]

STM

CH[0..3]

IRQ[30..33]
STM_CH[0..3]4

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 525

24.2.1 Overview of the STM

The STM is a 32-bit free running up-counter clocked by the system clock with a configurable 8-bit clock
pre-scaler (divide by 1 to 256). The counter is disabled out of reset and must therefore be enabled by
software prior to use. The counter value can be read at any time.

The STM has four 32-bit compare channels. Each channel can generate a unique interrupt on an exact
match event with the free running counter.

The STM is often used to analyse code execution times. By starting the STM and reading the timer before
and after a task or function, you can make an accurate measurement of the time taken in clock cycles to
perform the task.

The STM can be configured to stop (freeze) or continue to run in debug mode and is available for use in
all operating mode where the system clock is present (not STANDBY or certain STOP mode
configurations)

There are no external pins associated with the STM.

24.2.2 Overview of the eMIOS

Each eMIOS offers a combination of PWM, Output Capture and Input Compare functions. There are
different types of channel implemented and not every channel supports every eMIOS function. The
channel functionality also differs between each eMIOS module. See Section 24.4, Enhanced Modular IO
Subsystem (eMIOS), for more details.

Each channel has its own independent 16-bit counter. To allow synchronization between channels, there
are a number of shared counter busses that can be used as a common timing reference. These counter buses
can be used in combination with the individual channel counters to provide advanced features such as
centre aligned PWM with dead time insertion.

Once configured, the eMIOS needs very little CPU intervention. Interrupts, eDMA requests and CTU
trigger requests can be raised based on eMIOS flag and timeout events.

The eMIOS is clocked from the system clock via peripheral clock group 3 (with a maximum permitted
clock frequency of 64 MHz). The eMIOS can be used in all modes where the system clock is available
(which excludes STANDBY mode and STOP mode when the system clock is turned off). The eMIOS has
an option to allow the eMIOS counters to freeze or to continue running in debug mode.

The CTU allows an eMIOS event to trigger a single ADC conversion via the CTU without any CPU
intervention. Without the CTU, the eMIOS would have to trigger an interrupt request. The respective ISR
would then perform a software triggered ADC conversion. This not only uses CPU resource, but also
increases the latency between the eMIOS event and the ADC trigger.

The eMIOS "Output Pulse Width Modulation with Trigger" mode (see Section 24.4.4.1.1.12, Output Pulse
Width Modulation with Trigger (OPWMT) mode) allows a customisable trigger point to be defined at any
point in the waveform period. This is extremely useful for LED lighting applications where the trigger can
be set to a point where the PWM output is high but after the initial inrush current to the LED has occurred.
The PWM trigger can then cause the CTU to perform a single ADC conversion which in turn measures
the operating conditions of the LED to ensure it is working within specification. A watchdog feature on

MPC5604B/C Microcontroller Reference Manual, Rev. 8

526 Freescale Semiconductor

the ADC allows channels to be monitored and if the results fall outwith a specific range an interrupt is
triggered. This means that all of the measurement is without CPU intervention if the results are within
range.

To make it easier to plan which pins to use for the eMIOS, Table 24-1 and Table 24-2 show the eMIOS
channel numbers that are available on each pin. The color shading matches the channel configuration
diagram in the eMIOS section.

Table 24-1. eMIOS_0 channel to pin mapping

Channel
Pin function

Channel
Pin function

ALT1 ALT2 ALT3 ALT1 ALT2 ALT3

UC[0] PA[0] UC[16] PE[0]

UC[1] PA[1] UC[17] PE[1]

UC[2] PA[2] UC[18] PE[2]

UC[3] PA[3], PB[11] UC[19] PE[3]

UC[4] PA[4], PB[12] UC[20] PE[4]

UC[5] PA[5], PB[13] UC[21] PE[5]

UC[6] PA[6], PB[14] UC[22] PE[6], PF[5] PE[8]

UC[7] PA[7], PB[15] UC[23] PE[7], PF[6] PE[9]

UC[8] PA[8] UC[24] PG[10] PD[12]

UC[9] PA[9] UC[25] PG[11] PD[13]

UC[10] PA[10], PF[0] UC[26] PG[12] PD[14]

UC[11] PA[11], PF[1] UC[27] PG[13] PD[15]

UC[12] PC[12], PF[2]

UC[13] PC[13], PF[3]

UC[14] PC[14], PF[4]

UC[15] PC[15]

Table 24-2. eMIOS_1 channel to pin mapping

Channel
Pin function

Channel
Pin function

ALT1 ALT2 ALT3 ALT1 ALT2 ALT3

UC[0] PG[14] UC[16] PG[7]

UC[1] PG[15] UC[17] PG[8]

UC[2] PH[0] UC[18] PG[9]

UC[3] PH[1] UC[19] PE[12]

UC[4] PH[2] UC[20] PE[13]

UC[5] PH[3] PH[11] UC[21] PE[14]

UC[6] PH[4] UC[22] PE[15]

UC[7] PH[5] UC[23] PG[0]

UC[8] PH[6] UC[24] PG[1]

UC[9] PH[7] UC[25] PF[12]

UC[10] PH[8] UC[26] PF[13]

UC[11] PG[2] UC[27] PF[14]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 527

24.2.3 Overview of the PIT

The PIT module consists of 6 Periodic Interrupt Timers (PITs) clocked from the system clock.

Out of reset, the PITis disabled. There is a global disable control bit for all of the PIT timers. Before using
the timers, software must clear the appropriate disabled bit. Each of the PIT timers are effectively
standalone entities and each have their own timer and control registers.

The PIT timers are 32-bit count down timers. To use them, you must first program an initial value into the
LDVAL register. The timer will then start to count down and can be read at any time. Once the timer
reaches 0x0000_0000, a flag is set and the previous value is automatically re-loaded into the LDVAL
register and the countdown starts again. The flag event can be routed to a dedicated INTC interrupt if
desired.

The PIT is also used to trigger other events:

• 1 PIT channels can be used to trigger a CTU ADC conversion (single)

• 1 PIT channel can be used to directly trigger injected conversions on the ADC

The timers can be configured to stop (freeze) or to continue to run in debug mode. The PITis available in
all modes where a system clock is generated.

There are no external pins associated with the PIT.

24.3 System Timer Module (STM)

24.3.1 Introduction

24.3.1.1 Overview

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel. The counter is driven by the system clock
divided by an 8-bit prescale value (1 to 256).

24.3.1.2 Features

The STM has the following features:

UC[12] PG[3]

UC[13] PG[4]

UC[14] PG[5]

UC[15] PG[6]

Table 24-2. eMIOS_1 channel to pin mapping (continued)

Channel
Pin function

Channel
Pin function

ALT1 ALT2 ALT3 ALT1 ALT2 ALT3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

528 Freescale Semiconductor

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels

• Independent interrupt source for each channel

• Counter can be stopped in debug mode

24.3.1.3 Modes of operation

The STM supports two device modes of operation: normal and debug. When the STM is enabled in normal
mode, its counter runs continuously. In debug mode, operation of the counter is controlled by the FRZ bit
in the STM_CR register. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it continues
to run.

24.3.2 External signal description

The STM does not have any external interface signals.

24.3.3 Memory map and register definition

The STM programming model has fourteen 32-bit registers. The STM registers can only be accessed using
32-bit (word) accesses. Attempted references using a different size or to a reserved address generates a bus
error termination.

24.3.3.1 Memory map

The STM memory map is shown in Table 24-3.

Table 24-3. STM memory map

Base address: 0xFFF3_C000

Address offset Register Location

0x0000 STM Control Register (STM_CR) on page 529

0x0004 STM Counter Value (STM_CNT) on page 530

0x0008–0x000C Reserved

0x0010 STM Channel 0 Control Register (STM_CCR0) on page 530

0x0014 STM Channel 0 Interrupt Register (STM_CIR0) on page 531

0x0018 STM Channel 0 Compare Register (STM_CMP0) on page 531

0x001C Reserved

0x0020 STM Channel 1 Control Register (STM_CCR1) on page 530

0x0024 STM Channel 1 Interrupt Register (STM_CIR1) on page 531

0x0028 STM Channel 1 Compare Register (STM_CMP1) on page 531

0x002C Reserved

0x0030 STM Channel 2 Control Register (STM_CCR2) on page 530

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 529

24.3.3.2 Register descriptions

The following sections detail the individual registers within the STM programming model.

24.3.3.2.1 STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control and timer enable bits.

0x0034 STM Channel 2 Interrupt Register (STM_CIR2) on page 531

0x0038 STM Channel 2 Compare Register (STM_CMP2) on page 531

0x003C Reserved

0x0040 STM Channel 3 Control Register (STM_CCR3) on page 530

0x0044 STM Channel 3 Interrupt Register (STM_CIR3) on page 531

0x0048 STM Channel 3 Compare Register (STM_CMP3) on page 531

0x004C–0x3FFF Reserved

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-2. STM Control Register (STM_CR)

Table 24-4. STM_CR field descriptions

Field Description

CPS Counter Prescaler. Selects the clock divide value for the prescaler (1 - 256).
0x00 = Divide system clock by 1
0x01 = Divide system clock by 2
...
0xFF = Divide system clock by 256

Table 24-3. STM memory map (continued)

Base address: 0xFFF3_C000

Address offset Register Location

MPC5604B/C Microcontroller Reference Manual, Rev. 8

530 Freescale Semiconductor

24.3.3.2.2 STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

24.3.3.2.3 STM Channel Control Register (STM_CCRn)

The STM Channel Control Register (STM_CCRn) has the enable bit for channel n of the timer.

FRZ Freeze. Allows the timer counter to be stopped when the device enters debug mode.
0 = STM counter continues to run in debug mode.
1 = STM counter is stopped in debug mode.

TEN Timer Counter Enabled.
0 = Counter is disabled.
1 = Counter is enabled.

Offset: 0x004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0

Figure 24-3. STM Count Register (STM_CNT)

Table 24-5. STM_CNT field descriptions

Field Description

CNT Timer count value used as the time base for all channels. When enabled, the counter increments at the
rate of the system clock divided by the prescale value.

Offset: 0x10+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-4. STM Channel Control Register (STM_CCRn)

Table 24-4. STM_CR field descriptions

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 531

24.3.3.2.4 STM Channel Interrupt Register (STM_CIRn)

The STM Channel Interrupt Register (STM_CIRn) has the interrupt flag for channel n of the timer.

24.3.3.2.5 STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

Table 24-6. STM_CCRn field descriptions

Field Description

CEN Channel Enable.
0 = The channel is disabled.
1 = The channel is enabled.

Offset: 0x14+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-5. STM Channel Interrupt Register (STM_CIRn)

Table 24-7. STM_CIRn field descriptions

Field Description

CIF Channel Interrupt Flag
0 = No interrupt request.
1 = Interrupt request due to a match on the channel.

Offset: 0x18+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0

Figure 24-6. STM Channel Compare Register (STM_CMPn)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

532 Freescale Semiconductor

24.3.4 Functional description

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all channels. When
enabled, the counter increments at the system clock frequency divided by a prescale value. The
STM_CR[CPS] field sets the divider to any value in the range from 1 to 256. The counter is enabled with
the STM_CR[TEN] bit. When enabled in normal mode the counter continuously increments. When
enabled in debug mode the counter operation is controlled by the STM_CR[FRZ] bit. When the
STM_CR[FRZ] bit is set, the counter is stopped in debug mode, otherwise it continues to run in debug
mode. The counter rolls over at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control register
(STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare register (STM_CMPn).
The channel is enabled by setting the STM_CCRn[CEN] bit. When enabled, the channel will set the
STM_CIR[CIF] bit and generate an interrupt request when the channel compare register matches the timer
counter. The interrupt request is cleared by writing a 1 to the STM_CIRn[CIF] bit. A write of 0 to the
STM_CIRn[CIF] bit has no effect.

NOTE
STM counter does not advance when the system clock is stopped.

24.4 Enhanced Modular IO Subsystem (eMIOS)

24.4.1 Introduction

24.4.1.1 Overview of the eMIOS module

The eMIOS provides functionality to generate or measure time events. The eMIOS uses timer channels
that are reduced versions of the unified channel (UC) module used on MPC555x devices. Each channel
provides a subset of the functionality available in the unified channel, at a resolution of 16 bits, and
provides a user interface that is consistent with previous eMIOS implementations.

24.4.1.2 Features of the eMIOS module

• 2 eMIOS blocks with 28 channels each

— 50 channels with OPWMT, which can be connected to the CTU

— 6 channels with single action IC/OC

Table 24-8. STM_CMPn field descriptions

Field Description

CMP Compare value for channel n. If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches the
STM_CNT register, a channel interrupt request is generated and the STM_CIRn[CIF] bit is set.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 533

— Both eMIOS blocks can be synchronized

• One global prescaler

• 16-bit data registers

• 10 x 16-bit wide counter buses

— Counter buses B, C, D, and E can be driven by Unified Channel 0, 8, 16, and 24, respectively

— Counter bus A is driven by the Unified Channel #23

— Several channels have their own time base, alternative to the counter buses

— Shared timebases through the counter buses

— Synchronization among timebases

• Control and Status bits grouped in a single register

• Shadow FLAG register

• State of the UC can be frozen for debug purposes

• Motor control capability

24.4.1.3 Modes of operation

The Unified Channels can be configured to operate in the following modes:

• General purpose input/output

• Single Action Input Capture

• Single Action Output Compare

• Input Pulse Width Measurement

• Input Period Measurement

• Double Action Output Compare

• Modulus Counter

• Modulus Counter Buffered

• Output Pulse Width and Frequency Modulation Buffered

• Output Pulse Width Modulation Buffered

• Output Pulse Width Modulation with Trigger

• Center Aligned Output Pulse Width Modulation Buffered

These modes are described in Section 24.4.4.1.1, UC modes of operation.

Each channel can have a specific set of modes implemented, according to device requirements.

If an unimplemented mode (reserved) is selected, the results are unpredictable such as writing a reserved
value to MODE[0:6] in Section 24.4.3.2.8, eMIOS UC Control Register (EMIOSC[n]).

24.4.1.4 Channel implementation

Figure 24-7 shows the channel configuration of the eMIOS blocks.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

534 Freescale Semiconductor

Figure 24-7. Channel configuration

Key

DAOC Dual Action Output Compare

GPIO General Purpose Input Output

IPM Input Period Measurement

IPWM Input Pulse Width Measurement

MC Modulus Counter

MCB Buffered Modulus Counter

OPWMB Buffered Output Pulse Width Modulation

OPWMT Buffered Output Pulse Width Modulation with Trigger

OPWFMB Buffered Output Pulse Width and Frequency Modulation

OPWMCB Center Aligned Output PWM Buffered with Dead-Time

SAIC Single Action Input Capture

SAOC Single Action Output Compare

Ch0
Ch1
Ch2
Ch3
Ch4
Ch5
Ch6
Ch7

Ch8
Ch9

Ch10
Ch11
Ch12
Ch13
Ch14
Ch15

Ch16
Ch17
Ch18
Ch19

Ch24
Ch25
Ch26
Ch27

Ch20
Ch21
Ch22
Ch23

Global
Prescaler

8-bit Counter
C

ou
nt

er
 B

us
_B

C
ou

nt
er

 B
us

_A C
ou

nt
er

 B
us

_C
C

ou
nt

er
 B

us
_D

C
ou

nt
er

B
us

_E

Bus
Clk

Channel
Functionality

TYPE X

TYPE Y

 • MC, MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • SAIC, SAOC
 • GPIO

TYPE H

 • OPWMT
 • OPWMB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO

 • OPWMT
 • OPWMB
 • SAIC, SAOC
 • GPIO

eMIOS_0

Ch0
Ch1
Ch2
Ch3
Ch4
Ch5
Ch6
Ch7

Ch8
Ch9

Ch10
Ch11
Ch12
Ch13
Ch14
Ch15

Ch16
Ch17
Ch18
Ch19

Ch24
Ch25
Ch26
Ch27

Ch20
Ch21
Ch22
Ch23

Global
Prescaler

8-bit Counter

C
ou

nt
er

 B
us

_B

C
ou

nt
er

 B
us

_A C
ou

nt
er

 B
us

_C
C

ou
nt

er
 B

us
_D

C
ou

nt
er

B
us

_E

Bus
Clk

eMIOS_1

TYPE G

 • MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • OPWMCB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO

TYPEF

 • SAIC, SAOC
 • GPIO

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 535

24.4.1.4.1 Channel mode selection

Channel modes are selected using the mode selection bits MODE[0:6] in the eMIOS UC Control Register
(EMIOSC[n]). Table 24-21 provides the specific mode selection settings for the eMIOS implementation
on this device.

24.4.2 External signal description

For information on eMIOS external signals on this device, please refer to the signal description chapter of
the reference manual.

24.4.3 Memory map and register description

24.4.3.1 Memory maps

The overall address map organization is shown in Table 24-9.

24.4.3.1.1 Unified Channel memory map

Table 24-9. eMIOS memory map

Base addresses:
0xC3FA_0000 (eMIOS_0)
0xC3FA_4000 (eMIOS_1)

Address offset Description Location

0x000–0x003 eMIOS Module Configuration Register (EMIOSMCR) on page 536

0x004–0x007 eMIOS Global FLAG (EMIOSGFLAG) Register on page 537

0x008–0x00B eMIOS Output Update Disable (EMIOSOUDIS) Register on page 538

0x00C–0x00F eMIOS Disable Channel (EMIOSUCDIS) Register on page 539

0x010–0x01F Reserved —

0x020–0x11F Channel [0]
to

Channel [7]

—

0x120–0x21F Channel [8]
to

Channel [15]

—

0x220–0x31F Channel [16]
to

Channel [23]

—

0x320–0x39F Channel [24]
to

Channel [27]

—

0x3A0–0xFFF Reserved —

MPC5604B/C Microcontroller Reference Manual, Rev. 8

536 Freescale Semiconductor

Addresses of Unified Channel registers are specified as offsets from the channel’s base address; otherwise
the eMIOS base address is used as reference.

Table 24-10 describes the Unified Channel memory map.

24.4.3.2 Register description

All control registers are 32 bits wide. Data registers and counter registers are 16 bits wide.

24.4.3.2.1 eMIOS Module Configuration Register (EMIOSMCR)

The EMIOSMCR contains global control bits for the eMIOS block.

Table 24-10. Unified Channel memory map

UC[n] base address Description Location

0x00 eMIOS UC A Register (EMIOSA[n]) on page 539

0x04 eMIOS UC B Register (EMIOSB[n]) on page 540

0x08 eMIOS UC Counter Register (EMIOSCNT[n]) on page 541

0x0C eMIOS UC Control Register (EMIOSC[n]) on page 541

0x10 eMIOS UC Status Register (EMIOSS[n]) on page 545

0x14 eMIOS UC Alternate A Register (EMIOSALTA[n]) on page 546

0x18–0x1F Reserved —

Address: eMIOS base address +0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MDIS FRZ

G
T

B
E 0

G
P

R
E

N 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-8. eMIOS Module Configuration Register (EMIOSMCR)

Table 24-11. EMIOSMCR field descriptions

Field Description

MDIS Module Disable
Puts the eMIOS in low power mode. The MDIS bit is used to stop the clock of the block, except the
access to registers EMIOSMCR, EMIOSOUDIS and EMIOSUCDIS.
1 = Enter low power mode
0 = Clock is running

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 537

24.4.3.2.2 eMIOS Global FLAG (EMIOSGFLAG) Register

The EMIOSGFLAG is a read-only register that groups the flag bits (F[27:0]) from all channels. This
organization improves interrupt handling on simpler devices. Each bit relates to one channel.

For Unified Channels these bits are mirrors of the FLAG bits in the EMIOSS[n] register.

FRZ Freeze
Enables the eMIOS to freeze the registers of the Unified Channels when Debug Mode is requested
at MCU level. Each Unified Channel should have FREN bit set in order to enter freeze state. While
in Freeze state, the eMIOS continues to operate to allow the MCU access to the Unified Channels
registers. The Unified Channel will remain frozen until the FRZ bit is written to ‘0’ or the MCU exits
Debug mode or the Unified Channel FREN bit is cleared.
1 = Stops Unified Channels operation when in Debug mode and the FREN bit is set in the
EMIOSC[n] register
0 = Exit freeze state

GTBE Global Time Base Enable
The GTBE bit is used to export a Global Time Base Enable from the module and provide a method
to start time bases of several blocks simultaneously.
1 = Global Time Base Enable Out signal asserted
0 = Global Time Base Enable Out signal negated
Note: The Global Time Base Enable input pin controls the internal counters. When asserted,

Internal counters are enabled. When negated, Internal counters disabled.

GPREN Global Prescaler Enable
The GPREN bit enables the prescaler counter.
1 = Prescaler enabled
0 = Prescaler disabled (no clock) and prescaler counter is cleared

GPRE Global Prescaler
The GPRE bits select the clock divider value for the global prescaler, as shown in Table 24-12.

Table 24-12. Global prescaler clock divider

GPRE Divide ratio

00000000 1

00000001 2

00000010 3

00000011 4

.

.

.

.

.

.

.

.

11111110 255

11111111 256

Table 24-11. EMIOSMCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

538 Freescale Semiconductor

24.4.3.2.3 eMIOS Output Update Disable (EMIOSOUDIS) Register

Address: eMIOS base address +0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-9. eMIOS Global FLAG (EMIOSGFLAG) Register

Table 24-13. EMIOSGFLAG field descriptions

Field Description

Fn Channel [n] Flag bit

Address: eMIOS base address +0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

O
U

27

O
U

26

O
U

25

O
U

24

O
U

23

O
U

22

O
U

21

O
U

20

O
U

19

O
U

18

O
U

17

O
U

16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
U

15

O
U

14

O
U

13

O
U

12

O
U

11

O
U

10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-10. eMIOS Output Update Disable (EMIOSOUDIS) Register

Table 24-14. EMIOSOUDIS field descriptions

Field Description

OUn Channel [n] Output Update Disable bit
When running MC, MCB or an output mode, values are written to registers A2 and B2. OU[n] bits
are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit controls one channel.
1 = Transfers disabled
0 = Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the
next period. Unless stated otherwise, transfer occurs immediately.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 539

24.4.3.2.4 eMIOS Disable Channel (EMIOSUCDIS) Register

24.4.3.2.5 eMIOS UC A Register (EMIOSA[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOSA[n]. Both A1 and A2 are cleared by reset. Figure 24-16 summarizes the
EMIOSA[n] writing and reading accesses for all operation modes. For more information see
Section 24.4.4.1.1, UC modes of operation.

Address: eMIOS base address +0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

C
H

D
IS

27

C
H

D
IS

26

C
H

D
IS

25

C
H

D
IS

24

C
H

D
IS

23

C
H

D
IS

22

C
H

D
IS

21

C
H

D
IS

20

C
H

D
IS

19

C
H

D
IS

18

C
H

D
IS

17

C
H

D
IS

16

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

D
IS

15

C
H

D
IS

14

C
H

D
IS

13

C
H

D
IS

12

C
H

D
IS

11

C
H

D
IS

10

C
H

D
IS

9

C
H

D
IS

8

C
H

D
IS

7

C
H

D
IS

6

C
H

D
IS

5

C
H

D
IS

4

C
H

D
IS

3

C
H

D
IS

2

C
H

D
IS

1

C
H

D
IS

0

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Figure 24-11. eMIOS Enable Channel (EMIOSUCDIS) Register

Table 24-15. EMIOSUCDIS field descriptions

Field Description

CHDISn Enable Channel [n] bit
The CHDIS[n] bit is used to disable each of the channels by stopping its respective clock.
1 = Channel [n] disabled
0 = Channel [n] enabled

Address: UC[n] base address + 0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-12. eMIOS UC A Register (EMIOSA[n])

MPC5604B/C Microcontroller Reference Manual, Rev. 8

540 Freescale Semiconductor

24.4.3.2.6 eMIOS UC B Register (EMIOSB[n])

Depending on the mode of operation, internal registers B1 or B2 can be assigned to address EMIOSB[n].
Both B1 and B2 are cleared by reset. Table 24-16 summarizes the EMIOSB[n] writing and reading
accesses for all operation modes. For more information see Section 24.4.4.1.1, UC modes of operation.

Depending on the channel configuration, it may have EMIOSB register or not. This means that, if at least
one mode that requires the register is implemented, then the register is present; otherwise it is absent.

Address: UC[n] base address + 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-13. eMIOS UC B Register (EMIOSB[n])

Table 24-16. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment

Operation mode
Register access

write read write read alt write alt read

GPIO A1, A2 A1 B1,B2 B1 A2 A2

SAIC1 — A2 B2 B2 — —

SAOC1

1 In these modes, the register EMIOSB[n] is not used, but B2 can be accessed.

A2 A1 B2 B2 — —

IPWM — A2 — B1 — —

IPM — A2 — B1 — —

DAOC A2 A1 B2 B1 — —

MC1 A2 A1 B2 B2 — —

OPWMT A1 A1 B2 B1 A2 A2

MCB1 A2 A1 B2 B2 — —

OPWFMB A2 A1 B2 B1 — —

OPWMCB A2 A1 B2 B1 — —

OPWMB A2 A1 B2 B1 — —

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 541

24.4.3.2.7 eMIOS UC Counter Register (EMIOSCNT[n])

The EMIOSCNT[n] register contains the value of the internal counter. When GPIO mode is selected or the
channel is frozen, the EMIOSCNT[n] register is read/write. For all others modes, the EMIOSCNT[n] is a
read-only register. When entering some operation modes, this register is automatically cleared (refer to
Section 24.4.4.1.1, UC modes of operation for details).

Depending on the channel configuration it may have an internal counter or not. It means that if at least one
mode that requires the counter is implemented, then the counter is present; otherwise it is absent.

Channels of type X and G have the internal counter enabled, so their timebase can be selected by channel's
BSL[1:0]=11:eMIOS_A - channels 0 to 8, 16, 23 and 24, eMIOS_B = channels 0, 8, 16, 23 and 24. Other
channels from the above list don't have internal counters.

24.4.3.2.8 eMIOS UC Control Register (EMIOSC[n])

The Control register gathers bits reflecting the status of the UC input/output signals and the overflow
condition of the internal counter, as well as several read/write control bits.

Address: UC[n] base address + 0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1

1 In GPIO mode or Freeze action, this register is writable.

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-14. eMIOS UC Counter Register (EMIOSCNT[n])

MPC5604B/C Microcontroller Reference Manual, Rev. 8

542 Freescale Semiconductor

Address: UC[n] base address + 0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
F

R
E

N 0 0 0
UCPRE

U
C

P
R

E
N

DMA
0

IF FCK FEN
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

BSL

E
D

S
E

L

E
D

P
O

L

MODEW

F
O

R
C

M
A

F
O

R
C

M
B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-15. eMIOS UC Control Register (EMIOSC[n])

Table 24-17. EMIOSC[n] field descriptions

Field Description

FREN Freeze Enable bit
The FREN bit, if set and validated by FRZ bit in EMIOSMCR register allows the channel to enter
freeze state, freezing all registers values when in debug mode and allowing the MCU to perform
debug functions.
1 = Freeze UC registers values
0 = Normal operation

UCPRE Prescaler bits
The UCPRE bits select the clock divider value for the internal prescaler of Unified Channel, as
shown in Table 24-18.

UCPREN Prescaler Enable bit
The UCPREN bit enables the prescaler counter.
1 = Prescaler enabled
0 = Prescaler disabled (no clock)

DMA Direct Memory Access bit
The DMA bit selects if the FLAG generation will be used as an interrupt or as a CTU trigger.
1 = Flag/overrun assigned to CTU trigger
0 = Flag/overrun assigned to interrupt request

IF Input Filter
The IF field controls the programmable input filter, selecting the minimum input pulse width that can
pass through the filter, as shown in Table 24-19. For output modes, these bits have no meaning.

FCK Filter Clock select bit
The FCK bit selects the clock source for the programmable input filter.
1 = Main clock
0 = Prescaled clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 543

FEN FLAG Enable bit
The FEN bit allows the Unified Channel FLAG bit to generate an interrupt signal or a CTU trigger
signal (The type of signal to be generated is defined by the DMA bit).
1 = Enable (FLAG will generate an interrupt request or a CTU trigger)
0 = Disable (FLAG does not generate an interrupt request or a CTU trigger)

FORCMA Force Match A bit
For output modes, the FORCMA bit is equivalent to a successful comparison on comparator A
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator A, otherwise it has no effect.
1 = Force a match at comparator A
0 = Has no effect
Note: For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB Force Match B bit
For output modes, the FORCMB bit is equivalent to a successful comparison on comparator B
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator B, otherwise it has no effect.
1 = Force a match at comparator B
0 = Has not effect
Note: For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL Bus Select
The BSL field is used to select either one of the counter buses or the internal counter to be used by
the Unified Channel. Refer to Table 24-20 for details.

EDSEL Edge Selection bit
For input modes, the EDSEL bit selects whether the internal counter is triggered by both edges of a
pulse or just by a single edge as defined by the EDPOL bit. When not shown in the mode of
operation description, this bit has no effect.
1 = Both edges triggering
0 = Single edge triggering defined by the EDPOL bit

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.
1 = No FLAG is generated
0 = A FLAG is generated as defined by the EDPOL bit

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
1 = The output flip-flop is toggled
0 = The EDPOL value is transferred to the output flip-flop

EDPOL Edge Polarity bit
For input modes, the EDPOL bit asserts which edge triggers either the internal counter or an input
capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
1 = Trigger on a rising edge
0 = Trigger on a falling edge

For output modes, the EDPOL bit is used to select the logic level on the output pin.
1 = A match on comparator A sets the output flip-flop, while a match on comparator B clears it
0 = A match on comparator A clears the output flip-flop, while a match on comparator B sets it

MODE Mode selection
The MODE field selects the mode of operation of the Unified Channel, as shown in Table 24-21.
Note: If a reserved value is written to mode the results are unpredictable.

Table 24-17. EMIOSC[n] field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

544 Freescale Semiconductor

Table 24-18. UC internalprescaler clock divider

UCPRE Divide ratio

00 1

01 2

10 3

11 4

Table 24-19. UC input filter bits

IF1

1 Filter latency is 3 clock edges.

Minimum input pulse width [FLT_CLK periods]

0000 Bypassed2

2 The input signal is synchronized before arriving to the digital filter.

0001 02

0010 04

0100 08

1000 16

all others Reserved

Table 24-20. UC BSL bits

BSL Selected bus

00 All channels: counter bus[A]

01 Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]
Channels 24 to 27: counter bus[E]

10 Reserved

11 All channels: internal counter

Table 24-21. Channel mode selection

MODE1 Mode of operation

0000000 General purpose Input/Output mode (input)

0000001 General purpose Input/Output mode (output)

0000010 Single Action Input Capture

0000011 Single Action Output Compare

0000100 Input Pulse Width Measurement

0000101 Input Period Measurement

0000110 Double Action Output Compare (with FLAG set on B match)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 545

24.4.3.2.9 eMIOS UC Status Register (EMIOSS[n])

0000111 Double Action Output Compare (with FLAG set on both match)

0001000 – 0001111 Reserved

001000b Modulus Counter (Up counter with clear on match start)

001001b Modulus Counter (Up counter with clear on match end)

00101bb Modulus Counter (Up/Down counter)

0011000 – 0100101 Reserved

0100110 Output Pulse Width Modulation with Trigger

0100111 – 1001111 Reserved

101000b Modulus Counter Buffered (Up counter)

101001b Reserved

10101bb Modulus Counter Buffered (Up/Down counter)

10110b0 Output Pulse Width and Frequency Modulation Buffered

10110b1 Reserved

10111b0 Center Aligned Output Pulse Width Modulation Buffered (with trail edge dead-time)

10111b1 Center Aligned Output Pulse Width Modulation Buffered (with lead edge dead-time)

11000b0 Output Pulse Width Modulation Buffered

1100001 – 1111111 Reserved

1 b = adjust parameters for the mode of operation. Refer to Section 24.4.4.1.1, UC modes of operation for details.

Address: UC[n] base address + 0x10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
V

F
L

0 0 0 0 0 0 0 0 0 0 0 0 UCIN

U
C

O
U

T

F
LA

G

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-16. eMIOS UC Status Register (EMIOSS[n])

Table 24-21. Channel mode selection (continued)

MODE1 Mode of operation

MPC5604B/C Microcontroller Reference Manual, Rev. 8

546 Freescale Semiconductor

24.4.3.2.10 eMIOS UC Alternate A Register (EMIOSALTA[n])

The EMIOSALTA[n] register provides an alternate address to access A2 channel registers in restricted
modes (GPIO, OPWMT) only. If EMIOSA[n] register is used along with EMIOSALTA[n], both A1 and
A2 registers can be accessed in these modes. Figure 24-16 summarizes the EMIOSALTA[n] writing and
reading accesses for all operation modes. Please, see Section 24.4.4.1.1.1, General purpose Input/Output
(GPIO) mode, Section 24.4.4.1.1.12, Output Pulse Width Modulation with Trigger (OPWMT) mode for a
more detailed description of the use of EMIOSALTA[n] register.

Table 24-22. EMIOSS[n] field descriptions

Field Description

OVR Overrun bit
The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set.
1 = Overrun has occurred
0 = Overrun has not occurred

OVFL Overflow bit
The OVFL bit indicates that an overflow has occurred in the internal counter. OVFL must be cleared
by software writing a 1 to the OVFLC bit.
1 = An overflow had occurred
0 = No overflow

UCIN Unified Channel Input pin bit
The UCIN bit reflects the input pin state after being filtered and synchronized.

UCOUT UCOUT — Unified Channel Output pin bit
The UCOUT bit reflects the output pin state.

FLAG FLAG bit
The FLAG bit is set when an input capture or a match event in the comparators occurred.
1 = FLAG set event has occurred
0 = FLAG cleared
Note: When DMA bit is set, the FLAG bit can be cleared by the CTU.

Address: UC[n] base address + 0x14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-17. eMIOS UC Alternate A register (EMIOSALTA[n])

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 547

24.4.4 Functional description

The five types of channels of the eMIOS can operate in the modes as listed in Figure 24-7. The eMIOS
provides independently operating unified channels (UC) that can be configured and accessed by a host
MCU. Up to four time bases can be shared by the channels through four counter buses and each unified
channel can generate its own time base. The eMIOS block is reset at positive edge of the clock
(synchronous reset). All registers are cleared on reset.

24.4.4.1 Unified Channel (UC)

Each Unified Channel consists of:

• Counter bus selector, which selects the time base to be used by the channel for all timing functions

• A programmable clock prescaler

• Two double buffered data registers A and B that allow up to two input capture and/or output
compare events to occur before software intervention is needed.

• Two comparators (equal only) A and B, which compares the selected counter bus with the value in
the data registers

• Internal counter, which can be used as a local time base or to count input events

• Programmable input filter, which ensures that only valid pin transitions are received by channel

• Programmable input edge detector, which detects the rising, falling or either edges

• An output flip-flop, which holds the logic level to be applied to the output pin

• eMIOS Status and Control register

24.4.4.1.1 UC modes of operation

The mode of operation of the Unified Channel is determined by the mode select bits MODE[0:6] in the
eMIOS UC Control Register (EMIOSC[n]) (see Figure 24-15 for details).

As the internal counter EMIOSCNT[n] continues to run in all modes (except for GPIO mode), it is possible
to use this as a time base if the resource is not used in the current mode.

In order to provide smooth waveform generation even if A and B registers are changed on the fly, it is
available the MCB, OPWFMB, OPWMB and OPWMCB modes. In these modes A and B registers are
double buffered.

24.4.4.1.1.1 General purpose Input/Output (GPIO) mode

In GPIO mode, all input capture and output compare functions of the UC are disabled, the internal counter
(EMIOSCNT[n] register) is cleared and disabled. All control bits remain accessible. In order to prepare
the UC for a new operation mode, writing to registers EMIOSA[n] or EMIOSB[n] stores the same value
in registers A1/A2 or B1/B2, respectively. Writing to register EMIOSALTA[n] stores a value only in
register A2.

MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

548 Freescale Semiconductor

It is required that when changing MODE[0:6], the application software goes to GPIO mode first in order
to reset the UC’s internal functions properly. Failure to do this could lead to invalid and unexpected output
compare or input capture results or the FLAGs being set incorrectly.

In GPIO input mode (MODE[0:6] = 0000000), the FLAG generation is determined according to EDPOL
and EDSEL bits and the input pin status can be determined by reading the UCIN bit.

In GPIO output mode (MODE[0:6] = 0000001), the Unified Channel is used as a single output port pin
and the value of the EDPOL bit is permanently transferred to the output flip-flop.

24.4.4.1.1.2 Single Action Input Capture (SAIC) mode

In SAIC mode (MODE[0:6] = 0000010), when a triggering event occurs on the input pin, the value on the
selected time base is captured into register A2. The FLAG bit is set along with the capture event to indicate
that an input capture has occurred. Register EMIOSA[n] returns the value of register A2. As soon as the
SAIC mode is entered coming out from GPIO mode the channel is ready to capture events. The events are
captured as soon as they occur thus reading register A always returns the value of the latest captured event.
Subsequent captures are enabled with no need of further reads from EMIOSA[n] register. The FLAG is set
at any time a new event is captured.

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOSC[n] register.

Figure 24-18 and Figure 24-19 show how the Unified Channel can be used for input capture.

Figure 24-18. Single action input capture with rising edge triggering example

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

FLAG pin/register

A2 (captured) value2 0xxxxxxx 0x001000 0x001250 0x0016A0

input signal1

Edge detect Edge detect Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

EDSEL = 0

EDPOL = 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 549

Figure 24-19. Single action input capture with both edges triggering example

24.4.4.1.1.3 Single Action Output Compare (SAOC) mode

In SAOC mode (MODE[0:6] = 0000011) a match value is loaded in register A2 and then immediately
transferred to register A1 to be compared with the selected time base. When a match occurs, the EDSEL
bit selects whether the output flip-flop is toggled or the value in EDPOL is transferred to it. Along with
the match the FLAG bit is set to indicate that the output compare match has occurred. Writing to register
EMIOSA[n] stores the value in register A2 and reading to register EMIOSA[n] returns the value of register
A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOSC[n]
register. In this case, the FLAG bit is not set.

When SAOC mode is entered coming out from GPIO mode the output flip-flop is set to the complement
of the EDPOL bit in the EMIOSC[n] register.

Counter bus can be either internal or external and is selected through bits BSL[0:1].

Figure 24-20 and Figure 24-21 show how the Unified Channel can be used to perform a single output
compare with EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at
each match, respectively. Note that once in SAOC mode the matches are enabled thus the desired match
value on register A1 must be written before the mode is entered. A1 register can be updated at any time
thus modifying the match value which will reflect in the output signal generated by the channel.
Subsequent matches are enabled with no need of further writes to EMIOSA[n] register. The FLAG is set
at the same time a match occurs (see Figure 24-22).

NOTE
The channel internal counter in SAOC mode is free-running. It starts
counting as soon as the SAOC mode is entered.

selected counter bus 0x001000 0x001102

FLAG set event

A2 (captured) value2 0xxxxxxx 0x001000

input signal1

Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

0x001103 0x0011080x001104 0x001105 0x001106 0x0011070x001001

FLAG pin/register

Edge detect

FLAG clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x

MPC5604B/C Microcontroller Reference Manual, Rev. 8

550 Freescale Semiconductor

Figure 24-20. SAOC example with EDPOL value being transferred to the output flip-flop

Figure 24-21. SAOC example toggling the output flip-flop

Figure 24-22. SAOC example with flag behavior

24.4.4.1.1.4 Input Pulse Width Measurement (IPWM) Mode

The IPWM mode (MODE[0:6] = 0000100) allows the measurement of the width of a positive or negative
pulse by capturing the leading edge on register B1 and the trailing edge on register A2. Successive captures
are done on consecutive edges of opposite polarity. The leading edge sensitivity (that is, pulse polarity) is
selected by EDPOL bit in the EMIOSC[n] register. Registers EMIOSA[n] and EMIOSB[n] return the
values in register A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

output flip-flop

Update to A1

A1 value1 0xxxxxxx 0x001000

FLAG pin/register

0x001000 0x001000 0x001000

A1 match A1 match A1 match

Notes: 1. EMIOSA[n] = A2

EDSEL = 0
EDPOL = 1

A2 = A1 according to OU[n] bit

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

A1 value1 0xxxxxxx 0x001000

output flip-flop

Update to A1

FLAG pin/register

A1 match A1 match A1 match

0x001000 0x001000 0x001000

Notes: 1. EMIOSA[n] = A2

EDSEL = 1
EDPOL = x

A2 = A1 according to OU[n] bit

selected counter bus 0x0 0x2

FLAG set event

A2 value1 0x1

output flip-flop

Note: 1. EMIOSA[n] <= A2

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

A1 match

EDPOL = x

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 551

selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1 and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2, B1 and A1
will be updated with the latest captured values and the FLAG will remain set. Registers EMIOSA[n] and
EMIOSB[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOSA[n] forces B1 be updated with the content of
register A1. At the same time transfers between B2 and B1 are disabled until the next read of EMIOSB[n]
register. Reading EMIOSB[n] register forces B1 be updated with A1 register content and re-enables
transfers from B2 to B1, to take effect at the next trailing edge capture. Transfers from B2 to A1 are not
blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 24-23 shows how the Unified Channel can be used for input pulse width measurement.

Figure 24-23. Input pulse width measurement example

Figure 24-24 shows the A1 and B1 updates when EMIOSA[n] and EMIOSB[n] register reads occur. Note
that A1 register has always coherent data related to A2 register. Note also that when EMIOSA[n] read is
performed B1 register is loaded with A1 register content. This guarantee that the data in register B1 has
always the coherent data related to the last EMIOSA[n] read. The B1 register updates remains locked until
EMIOSB[n] read occurs. If EMIOSA[n] read is performed B1 is updated with A1 register content even if
B1 update is locked by a previous EMIOSA[n] read operation.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000 0x001250

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

MPC5604B/C Microcontroller Reference Manual, Rev. 8

552 Freescale Semiconductor

Figure 24-24. B1 and A1 updates at EMIOSA[n] and EMIOSB[n] reads

Reading EMIOSA[n] followed by EMIOSB[n] always provides coherent data. If not coherent data is
required for any reason, the sequence of reads should be inverted, therefore EMIOSB[n] should be read
prior to EMIOSA[n] register. Note that even in this case B1 register updates will be blocked after
EMIOSA[n] read, thus a second EMIOSB[n] is required in order to release B1 register updates.

24.4.4.1.1.5 Input Period Measurement (IPM) mode

The IPM mode (MODE[0:6] = 0000101) allows the measurement of the period of an input signal by
capturing two consecutive rising edges or two consecutive falling edges. Successive input captures are
done on consecutive edges of the same polarity. The edge polarity is defined by the EDPOL bit in the
EMIOSC[n] register.

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set, and the values in registers B1 is meaningless. On the second and subsequent captures,
the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, the data previously held in register B2 is transferred to data register B1 and to register A1. The
FLAG bit is set to indicate the start and end points of a complete period have been captured. This sequence
of events is repeated for each subsequent capture. Registers EMIOSA[n] and EMIOSB[n] return the values
in register A2 and B1, respectively.

In order to allow coherent data, reading EMIOSA[n] forces A1 content be transferred to B1 register and
disables transfers between B2 and B1. These transfers are disabled until the next read of the EMIOSB[n]
register. Reading EMIOSB[n] register forces A1 content to be transferred to B1 and re-enables transfers
from B2 to B1, to take effect at the next edge capture.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 24-25 shows how the Unified Channel can be used for input period measurement.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

0x001000 0x001250

Read EMIOSA[n] Read EMIOSB[n]

3. EMIOSB[n] = B1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 553

Figure 24-25. Input period measurement example

Figure 24-26 describes the A1 and B1 register updates when EMIOSA[n] and EMIOSB[n] read operations
are performed. When EMIOSA[n] read occurs the content of A1 is transferred to B1 thus providing
coherent data in A2 and B1 registers. Transfers from B2 to B1 are then blocked until EMIOSB[n] is read.
After EMIOSB[n] is read, register A1 content is transferred to register B1 and the transfers from B2 to B1
are re-enabled to occur at the transfer edges, which is the leading edge in the Figure 24-26 example.

Figure 24-26. A1 and B1 updates at EMIOSA[n] and EMIOSB[n] reads

24.4.4.1.1.6 Double Action Output Compare (DAOC) mode

In the DAOC mode the leading and trailing edges of the variable pulse width output are generated by
matches occurring on comparators A and B. There is no restriction concerning the order in which A and
B matches occur.

When the DAOC mode is entered, coming out from GPIO mode both comparators are disabled and the
output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n] register.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

A1 value

B2 (captured) value

0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000 0x001250 0x0016A0

Input signal1

EDPOL = 1

FLAG pin register

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

A A A

B1 value3 0xxxxxxx 0x001000 0x001250

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000

0xxxxxxx 0x001000

Input signal1

A A A

FLAG pin/register

EDPOL = 1

A1 value 0xxxxxxx 0x001000

0x001000

0x001250

0x001250

Read EMIOSA[n] Read EMIOSB[n]

0x001250

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

0x0016A0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

554 Freescale Semiconductor

Data written to A2 and B2 are transferred to A1 and B1, respectively, on the next system clock cycle if bit
OU[n] of the EMIOSOUDIS register is cleared (see Figure 24-29). The transfer is blocked if bit OU[n] is
set. Comparator A is enabled only after the transfer to A1 register occurs and is disabled on the next A
match. Comparator B is enabled only after the transfer to B1 register occurs and is disabled on the next B
match. Comparators A and B are enabled and disabled independently.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and to the
complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches (MODE[0:6] = 0000111) or just on the B match
(MODE[0:6] = 0000110). FLAG bit assertion depends on comparator enabling.

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue to be generated,
regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a comparison event in comparator A or B, respectively. Note that the FLAG bit is not
affected by these forced operations.

NOTE
If both registers (A1 and B1) are loaded with the same value, the B match
prevails concerning the output pin state (output flip-flop is set to the
complement of EDPOL), the FLAG bit is set and both comparators are
disabled.

Figure 24-27 and Figure 24-28 show how the Unified Channel can be used to generate a single output
pulse with FLAG bit being set on the second match or on both matches, respectively.

Figure 24-27. Double action output compare with FLAG set on the second match

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 555

Figure 24-28. Double action output compare with FLAG set on both matches

Figure 24-29. DAOC with transfer disabling example

24.4.4.1.1.7 Modulus Counter (MC) mode

The MC mode can be used to provide a time base for a counter bus or as a general purpose timer.

Bit MODE[6] selects internal or external clock source when cleared or set, respectively. When external
clock is selected, the input signal pin is used as the source and the triggering polarity edge is selected by
the EDPOL and EDSEL in the EMIOSC[n] register.

The internal counter counts up from the current value until it matches the value in register A1. Register B1
is cleared and is not accessible to the MCU. Bit MODE[4] selects up mode or up/down mode, when cleared
or set, respectively.

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 1

selected counter bus 0x0 0x2

FLAG set event

A1 value2 0xx

output flip-flop

2. EMIOSA[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

enabled A1 match

EDPOL = x

B2 value5 0x2

B1 value4 0xx

A2 value3 0x1

OU1

enabled B1 match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2
write to A2

write to B2
write to A2

write to B2

MODE[0]=1

3. EMIOSA[n] = A2 (when writing)
4. EMIOSB[n] = B1 (when reading)
5. EMIOSB[n] = B2 (when writing)

Note: 1. OU[n] bit of EMIOSOUDIS register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

556 Freescale Semiconductor

When in up count mode, a match between the internal counter and register A1 sets the FLAG and clears
the internal counter. The timing of those events varies according to the MC mode setup as follows:

• Internal counter clearing on match start (MODE[0:6] = 001000b)

— External clock is selected if MODE[6] is set. In this case the internal counter clears as soon as
the match signal occurs. The channel FLAG is set at the same time the match occurs. Note that
by having the internal counter cleared as soon as the match occurs and incremented at the next
input event a shorter zero count is generated. See Figure 24-52 and Figure 24-53.

— Internal clock source is selected if MODE[6] is cleared. In this case the counter clears as soon
as the match signal occurs. The channel FLAG is set at the same time the match occurs. At the
next prescaler tick after the match the internal counter remains at zero and only resumes
counting on the following tick. See Figure 24-52 and Figure 24-54.

• Internal counter clearing on match end (MODE[0:6] = 001001b)

— External clock is selected if MODE[6] is set. In this case the internal counter clears when the
match signal is asserted and the input event occurs. The channel FLAG is set at the same time
the counter is cleared. See Figure 24-52 and Figure 24-55.

— Internal clock source is selected if MODE[6] is cleared. In this case the internal counter clears
when the match signal is asserted and the prescaler tick occurs. The channel FLAG is set at the
same time the counter is cleared. See Figure 24-52 and Figure 24-55.

NOTE
If the internal clock source is selected and the prescaler of the internal
counter is set to ‘1’, the MC mode behaves the same way even in Clear on
Match Start or Clear on Match End submodes.

When in up/down count mode (MODE[0:6] = 00101bb), a match between the internal counter and register
A1 sets the FLAG and changes the counter direction from increment to decrement. A match between
register B1 and the internal counter changes the counter direction from decrement to increment and sets
the FLAG only if MODE[5] bit is set.

Only values different than 0x0 must be written at A register. Loading 0x0 leads to unpredictable results.

Updates on A register or counter in MC mode may cause loss of match in the current cycle if the transfer
occurs near the match. In this case, the counter may rollover and resume operation in the next cycle.

Register B2 has no effect in MC mode. Nevertheless, register B2 can be accessed for reads and writes by
addressing EMIOSB.

Figure 24-30 and Figure 24-31 show how the Unified Channel can be used as modulus counter in up mode
and up/down mode, respectively.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 557

Figure 24-30. Modulus Counter Up mode example

Figure 24-31. Modulus Counter Up/Down mode example

24.4.4.1.1.8 Modulus Counter Buffered (MCB) mode

The MCB mode provides a time base which can be shared with other channels through the internal counter
buses. Register A1 is double buffered thus allowing smooth transitions between cycles when changing A2
register value on the fly. A1 register is updated at the cycle boundary, which is defined as when the internal
counter transitions to 0x1.

The internal counter values operates within a range from 0x1 up to register A1 value. If when entering
MCB mode coming out from GPIO mode the internal counter value is not within that range then the A
match will not occur causing the channel internal counter to wrap at the maximum counter value which is
0xFFFF for a 16-bit counter. After the counter wrap occurs it returns to 0x1 and resume normal MCB mode
operation. Thus in order to avoid the counter wrap condition make sure its value is within the 0x1 to A1
register value range when the MCB mode is entered.

Bit MODE[6] selects internal clock source if cleared or external if set. When external clock is selected the
input channel pin is used as the channel clock source. The active edge of this clock is defined by EDPOL
and EDSEL bits in the EMIOSC[n] channel register.

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match A1 write to A2

0x000200

 Match A1 Match A1

0xxxxxxx

 FLAG pin/register

Notes: 1. EMIOSA[n] = A1

0x000303 0x000200

A2 = A1according to OU[n] bit

MODE[4] = 0

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match B1(=0) write to A2

0x000200

 Match A1 Match B1(=0)

0xxxxxxx

Notes: 1. EMIOSA[n] = A1

0x0002000x000200
 FLAG pin/register

A2 = A1according to OU[n] bit

MODE[6] = 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

558 Freescale Semiconductor

When entering in MCB mode, if up counter is selected by MODE[4] = 0 (MODE[0:6] = 101000b), the
internal counter starts counting from its current value to up direction until A1 match occurs. The internal
counter is set to 0x1 when its value matches A1 value and a clock tick occurs (either prescaled clock or
input pin event).

If up/down counter is selected by setting MODE[4] = 1, the counter changes direction at A1 match and
counts down until it reaches the value 0x1. After it has reached 0x1 it is set to count in up direction again.
B1 register is used to generate a match in order to set the internal counter in up-count direction if up/down
mode is selected. Register B1 cannot be changed while this mode is selected.

Note that differently from the MC mode, the MCB mode counts between 0x1 and A1 register value. Only
values greater than 0x1 must be written at A1 register. Loading values other than those leads to
unpredictable results. The counter cycle period is equal to A1 value in up counter mode. If in up/down
counter mode the period is defined by the expression: (2*A1)-2.

Figure 24-32 describes the counter cycle for several A1 values. Register A1 is loaded with A2 register
value at the cycle boundary. Thus any value written to A2 register within cycle n will be updated to A1 at
the next cycle boundary and therefore will be used on cycle n+1. The cycle boundary between cycle n and
cycle n+1 is defined as when the internal counter transitions from A1 value in cycle n to 0x1 in cycle n+1.
Note that the FLAG is generated at the cycle boundary and has a synchronous operation, meaning that it
is asserted one system clock cycle after the FLAG set event.

Figure 24-32. Modulus Counter Buffered (MCB) Up Count mode

Figure 24-33 describes the MCB in up/down counter mode (MODE[0:6] = 10101bb). A1 register is
updated at the cycle boundary. If A2 is written in cycle n, this new value will be used in cycle n+1 for A1
match. Flags are generated only at A1 match start if MODE[5] is 0. If MODE[5] is set to 1 flags are also
generated at the cycle boundary.

EMIOSCNT[n]

TIME

write to A2 match A1 match A1 match A1write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007 0x000007
0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n cycle n+1 cycle n+2

FLAG clear

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 559

Figure 24-33. Modulus Counter Buffered (MCB) Up/Down mode

Figure 24-34 describes in more detail the A1 register update process in up counter mode. The A1 load
signal is generated at the last system clock period of a counter cycle. Thus, A1 is updated with A2 value
at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1. The load signal pulse has the
duration of one system clock period. If A2 is written within cycle n its value is available at A1 at the first
clock of cycle n+1 and the new value is used for match at cycle n+1. The update disable bits OU[n] of
EMIOSOUDIS register can be used to control the update of this register, thus allowing to delay the A1
register update for synchronization purposes.

Figure 24-34. MCB Mode A1 Register Update in Up Counter mode

Figure 24-35 describes the A1 register update in up/down counter mode. Note that A2 can be written at
any time within cycle n in order to be used in cycle n+1. Thus A1 receives this new value at the next cycle
boundary. Note that the update disable bits OU[n] of EMIOSOUDIS register can be used to disable the
update of A1 register.

EMIOSCNT[n]

TIME

write to A2
match A1

match A1 write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n+1 cycle n+2cycle n

FLAG clear

A1 value 0x000008

0x000008

0x000001

internal counter

0x000004

0x000006

A2 value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

 write to A2 write to A2

 Match A1 Match A1

A1 load signal

8

4

6

 Match A1

Counter = A1
Time

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

560 Freescale Semiconductor

Figure 24-35. MCB Mode A1 Register Update in Up/Down Counter mode

24.4.4.1.1.9 Output Pulse Width and Frequency Modulation Buffered (OPWFMB) mode

This mode (MODE[0:6] = 10110b0) provides waveforms with variable duty cycle and frequency. The
internal channel counter is automatically selected as the time base when this mode is selected. A1 register
indicates the duty cycle and B1 register the frequency. Both A1 and B1 registers are double buffered to
allow smooth signal generation when changing the registers values on the fly. 0% and 100% duty cycles
are supported.

At OPWFMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOSC[n]
register.

If when entering OPWFMB mode coming out from GPIO mode the internal counter value is not within
that range then the B match will not occur causing the channel internal counter to wrap at the maximum
counter value which is 0xFFFF for a 16-bit counter. After the counter wrap occurs it returns to 0x1 and
resume normal OPWFMB mode operation. Thus in order to avoid the counter wrap condition make sure
its value is within the 0x1 to B1 register value range when the OPWFMB mode is entered.

When a match on comparator A occurs the output register is set to the value of EDPOL. When a match on
comparator B occurs the output register is set to the complement of EDPOL. B1 match also causes the
internal counter to transition to 0x1, thus restarting the counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other than those leads
to unpredictable results. If you want to configure the module for OPWFMB mode, ensure that the B1
register is modified before the mode is set.

Figure 24-36 describes the operation of the OPWFMB mode regarding output pin transitions and A1/B1
registers match events. Note that the output pin transition occurs when the A1 or B1 match signal is
deasserted which is indicated by the A1 match negedge detection signal. If register A1 is set to 0x4 the
output pin transitions 4 counter periods after the cycle had started, plus one system clock cycle. Note that
in the example shown in Figure 24-36 the internal counter prescaler has a ratio of two.

A1 value 0x000006

A2 value 0x000006 0x000005 0x000006

0x000005

A1 load signal

Counter = 2

EMIOSCNT[n]

TIME

write to A2
match A1

match A1
write to A2

0x000001

0x000005
0x000006

0x000006

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 561

Figure 24-36. OPWFMB A1 and B1 match to Output Register Delay

Figure 24-37 describes the generated output signal if A1 is set to 0x0. Since the counter does not reach
zero in this mode, the channel internal logic infers a match as if A1 = 0x1 with the difference that in this
case, the posedge of the match signal is used to trigger the output pin transition instead of the negedge used
when A1 = 0x1. Note that A1 posedge match signal from cycle n+1 occurs at the same time as B1 negedge
match signal from cycle n. This allows to use the A1 posedge match to mask the B1 negedge match when
they occur at the same time. The result is that no transition occurs on the output flip-flop and a 0% duty
cycle is generated.

8

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection
B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

Prescaler ratio = 2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

562 Freescale Semiconductor

Figure 24-37. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 24-38 describes the timing for the A1 and B1 registers load. The A1 and B1 load use the same signal
which is generated at the last system clock period of a counter cycle. Thus, A1 and B1 are updated
respectively with A2 and B2 values at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1.
This event is defined as the cycle boundary. The load signal pulse has the duration of one system clock
period. If A2 and B2 are written within cycle n their values are available at A1 and B1, respectively, at the
first clock of cycle n+1 and the new values are used for matches at cycle n+1. The update disable bits
OU[n] of EMIOSOUDIS register can be used to control the update of these registers, thus allowing to
delay the A1 and B1 registers update for synchronization purposes.

In Figure 24-38 it is assumed that both the channel and global prescalers are set to 0x1 (each divide ratio
is two), meaning that the channel internal counter transitions at every four system clock cycles. FLAGs
can be generated only on B1 matches when MODE[5] is cleared, or on both A1 and B1 matches when
MODE[5] is set. Since B1 flag occurs at the cycle boundary, this flag can be used to indicate that A2 or
B2 data written on cycle n were loaded to A1 or B1, respectively, thus generating matches in cycle n+1.
Note that the FLAG has a synchronous operation, meaning that it is asserted one system clock cycle after
the FLAG set event.

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

no transition at this point

1

cycle n cycle n+1

Prescaler ratio = 2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 563

Figure 24-38. OPWFMB A1 and B1 registers update and flags

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similarly to a B1 match FORCMB sets the
internal counter to 0x1. The FLAG bit is not set by the FORCMA or FORCMB bits being asserted.

Figure 24-39 describes the generation of 100% and 0% duty cycle signals. It is assumed EDPOL = 0 and
the resultant prescaler value is 1. Initially A1 = 0x8 and B1 = 0x8. In this case, B1 match has precedence
over A1 match, thus the output flip-flop is set to the complement of EDPOL bit. This cycle corresponds
to a 100% duty cycle signal. The same output signal can be generated for any A1 value greater or equal to
B1.

Figure 24-39. OPWFMB mode from 100% to 0% duty cycle

A 0% duty cycle signal is generated if A1 = 0x0 as shown in Figure 24-39 cycle 9. In this case B1 = 0x8
match from cycle 8 occurs at the same time as the A1 = 0x0 match from cycle 9. Please, refer to

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value1

B1 value

B2 value

0x8

0x2

0x6

0x8

0x1

internal counter

0x4

0x6

A2 value1 0x2 0x4 0x6

0x2

0x4 0x6

0x8 0x6

Output pin

 write to B2

 write to A2 write to A2

 Match A1 Match A1 Match B1 Match B1 Match B1

A1/B1 load signal

due to B1 match cycle n-1

FLAG set event

FLAG pin/register

Prescaler ratio = 4

FLAG clear

MODE[6] = 1

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOSCNT

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler ratio = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

0x000008

0x000001

MPC5604B/C Microcontroller Reference Manual, Rev. 8

564 Freescale Semiconductor

Figure 24-37 for a description of the A1 and B1 match generation. In this case A1 match has precedence
over B1 match and the output signal transitions to EDPOL.

24.4.4.1.1.10 Center Aligned Output PWM Buffered with Dead-Time (OPWMCB) mode

This operation mode generates a center aligned PWM with dead time insertion to the leading
(MODE[0:6] = 10111b1) or trailing edge (MODE[0:6] = 10111b0). A1 and B1 registers are double
buffered to allow smooth output signal generation when changing A2 or B2 registers values on the fly.

Bits BSL[0:1] select the time base. The time base selected for a channel configured to OPWMCB mode
should be a channel configured to MCB Up/Down mode, as shown in Figure 24-33. It is recommended to
start the MCB channel time base after the OPWMCB mode is entered in order to avoid missing A matches
at the very first duty cycle.

Register A1 contains the ideal duty cycle for the PWM signal and is compared with the selected time base.

Register B1 contains the dead time value and is compared against the internal counter. For a leading edge
dead time insertion, the output PWM duty cycle is equal to the difference between register A1 and register
B1, and for a trailing edge dead time insertion, the output PWM duty cycle is equal to the sum of register
A1 and register B1. Bit Mode[6] selects between trailing and leading dead time insertion, respectively.

NOTE
The internal counter runs in the internal prescaler ratio, while the selected
time base may be running in a different prescaler ratio.

When OPWMCB mode is entered, coming out from GPIO mode, the output flip-flop is set to the
complement of the EDPOL bit in the EMIOSC[n] register.

The following basic steps summarize proper OPWMCB startup, assuming the channels are initially in
GPIO mode:

1. [global] Disable Global Prescaler;

2. [MCB channel] Disable Channel Prescaler;

3. [MCB channel] Write 0x1 at internal counter;

4. [MCB channel] Set A register;

5. [MCB channel] Set channel to MCB Up mode;

6. [MCB channel] Set prescaler ratio;

7. [MCB channel] Enable Channel Prescaler;

8. [OPWMCB channel] Disable Channel Prescaler;

9. [OPWMCB channel] Set A register;

10. [OPWMCB channel] Set B register;

11. [OPWMCB channel] Select time base input through BSL[1:0] bits;

12. [OPWMCB channel] Enter OPWMCB mode;

13. [OPWMCB channel] Set prescaler ratio;

14. [OPWMCB channel] Enable Channel Prescaler;

15. [global] Enable Global Prescaler.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 565

Figure 24-40 describes the load of A1 and B1 registers which occurs when the selected counter bus
transitions from 0x2 to 0x1. This event defines the cycle boundary. Note that values written to A2 or B2
within cycle n are loaded into A1 or B1 registers, respectively, and used to generate matches in cycle n+1.

Figure 24-40. OPWMCB A1 and B1 registers load

Bit OU[n] of the EMIOSOUDIS register can be used to disable the A1 and B1 updates, thus allowing to
synchronize the load on these registers with the load of A1 or B1 registers in others channels. Note that
using the update disable bit A1 and B1 registers can be updated at the same counter cycle thus allowing to
change both registers at the same time.

In this mode A1 matches always sets the internal counter to 0x1. When operating with leading edge dead
time insertion the first A1 match sets the internal counter to 0x1. When a match occurs between register
B1 and the internal time base, the output flip-flop is set to the value of the EDPOL bit. In the following
match between register A1 and the selected time base, the output flip-flop is set to the complement of the
EDPOL bit. This sequence repeats continuously. The internal counter should not reach 0x0 as consequence
of a rollover. In order to avoid it the user should not write to the EMIOSB register a value greater than
twice the difference between external count up limit and EMIOSA value.

Figure 24-41 shows two cycles of a Center Aligned PWM signal. Note that both A1 and B1 register values
are changing within the same cycle which allows to vary at the same time the duty cycle and dead time
values.

A1 value 0x000020

A2 value 0x000020 0x000015 0x000016

0x000015

A1/B1 load signal

Selected Counter == 2

Selected

TIME

write to A2
write to B2

write to B2
write to A2

0x000001

0x000005
0x000006

0x000016

cycle n cycle n+1 cycle n+2
Counter Bus

B1 value 0x000004

B2 value 0x000004 0x000005 0x000006

0x000005 0x000006

Prescaler ratio = 2

System Clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

566 Freescale Semiconductor

Figure 24-41. OPWMCB with lead dead time insertion

When operating with trailing edge dead time insertion, the first match between A1 and the selected time
base sets the output flip-flop to the value of the EDPOL bit and sets the internal counter to 0x1. In the
second match between register A1 and the selected time base, the internal counter is set to 0x1 and B1
matches are enabled. When the match between register B1 and the selected time base occurs the output
flip-flop is set to the complement of the EDPOL bit. This sequence repeats continuously.

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 567

Figure 24-42. OPWMCB with trail dead time insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or in
both edges, when MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses
continue to be generated, regardless of the state of the FLAG bit.

NOTE
In OPWMCB mode, FORCMA and FORCMB do not have the same
behavior as a regular match. Instead, they force the output flip-flop to
constant value which depends upon the selected dead time insertion mode,
lead or trail, and the value of the EDPOL bit.

FORCMA has different behaviors depending upon the selected dead time insertion mode, lead or trail. In
lead dead time insertion FORCMA force a transition in the output flip-flop to the opposite of EDPOL. In
trail dead time insertion the output flip-flop is forced to the value of EDPOL bit.

If bit FORCMB is set, the output flip-flop value depends upon the selected dead time insertion mode. In
lead dead time insertion FORCMB forces the output flip-flop to transition to EDPOL bit value. In trail
dead time insertion the output flip-flop is forced to the opposite of EDPOL bit value.

NOTE
FORCMA bit set does not set the internal time-base to 0x1 as a regular A1
match.

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are issued at the
same time.

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001

MPC5604B/C Microcontroller Reference Manual, Rev. 8

568 Freescale Semiconductor

NOTE
FORCMA and FORCMB have the same behavior even in Freeze or normal
mode regarding the output pin transition.

When FORCMA is issued along with FORCMB the output flip-flop is set to the opposite of EDPOL bit
value. This is equivalent of saying that.FORCMA has precedence over FORCMB when lead dead time
insertion is selected and FORCMB has precedence over FORCMA when trail dead time insertion is
selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1 registers
relatively to the period of the external time base. Setting A1 = 1 generates a 100% duty cycle waveform.
Assuming EDPOL is set to ‘1’ and OPWMCB mode with trail dead time insertion, 100% duty cycle
signals can be generated if B1 occurs at or after the cycle boundary (external counter = 1). If A1 is greater
than the maximum value of the selected counter bus period, then a 0% duty cycle is produced, only if the
pin starts the current cycle in the opposite of EDPOL value. In case of 100% duty cycle, the transition from
EDPOL to the opposite of EDPOL may be obtained by forcing pin, using FORCMA or FORCMB, or both.

NOTE
If A1 is set to 0x1 at OPWMCB entry the 100% duty cycle may not be
obtained in the very first PWM cycle due to the pin condition at mode entry.

Only values different than 0x0 are allowed to be written to A1 register. If 0x0 is loaded to A1 the results
are unpredictable.

NOTE
A special case occurs when A1 is set to (external counter bus period)/2,
which is the maximum value of the external counter. In this case the output
flip-flop is constantly set to the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle. In trail dead
time insertion B1 match from cycle n could eventually cross the cycle boundary and occur in cycle n+1.
In this case B1 match is masked out and does not cause the output flip-flop to transition. Therefore matches
in cycle n+1 are not affected by the late B1 matches from cycle n.

Figure 24-43 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3. In this case
the trailing edge is positioned at the boundary of cycle n+1, which is actually considered to belong to cycle
n+2 and therefore does not cause the output flip-flip to transition.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 569

Figure 24-43. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3)

It is important to notice that, such as in OPWMB and OPWFMB modes, the match signal used to set or
clear the channel output flip-flop is generated on the deassertion of the channel combinational comparator
output signal which compares the selected time base with A1 or B1 register values. Please refer to
Figure 24-36 which describes the delay from matches to output flip-flop transition in OPWFMB mode.
The operation of OPWMCB mode is similar to OPWFMB regarding matches and output pin transition.

24.4.4.1.1.11 Output Pulse Width Modulation Buffered (OPWMB) Mode

OPWMB mode (MODE[0:6] = 11000b0) is used to generate pulses with programmable leading and
trailing edge placement. An external counter driven in MCB Up mode must be selected from one of the
counter buses. A1 register value defines the first edge and B1 the second edge. The output signal polarity
is defined by the EDPOL bit. If EDPOL is zero, a negative edge occurs when A1 matches the selected
counter bus and a positive edge occurs when B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. Please refer to Figure 24-38 for more
information about A1 and B1 registers update.

FLAG can be generated at B1 matches, when MODE[5] is cleared, or in both A1 and B1 matches, when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level corresponding
to a match on A1 or B1 respectively. FLAG bit is not set by the FORCMA and FORCMB operations.

At OPWMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOSC[n]
register.

0x000001

dead time

0x000020

dead time dead time

write to A2
selected
counter bus

internal
time
base

0x000004

A1 value

A2 value

B1 value

B2 value

0x000004

0x000001

output flip-flop

0x000003

0x000015

0x000003

0x000015

0x000003

cycle n cycle n+1 cycle n+2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

570 Freescale Semiconductor

Some rules applicable to the OPWMB mode are:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle

• A1 = 0 match from cycle n has precedence over B1 match from cycle n-1

• A1 matches are masked out if they occur after B1 match within the same cycle

• Any value written to A2 or B2 on cycle n is loaded to A1 and B1 registers at the following cycle
boundary (assuming OU[n] bit of EMIOSOUDIS register is not asserted). Thus the new values will
be used for A1 and B1 matches in cycle n+1

Figure 24-44 describes the operation of the OPWMB mode regarding A1 and B1 matches and the
transition of the channel output pin. In this example EDPOL is set to ‘0’.

Figure 24-44. OPWMB mode matches and flags

Note that the output pin transitions are based on the negedges of the A1 and B1 match signals.
Figure 24-44 shows in cycle n+1 the value of A1 register being set to ‘0’. In this case the match posedge
is used instead of the negedge to transition the output flip-flop.

Figure 24-45 describes the channel operation for 0% duty cycle. Note that the A1 match posedge signal
occurs at the same time as the B1 = 0x8 negedge signal. In this case A1 match has precedence over B1
match, causing the output pin to remain at EDPOL bit value, thus generating a 0% duty cycle signal.

1

4

match A1 negedge detection

6

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000006

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

86

FLAG set event

Selected
counter bus

FLAG pin/register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 571

Figure 24-45. OPWMB mode with 0% duty cycle

Figure 24-46 shows a waveform changing from 100% to 0% duty cycle. EDPOL in this case is zero. In
this example B1 is programmed to the same value as the period of the external selected time base.

Figure 24-46. OPWMB mode from 100% to 0% duty cycle

In Figure 24-46 if B1 is set to a value lower than 0x8 it is not possible to achieve 0% duty cycle by only
changing A1 register value. Since B1 matches have precedence over A1 matches the output pin transitions
to the opposite of EDPOL bit at B1 match. Note also that if B1 is set to 0x9, for instance, B1 match does
not occur, thus a 0% duty cycle signal is generated.

1

4

match A1 negedge detection

8

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

Selected

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

8

counter bus

FLAG set event

FLAG pin/register

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9
counter bus

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

MPC5604B/C Microcontroller Reference Manual, Rev. 8

572 Freescale Semiconductor

24.4.4.1.1.12 Output Pulse Width Modulation with Trigger (OPWMT) mode

OPWMT mode (MODE[0:6] = 0100110) is intended to support the generation of pulse width modulation
signals where the period is not modified while the signal is being output, but where the duty cycle will be
varied and must not create glitches. The mode is intended to be used in conjunction with other channels
executing in the same mode and sharing a common timebase. It will support each channel with a fixed
PWM leading edge position with respect to the other channels and the ability to generate a trigger signal
at any point in the period that can be output from the module to initiate activity in other parts of the device
such as starting ADC conversions.

An external counter driven in either MC Up or MCB Up mode must be selected from one of the counter
buses.

Register A1 defines the leading edge of the PWM output pulse and as such the beginning of the PWM’s
period. This makes it possible to insure that the leading edge of multiple channels in OPWMT mode can
occur at a specific time with respect to the other channels when using a shared timebase. This can allow
the introduction of a fixed offset for each channel which can be particularly useful in the generation of
lighting PWM control signals where it is desirable that edges are not coincident with each other to help
eliminate noise generation. The value of register A1 represents the shift of the PWM channel with respect
to the selected timebase. A1 can be configured with any value within the range of the selected time base.
Note that registers loaded with 0x0 will not produce matches if the timebase is driven by a channel in MCB
mode.

A1 is not buffered as the shift of a PWM channel must not be modified while the PWM signal is being
generated. In case A1 is modified it is immediately updated and one PWM pulse could be lost.

EMIOSB[n] address gives access to B2 register for write and B1 register for read. Register B1 defines the
trailing edge of the PWM output pulse and as such the duty cycle of the PWM signal. To synchronize B1
update with the PWM signal and so ensure a correct output pulse generation the transfer from B2 to B1 is
done at every match of register A1.

EMIOSOUDIS register affects transfers between B2 and B1 only.

In order to account for the shift in the leading edge of the waveform defined by register A1 it will be
necessary that the trailing edge, held in register B1, can roll over into the next period. This means that a
match against the B1 register should not have to be qualified by a match in the A1 register. The impact of
this would mean that incorrectly setting register B1 to a value less that register A1 will result in the output
being held over a cycle boundary until the B1 value is encountered.

This mode provides a buffered update of the trailing edge by updating register B1 with register B2 contents
only at a match of register A1.

The value loaded in register A1 is compared with the value on the selected time base. When a match on
comparator A1 occurs, the output flip-flop is set to the value of the EDPOL bit. When a match occurs on
comparator B, the output flip-flop is set to the complement of the EDPOL bit.

Note that the output pin and flag transitions are based on the posedges of the A1, B1 and A2 match signals.
Please, refer to Figure 24-44 at Section 24.4.4.1.1.11, Output Pulse Width Modulation Buffered
(OPWMB) Mode for details on match posedge.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 573

Register A2 defines the generation of a trigger event within the PWM period and A2 should be configured
with any value within the range of the selected time base, otherwise no trigger will be generated. A match
on the comparator will generate the FLAG signal but it has no effect on the PWM output signal generation.
The typical setup to obtain a trigger with FLAG is to enable DMA and to drive the channel’s ipd_done
input high.

A2 is not buffered and therefore its update is immediate. If the channel is running when a change is made
this could cause either the loss of one trigger event or the generation of two trigger events within the same
period. Register A2 can be accessed by reading or writing the eMIOS UC Alternate A Register
(EMIOSALTA) at UC[n] base address +0x14.

FLAG signal is set only at match on the comparator with A2. A match on the comparator with A1 or B1
or B2 has no effect on FLAG.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A or B respectively. Any FORCMA and/or FORCMB has priority over any
simultaneous match regarding to output pin transitions. Note that the load of B2 content on B1 register at
an A match is not inhibited due to a simultaneous FORCMA/FORCMB assertion. If both FORCMA and
FORCMB are asserted simultaneously the output pin goes to the opposite of EDPOL value such as if A1
and B1 registers had the same value. FORCMA assertion causes the transfer from register B2 to B1 such
as a regular A match, regardless of FORCMB assertion.

If subsequent matches occur on comparators A1 and B, the PWM pulses continue to be generated,
regardless of the state of the FLAG bit.

At OPWMT mode entry the output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n]
register.

In order to achieve 0% duty cycle both registers A1 and B must be set to the same value. When a
simultaneous match on comparators A and B occur, the output flip-flop is set at every period to the
complement value of EDPOL.

In order to achieve 100% duty cycle the register B1 must be set to a value greater than maximum value of
the selected time base. As a consequence, if 100% duty cycle must be implemented, the maximum counter
value for the time base is 0xFFFE for a 16-bit counter. When a match on comparator A1 occurs the output
flip-flop is set at every period to the value of EDPOL bit. The transfer from register B2 to B1 is still
triggered by the match at comparator A.

Figure 24-47 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
duty cycle update on next period update.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

574 Freescale Semiconductor

Figure 24-47. OPWMT example

Figure 24-48 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
0% duty.

Figure 24-48. OPWMT with 0% Duty Cycle

Figure 24-49 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
100% duty cycle.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000700

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

0x000700

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000700

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000400

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000400

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 575

Figure 24-49. OPWMT with 100% duty cycle

24.4.4.1.2 Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the Unified Channel edge detector. A
block diagram of the IPF is shown in Figure 24-50.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
bits IF[0:3] in EMIOSC[n] register.

Figure 24-50. lnput programmable filter submodule diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter remains incrementing.
If a counter overflows occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next pin transition, the counter starts counting again. Any pulse that is shorter than a full range
of the masked counter is regarded as a glitch and it is not passed on to the edge detector. A timing diagram
of the input filter is shown in Figure 24-51.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x001200

 Match B1 does not occur
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x001200

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

IF3

filter out

ipg_clk

Prescaled Clock

IF2 IF1 IF0

clk

FCK

EMIOSI

5-bit up counter

sy
nc

hr
on

iz
er

clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

576 Freescale Semiconductor

Figure 24-51. Input programmable filter example

The filter is not disabled during either freeze state or negated GTBE input.

24.4.4.1.3 Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of the Unified
Channels. The GCP output signal is prescaled by the value defined in Figure 24-18 according to the
UCPRE[0:1] bits in EMIOSC[n] register. The prescaler is enabled by setting the UCPREN bit in the
EMIOSC[n] and can be stopped at any time by clearing this bit, thereby stopping the internal counter in
the Unified Channel.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write 0 at both GPREN bit in EMIOSMCR register and UCPREN bit in EMIOSC[n] register, thus
disabling prescalers;

2. Write the desired value for prescaling rate at UCPRE[0:1] bits in EMIOSC[n] register;

3. Enable channel prescaler by writing 1 at UCPREN bit in EMIOSC[n] register;

4. Enable global prescaler by writing 1 at GPREN bit in EMIOSMCR register.

The prescaler is not disabled during either freeze state or negated GTBE input.

24.4.4.1.4 Effect of Freeze on the Unified Channel

When in debug mode, bit FRZ in the EMIOSMCR and bit FREN in the EMIOSC[n] register are both set,
the internal counter and Unified Channel capture and compare functions are halted. The UC is frozen in
its current state.

During freeze, all registers are accessible. When the Unified Channel is operating in an output mode, the
force match functions remain available, allowing the software to force the output to the desired level.

Note that for input modes, any input events that may occur while the channel is frozen are ignored.

When exiting debug mode or freeze enable bit is cleared (FRZ in the EMIOSMCR or FREN in the
EMIOSC[n] register) the channel actions resume, but may be inconsistent until channel enters GPIO mode
again.

Time

selected clock

EMIOSI

5-bit counter

filter out

IF[0:3] = 0010

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 577

24.4.4.2 IP Bus Interface Unit (BIU)

The BIU provides the interface between the Internal Interface Bus (IIB) and the Peripheral Bus, allowing
communication among all submodules and this IP interface.

The BIU allows 8, 16 and 32-bit access. They are performed over a 32-bit data bus in a single cycle clock.

24.4.4.2.1 Effect of Freeze on the BIU

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation of BIU is not
affected.

24.4.4.3 Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the channels. The main clock signal
is prescaled by the value defined in Figure 24-12 according to bits GPRE[0:7] in the EMIOSMCR. The
global prescaler is enabled by setting the GPREN bit in the EMIOSMCR and can be stopped at any time
by clearing this bit, thereby stopping the internal counters in all the channels.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write ‘0’ at GPREN bit in EMIOSMCR, thus disabling global prescaler;

2. Write the desired value for prescaling rate at GPRE[0:7] bits in EMIOSMCR;

3. Enable global prescaler by writing ‘1’ at GPREN bit in EMIOSMCR.

The prescaler is not disabled during either freeze state or negated GTBE input.

24.4.4.3.1 Effect of Freeze on the GCP

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation of GCP
submodule is not affected, that is, there is no freeze function in this submodule.

24.4.5 Initialization/Application information

On resetting the eMIOS the Unified Channels enter GPIO input mode.

24.4.5.1 Considerations

Before changing an operating mode, the UC must be programmed to GPIO mode and EMIOSA[n] and
EMIOSB[n] registers must be updated with the correct values for the next operating mode. Then the
EMIOSC[n] register can be written with the new operating mode. If a UC is changed from one mode to
another without performing this procedure, the first operation cycle of the selected time base can be
random, that is, matches can occur in random time if the contents of EMIOSA[n] or EMIOSB[n] were not
updated with the correct value before the time base matches the previous contents of EMIOSA[n] or
EMIOSB[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the interrupt service
routine.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

578 Freescale Semiconductor

24.4.5.2 Application information

Correlated output signals can be generated by all output operation modes. Bits OU[n] of the
EMIOSOUDIS register can be used to control the update of these output signals.

In order to guarantee that the internal counters of correlated channels are incremented in the same clock
cycle, the internal prescalers must be set up before enabling the global prescaler. If the internal prescalers
are set after enabling the global prescaler, the internal counters may increment in the same ratio, but at a
different clock cycle.

24.4.5.2.1 Time base generation

For MC with internal clock source operation modes, the internal counter rate can be modified by
configuring the clock prescaler ratio. Figure 24-52 shows an example of a time base with prescaler ratio
equal to one.

NOTE
MCB and OPWFMB modes have a different behavior.

Figure 24-52. Time base period when running in the fastest prescaler ratio

If the prescaler ratio is greater than one or external clock is selected, the counter may behave in three
different ways depending on the channel mode:

• If MC mode and Clear on Match Start and External Clock source are selected the internal counter
behaves as described in Figure 24-53.

• If MC mode and Clear on Match Start and Internal Clock source are selected the internal counter
behaves as described in Figure 24-54.

• If MC mode and Clear on Match End are selected the internal counter behaves as described in
Figure 24-55.

NOTE
MCB and OPWFMB modes have a different behavior.

system clock

input event/prescaler clock enable = 1

internal counter

match value = 3

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PRE SCALED CLOCK RATIO = 1 (bypassed)

see note 1

FLAG set event

Note 1: When a match occurs, the first clock cycle is used to
 clear the internal counter, starting another period.

FLAG pin/register

FLAG clear

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 579

Figure 24-53. Time base generation with external clock and clear on match start

Figure 24-54. Time base generation with internal clock and clear on match start

Figure 24-55. Time base generation with clear on match end

system clock

input event

internal counter

match value = 3

1 23 0

see note 1

Note 1: When a match occurs, the first system clock cycle is used to clear the
 internal counter, and at the next edge of prescaler clock enable

1 2

 the counter will start counting.

1 23 0

FLAG set event

FLAG clear

FLAG pin/register

system clock

prescaler clock enable

internal counter

match value = 3

0 13 0 2 03 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: When a match occurs, the first clock cycle is used to clear the
 internal counter, and only after a second edge of pre scaled clock

1 2

 the counter will start counting.

FLAG set event

FLAG clear

FLAG pin/register

system clock

input event/prescaler clock enable

internal counter

match value = 3

0 13 2 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: The match occurs only when the input event/prescaler clock enable is active.
 Then, the internal counter is immediately cleared.

1 2 3

FLAG set event

FLAG clear

FLAG pin/register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

580 Freescale Semiconductor

24.4.5.2.2 Coherent accesses

It is highly recommended that the software waits for a new FLAG set event before start reading
EMIOSA[n] and EMIOSB[n] registers to get a new measurement. The FLAG indicates that new data has
been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt request or CTU
trigger generation.

Reading the EMIOSA[n] register again in the same period of the last read of EMIOSB[n] register may lead
to incoherent results. This will occur if the last read of EMIOSB[n] register occurred after a disabled B2
to B1 transfer.

24.4.5.2.3 Channel/Modes initialization

The following basic steps summarize basic output mode startup, assuming the channels are initially in
GPIO mode:

1. [global] Disable Global Prescaler.

2. [timebase channel] Disable Channel Prescaler.

3. [timebase channel] Write initial value at internal counter.

4. [timebase channel] Set A/B register.

5. [timebase channel] Set channel to MC(B) Up mode.

6. [timebase channel] Set prescaler ratio.

7. [timebase channel] Enable Channel Prescaler.

8. [output channel] Disable Channel Prescaler.

9. [output channel] Set A/B register.

10. [output channel] Select timebase input through bits BSL[1:0].

11. [output channel] Enter output mode.

12. [output channel] Set prescaler ratio (same ratio as timebase channel).

13. [output channel] Enable Channel Prescaler.

14. [global] Enable Global Prescaler.

15. [global] Enable Global Time Base.

The timebase channel and the output channel may be the same for some applications such as in
OPWFM(B) mode or whenever the output channel is intended to run the timebase itself.

The flags can be configured at any time.

24.5 Periodic Interrupt Timer (PIT)

24.5.1 Introduction

The PIT is an array of timers that can be used to raise interrupts.

Figure 24-56 shows the PIT block diagram.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 581

Figure 24-56. PIT block diagram

24.5.2 Features

The main features of this block are:

• Timers can generate interrupts

• All interrupts are maskable

• Independent timeout periods for each timer

24.5.3 Signal description

The PIT module has no external pins.

24.5.4 Memory map and register description

This section provides a detailed description of all registers accessible in the PIT module.

24.5.4.1 Memory map

Table 24-23 gives an overview of the PIT registers. See the chip memory map for the PIT base address.

Timer 5

Timer 0

.

.

.

PIT
Registers

Peripheral

interrupts

PIT

.

.

.

triggers

Bus

System Clock

MPC5604B/C Microcontroller Reference Manual, Rev. 8

582 Freescale Semiconductor

NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.

NOTE
Reserved registers will read as 0, writes will have no effect.

24.5.4.2 PIT Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers should run in
debug mode.

Table 24-23. PIT memory map

Base address: 0xC3FF_0000

Address offset Use Location

0x000 PIT Module Control Register (PITMCR) on page 582

0x004–0x0FC Reserved

0x100–0x10C Timer Channel 0 See Table 24-24

0x110–0x11C Timer Channel 1 See Table 24-24

0x120–0x12C Timer Channel 2 See Table 24-24

0x130–0x13C Timer Channel 3 See Table 24-24

0x140–0x14C Timer Channel 4 See Table 24-24

0x150–0x15C Timer Channel 5 See Table 24-24

Table 24-24. Timer channel n

Address offset Use Location

channel + 0x00 Timer Load Value Register (LDVAL) on page 583

channel + 0x04 Current Timer Value Register (CVAL) on page 584

channel + 0x08 Timer Control Register (TCTRL) on page 584

channel + 0x0C Timer Flag Register (TFLG) on page 585

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 583

24.5.4.3 Timer Load Value Register (LDVAL)

This register selects the timeout period for the timer interrupts.

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MDIS FRZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 24-57. PIT Module Control Register (PITMCR)

Table 24-25. PITMCR field descriptions

Field Description

MDIS Module Disable
This is used to disable the module clock. This bit should be enabled before any other setup is done.
0 Clock for PIT timers is enabled
1 Clock for PIT timers is disabled (default)

FRZ Freeze
Allows the timers to be stopped when the device enters debug mode.
0 = Timers continue to run in debug mode.
1 = Timers are stopped in debug mode.

Offset: channel_base + 0x00 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-58. Timer Load Value Register (LDVAL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

584 Freescale Semiconductor

24.5.4.4 Current Timer Value Register (CVAL)

This register indicates the current timer position.

24.5.4.5 Timer Control Register (TCTRL)

This register contains the control bits for each timer.

Table 24-26. LDVAL field descriptions

Field Description

TSV Time Start Value
This field sets the timer start value. The timer counts down until it reaches 0, then it generates an interrupt
and loads this register value again. Writing a new value to this register does not restart the timer, instead
the value is loaded once the timer expires. To abort the current cycle and start a timer period with the new
value, the timer must be disabled and enabled again (see Figure 24-63).

Offset: channel_base + 0x04 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-59. Current Timer Value Register (CVAL)

Table 24-27. CVAL field descriptions

Field Description

TVL Current Timer Value
This field represents the current timer value. Note that the timer uses a downcounter.

Note: The timer values will be frozen in Debug mode if the FRZ bit is set in the PIT Module Control
Register (see Figure 24-2).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 585

24.5.4.6 Timer Flag Register (TFLG)

This register holds the PIT interrupt flags.

Offset: channel_base + 0x08 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-60. Timer Control Register (TCTRL)

Table 24-28. TCTRL field descriptions

Field Description

TIE Timer Interrupt Enable Bit
0 Interrupt requests from Timer x are disabled
1 Interrupt will be requested whenever TIF is set
When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event.
To avoid this, the associated TIF flag must be cleared first.

TEN Timer Enable Bit
0 Timer will be disabled
1 Timer will be active

Offset: channel_base + 0x0C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-61. Timer Flag Register (TFLG)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

586 Freescale Semiconductor

24.5.5 Functional description

24.5.5.1 General

This section gives detailed information on the internal operation of the module. Each timer can be used to
generate trigger pulses as well as to generate interrupts, each interrupt will be available on a separate
interrupt line.

24.5.5.1.1 Timers

The timers generate triggers at periodic intervals, when enabled. They load their start values, as specified
in their LDVAL registers, then count down until they reach 0. Then they load their respective start value
again. Each time a timer reaches 0, it will generate a trigger pulse and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRL registers). A new interrupt
can be generated only after the previous one is cleared.

If desired, the current counter value of the timer can be read via the CVAL registers.

The counter period can be restarted, by first disabling, then enabling the timer with the TEN bit (see
Figure 24-62).

The counter period of a running timer can be modified, by first disabling the timer, setting a new load value
and then enabling the timer again (see Figure 24-63).

It is also possible to change the counter period without restarting the timer by writing the LDVAL register
with the new load value. This value will then be loaded after the next trigger event (see Figure 24-64).

Figure 24-62. Stopping and starting a timer

Table 24-29. TFLG field descriptions

Field Description

TIF Time Interrupt Flag
TIF is set to 1 at the end of the timer period. This flag can be cleared only by writing it with a 1. Writing a
0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.
0 Time-out has not yet occurred
1 Time-out has occurred

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 587

Figure 24-63. Modifying running timer period

Figure 24-64. Dynamically setting a new load value

24.5.5.1.2 Debug mode

In Debug mode the timers will be frozen. This is intended to aid software development, allowing the
developer to halt the processor, investigate the current state of the system (for example, the timer values)
and then continue the operation.

24.5.5.2 Interrupts

All of the timers support interrupt generation. See the INTC chapter of the reference manual for related
vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to zero. The timer interrupt flags (TIF) are set to 1
when a timeout occurs on the associated timer, and are cleared to 0 by writing a 1 to that TIF bit.

24.5.6 Initialization and application information

24.5.6.1 Example configuration

In the example configuration:

• The PIT clock has a frequency of 50 MHz

• Timer 1 creates an interrupt every 5.12 ms

• Timer 3 creates a trigger event every 30 ms

First the PIT module needs to be activated by programming PIT_MCR[MDIS] = 0.

The 50 MHz clock frequency equates to a clock period of 20 ns. Timer 1 needs to trigger every
5.12 ms/20 ns = 256000 cycles and Timer 3 every 30 ms/20 ns = 1500000 cycles. The value for the
LDVAL register trigger would be calculated as (period / clock period) – 1.

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Load Value

p2 p2 p2

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event

MPC5604B/C Microcontroller Reference Manual, Rev. 8

588 Freescale Semiconductor

The LDVAL registers must be set as follows:

• LDVAL for Timer 1 is set to 0x0003E7FF

• LDVAL for Timer 3 is set to 0x0016E35F

The interrupt for Timer 1 is enabled by setting TIE in the TCTRL1 register. The timer is started by writing
a 1 to bit TEN in the TCTRL1 register.

Timer 3 shall be used only for triggering. Therefore Timer 3 is started by writing a 1 to bit TEN in the
TCTRL3 register; bit TIE stays at 0.

The following example code matches the described setup:
// turn on PIT
PIT_CTRL = 0x00;

// Timer 1
PIT_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_TCTRL1 = TIE; // enable Timer 1 interrupts
PIT_TCTRL1 |= TEN; // start timer 1

// Timer 3
PIT_LDVAL3 = 0x0016E35F; // setup timer 3 for 1500000 cycles
PIT_TCTRL3 = TEN; // start timer 3

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 589

——— ADC system ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

590 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 591

Chapter 25
Analog-to-Digital Converter (ADC)

25.1 Overview

25.1.1 Device-specific features
• 10-bit resolution

• 36 channels (depending on package type), expandable to 64 channels via external multiplexing

— As many as 16 precision channels

— As many as 20 standard channels, 4 being expandable to as many as 32 external channels

• Address decoder signal generation (alternate functions MA[2:0]) to control external multiplexers

• Individual conversion registers for each channel (internal and external)

• 3 different sampling and conversion time registers CTR[0:2] (internal precision channels, standard
channels, external channels)

• As many as 64 data registers for storing converted data. Conversion information, such as mode of
operation (normal, injected or CTU), is associated to data value.

• Conversion triggering sources:

— Software

— CTU

— PIT channel 2 (for injected conversion)

• 4 analog watchdogs

— Interrupt capability

— Allow continuous hardware monitoring of 4 analog input channels

• Presampling (VSS and VDD)

• Conversions on external channels managed in the same way as internal channels, making it
transparent to the application

• One Shot/Scan Modes

• Chain Injection Mode

• Power-down mode

• 2 different Abort functions allow to abort either single-channel conversion or chain conversion

• Auto-clock-off

MPC5604B/C Microcontroller Reference Manual, Rev. 8

592 Freescale Semiconductor

25.1.2 Device-specific implementation

Figure 25-1. ADC implementation

25.2 Introduction
The analog-to-digital converter (ADC) block provides accurate and fast conversions for a wide range of
applications.

The ADC contains advanced features for normal or injected conversion. A conversion can be triggered by
software or hardware (Cross Triggering Unit or PIT).

There are three types of input channels:

• Internal precision, ADC0_P[n] (internally multiplexed precision channels)

• Internal standard, ADC0_S[n] (internally multiplexed standard channels)

• External ADC0_X[n] (externally multiplexed standard channels)

The mask registers present within the ADC can be programmed to configure which channel has to be
converted.

Three external decode signals MA[2:0] (multiplexer address) are provided for external channel selection
and are available as alternate functions on GPIO.

The MA[0:2] are controlled by the ADC itself and are set automatically by the hardware.

A conversion timing register for configuring different sampling and conversion times is associated to each
channel type.

PIT2

CTU

eMIOS

PIT
Ch23 trig

PIT3

ADC control

ADC trigger

ADC done

2 interrupts
ADC_EOC & ADC_WD

Digital
Interface Analog

switch

INTC
D

A

M
U

X
 2

0
M

U
X

 1
6

ADC_0 (10 bit)

eMIOS0_0

eMIOS0_22

eMIOS0_24

Ch0 trig

Ch22 trig

Ch24 trig

eMIOS1_0

eMIOS1_22

eMIOS1_24

Ch32 trig

Ch54 trig

Ch56 trig

...
...

...
...

Up to 20
standard channels

16 precision

ADC0_X[3]

ADC0_X[0]

ADC0_S[15] (Ch 47)

ADC0_S[0] (Ch 32)

ADC0_P[15] (Ch 15)

ADC0_P[0] (Ch 0)

MA[2:0]

MUX 8 MUX 8

3

...

...

ADC0_X[2]
ADC0_X[1]

MUX 8 MUX 8

(C
h

88
–9

5)

(C
h

64
–7

1)

(C
h

80
–8

7)

(C
h

72
–7

9)

channels

Up to 32 extended channels
through external MUX

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 593

Analog watchdogs allow continuous hardware monitoring.

25.3 Functional description

25.3.1 Analog channel conversion

Three conversion modes are available within the ADC:

• Normal conversion

• Injected conversion

• CTU triggered conversion

25.3.1.1 Normal conversion

This is the normal conversion that the user programs by configuring the normal conversion mask registers
(NCMR). Each channel can be individually enabled by setting ‘1’ in the corresponding field of NCMR
registers. Mask registers must be programmed before starting the conversion and cannot be changed until
the conversion of all the selected channels ends (NSTART bit in the Main Status Register (MSR) is reset).

25.3.1.2 Start of normal conversion

By programming the configuration bits in the Main Configuration Register (MCR), the normal conversion
can be started in two ways:

• By software (TRGEN reset)—If the external trigger enable bit is reset, the conversion chain starts
when the MCR[NSTART] bit is set.

• By trigger (TRGEN set)—An on-chip internal signal triggers an ADC conversion. The settings in
the MCR select how conversions are triggered based on these internal signals:

— If the EDGLEV (edge/level selection) bit in the MCR is cleared, then a rising/falling edge
(depending on the MCR[EDGE] bit) detected in the signal sets the MSR[NSTART] bit and
starts the programmed conversion. EDGE = 0 selects a falling edge. EDGE = 1 selects a rising
edge.

— If the EDGLEV bit in the MCR is set, the conversion is started if and only if the
MCR[NSTART] bit is set and the programmed level on the trigger signal is detected. The level
is selected using the MCR[EDGE] bit. EDGE = 0 means that the start of conversion is enabled
if the signal is low. If EDGE = 1, the start of conversion is enabled when the signal is high.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

594 Freescale Semiconductor

The MSR[NSTART] status bit is automatically set when the normal conversion starts. At the same time

the MCR[NSTART] bit is reset, allowing the software to program a new start of conversion. In that case
the new requested conversion starts after the running conversion is completed.

If the content of all the normal conversion mask registers is zero (that is, no channel is selected) the
conversion operation is considered completed and the interrupt ECH (see interrupt controller chapter for
further details) is immediately issued after the start of conversion.

25.3.1.3 Normal conversion operating modes

Two operating modes are available for the normal conversion:

• One Shot

• Scan

To enter one of these modes, it is necessary to program the MCR[MODE] bit. The first phase of the
conversion process involves sampling the analog channel and the next phase involves the conversion phase
when the sampled analog value is converted to digital as shown in Figure 25-2.

Figure 25-2. Normal conversion flow

In One Shot Mode (MODE = 0) a sequential conversion specified in the NCMR registers is performed
only once. At the end of each conversion, the digital result of the conversion is stored in the corresponding
data register.

Table 25-1. Configurations for starting normal conversion

Type of
conversion

start

MCR MSR

Result
TRGEN

NSTAR
T

EDGLE
V

EDGE
NSTAR

T

Software 0 1 — — 1 Conversion chain starts

Trigger 1 — 0 0 1 A falling edge detected in a trigger signal sets the
NSTART bit in the MSR and starts the
programmed conversion.

1 A rising edge detected in a trigger signal sets the
NSTART bit in the MSR and starts the
programmed conversion.

Trigger 1 1 1 0 1 The conversion is started if the programmed level
on the trigger signal is detected: the start of
conversion is enabled if the external pin is low.

1 1 The conversion is started if the programmed level
on the trigger signal is detected: the start of
conversion is enabled if the external pin is high.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 595

Example 25-1. One Shot Mode (MODE = 0)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be converted
in the One Shot Mode. MODE = 0 is set for One Shot mode. Conversion starts from the channel B
followed by conversion of channels D-E. At the end of conversion of channel E the scanning of
channels stops.

The NSTART status bit in the MSR is automatically set when the Normal conversion starts. At the same
time the MCR[NSTART] bit is reset, allowing the software to program a new start of conversion. In that
case the new requested conversion starts after the running conversion is completed.

In Scan Mode (MODE = 1), a sequential conversion of N channels specified in the NCMR registers is
continuously performed. As in the previous case, at the end of each conversion the digital result of the
conversion is stored into the corresponding data register.

The MSR[NSTART] status bit is automatically set when the Normal conversion starts. Unlike One Shot
Mode, the MCR[NSTART] bit is not reset. It can be reset by software when the user needs to stop scan
mode. In that case, the ADC completes the current scan conversion and, after the last conversion, also
resets the MSR[NSTART] bit.

Example 25-2. Scan Mode (MODE = 1)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be converted
in the Scan Mode. MODE = 1 is set for Scan Mode. Conversion starts from the channel B followed
by conversion of the channels D-E. At the end of conversion of channel E the scanning of channel
B starts followed by conversion of the channels D-E. This sequence repeats itself till the
MCR[NSTART] bit is cleared by software.

If the conversion is started by an external trigger and EDGLEV is ‘0’, the MCR[NSTART] bit is not set.
As a consequence, once started the only way to stop scan mode conversion is to set the MODE bit to ‘0’.

At the end of each conversion an End Of Conversion interrupt is issued (if enabled by the corresponding
mask bit) and at the end of the conversion sequence an End Of Chain interrupt is issued (if enabled by the
corresponding mask bit in the IMR register).

25.3.1.4 Injected channel conversion

A conversion chain can be injected into the ongoing Normal conversion by configuring the Injected
Conversion Mask Registers (JCMR). As Normal conversion, each channel can be individually selected.
This injected conversion (which can only occur in One Shot mode) interrupts the normal conversion(which
can be in One Shot or Scan mode). When an injected conversion is inserted, ongoing normal channel
conversion is aborted and the injected channel request is processed. After the last channel in the injected
chain is converted, normal conversion resumes from the channel at which the normal conversion was
aborted as shown in Figure 25-3.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

596 Freescale Semiconductor

Figure 25-3. Injected sample/conversion sequence

The injected conversion can be started using two options:

• By software setting the MCR[JSTART]; the current conversion is suspended and the injected chain
is converted. At the end of the chain, the JSTART bit in the MSR is reset and the normal chain
conversion is resumed.

• By an internal trigger signal from the PIT when MCR[JTRGEN] is set; a programmed event
(rising/falling edge depending on MCR[JEDGE]) on the signal coming from PIT starts the injected
conversion by setting the MSR[JSTART]. At the end of the chain, the MSR[JSTART] is cleared
and the normal conversion chain is resumed.

The MSR[JSTART] is automatically set when the Injected conversion starts. At the same time the
MCR[JSTART] is reset, allowing the software to program a new start of conversion. In that case the new
requested conversion starts after the running injected conversion is completed.

At the end of each injected conversion, an End Of Injected Conversion (JEOC) interrupt is issued (if
enabled by the IMR[MSKJEOC]) and at the end of the sequence an End Of Injected Chain (JECH)
interrupt is issued (if enabled by the IMR[MSKJEOC]).

If the content of all the injected conversion mask registers (JCMR) is zero (that is, no channel is selected)
the JECH interrupt is immediately issued after the start of conversion.

25.3.1.5 Abort conversion

Two different abort functions are provided.

• The user can abort the ongoing conversion by setting the MCR[ABORT] bit. The current
conversion is aborted and the conversion of the next channel of the chain is immediately started.
In the case of an abort operation, the NSTART/JSTART bit remains set and the ABORT bit is reset
after the conversion of the next channel starts. The EOC interrupt corresponding to the aborted
channel is not generated. This behavior is true for normal or Injected conversion modes. If the last
channel of a chain is aborted, the end of chain is reported generating an ECH interrupt.

• It is also possible to abort the current chain conversion by setting the MCR[ABORTCHAIN] bit.
In that case the behavior of the ADC depends on the MODE bit. If scan mode is disabled, the
NSTART bit is automatically reset together with the MCR[ABORTCHAIN] bit. Otherwise, if the

The ongoing channel conversion is interrupted and the injected
conversion chain is processed first. After the injected chain is
converted the normal chain conversion resumes from the channel at
which normal conversion was aborted.

Injected conversion of channels I and J

Normal conversion resumes from
the last aborted channel.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

Sample C Abort C Sample I Sample J Convert J Sample C Convert CConvert I

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 597

scan mode is enabled, a new chain conversion is started. The EOC interrupt of the current aborted
conversion is not generated but an ECH interrupt is generated to signal the end of the chain.

When a chain conversion abort is requested (ABORTCHAIN bit is set) while an injected
conversion is running over a suspended Normal conversion, both injected chain and Normal
conversion chain are aborted (both the NSTART and JSTART bits are also reset).

25.3.2 Analog clock generator and conversion timings

The clock frequency can be selected by programming the MCR[ADCLKSEL]. When this bit is set to ‘1’
the ADC clock has the same frequency as the peripheral set 3 clock. Otherwise, the ADC clock is half of
the peripheral set 3 clock frequency. The ADCLKSEL bit can be written only in power-down mode.

When the internal divider is not enabled (ADCCLKSEL = 1), it is important that the associated clock
divider in the clock generation module is ‘1’. This is needed to ensure 50% clock duty cycle.

The direct clock should basically be used only in low power mode when the device is using only the
16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock (an 8 MHz clock is
not fast enough).

In all other cases, the ADC should use the clock divided by two internally.

25.3.3 ADC sampling and conversion timing

In order to support different loading and switching times, several different Conversion Timing registers
(CTR) are present. There is one register per channel type. INPLATCH and INPCMP configurations are
limited when the system clock frequency is greater than 20 MHz.

When a conversion is started, the ADC connects the internal sampling capacitor to the respective analog
input pin, allowing the capacitance to charge up to the input voltage value. The time to load the capacitor
is referred to as sampling time. After completion of the sampling phase, the evaluation phase starts and all
the bits corresponding to the resolution of the ADC are estimated to provide the conversion result.

The conversion times are programmed via the bit fields of the CTR. Bit fields INPLATCH, INPCMP and
INPSAMP are used to define the total conversion duration (Tconv) and in particular the partition between
sampling phase duration (Tsample) and total evaluation phase duration (Teval).

25.3.3.1 ADC_0

Figure 25-4 represents the sampling and conversion sequence.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

598 Freescale Semiconductor

Figure 25-4. Sampling and conversion timings

The sampling phase duration is:

where ndelay is equal to 0.5 if INPSAMP is less than or equal to 06h, otherwise it is 1. INPSAMP must
be greater than or equal to 3 (hardware requirement).

The total evaluation phase duration is:

INPCMP must be greater than or equal to 1 and INPLATCH must be less than INCMP (hardware
requirements).

The total conversion duration is (not including external multiplexing):

The timings refer to the unit Tck, where fck = (1/2 x ADC peripheral set clock).

Table 25-2. ADC sampling and conversion timing at 5 V / 3.3 V for ADC_0

Clock
(MHz)

Tck
(s)

INPSAMPLE1 Ndelay2 Tsample
3 Tsample/Tck INPCMP

Teval
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

6 0.167 4 0.5 0.583 3.500 1 1.667 0 2.333 14.000

7 0.143 4 0.5 0.500 3.500 1 1.429 0 2.000 14.000

8 0.125 5 0.5 0.563 4.500 1 1.250 0 1.875 15.000

0.5 cycles

2.5 cycles

Sampling phase Successive approximation / evaluation phase

10 cycles

Latching phase:
The capacitors field input
switch is opened

Note: Operating conditions — INPLATCH = 0, INPSAMP = 3, INPCMP = 1 and Fadc clk = 20 MHz

End of conversion

Tsample INPSAMP ndelay– Tck=

INPSAMP 3

Teval 10 Tbiteval 10 INPCMP Tck = =

 INPCMP 1 and INPLATCH INPCMP

Tconv Tsample Teval ndelay Tck + +=

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 599

25.3.4 ADC CTU (Cross Triggering Unit)

25.3.4.1 Overview

The ADC cross triggering unit (CTU) is added to enhance the injected conversion capability of the ADC.
The CTU is triggered by multiple input events (eMIOS and PIT) and can be used to select the channels to
be converted from the appropriate event configuration register. A single channel is converted for each
request. After performing the conversion, the ADC returns the result on internal bus.

The CTU can be enabled by setting MCR[CTUEN].

The CTU and the ADC are synchronous with the peripheral set 3 clock in both cases.

25.3.4.2 CTU in trigger mode

In CTU trigger mode, normal and injected conversions triggered by the CPU are still enabled.

Once the CTU event configuration register (CTU_EVTCFGRx) is configured and the corresponding
trigger from the eMIOS or PIT is received, the conversion starts. The MSR[CTUSTART] is set
automatically at this point and it is also automatically reset when the CTU triggered conversion is
completed.

If an injected conversion (programmed by the user by setting the JSTART bit) is ongoing and CTU
conversion is triggered, then the injected channel conversion chain is aborted and only the CTU triggered
conversion proceeds. By aborting the injected conversion, the MSR[JSTART] is reset. That abort is
signalled through the status bit MSR[JABORT].

16 0.063 9 1 0.500 8.000 1 0.625 0 1.188 19.000

32 0.031 17 1 0.500 16.000 2 0.625 1 1.156 37.000

1 Where: INPSAMPLE 3
2 Where: INPSAMP 6, N = 0.5; INPSAMP > 6, N = 1
3 Where: Tsample = (INPSAMP-N)Tck; Must be 500 ns

Table 25-3. Max/Min ADC_clk frequency and related configuration settings at 5 V / 3.3 V for ADC_0

INPCMP INPLATCH Max fADC_clk Min fADC_clk

00/01 0 20+4% 6

1 — —

10 0 — —

1 32+4% 6

11 0 — —

1 32+4% 9

Table 25-2. ADC sampling and conversion timing at 5 V / 3.3 V for ADC_0 (continued)

Clock
(MHz)

Tck
(s)

INPSAMPLE1 Ndelay2 Tsample
3 Tsample/Tck INPCMP

Teval
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

MPC5604B/C Microcontroller Reference Manual, Rev. 8

600 Freescale Semiconductor

If a normal conversion is ongoing and a CTU conversion is triggered, then any ongoing channel conversion
is aborted and the CTU triggered conversion is processed. When it is finished, the normal conversion
resumes from the channel at which the normal conversion was aborted.

If another CTU conversion is triggered before the end of the conversion, that request is discarded.

When a normal conversion is requested during CTU conversion (CTUSTART bit = ‘1’), the normal
conversion starts when CTU conversion is completed (CTUSTART = ‘0’). Otherwise, when an Injected
conversion is requested during CTU conversion, the injected conversion is discarded and the
MCR[JSTART] is immediately reset.

25.3.5 Presampling

25.3.5.1 Introduction

Presampling is used to precharge or discharge the ADC internal capacitor before it starts sampling of the
analog input coming from the input pins. This is useful for resetting information regarding the last
converted data or to have more accurate control of conversion speed. During presampling, the ADC
samples the internally generated voltage.

Presampling can be enabled/disabled on a channel basis by setting the corresponding bits in the PSR
registers.

After enabling the presampling for a channel, the normal sequence of operation will be
Presampling + Sampling + Conversion for that channel. Sampling of the channel can be bypassed by
setting the PRECONV bit in the PSCR. When sampling of a channel is bypassed, the sampled data of
internal voltage in the presampling state is converted (Figure 25-5, Figure 25-6).

Figure 25-5. Presampling sequence

Figure 25-6. Presampling sequence with PRECONV = 1

25.3.5.2 Presampling channel enable signals

It is possible to select between two internally generated voltages V0 and V1 depending on the value of the
PSCR[PREVAL] as shown in Table 25-4.

Presampling is enabled in the channel C and D. For channel B total conversion clock cycles = (S) + (C).

For channel C and D total conversion clock cycles = (P) + (S) + (C).

Sample B Convert B Presample C Convert C Presample D Sample D Convert DSample C Sample E

Sample B Convert B Presample C Presample D Convert D Sample E Convert EConvert C

Presampling enabled in channel C and D but sampling is bypassed in these channels by setting PRECONV = 1 in the PSCR.

For channel C and D total conversion clock cycles = (P) + (C).

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 601

Three presampling value fields, one per channel type, in the PSCR make it possible to select different
presampling values for each type.

25.3.6 Programmable analog watchdog

25.3.6.1 Introduction

The analog watchdogs are used for determining whether the result of a channel conversion lies within a
given guarded area (as shown in Figure 25-7) specified by an upper and a lower threshold value named
THRH and THRL respectively.

Figure 25-7. Guarded area

After the conversion of the selected channel, a comparison is performed between the converted value and
the threshold values. If the converted value lies outside that guarded area then corresponding threshold
violation interrupts are generated. The comparison result is stored as WTISR[WDGxH] and
WTISR[WDGxL] as explained in Table 25-5. Depending on the mask bits WTIMR[MSKWDGxL] and
WTIMR[MSKWDGxH], an interrupt is generated on threshold violation.

The channel on which the analog watchdog is to be applied is selected by the TRC[THRCH]. The analog
watchdog is enabled by setting the corresponding TRC[THREN].

Table 25-4. Presampling voltage selection based on PREVALx fields

PSCR[PREVALx] Presampling voltage

00 V0 = VSS_HV_ADC

01 V1 = VDD_HV_ADC

10 Reserved

11 Reserved

Table 25-5. Values of WDGxH and WDGxL fields

WDGxH WDGxL Converted data

1 0 converted data > THRH

0 1 converted data < THRL

0 0 THRL <= converted data <= THRH

THRH

THRL

Analog voltage

Upper threshold

Lower threshold
Guarded area

MPC5604B/C Microcontroller Reference Manual, Rev. 8

602 Freescale Semiconductor

The lower and higher threshold values for the analog watchdog are programmed using the registers
THRHLR.

For example, if channel number 3 is to be monitored with threshold values in THRHLR1, then the
TRC[THRCH] is programmed to select channel number 3.

A set of threshold registers (THRHLRx and TRCx) can be linked only to a single channel for a particular
THRCH value. If another channel is to be monitored with same threshold values, then the TRCx[THRCH]
has to be programmed again.

NOTE
If the higher threshold for the analog watchdog is programmed lower than
the lower threshold and the converted value is less than the lower threshold,
then the WDGxL interrupt for the low threshold violation is set, else if the
converted value is greater than the lower threshold (consequently also
greater than the higher threshold) then the interrupt WDGxH for high
threshold violation is set. Thus, the user should avoid that situation as it
could lead to misinterpretation of the watchdog interrupts.

25.3.7 Interrupts

The ADC generates the following maskable interrupt signals:

• ADC_EOC interrupt requests

— EOC (end of conversion)

— ECH (end of chain)

— JEOC (end of injected conversion)

— JECH (end of injected chain)

— EOCTU (end of CTU conversion)

• WDGxL and WDGxH (watchdog threshold) interrupt requests

Interrupts are generated during the conversion process to signal events such as End Of Conversion as
explained in register description for CEOCFR[0..2]. Two registers named CEOCFR[0..2] (Channel
Pending Registers) and IMR (Interrupt Mask Register) are provided in order to check and enable the
interrupt request to INT module.

Interrupts can be individually enabled on a channel by channel basis by programming the CIMR (Channel
Interrupt Mask Register).

Several CEOCFR[0..2] are also provided in order to signal which of the channels’ measurement has been
completed.

The analog watchdog interrupts are handled by two registers WTISR (Watchdog Threshold Interrupt
Status Register) and WTIMR (Watchdog Threshold Interrupt Mask Register) in order to check and enable
the interrupt request to the INTC module. The Watchdog interrupt source sets two pending bits WDGxH
and WDGxL in the WTISR for each of the channels being monitored.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 603

The CEOCFR[0..2] contains the interrupt pending request status. If the user wants to clear a particular
interrupt event status, then writing a ‘1’ to the corresponding status bit clears the pending interrupt flag (at
this write operation all the other bits of the CEOCFR[0..2] must be maintained at ‘0’).

25.3.8 External decode signals delay

The ADC provides several external decode signals to select which external channel has to be converted.
In order to take into account the control switching time of the external analog multiplexer, a Decode
Signals Delay register (DSDR) is provided. The delay between the decoding signal selection and the actual
start of conversion can be programmed by writing the field DSD[0:7].

After having selected the channel to be converted, the MA[0:2] control lines are automatically reset. For
instance, in the event of normal scan conversion on ANP[0] followed by ANX[0,7] (ADC ch 71) all the
MA[0:2] bits are set and subsequently reset.

25.3.9 Power-down mode

The analog part of the ADC can be put in low power mode by setting the MCR[PWDN]. After releasing
the reset signal the ADC analog module is kept in power-down mode by default, so this state must be exited
before starting any operation by resetting the appropriate bit in the MCR.

The power-down mode can be requested at any time by setting the MCR[PWDN]. If a conversion is
ongoing, the ADC must complete the conversion before entering the power down mode. In fact, the ADC
enters power-down mode only after completing the ongoing conversion. Otherwise, the ongoing operation
should be aborted manually by resetting the NSTART bit and using the ABORTCHAIN bit.

MSR[ADCSTATUS] bit is set only when ADC enters power-down mode.

After the power-down phase is completed the process ongoing before the power-down phase must be
restarted manually by setting the appropriate MCR[START] bit.

Resetting MCR[PWDN] bit and setting MCR[NSTART] or MCR[JSTART] bit during the same cycle is
forbidden.

If a CTU trigger pulse is received during power-down, it is discarded.

If the CTU is enabled and the CSR[CTUSTART] bit is ‘1’, then the MCR[PWDN] bit cannot be set.

When CTU trigger mode is enabled, the application has to wait for the end of conversion (CTUSTART bit
automatically reset).

25.3.10 Auto-clock-off mode

To reduce power consumption during the IDLE mode of operation (without going into power-down mode),
an “auto-clock-off” feature can be enabled by setting the MCR[ACKO] bit. When enabled, the analog
clock is automatically switched off when no operation is ongoing, that is, no conversion is programmed
by the user.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

604 Freescale Semiconductor

25.4 Register descriptions

25.4.1 Introduction

Table 25-6 lists ADC_0 registers with their address offsets and reset values.

Table 25-6. ADC_0 digital registers

Base address: 0xFFE0_0000
Location

Address offset Register name

0x0000 Main Configuration Register (MCR) on page 607

0x0004 Main Status Register (MSR) on page 609

0x0008 .. 0x000F Reserved —

0x0010 Interrupt Status Register (ISR) on page 611

0x0014 Channel Pending Register (CEOCFR0) on page 611

0x0018 Channel Pending Register (CEOCFR1) on page 611

0x001C Channel Pending Register (CEOCFR2) on page 611

0x0020 Interrupt Mask Register (IMR) on page 613

0x0024 Channel Interrupt Mask Register (CIMR0) on page 614

0x0028 Channel Interrupt Mask Register (CIMR1) on page 614

0x002C Channel Interrupt Mask Register (CIMR2) on page 614

0x0030 Watchdog Threshold Interrupt Status Register (WTISR) on page 616

0x0034 Watchdog Threshold Interrupt Mask Register (WTIMR) on page 616

0x0038 .. 0x004F Reserved —

0x0050 Threshold Control Register 0 (TRC0) on page 618

0x0054 Threshold Control Register 1 (TRC1) on page 618

0x0058 Threshold Control Register 2 (TRC2) on page 618

0x005C Threshold Control Register 3 (TRC3) on page 618

0x0060 Threshold Register 0 (THRHLR0) on page 619

0x0064 Threshold Register 1 (THRHLR1) on page 619

0x0068 Threshold Register 2 (THRHLR2) on page 619

0x006C Threshold Register 3 (THRHLR3) on page 619

0x0080 Presampling Control Register (PSCR) on page 619

0x0084 Presampling Register 0 (PSR0) on page 620

0x0088 Presampling Register 1 (PSR1) on page 620

0x008C Presampling Register 2 (PSR2) on page 620

0x0090 .. 0x0093 Reserved —

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 605

0x0094 Conversion Timing Register 0 (CTR0) on page 622

0x0098 Conversion Timing Register 1 (CTR1) on page 622

0x009C Conversion Timing Register 2 (CTR2) on page 622

0x00A0 .. 0x00A3 Reserved —

0x00A4 Normal Conversion Mask Register 0 (NCMR0) on page 623

0x00A8 Normal Conversion Mask Register 1 (NCMR1) on page 623

0x00AC Normal Conversion Mask Register 2 (NCMR2) on page 623

0x00B0 .. 0x00B3 Reserved —

0x00B4 Injected Conversion Mask Register 0 (JCMR0) on page 625

0x00B8 Injected Conversion Mask Register 1 (JCMR1) on page 625

0x00BC Injected Conversion Mask Register 2 (JCMR2) on page 625

0x00C0 .. 0x00C3 Reserved —

0x00C4 Decode Signals Delay Register (DSDR) on page 627

0x00C8 Power-down Exit Delay Register (PDEDR) on page 627

0x00CC .. 0x00FF Reserved —

0x0100 Channel 0 Data Register (CDR0) on page 628

0x0104 Channel 1 Data Register (CDR1) on page 628

0x0108 Channel 2 Data Register (CDR2) on page 628

0x010C Channel 3 Data Register (CDR3) on page 628

0x0110 Channel 4 Data Register (CDR4) on page 628

0x0114 Channel 5 Data Register (CDR5) on page 628

0x0118 Channel 6 Data Register (CDR6) on page 628

0x011C Channel 7 Data Register (CDR7) on page 628

0x0120 Channel 8 Data Register (CDR8) on page 628

0x0124 Channel 9 Data Register (CDR9) on page 628

0x0128 Channel 10 Data Register (CDR10) on page 628

0x012C Channel 11 Data Register (CDR11) on page 628

0x0130 Channel 12 Data Register (CDR12) on page 628

0x0134 Channel 13 Data Register (CDR13) on page 628

0x0138 Channel 14 Data Register (CDR14) on page 628

0x013C Channel 15 Data Register (CDR15) on page 628

Table 25-6. ADC_0 digital registers (continued)

Base address: 0xFFE0_0000
Location

Address offset Register name

MPC5604B/C Microcontroller Reference Manual, Rev. 8

606 Freescale Semiconductor

0x0140 .. 0x017F Reserved —

0x0180 Channel 32 Data Register (CDR32) on page 628

0x0184 Channel 33 Data Register (CDR33) on page 628

0x0188 Channel 34 Data Register (CDR34) on page 628

0x018C Channel 35 Data Register (CDR35) on page 628

0x0190 Channel 36 Data Register (CDR36) on page 628

0x0194 Channel 37 Data Register (CDR37) on page 628

0x0198 Channel 38 Data Register (CDR38) on page 628

0x019C Channel 39 Data Register (CDR39) on page 628

0x01A0 Channel 40 Data Register (CDR40) on page 628

0x01A4 Channel 41 Data Register (CDR41) on page 628

0x01A8 Channel 42 Data Register (CDR42) on page 628

0x01AC Channel 43 Data Register (CDR43) on page 628

0x01B0 Channel 44 Data Register (CDR44) on page 628

0x01B4 Channel 45 Data Register (CDR45) on page 628

0x01B8 Channel 46 Data Register (CDR46) on page 628

0x01BC Channel 47 Data Register (CDR47) on page 628

0x01C0 .. 0x01FF Reserved —

0x0200 Channel 64 Data Register (CDR64) on page 628

0x0204 Channel 65 Data Register (CDR65) on page 628

0x0208 Channel 66 Data Register (CDR66) on page 628

0x020C Channel 67 Data Register (CDR67) on page 628

0x0210 Channel 68 Data Register (CDR68) on page 628

0x0214 Channel 69 Data Register (CDR69) on page 628

0x0218 Channel 70 Data Register (CDR70) on page 628

0x021C Channel 71 Data Register (CDR71) on page 628

0x0220 Channel 72 Data Register (CDR72) on page 628

0x0224 Channel 73 Data Register (CDR73) on page 628

0x0228 Channel 74 Data Register (CDR74) on page 628

0x022C Channel 75 Data Register (CDR75) on page 628

0x0230 Channel 76 Data Register (CDR76) on page 628

Table 25-6. ADC_0 digital registers (continued)

Base address: 0xFFE0_0000
Location

Address offset Register name

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 607

25.4.2 Control logic registers

25.4.2.1 Main Configuration Register (MCR)

The Main Configuration Register (MCR) provides configuration settings for the ADC.

0x0234 Channel 77 Data Register (CDR77) on page 628

0x0238 Channel 78 Data Register (CDR78) on page 628

0x023C Channel 79 Data Register (CDR79) on page 628

0x0240 Channel 80 Data Register (CDR80) on page 628

0x0244 Channel 81 Data Register (CDR81) on page 628

0x0248 Channel 82 Data Register (CDR82) on page 628

0x024C Channel 83 Data Register (CDR83) on page 628

0x0250 Channel 84 Data Register (CDR84) on page 628

0x0254 Channel 85 Data Register (CDR85) on page 628

0x0258 Channel 86 Data Register (CDR86) on page 628

0x025C Channel 87 Data Register (CDR87) on page 628

0x0260 Channel 88 Data Register (CDR88) on page 628

0x0264 Channel 89 Data Register (CDR89) on page 628

0x0268 Channel 90 Data Register (CDR90) on page 628

0x026C Channel 91 Data Register (CDR91) on page 628

0x0270 Channel 92 Data Register (CDR92) on page 628

0x0274 Channel 93 Data Register (CDR93) on page 628

0x0278 Channel 94 Data Register (CDR94) on page 628

0x027C Channel 95 Data Register (CDR95) on page 628

0x0280 .. 0x02FF Reserved —

Table 25-6. ADC_0 digital registers (continued)

Base address: 0xFFE0_0000
Location

Address offset Register name

MPC5604B/C Microcontroller Reference Manual, Rev. 8

608 Freescale Semiconductor

Address: Base + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
O

W
R

E
N

W
LS

ID
E

M
O

D
E 0 0 0 0

N
S

TA
R

T

0

JT
R

G
E

N

JE
D

G
E

JS
TA

R
T 0 0

C
T

U
E

N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

A
D

C
LK

S
E

L

A
B

O
R

T
C

H
A

IN

A
B

O
R

T

A
C

K
O 0 0 0 0

P
W

D
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 25-8. Main Configuration Register (MCR)

Table 25-7. MCR field descriptions

Field Description

OWREN Overwrite enable
This bit enables or disables the functionality to overwrite unread converted data.
0 Prevents overwrite of unread converted data; new result is discarded
1 Enables converted data to be overwritten by a new conversion

WLSIDE Write left/right-aligned
0 The conversion data is written right-aligned.
1 Data is left-aligned (from 15 to (15 – resolution + 1)).
The WLSIDE bit affects all the CDR registers simultaneously. See Figure 25-35 and Figure 25-35.

MODE One Shot/Scan
0 One Shot Mode—Configures the normal conversion of one chain.
1 Scan Mode—Configures continuous chain conversion mode; when the programmed chain

conversion is finished it restarts immediately.

NSTART Normal Start conversion
Setting this bit starts the chain or scan conversion. Resetting this bit during scan mode causes the
current chain conversion to finish, then stops the operation.
This bit stays high while the conversion is ongoing (or pending during injection mode).
0 Causes the current chain conversion to finish and stops the operation
1 Starts the chain or scan conversion

JTRGEN Injection external trigger enable
0 External trigger disabled for channel injection
1 External trigger enabled for channel injection

JEDGE Injection trigger edge selection
Edge selection for external trigger, if JTRGEN = 1.
0 Selects falling edge for the external trigger
1 Selects rising edge for the external trigger

JSTART Injection start
Setting this bit will start the configured injected analog channels to be converted by software.
Resetting this bit has no effect, as the injected chain conversion cannot be interrupted.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 609

25.4.2.2 Main Status Register (MSR)

The Main Status Register (MSR) provides status bits for the ADC.

CTUEN Cross trigger unit conversion enable
0 CTU triggered conversion disabled
1 CTU triggered conversion enabled

ADCLKSEL Analog clock select
This bit can only be written when ADC in Power-Down mode
0 ADC clock frequency is half Peripheral Set Clock frequency
1 ADC clock frequency is equal to Peripheral Set Clock frequency

ABORTCHAI
N

Abort Chain
When this bit is set, the ongoing Chain Conversion is aborted. This bit is reset by hardware as soon
as a new conversion is requested.
0 Conversion is not affected
1 Aborts the ongoing chain conversion

ABORT Abort Conversion
When this bit is set, the ongoing conversion is aborted and a new conversion is invoked. This bit is
reset by hardware as soon as a new conversion is invoked. If it is set during a scan chain, only the
ongoing conversion is aborted and the next conversion is performed as planned.
0 Conversion is not affected
1 Aborts the ongoing conversion

ACKO Auto-clock-off enable
If set, this bit enables the Auto clock off feature.
0 Auto clock off disabled
1 Auto clock off enabled

PWDN Power-down enable
When this bit is set, the analog module is requested to enter Power Down mode. When ADC status
is PWDN, resetting this bit starts ADC transition to IDLE mode.
0 ADC is in normal mode
1 ADC has been requested to power down

Table 25-7. MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

610 Freescale Semiconductor

NOTE
MSR[JSTART] is automatically set when the injected conversion starts. At
the same time MCR[JSTART] is reset, allowing the software to program a
new start of conversion.

The JCMR registers do not change their values.

Address: Base + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0

N
S

TA
R

T

JA
B

O
R

T

0 0

JS
TA

R
T

0 0 0

C
T

U
S

TA
R

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CHADDR 0 0 0 ACK0 0 0 ADCSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 25-9. Main Status Register (MSR)

Table 25-8. MSR field descriptions

Field Description

NSTART This status bit is used to signal that a Normal conversion is ongoing.

JABORT This status bit is used to signal that an Injected conversion has been aborted. This bit is reset when
a new injected conversion starts.

JSTART This status bit is used to signal that an Injected conversion is ongoing.

CTUSTART This status bit is used to signal that a CTU conversion is ongoing.

CHADDR Current conversion channel address
This status field indicates current conversion channel address.

ACKO Auto-clock-off enable
This status bit is used to signal if the Auto-clock-off feature is on.

ADCSTATUS The value of this parameter depends on ADC status:
000 IDLE
001 Power-down
010 Wait state
011 Reserved
100 Sample
101 Reserved
110 Conversion
111 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 611

25.4.3 Interrupt registers

25.4.3.1 Interrupt Status Register (ISR)

The Interrupt Status Register (ISR) contains interrupt status bits for the ADC.

25.4.3.2 Channel Pending Registers (CEOCFR[0..2])

CEOCFR0 = End of conversion pending interrupt for channel 0 to 15 (precision channels)

CEOCFR1 = End of conversion pending interrupt for channel 32 to 47 (standard channels)

CEOCFR2 = End of conversion pending interrupt for channel 64 to 95 (external multiplexed channels)

Address: Base + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0

EO
CTU

JEOC JECH EOC ECH

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-10. Interrupt Status Register (ISR)

Table 25-9. ISR field descriptions

Field Description

EOCTU End of CTU Conversion interrupt flag
When this bit is set, an EOCTU interrupt has occurred.

JEOC End of Injected Channel Conversion interrupt flag
When this bit is set, a JEOC interrupt has occurred.

JECH End of Injected Chain Conversion interrupt flag
When this bit is set, a JECH interrupt has occurred.

EOC End of Channel Conversion interrupt flag
When this bit is set, an EOC interrupt has occurred.

ECH End of Chain Conversion interrupt flag
When this bit is set, an ECH interrupt has occurred.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

612 Freescale Semiconductor

Address: Base + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
15

E
O

C
_C

H
14

E
O

C
_C

H
13

E
O

C
_C

H
12

E
O

C
_C

H
11

E
O

C
_C

H
10

E
O

C
_C

H
9

E
O

C
_C

H
8

E
O

C
_C

H
7

E
O

C
_C

H
6

E
O

C
_C

H
5

E
O

C
_C

H
4

E
O

C
_C

H
3

E
O

C
_C

H
2

E
O

C
_C

H
1

E
O

C
_C

H
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-11. Channel Pending Register 0 (CEOCFR0)

Address: Base + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
47

E
O

C
_C

H
46

E
O

C
_C

H
43

E
O

C
_C

H
44

E
O

C
_C

H
43

E
O

C
_C

H
42

E
O

C
_C

H
41

E
O

C
_C

H
40

E
O

C
_C

H
39

E
O

C
_C

H
38

E
O

C
_C

H
37

E
O

C
_C

H
36

E
O

C
_C

H
35

E
O

C
_C

H
34

E
O

C
_C

H
33

E
O

C
_C

H
32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-12. Channel Pending Register 1 (CEOCFR1)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 613

25.4.3.3 Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) contains the interrupt enable bits for the ADC.

Address: Base + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
E

O
C

_C
H

95

E
O

C
_C

H
94

E
O

C
_C

H
93

E
O

C
_C

H
92

E
O

C
_C

H
91

E
O

C
_C

H
90

E
O

C
_C

H
89

E
O

C
_C

H
88

E
O

C
_C

H
87

E
O

C
_C

H
86

E
O

C
_C

H
85

E
O

C
_C

H
84

E
O

C
_C

H
83

E
O

C
_C

H
82

E
O

C
_C

H
81

E
O

C
_C

H
80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
79

E
O

C
_C

H
78

E
O

C
_C

H
77

E
O

C
_C

H
76

E
O

C
_C

H
75

E
O

C
_C

H
74

E
O

C
_C

H
73

E
O

C
_C

H
72

E
O

C
_C

H
71

E
O

C
_C

H
70

E
O

C
_C

H
69

E
O

C
_C

H
68

E
O

C
_C

H
67

E
O

C
_C

H
66

E
O

C
_C

H
65

E
O

C
_C

H
64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-13. Channel Pending Register 2 (CEOCFR2)

Table 25-10. CEOCFR field descriptions

Field Description

EOC_CHn When set, the measure of channel n is completed.

Address: Base + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

M
S

K
E

O
C

T
U

M
S

K
JE

O
C

M
S

K
JE

C
H

M
S

K
E

O
C

M
S

K
E

C
H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-14. Interrupt Mask Register (IMR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

614 Freescale Semiconductor

25.4.3.4 Channel Interrupt Mask Register (CIMR[0..2])

CIMR0 = Enable bits for channel 0 to 15 (precision channels)

CIMR1 = Enable bits for channel 32 to 47 (standard channels)

CIMR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

Table 25-11. Interrupt Mask Register (IMR) field descriptions

Field Description

MSKEOCTU Mask for end of CTU conversion (EOCTU) interrupt
When set, the EOCTU interrupt is enabled.

MSKJEOC Mask for end of injected channel conversion (JEOC) interrupt
When set, the JEOC interrupt is enabled.

MSKJECH Mask for end of injected chain conversion (JECH) interrupt
When set, the JECH interrupt is enabled.

MSKEOC Mask for end of channel conversion (EOC) interrupt
When set, the EOC interrupt is enabled.

MSKECH Mask for end of chain conversion (ECH) interrupt
When set, the ECH interrupt is enabled.

Address: Base + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
15

CIM
14

CIM
13

CIM
12

CIM
11

CIM
10

CIM
9

CIM
8

CIM
7

CIM
6

CIM
5

CIM
4

CIM
3

CIM
2

CIM
1

CIM
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-15. Channel Interrupt Mask Register 0 (CIMR0)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 615

Address: Base + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
47

CIM
46

CIM
43

CIM
44

CIM
43

CIM
42

CIM
41

CIM
40

CIM
39

CIM
38

CIM
37

CIM
36

CIM
35

CIM
34

CIM
33

CIM
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-16. Channel Interrupt Mask Register 1 (CIMR1)

Address: Base + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIM
95

CIM
94

CIM
93

CIM
92

CIM
91

CIM
90

CIM
89

CIM
88

CIM
87

CIM
86

CIM
85

CIM
84

CIM
83

CIM
82

CIM
81

CIM
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
79

CIM
78

CIM
77

CIM
76

CIM
75

CIM
74

CIM
73

CIM
72

CIM
71

CIM
70

CIM
69

CIM
68

CIM
67

CIM
66

CIM
65

CIM
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-17. Channel Interrupt Mask Register 2 (CIMR2)

Table 25-12. CIMR field descriptions

Field Description

CIMn Interrupt enable
When set (CIMn = 1), interrupt for channel n is enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

616 Freescale Semiconductor

25.4.3.5 Watchdog Threshold Interrupt Status Register (WTISR)

25.4.3.6 Watchdog Threshold Interrupt Mask Register (WTIMR)

Address: Base + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0

WDG
3H

WDG
2H

WDG
1H

WDG
0H

WDG
3L

WDG
2L

WDG
1L

WDG
0L

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-18. Watchdog Threshold Interrupt Status Register (WTISR)

Table 25-13. WTISR field descriptions

Field Description

WDGxH This corresponds to the status flag generated on the converted value being higher than the programmed
higher threshold (for [x = 0..3]).

WDGxL This corresponds to the status flag generated on the converted value being lower than the programmed
lower threshold (for [x = 0..3]).

Address: Base + 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 MSK
WDG

3H

MSK
WDG

2H

MSK
WDG

1H

MSK
WDG

0H

MSK
WDG

3L

MSK
WDG

2L

MSK
WDG

1L

MSK
WDG

0LW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-19. Watchdog Threshold Interrupt Mask Register (WTIMR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 617

Table 25-14. WTIMR field descriptions

Field Description

MSKWDGxH This corresponds to the mask bit for the interrupt generated on the converted value being higher
than the programmed higher threshold (for [x = 0..3]). When set the interrupt is enabled.

MSKWDGxL This corresponds to the mask bit for the interrupt generated on the converted value being lower
than the programmed lower threshold (for [x = 0..3]). When set the interrupt is enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

618 Freescale Semiconductor

25.4.4 Threshold registers

25.4.4.1 Introduction

These four registers are used to store the user programmable lower and upper thresholds’ values.

25.4.4.2 Threshold Control Register (TRCx, x = [0..3])

Address: Base + 0x0050 (TRC0)
Base + 0x0054 (TRC1)
Base + 0x0058 (TRC2)
Base + 0x005C (TRC3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R THR
EN

0 0 0 0 0 0 0 0 THRCH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-20. Threshold Control Register (TRCx, x = [0..3])

Table 25-15. TRCx field descriptions

Field Description

THREN Threshold enable
When set, this bit enables the threshold detection feature for the selected channel.

THRCH Choose the channel for threshold comparison.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 619

25.4.4.3 Threshold Register (THRHLR[0:3])

The four THRHLRn registers are used to store the user-programmable thresholds’ 10-bit values.

25.4.5 Presampling registers

25.4.5.1 Presampling Control Register (PSCR)

Address: Base + 0x0060 (THRHLR0)
Base + 0x0064 (THRHLR1)
Base + 0x0068 (THRHLR2)
Base + 0x006C (THRHLR3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
THRH

W

Reset 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-21. Threshold Register (THRHLR[0:3])

Table 25-16. THRHLRx field descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Address: Base + 0x0080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
PREVAL2 PREVAL1 PREVAL0

PRE
CONVW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-22. Presampling Control Register (PSCR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

620 Freescale Semiconductor

25.4.5.2 Presampling Register (PSR[0..2])

PSR0 = Enable bits of presampling for channel 0 to 15 (precision channels)

PSR1 = Enable bits of presampling for channel 32 to 47 (standard channels)

PSR2 = Enable bits of presampling for channel 64 to 95 (external multiplexed channels)

Table 25-17. PSCR field descriptions

Field Description

PREVAL2 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (external
multiplexed channels). See Table 25-4.

PREVAL1 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (standard
channels). See Table 25-4.

PREVAL0 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (precision
channels). See Table 25-4.

PRECONV Convert presampled value
If bit PRECONV is set, presampling is followed by the conversion. Sampling will be bypassed and
conversion of presampled data will be done.

Address: Base + 0x0084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
15

PRES
14

PRES
13

PRES
12

PRES
11

PRES
10

PRES
9

PRES
8

PRES
7

PRES
6

PRES
5

PRES
4

PRES
3

PRES
2

PRES
1

PRES
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-23. Presampling Register 0 (PSR0)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 621

Address: Base + 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
47

PRES
46

PRES
43

PRES
44

PRES
43

PRES
42

PRES
41

PRES
40

PRES
39

PRES
38

PRES
37

PRES
36

PRES
35

PRES
34

PRES
33

PRES
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-24. Presampling Register 1 (PSR1)

Address: Base + 0x008C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
95

PRES
94

PRES
93

PRES
92

PRES
91

PRES
90

PRES
89

PRES
88

PRES
87

PRES
86

PRES
85

PRES
84

PRES
83

PRES
82

PRES
81

PRES
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
79

PRES
78

PRES
77

PRES
76

PRES
75

PRES
74

PRES
73

PRES
72

PRES
71

PRES
70

PRES
69

PRES
68

PRES
67

PRES
66

PRES
65

PRES
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-25. Presampling Register 2 (PSR2)

Table 25-18. PSR field descriptions

Field Description

PRESn Presampling enable
When set (PRESn = 1), presampling is enabled for channel n.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

622 Freescale Semiconductor

25.4.6 Conversion timing registers CTR[0..2]

CTR0 = associated to internal precision channels (from 0 to 15)

CTR1 = associated to standard channels (from 32 to 47)

CTR2 = associated to external multiplexed channels (from 64 to 95)

25.4.7 Mask registers

25.4.7.1 Introduction

These registers are used to program which of the 96 input channels must be converted during Normal and
Injected conversion.

Address: Base + 0x0094 (CTR0)
Base + 0x0098 (CTR1)
Base + 0x009C (CTR2)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
P

LA
T

C
H 0

OFFSHIFT1

1 Available only on CTR0

0

INPCMP

0

INPSAMPW

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

Figure 25-26. Conversion timing registers CTR[0..2]

Table 25-19. CTR field descriptions

Field Description

INPLATCH Configuration bit for latching phase duration

OFFSHIFT Configuration for offset shift characteristic
00 No shift (that is the transition between codes 000h and 001h) is reached when the AVIN

(analog input voltage) is equal to 1 LSB.
01 Transition between code 000h and 001h is reached when the AVIN is equal to1/2 LSB
10 Transition between code 00h and 001h is reached when the AVIN is equal to 0
11 Not used
Note: Available only on CTR0

INPCMP Configuration bits for comparison phase duration

INPSAMP Configuration bits for sampling phase duration

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 623

25.4.7.2 Normal Conversion Mask Registers (NCMR[0..2])

NCMR0 = Enable bits of normal sampling for channel 0 to 15 (precision channels)

NCMR1 = Enable bits of normal sampling for channel 32 to 47 (standard channels)

NCMR2 = Enable bits of normal sampling for channel 64 to 95 (external multiplexed channels)

Address: Base + 0x00A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-27. Normal Conversion Mask Register 0 (NCMR0)

Address: Base + 0x00A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH47 CH46 CH45 CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-28. Normal Conversion Mask Register 1 (NCMR1)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

624 Freescale Semiconductor

NOTE
The implicit channel conversion priority in the case in which all channels
are selected is the following: ADC0_P[0:x], ADC0_S[0:y], ADC0_X[0:z].

The channels always start with 0, the lowest index.

Address: Base + 0x00AC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-29. Normal Conversion Mask Register 2 (NCMR2)

Table 25-20. NCMR field descriptions

Field Description

CHn Sampling enable
When set Sampling is enabled for channel n.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 625

25.4.7.3 Injected Conversion Mask Registers (JCMR[0..2])

JCMR0 = Enable bits of injected sampling for channel 0 to 15 (precision channels)

JCMR1 = Enable bits of injected sampling for channel 32 to 47(standard channels)

JCMR2 = Enable bits of injected sampling for channel 64 to 95 (external multiplexed channels)

Address: Base + 0x00B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-30. Injected Conversion Mask Register 0 (JCMR0)

Address: Base + 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH47 CH46 CH45 CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-31. Injected Conversion Mask Register 1 (JCMR1)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

626 Freescale Semiconductor

Address: Base + 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-32. Injected Conversion Mask Register 2 (JCMR2)

Table 25-21. JCMR field descriptions

Field Description

CHn Sampling enable
When set, sampling is enabled for channel n.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 627

25.4.8 Delay registers

25.4.8.1 Decode Signals Delay Register (DSDR)

25.4.8.2 Power-down Exit Delay Register (PDEDR)

Address: Base + 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
DSD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-33. Decode Signals Delay Register (DSDR)

Table 25-22. DSDR field descriptions

Field Description

DSD Delay between the external decode signals and the start of the sampling phase
It is used to take into account the settling time of the external multiplexer.
The decode signal delay is calculated as: DSD × 1/frequency of ADC clock.
Note: when ADC clock = Peripheral Clock/2 the DSD has to be incremented by 2 to see an additional

ADC clock cycle delay on the decode signal.
For example:
DSD = 0; 0 ADC clock cycle delay
DSD = 2; 1 ADC clock cycle delay
DSD = 4; 2 ADC clock cycles delay

Address: Base + 0x00C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
PDED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-34. Power-down Exit Delay Register (PDEDR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

628 Freescale Semiconductor

25.4.9 Data registers

25.4.9.1 Introduction

ADC conversion results are stored in data registers. There is one register per channel.

25.4.9.2 Channel Data Register (CDR[0..95])

CDR[0..15] = precision channels

CDR[32..47] = standard channels

CDR[64..95] = external multiplexed channels

Each data register also gives information regarding the corresponding result as described below.

Table 25-23. PDEDR field descriptions

Field Description

PDED Delay between the power-down bit reset and the start of conversion. The delay is to allow time for the
ADC power supply to settle before commencing conversions.
The power down delay is calculated as: PDED x 1/frequency of ADC clock.

Address: See Table 25-6 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 VA
LID

OVER
W

RESULT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 CDATA[0:9]
(MCR[WLSIDE] = 0)W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDATA[0:9]
(MCR[WLSIDE] = 1)

0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-35. Channel Data Register (CDR[0..95])

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 629

Table 25-24. CDR field descriptions

Field Description

VALID Used to notify when the data is valid (a new value has been written). It is automatically cleared when
data is read.

OVERW Overwrite data
This bit signals that the previous converted data has been overwritten by a new conversion. This
functionality depends on the value of MCR[OWREN]:
– When OWREN = 0, then OVERW is frozen to 0 and CDATA field is protected against being overwritten
until being read.
– When OWREN = 1, then OVERW flags the CDATA field overwrite status.
0 Converted data has not been overwritten
1 Previous converted data has been overwritten before having been read

RESULT
This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of Normal conversion mode
01 Data is a result of Injected conversion mode
10 Data is a result of CTU conversion mode
11 Reserved

CDATA Channel 0-95 converted data. Depending on the value of the MCR[WLSIDE] bit, the position of this
bitfield can be changed as shown in Figure 25-35 and Figure 25-35.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

630 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 631

Chapter 26
Cross Triggering Unit (CTU)

26.1 Introduction
The Cross Triggering Unit (CTU) allows to synchronize an ADC conversion with a timer event from
eMIOS (every mode which can generate a DMA request can trigger CTU) or PIT. To select which ADC
channel must be converted on a particular timer event, the CTU provides the ADC with a 7-bit channel
number. This channel number can be configured for each timer channel event by the application.

26.2 Main features
• Single cycle delayed trigger output. The trigger output is a combination of 64 (generic value) input

flags/events connected to different timers in the system.

• One event configuration register dedicated to each timer event allows to define the corresponding
ADC channel.

• Acknowledgment signal to eMIOS/PIT for clearing the flag

• Synchronization with ADC to avoid collision

26.3 Block diagram
The CTU block diagram is shown in Figure 26-1.

Figure 26-1. Cross Triggering Unit block diagram

26.4 Memory map and register descriptions
The CTU registers are listed in Table 26-1. Every register can have 32-bit access. The base address of the
CTU is 0xFFE6_4000.

Event
Gen

Event
Gen

Event
Gen

FLAG_ACK

NEXT_CMD

Channel value select

Trig0

Trig1

Trig63

Channel value

Event
Arbitration

&
Masking

Event Configuration Register 0

Event Configuration Register 1

Event Configuration Register 63

.

.

.

.

.

.

.

.

.

.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

632 Freescale Semiconductor

26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)

These registers contain the ADC channel number to be converted when the timer event occurs. The
CLR_FLAG is used to clear the respective timer event flag by software (this applies only to the PIT as the
eMIOS flags are automatically cleared by the CTU).

The CLR_FLAG bit has to be used cautiously as setting this bit may result in a loss of events.

Table 26-1. CTU memory map

Base address: 0xFFE6_4000

Address offset Register Location

0x000–0x02F Reserved

0x030–0x12C Event Configuration Registers 0..63 (CTU_EVTCFGR0..63) on page 632

Offsets: 0x030–0x12C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

TM

0 0 0 0 0 0 0
C

LR
_F

LA
G

1

1 This bit implementation is generic based and implemented only for inputs mapped to PIT event flags.

0

CHANNEL_VALUEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-2. Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)

Table 26-2. CTU_EVTCFGRx field descriptions

Field Description

TM Trigger Mask
0: Trigger masked
1: Trigger enabled

CLR_FLAG To provide flag_ack through software
1: Flag_ack is forced to ‘1’ for the particular event
0: Flag_ack is dependent on flag servicing

CHANNEL_
VALUE

Channel value to be provided to ADC

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 633

The event input can be masked by writing ‘0’ to bit TM of the CTU_EVTCFGR register. Writing ‘1’ to
bit TM enables the CTU triggering for the corresponding eMIOS channel.

26.5 Functional description
This peripheral is used to synchronize ADC conversions with timer events (from eMIOS or PIT). When a
timer event occurs, the CTU triggers an ADC conversion providing the ADC channel number to be
converted. In case concurrent events occur the priority is managed according to the index of the timer
event. The trigger output is a single cycle pulse used to trigger ADC conversion of the channel number
provided by the CTU.

Each trigger input from the CTU is connected to the Event Trigger signal of an eMIOS channel. The
assignment between eMIOS outputs and CTU trigger inputs is defined in Table 26-3.

Table 26-3. Trigger source

CTU trigger No. Module Source

0 eMIOS 0 Channel_0

1 eMIOS 0 Channel_1

2 eMIOS 0 Channel_2

3 eMIOS 0 Channel_3

4 eMIOS 0 Channel_4

5 eMIOS 0 Channel_5

6 eMIOS 0 Channel_6

7 eMIOS 0 Channel_7

8 eMIOS 0 Channel_8

9 eMIOS 0 Channel_9

10 eMIOS 0 Channel_10

11 eMIOS 0 Channel_11

12 eMIOS 0 Channel_12

13 eMIOS 0 Channel_13

14 eMIOS 0 Channel_14

15 eMIOS 0 Channel_15

16 eMIOS 0 Channel_16

17 eMIOS 0 Channel_17

18 eMIOS 0 Channel_18

19 eMIOS 0 Channel_19

20 eMIOS 0 Channel_20

21 eMIOS 0 Channel_21

22 eMIOS 0 Channel_22

MPC5604B/C Microcontroller Reference Manual, Rev. 8

634 Freescale Semiconductor

23 PIT PIT_3

24 eMIOS 0 Channel_24

25 Reserved

26 Reserved

27 Reserved

28 Reserved

29 Reserved

30 Reserved

31 Reserved

32 eMIOS 1 Channel_0

33 eMIOS 1 Channel_1

34 eMIOS 1 Channel_2

35 eMIOS 1 Channel_3

36 eMIOS 1 Channel_4

37 eMIOS 1 Channel_5

38 eMIOS 1 Channel_6

39 eMIOS 1 Channel_7

40 eMIOS 1 Channel_8

41 eMIOS 1 Channel_9

42 eMIOS 1 Channel_10

43 eMIOS 1 Channel_11

44 eMIOS 1 Channel_12

45 eMIOS 1 Channel_13

46 eMIOS 1 Channel_14

47 eMIOS 1 Channel_15

48 eMIOS 1 Channel_16

49 eMIOS 1 Channel_17

50 eMIOS 1 Channel_18

51 eMIOS 1 Channel_19

52 eMIOS 1 Channel_20

53 eMIOS 1 Channel_21

54 eMIOS 1 Channel_22

Table 26-3. Trigger source (continued)

CTU trigger No. Module Source

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 635

Each event has a dedicated configuration register (CTU_EVTCFGR). These registers store a channel
number which is used to communicate which channel needs to be converted.

In case several events are pending for ADC request, the priority is managed according to the timer event
index. The lowest index has the highest priority. Once an event has been serviced (conversion requested
to ADC) the eMIOS flag is cleared by the CTU and next prior event is handled.

The acknowledgment signal can be forced to ‘1’ by setting the CLR_FLAG bit of the CTU_EVTCFGR
register. These bits are implemented for only those input flags to which PIT flags are connected. Providing
these bits offers the option of clearing PIT flags by software.

26.5.1 Channel value

The channel value stored in an event configuration register is demultiplexed to 7 bits and then provided to
the ADC.

The mapping of the channel number value to the corresponding ADC channel is provided in Table 26-3.

55 Reserved

56 eMIOS 1 Channel_24

Table 26-4. CTU-to-ADC channel assignment

10-bit ADC signal name 10-bit ADC channel #
Channel number in
CTU_EVTCFGRx

ADC_P[0] CH0 0

ADC_P[1] CH1 1

ADC_P[2] CH2 2

ADC_P[3] CH3 3

ADC_P[4] CH4 4

ADC_P[5] CH5 5

ADC_P[6] CH6 6

ADC_P[7] CH7 7

ADC_P[8] CH8 8

ADC_P[9] CH9 9

ADC_P[10] CH10 10

ADC_P[11] CH11 11

ADC_P[12] CH12 12

ADC_P[13] CH13 13

ADC_P[14] CH14 14

Table 26-3. Trigger source (continued)

CTU trigger No. Module Source

MPC5604B/C Microcontroller Reference Manual, Rev. 8

636 Freescale Semiconductor

CTU channel mapping should be taken into consideration when programming an event configuration
register. For example, if the channel value of any event configuration register is programmed to 16, it will
actually correspond to ADC channel 32 and conversion will occur for this channel.

ADC_P[15] CH15 15

ADC_S[0] CH32 16

ADC_S[1] CH33 17

ADC_S[2] CH34 18

ADC_S[3] CH35 19

ADC_S[4] CH36 20

ADC_S[5] CH37 21

ADC_S[6] CH38 22

ADC_S[7] CH39 23

ADC_S[8] CH40 24

ADC_S[9] CH41 25

ADC_S[10] CH42 26

ADC_S[11] CH43 27

ADC_S[12] CH44 28

ADC_S[13] CH45 29

ADC_S[14] CH46 30

ADC_S[15] CH47 31

ADC_X[0] CH64 : CH71 32 : 39

ADC_X[1] CH72 : CH79 40 : 47

ADC_X[2] CH80 : CH87 48 : 55

ADC_X[3] CH88 : CH95 56 : 63

Table 26-4. CTU-to-ADC channel assignment (continued)

10-bit ADC signal name 10-bit ADC channel #
Channel number in
CTU_EVTCFGRx

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 637

——— Memory ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

638 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 639

Chapter 27
Flash Memory

27.1 Introduction
The flash memory comprises a platform flash memory controller (PFlash) interface and the following flash
memory arrays:

• One array of 512 KB for code (CFlash)

• One array of 64 KB for data (DFlash)

The flash memory architecture of this device is illustrated in Figure 27-1.

Figure 27-1. Flash memory architecture

The primary function of the flash memory module is to serve as electrically programmable and erasable
nonvolatile memory.

Nonvolatile memory may be used for instruction and/or data storage.

The module is a nonvolatile solid-state silicon memory device consisting of:

• Blocks (also called “sectors”) of single transistor storage elements

• An electrical means for selectively adding (programming) and removing (erasing) charge from
these elements

• A means of selectively sensing (reading) the charge stored in these elements

The flash memory module is arranged as two functional units:

Crossbar switch

Bank0 (CFlash) Bank1 (DFlash)

32

data

(for EEPROM

Array 0

512 KB

Array 0

1x128 page buffer4x128 page buffer

PFlash controller

emulation)

CFLASH_PFCR0[B0_P0_BFE]

CFLASH_MCR
...
...
...
CFLASH_UMISR4

CFLASH_PFCR1[B1_P0_BFE]

DFLASH_MCR
...
...
...
DFLASH_UMISR4

Flash memory flash memory

128 128

64 KB

MPC5604B/C Microcontroller Reference Manual, Rev. 8

640 Freescale Semiconductor

• The flash memory core

• The memory interface

The flash memory core is composed of arrayed nonvolatile storage elements, sense amplifiers, row
decoders, column decoders and charge pumps. The arrayed storage elements in the flash memory core are
subdivided into physically separate units referred to as blocks (or sectors).

The memory interface contains the registers and logic which control the operation of the flash memory
core. The memory interface is also the interface between the flash memory module and a platform flash
memory controller. It contains the ECC logic and redundancy logic.

A platform flash memory controller connects the flash memory module to a system bus, and contains all
system level customization required for the device application.

27.2 Main features

27.3 Block diagram
The flash memory module contains one Matrix Module, composed of a single bank (Bank 0) normally
used for code storage. RWW operations are not possible.

Modify operations are managed by an embedded Flash Memory Program/Erase Controller (FPEC).
Commands to the FPEC are given through a User Registers Interface.

The read data bus is 128 bits wide, while the flash memory registers are on a separate bus 32 bits wide
addressed in the user memory map.

Table 27-1. Flash memory features

Feature CFlash DFlash

High read parallelism (128 bits) Yes

Error Correction Code (SEC-DED) to enhance data retention Yes

Double Word Program (64 bits) Yes

Sector erase Yes

Single bank—Read-While-Write (RWW) No

Erase Suspend Yes

Program Suspend No

Software programmable program/erase protection to avoid unwanted
writings

Yes

Censored Mode against piracy Yes

Shadow Sector available Yes No

One-Time Programmable (OTP) area in Test Flash block Yes

Boot sectors Yes No

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 641

The high voltages needed for program/erase operations are generated internally.

Figure 27-2. CFlash and DFlash module structures

27.4 Functional description

27.4.1 Module structure

The flash memory module is addressable by Double Word (64 bits) for program, and page (128 bits) for
read. Reads to the flash memory always return 128 bits, although read page buffering may be done in the
platform flash memory controller.

Each read of the flash memory module retrieves a page, or four consecutive words (128 bits) of
information. The address for each word retrieved within a page differs from the other addresses in the page
only by address bits (3:2).

The flash memory module supports fault tolerance through Error Correction Code (ECC) or error
detection, or both. The ECC implemented within the flash memory module will correct single bit failures
and detect double bit failures.

The flash memory module uses an embedded hardware algorithm implemented in the Memory Interface
to program and erase the flash memory core.

The embedded hardware algorithm includes control logic that works with software block enables and
software lock mechanisms to guard against accidental program/erase.

512 KB:

+ 16 KB TestFlash

HV generator

Flash memory

Controller

Flash memory

Matrix Register

Program/Erase

registers

interface

Flash memory

interface

+ 16 KB Shadow

bank 0

CFlash structure

64 KB:

+ 16 KB TestFlash

HV generator

Flash memory

Controller

Flash memory

Matrix Register

Program/Erase

registers

interface

Flash memory

interface

bank 1

DFlash structure

32 KB
2 × 16 KB
2 × 32 KB
3 × 128 KB 4 × 16 KB

MPC5604B/C Microcontroller Reference Manual, Rev. 8

642 Freescale Semiconductor

The hardware algorithm performs the steps necessary to ensure that the storage elements are programmed
and erased with sufficient margin to guarantee data integrity and reliability.

In the flash memory module, logic levels are defined as follows:

• A programmed bit reads as logic level 0 (or low).

• An erased bit reads as logic level 1 (or high).

Program and erase of the flash memory module requires multiple system clock cycles to complete.

The erase sequence may be suspended.

The program and erase sequences may be aborted.

27.4.2 Flash memory module sectorization

27.4.2.1 CFlash module sectorization

The CFlash module supports 512 KBof user memory, plus 16 KB of test memory (a portion of which is
One-Time Programmable by the user). An extra 16 KB sector is available as Shadow space usable for user
option bits and censorship settings.

The module is composed of a single bank (Bank 0): Read-While-Write is not supported.

Bank 0 of the module is divided in 10 sectors including a reserved sector, named TestFlash, in which some
One-Time Programmable (OTP) user data are stored, as well as a Shadow Sector in which user erasable
configuration values can be stored.

The matrix module sectorization is shown in Table 27-2.

Table 27-2. CFlash module sectorization

Bank Sector Addresses Size (KB)
Address

space
CFLASH_LML field for

locking the address space

0 0 0x00000000–0x00007FFF 32

Low

LLK0

1 0x00008000–0x0000BFFF 16 LLK1

2 0x0000C000–0x0000FFFF 16 LLK2

3 0x00010000–0x00017FFF 32 LLK3

4 0x00018000–0x0001FFFF 32 LLK4

5 0x00020000–0x0003FFFF 128 LLK5

6 0x00040000–0x0005FFFF 128
Mid

MLK0

7 0x00060000–0x0007FFFF 128 MLK1

Shadow 0x00200000–0x00203FFF 16 Shadow TSLK

Test 0x00400000–0x00403FFF 16 Test TSLK

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 643

The division into blocks of the flash memory module is also used to implement independent erase/program
protection. A software mechanism is provided to independently lock/unlock each block in low and mid
address space against program and erase.

27.4.2.2 DFlash module sectorization

The DFlash module supports 64 KB of user memory, plus 16 KB of test memory (a portion of which is
One-Time Programmable by the user).

The module is composed of a single bank (Bank 0): Read-While-Write is not supported.

Bank 0 of the 80 KB module is divided in four sectors. Bank 0 also contains a reserved sector named
TestFlash in which some One-Time Programmable user data are stored.

The sectorization of the 80 KB matrix module is shown in Table 27-3.

The flash memory module is divided into blocks also to implement independent erase/program protection.
A software mechanism is provided to independently lock/unlock each block in low and mid address space
against program and erase.

27.4.3 TestFlash block

A TestFlash block is available in both the CFlash and DFlash modules. The TestFlash block exists outside
the normal address space and is programmed and read independently of the other blocks. The independent
TestFlash block is included to also support systems which require nonvolatile memory for security or to
store system initialization information, or both.

A section of the TestFlash is reserved to store the nonvolatile information related to Redundancy,
Configuration and Protection.

The ECC is also applied to TestFlash.

The structure of the TestFlash sector is detailed in Table 27-4 and Table 27-5.

Table 27-3. DFlash module sectorization

Bank Sector Addresses Size (KB)
Address

space
DFLASH_LML field for

locking the address space

0 0 0x00800000–0x00803FFF 16 Low LLK0

1 0x00804000–0x00807FFF LLK1

2 0x00808000–0x0080BFFF LLK2

3 0x0080C000–0x0080FFFF LLK3

Test 0x00C00000–0x00C03FFF Test TSLK

MPC5604B/C Microcontroller Reference Manual, Rev. 8

644 Freescale Semiconductor

Erase of the TestFlash block is always locked.

User mode program of the TestFlash block are enabled only when MCR[PEAS] is high.

The TestFlash block may be locked/unlocked against program by using the LML[TSLK] and
SLL[STSLK] registers.

Programming of the TestFlash block has similar restrictions as the array in terms of how ECC is calculated.
Only one programming operation is allowed per 64-bit ECC segment.

The first 8 KB of TestFlash block may be used for user defined functions (possibly to store serial numbers,
other configuration words or factory process codes). Locations of the TestFlash other than the first 8 KB
of OTP area cannot be programmed by the user application.

Table 27-4. CFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0x400000–0x401FFF 8192 bytes

— Reserved 0x402000–0x403CFF 7424 bytes

— User OTP area 0x403D00–0x403DE7 232 bytes

CFLASH_NVLML CFlash Nonvolatile Low/Mid Address Space Block
Locking Register

0x403DE8–0x403DEF 8 bytes

— Reserved 0x403DF0–0x403DF7 8 bytes

CFLASH_NVSLL CFlash Nonvolatile Secondary Low/mid Address
Space Block Locking Register

0x403DF8–0x403DFF 8 bytes

— User OTP area 0x403E00–0x403EFF 256 bytes

— Reserved 0x403F00–0x403FFF 256 bytes

Table 27-5. DFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0xC00000–0xC01FFF 8192 bytes

— Reserved 0xC02000–0xC03CFF 7424 bytes

— User OTP area 0xC03D00–0xC03DE7 232 bytes

DFLASH_NVLML DFlash Nonvolatile Low/Mid Address Space Block
Locking Register

0xC03DE8–0xC03DEF 8 bytes

— Reserved 0xC03DF0–0xC03DF7 8 bytes

DFLASH_NVSLL DFlash Nonvolatile Secondary Low/Mid Address
Space Block Locking Register

0xC03DF8–0xC03DFF 8 bytes

— User OTP area 0xC03E00–0xC03EFF 256 bytes

— Reserved 0xC03F00–0xC03FFF 256 bytes

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 645

27.4.4 Shadow sector

The shadow sector is only present in the CFlash module.

User Mode program and erase of the shadow sector are enabled only when CFLASH_MCR[PEAS] is
high.

The shadow sector may be locked/unlocked against program or erase by using the CFLASH_LML[TSLK]
and CFLASH_SLL[STSLK] fields.

Programming of the shadow sector has similar restrictions as the array in terms of how ECC is calculated.
Only one programming operation is allowed per 64-bit ECC segment between erases.

Erase of the shadow sector is done similarly to a sector erase.

The shadow sector contains specified data that are needed for user features.

The user area of shadow sector may be used for user defined functions (possibly to store boot code, other
configuration words or factory process codes).

The structure of the shadow sector is detailed in Table 27-6.

27.4.5 User mode operation

In User Mode the flash memory module may be read and written (register writes and interlock writes),
programmed or erased.

The default state of the flash memory module is read.

The main, shadow and test address space can be read only in the read state.

The majority of CFlash and DFlash memory-mapped registers can be read even when the CFlash or
DFlash is in power-down or low-power mode. The exceptions are as follows:

Table 27-6. Shadow sector structure

Name Description Addresses
Size

(bytes)

— User area 0x200000–0x203DCF 15824

— Reserved 0x203DD0–0x203DD7 8

NVPWD0–
1

 Nonvolatile Private Censorship PassWord 0–1 registers 0x203DD8–0x203DDF 8

NVSCC0–1 Nonvolatile System Censorship Control 0–1 registers 0x203DE0–0x203DE7 8

— Reserved 0x203DE8–0x203DFF 24

NVPFAPR Nonvolatile Platform Flash Memory Access Protection
Register

0x203E00–0x203E07 8

— Reserved 0x203E08–0x203E17 16

NVUSRO Nonvolatile User Options register 0x203E18–0x203E1F 8

— Reserved 0x203E20–0x203FFF 480

MPC5604B/C Microcontroller Reference Manual, Rev. 8

646 Freescale Semiconductor

• CFlash

— UT0[MRE, MRV, AIS, DSI0:7]

— UT1

— UT2

• DFlash

— UT0[MRE, MRV, AIS, DSI0:7]

— UT1

— UT2

The flash memory module enters the read state on reset.

The module is in the read state under two sets of conditions:

• The read state is active when the module is enabled (User Mode Read).

• The read state is active when the ERS and ESUS fields in the corresponding MCR
(CFLASH_MCR or DFLASH_MCR) are 1 and the PGM field is 0 (Erase Suspend).

Flash memory core reads return 128 bits (1 Page = 2 Double Words).

Registers reads return 32 bits (1 Word).

Flash memory core reads are done through the platform flash memory controller.

Registers reads to unmapped register address space will return all 0’s.

Registers writes to unmapped register address space will have no effect.

Attempted array reads to invalid locations will result in indeterminate data. Invalid locations occur when
blocks that do not exist in non 2n array sizes are addressed.

Attempted interlock writes to invalid locations will result in an interlock occurring, but attempts to
program these blocks will not occur since they are forced to be locked. Erase will occur to selected and
unlocked blocks even if the interlock write is to an invalid location.

Simultaneous Read cycle on the Flash Matrix and Read/Write cycles on the registers are possible. On the
contrary, registers read/write accesses simultaneous to a Flash Matrix interlock write are forbidden.

27.4.6 Reset

A reset is the highest priority operation for the flash memory module and terminates all other operations.

The flash memory module uses reset to initialize register and status bits to their default reset values. If the
flash memory module is executing a Program or Erase operation (PGM = 1 or ERS = 1 in CFLASH_MCR
or DFLASH_MCR) and a reset is issued, the operation will be suddenly terminated and the module will
disable the high voltage logic without damage to the high voltage circuits. Reset terminates all operations
and forces the flash memory module into User Mode ready to receive accesses. Reset and power-off must
not be used as a systematic way to terminate a Program or Erase operation.

After reset is negated, read register access may be done, although it should be noted that registers that
require updating from shadow information, or other inputs, may not read updated values until the DONE

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 647

field (in CFLASH_MCR or DFLASH_MCR) transitions. The DONE field may be polled to determine if
the flash memory module has transitioned out of reset. Notice that the registers cannot be written until the
DONE field is high.

27.4.7 Power-down mode

All flash memory DC current sources can be turned off in power-down mode, so that all power dissipation
is due only to leakage in this mode. Flash memory power-down mode can be selected at
ME_<mode>_MC.

Reads from or writes to the module are not possible in power-down mode.

When enabled the flash memory module returns to its pre-disable state in all cases unless in the process of
executing an erase high voltage operation at the time of disable.

If the flash memory module is disabled during an erase operation, MCR[ESUS] bit is programmed to ‘1’.
The user may resume the erase operation at the time the module is enabled by programming
MCR[ESUS] = 0. MCR[EHV] must be high to resume the erase operation.

If the flash memory module is disabled during a program operation, the operation will in any case be
completed and the power-down mode will be entered only after the programming ends.

The user should realize that, if the flash memory module is put in power-down mode and the interrupt
vectors remain mapped in the flash memory address space, the flash memory module will greatly increase
the interrupt response time by adding several wait-states.

It is forbidden to enter in low power mode when the power-down mode is active.

27.4.8 Low power mode

The low power mode turns off most of the DC current sources within the flash memory module. Flash
memory low power mode can be selected at ME_<mode>_MC.

The module (flash memory core and registers) is not accessible for read or write once it enters low power
mode.

Wake-up time from low power mode is faster than wake-up time from power-down mode.

When exiting from low power mode the flash memory module returns to its pre-sleep state in all cases
unless it is executing an erase high voltage operation at the time low power mode is entered.

If the flash memory module enters low power mode during an erase operation, MCR[ESUS] is
programmed to ‘1’. The user may resume the erase operation at the time the module exits low power mode
by programming MCR[ESUS] = 0. MCR[EHV] must be high to resume the erase operation.

If the flash memory module enters low power mode during a program operation, the operation will be in
any case completed and the low power mode will be entered only after the programming end.

It is forbidden to enter power-down mode when the low power mode is active.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

648 Freescale Semiconductor

27.5 Register description
The CFlash and DFlash modules have respective sets of memory mapped registers. The CFlash register
mapping is shown in Table 27-7. The DFlash register mapping is shown in Table 27-8.

Table 27-7. CFlash registers

Address offset Register Location

0x0000 CFlash Module Configuration Register (CFLASH_MCR) on page 649

0x0004 CFlash Low/Mid Address Space Block Locking Register
(CFLASH_LML)

on page 655

0x0008 Reserved

0x000C CFlash Secondary Low/Mid Address Space Block Locking
Register (CFLASH_SLL)

on page 659

0x0010 CFlash Low/Mid Address Space Block Select Register
(CFLASH_LMS)

on page 665

0x0014 Reserved

0x0018 CFlash Address Register (CFLASH_ADR) on page 666

0x0028–0x0038 Reserved

0x003C CFlash User Test 0 register (CFLASH_UT0) on page 667

0x0040 CFlash User Test 1 register (CFLASH_UT1) on page 669

0x0044 CFlash User Test 2 register (CFLASH_UT2) on page 669

0x0048 CFlash User Multiple Input Signature Register 0
(CFLASH_UMISR0)

on page 670

0x004C CFlash User Multiple Input Signature Register 1
(CFLASH_UMISR1)

on page 671

0x0050 CFlash User Multiple Input Signature Register 2
(CFLASH_UMISR2)

on page 672

0x0054 CFlash User Multiple Input Signature Register 3
(CFLASH_UMISR3)

on page 673

0x0058 CFlash User Multiple Input Signature Register 4
(CFLASH_UMISR4)

on page 674

Table 27-8. DFlash registers

Address offset Register name Location

0x0000 DFlash Module Configuration Register (DFLASH_MCR) on page 680

0x0004 DFlash Low/Mid Address Space Block Locking Register
(DFLASH_LML)

on page 685

0x0008 Reserved —

0x000C DFlash Secondary Low/Mid Address Space Block Locking
Register (DFLASH_SLL)

on page 689

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 649

In the following some nonvolatile registers are described. Please notice that such entities are not
Flip-Flops, but locations of TestFlash or Shadow sectors with a special meaning.

During the flash memory initialization phase, the FPEC reads these nonvolatile registers and updates the
corresponding volatile registers. When the FPEC detects ECC double errors in these special locations, it
behaves in the following way:

• In case of a failing system locations (configurations, device options, redundancy, embedded
firmware), the initialization phase is interrupted and a Fatal Error is flagged.

• In case of failing user locations (protections, censorship, platform flash memory controller, ...), the
volatile registers are filled with all ‘1’s and the flash memory initialization ends setting low the
PEG bit of the corresponding MCR (CFLASH_MCR or DFLASH_MCR).

27.5.1 CFlash register description

27.5.1.1 CFlash Module Configuration Register (CFLASH_MCR)

The CFlash Module Configuration Register is used to enable and monitor all modify operations of the flash
memory module.

0x0010 DFlash Low/Mid Address Space Block Select Register
(DFLASH_LMS)

on page 693

0x0014 Reserved —

0x0018 DFlash Address Register (DFLASH_ADR) on page 693

0x001C–0x0038 Reserved —

0x003C DFlash User Test 0 register (DFLASH_UT0) on page 694

0x0040 DFlash User Test 1 register (DFLASH_UT1) on page 697

0x0044 DFlash User Test 2 register (DFLASH_UT2) on page 697

0x0048 DFlash User Multiple Input Signature Register 0
(DFLASH_UMISR0)

on page 698

0x004C DFlash User Multiple Input Signature Register 1
(DFLASH_UMISR1)

on page 699

0x0050 DFlash User Multiple Input Signature Register 2
(DFLASH_UMISR2)

on page 700

0x0054 DFlash User Multiple Input Signature Register 3
(DFLASH_UMISR3)

on page 701

0x0058 DFlash User Multiple Input Signature Register 4
(DFLASH_UMISR4)

on page 702

Table 27-8. DFlash registers (continued)

Address offset Register name Location

MPC5604B/C Microcontroller Reference Manual, Rev. 8

650 Freescale Semiconductor

Offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EER RWE 0 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 27-3. CFlash Module Configuration Register (CFLASH_MCR)

Table 27-9. CFLASH_MCR field descriptions

Field Description

 EDC Ecc Data Correction
EDC provides information on previous reads. If an ECC Single Error detection and correction
occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must occur before
this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EDC) were not corrected through ECC.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE array space SIZE
The value of SIZE field is dependent upon the size of the flash memory module; see
Table 27-10.

LAS Low Address Space
The value of the LAS field corresponds to the configuration of the Low Address Space; see
Table 27-11.

MAS Mid Address Space
The value of the MAS field corresponds to the configuration of the Mid Address Space; see
Table 27-12.

EER Ecc event ERror
EER provides information on previous reads. If an ECC Double Error detection occurred, the
EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 651

RWE Read-while-Write event Error
RWE provides information on previous reads when a Modify operation is on going. If a RWW
Error occurs, the RWE bit is set to ‘1’. Read-While-Write Error means that a read access to
the flash memory Matrix has occurred while the FPEC was performing a program or erase
operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations: main array
space or shadow/test space.
PEAS = 0 indicates that the main address space is active for all flash memory module
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify
operations. The value of PEAS is retained between sampling events (that is, subsequent first
interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space
disabled.

DONE modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.
DONE is set to 1 on termination of the flash memory module reset.
DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage
operation, or after resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition
of EHV, which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1
transition of ESUS, which suspends an erase operation.
0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

Table 27-9. CFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

652 Freescale Semiconductor

PEG Program/Erase Good
The PEG bit indicates the completion status of the last flash memory Program or Erase
sequence for which high voltage operations were initiated. The value of PEG is updated
automatically during the Program and Erase high voltage operations. Aborting a
Program/Erase high voltage operation will cause PEG to be cleared to 0, indicating the
sequence failed. PEG is set to 1 when the flash memory module is reset, unless a flash
memory initialization error has been detected. The value of PEG is valid only when PGM=1
and/or ERS=1 and after DONE transitions from 0 to 1 due to an abort or the completion of a
Program/Erase operation. PEG is valid until PGM/ERS makes a 1 to 0 transition or EHV
makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE
caused by ESUS being set to logic 1. If Program or Erase are attempted on blocks that are
locked, the response will be PEG=1, indicating that the operation was succesful, and the
content of the block were properly protected from the Program or Erase operation. If a
Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating
that the requested operation has failed. In Array Integrity Check or Margin Read PEG is set
to 1 when the operation is completed, regardless the occurrence of any error. The presence
of errors can be detected only comparing checksum value stored in UMIRS0-1. Aborting an
Array Integrity Check or a Margin Read operation will cause PEG to be cleared to 0,
indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode
completed.

PGM ProGraM
PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS Program SUSpend
Write this bit has no effect, but the written data can be read back.

ERS ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

Table 27-9. CFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 653

ESUS Erase SUSpend
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the
process of entering a Suspend state. The flash memory module is in Erase Suspend when
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns
the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV Enable High Voltage
The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be set
under one of the following conditions:
Erase (ERS = 1, ESUS = 0, UT0[AIE] = 0)
Program (ERS = 0, ESUS = 0, PGM = 1, UT0[AIE] = 0)
In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a failing
program/erase; address locations being operated on by the aborted operation contain
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an
indeterminate data state. This may be recovered by executing an erase on the affected
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be
written after ESUS is set and before DONE transitions high. EHV may not be cleared after
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 27-10. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 1024 KB

100 1536 KB

101 Reserved (2048 KB)

Table 27-9. CFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

654 Freescale Semiconductor

A number of CFLASH_MCR bits are protected against write when another bit, or set of bits, is in a specific
state. These write locks are covered on a bit by bit basis in the preceding description, but those locks do
not consider the effects of trying to write two or more bits simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would put the device
into an illegal state. This is implemented through a priority mechanism among the bits. The bit changing
priorities are detailed in Table 27-13.

If the user attempts to write two or more CFLASH_MCR bits simultaneously then only the bit with the
lowest priority level is written.

110 64 KB

111 Reserved

Table 27-11. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 27-12. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128 KB or 0 KB

1 Reserved

Table 27-13. CFLASH_MCR bits set/clear priority levels

Priority level CFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS

Table 27-10. Array space size (continued)

SIZE Array space size

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 655

If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while fetching code
from another then the following sequence is executed:

• CPU is stalled when flash is unavailable

• PEG flag set (stall case) or reset (abort case)

• Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the RWE flag.
The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See
Section 27.8.10, Read-while-write functionality.

27.5.1.2 CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

The CFlash Low/Mid Address Space Block Locking register provides a means to protect blocks from
being modified. These bits, along with bits in the CFLASH_SLL register, determine if the block is locked
from Program or Erase. An “OR” of CFLASH_LML and CFLASH_SLL determine the final lock status.

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0
MLK

W

Reset Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML

register.

Figure 27-4. CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

656 Freescale Semiconductor

Table 27-14. CFLASH_LML field descriptions

Field Description

LME Low/Mid address space block Enable
This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
CFLASH_LML register.
0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK Test/Shadow address space block LocK
This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 657

27.5.1.2.1 CFlash Nonvolatile Low/Mid Address Space Block Locking Register
(CFLASH_NVLML)

The CFLASH_LML register has a related CFlash Nonvolatile Low/Mid Address Space Block Locking
register located in TestFlash that contains the default reset value for CFLASH_LML. During the reset
phase of the flash memory module, the CFLASH_NVLML register content is read and loaded into the
CFLASH_LML.

MLK Mid address space block LocK
This field is used to lock the blocks of Mid Address Space from Program and Erase.
MLK is related to sectors B0F7-6, respectively.
A value of 1 in a bit of the MLK field signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the MLK field signifies that the corresponding block is available to
receive program and erase pulses.
The MLK field is not writable after an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
MLK field is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the MLK field. The MLK field
may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the MLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the MLK
field will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
MLK is not writable unless LME is high.
0: Mid Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SMLK]
= 0).
1: Mid Address Space Block is locked and cannot be modified.

LLK Low address space block LocK
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until CFLASH_MCR[DONE]
is set at the completion of the requested operation. Likewise, the LLK field is not writable if
a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field
may be written as a register. Reset will cause the field to go back to its TestFlash block value.
The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
field will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

Table 27-14. CFLASH_LML field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

658 Freescale Semiconductor

The CFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t
care’ and are used to manage ECC codes.

Offset: 0x403DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1
MLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-5. CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML)

Table 27-15. CFLASH_NVLML field descriptions

Field Description

LME Low/Mid address space block Enable
This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
CFLASH_LML register.
0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK Test/Shadow address space block LocK
This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 659

27.5.1.3 CFlash Secondary Low/Mid Address Space Block Locking Register
(CFLASH_SLL)

The CFlash Secondary Low/Mid Address Space Block Locking Register provides an alternative means to
protect blocks from being modified. These bits, along with bits in the CFLASH_LML register, determine
if the block is locked from Program or Erase. An “OR” of CFLASH_LML and CFLASH_SLL determine
the final lock status.

MLK Mid address space block LocK
These bits are used to lock the blocks of Mid Address Space from Program and Erase.
MLK[1:0] are related to sectors B0F7-6, respectively.
A value of 1 in a bit of the MLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the MLK register signifies that the corresponding block is available to
receive program and erase pulses.
The MLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
MLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the MLK registers. The MLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the MLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the MLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
MLK is not writable unless LME is high.
0: Mid Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SMLK]
= 0).
1: Mid Address Space Block is locked and cannot be modified.

LLK Low address space block LocK
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

Table 27-15. CFLASH_NVLML field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

660 Freescale Semiconductor

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0

SMK
W

Reset Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL

register.

Figure 27-6. CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL)

Table 27-16. CFLASH_SLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 661

SMK Secondary Mid address space block locK
These bits are used as an alternate means to lock the blocks of Mid Address Space from
Program and Erase.
SMK[1:0] are related to sectors B0F7-6, respectively.
A value of 1 in a bit of the SMK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SMK register signifies that the corresponding block is available to
receive program and erase pulses.
The SMK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SMK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SMK registers. The SMK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SMK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SMK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.

SMK is not writable unless SLE is high.
0: Mid Address Space Block is unlocked and can be modified (also if CFLASH_LML[MLK] =
0).
1: Mid Address Space Block is locked and cannot be modified.

SLK Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

Table 27-16. CFLASH_SLL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

662 Freescale Semiconductor

27.5.1.3.1 CFlash Nonvolatile Secondary Low/Mid Address Space Block Locking
Register (CFLASH_NVSLL)

The CFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space Block Locking
register located in TestFlash that contains the default reset value for SLL. During the reset phase of the
flash memory module, the CFLASH_NVSLL register content is read and loaded into the CFLASH_SLL.

The CFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t
care’ and are used to manage ECC codes.

Offset: 0x403DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1

SMK
W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-7. CFlash Nonvolatile Secondary Low/mid address space block Locking register
(CFLASH_NVSLL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 663

Table 27-17. CFLASH_NVSLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

664 Freescale Semiconductor

SMK Secondary Mid address space block locK
These bits are used as an alternate means to lock the blocks of Mid Address Space from
Program and Erase.
SMK[1:0] are related to sectors B0F7-6, respectively.
A value of 1 in a bit of the SMK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SMK register signifies that the corresponding block is available to
receive program and erase pulses.
The SMK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SMK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SMK registers. The SMK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SMK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SMK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.

SMK is not writable unless SLE is high.
0: Mid Address Space Block is unlocked and can be modified (also if CFLASH_LML[MLK] =
0).
1: Mid Address Space Block is locked and cannot be modified.

SLK Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

Table 27-17. CFLASH_NVSLL field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 665

27.5.1.4 CFlash Low/Mid Address Space Block Select Register (CFLASH_LMS)

The CFLASH_LMS register provides a means to select blocks to be operated on during erase.

Offset: 0x00010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-8. CFlash Low/Mid address space block Select register (CFLASH_LMS)

Table 27-18. CFLASH_LMS field descriptions

Field Description

MSL Mid address space block SeLect
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset
value for the select register is 0, or unselected.
MSL[1:0] are related to sectors B0F7-6, respectively.
The blocks must be selected (or unselected) before doing an erase interlock write as part of
the erase sequence. The select register is not writable once an interlock write is completed
or if a high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding MSL bits will default to unselected, and will not be writable. The reset value
will always be 0, and register writes will have no effect.

0: Mid Address Space Block is unselected for erase.
1: Mid Address Space Block is selected for erase.

LSL Low address space block SeLect
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset
value for the select register is 0, or unselected.
LSL[5:0] are related to sectors B0F5-0, respectively. LSL[15:6] are not used for this memory
cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of
the erase sequence. The select register is not writable once an interlock write is completed
or if a high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding LSL bits will default to unselected, and will not be writable. The reset value
will always be 0, and register writes will have no effect.
Bits LSL[15:6] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for erase.
1: Low Address Space Block is selected for erase.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

666 Freescale Semiconductor

27.5.1.5 CFlash Address Register (CFLASH_ADR)

The CFLASH_ADR provides the first failing address in the event module failures (ECC or FPEC) occur
or the first address at which an ECC single error correction occurs.

Offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-9. CFlash Address Register (CFLASH_ADR)

Table 27-19. CFLASH_ADR field descriptions

Field Description

AD ADdress 22-3 (Read Only)
The Address Register provides the first failing address in the event of ECC error
(CFLASH_MCR[EER] = 1) or the first failing address in the event of RWW error
(CFLASH_MCR[RWE] = 1), or the address of a failure that may have occurred in a FPEC
operation (CFLASH_MCR[PEG] = 0). The Address Register also provides the first address
at which an ECC single error correction occurs (CFLASH_MCR[EDC] = 1).
The ECC double error detection takes the highest priority, followed by the FPEC error and
the ECC single error correction. When accessed CFLASH_ADR will provide the address
related to the first event occurred with the highest priority. The priorities between these four
possible events is summarized in Table 27-20.
This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same
page, bit AD3 will output 0. The same is valid for a simultaneous ECC Single Error Correction
on both Double Words of the same page.

Table 27-20. CFLASH_ADR content: priority list

Priority level Error flag CFLASH_ADR content

1 CFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 CFLASH_MCR[RWE] = 1 Address of first RWW Error

3 CFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 CFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 667

27.5.1.6 CFlash User Test 0 register (CFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash memory module. The
User Test 0 Register allows to control the way in which the flash memory content check is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible whenever
CFLASH_MCR[DONE] or UT0[AID] are low: reading returns indeterminate data while writing has no
effect.

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 27-10. CFlash User Test 0 register (CFLASH_UT0)

Table 27-21. CFLASH_UT0 field descriptions

Field Description

UTE User Test Enable
This status bit gives indication when User Test is enabled. All bits in CFLASH_UT0-2 and
CFLASH_UMISR0-4 are locked when this bit is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE
bit is set to reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the CFLASH_UT0 register.

DSI Data Syndrome Input
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check.
Bits DSI[7:0] correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X Reserved
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

668 Freescale Semiconductor

MRE Margin Read Enable
MRE enables margin reads to be done. This bit, combined with MRV, enables regular user
mode reads
to be replaced by margin reads inside the Array Integrity Checks sequences. Margin reads
are only active during Array Integrity Checks; Normal User reads are not affected by MRE.
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.
0: Margin reads are not enabled
1: Margin reads are enabled.

MRV Margin Read Value
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked
to an erased level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE ECC data Input Enable
EIE enables the ECC Logic Check operation to be done. This bit is not accessible whenever
CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading returns indeterminate data
while writing has no effect.
0: ECC Logic Check is not enabled.
1: ECC Logic Check is enabled.

AIS Array Integrity Sequence
AIS determines the address sequence to be used during array integrity checks or Margin
Read . The default sequence (AIS=0) is meant to replicate sequences normal user code
follows, and thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS=1) is just logically sequential. It should be noted that the time
to run a sequential sequence is significantly shorter than the time to run the proprietary
sequence. The usage of proprietary sequence is forbidden in Margin Read. This bit is not
accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading returns
indeterminate data while writing has no effect.
0: Array Integrity sequence is proprietary sequence.
1: Array Integrity or f sequence is sequential.

AIE Array Integrity Enable
AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (CFLASH_UMISR0-4) can be checked after
the operation is complete, to determine if a correct signature is obtained.
AIE can be set only if CFLASH_MCR[ERS], CFLASH_MCR[PGM] and
CFLASH_MCR[EHV] are all low.
0: Array Integrity Checks, Margin Read and ECC Logic Checks are not enabled.
1: Array Integrity Checks, Margin Read and ECC Logic Checks are enabled.

AID Array Integrity Done
AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is
on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this
time the MISR (CFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 27-21. CFLASH_UT0 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 669

27.5.1.7 CFlash User Test 1 register (CFLASH_UT1)

The CFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32 LSB of the
Double Word.

The User Test 1 Register is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

27.5.1.8 CFlash User Test 2 register (CFLASH_UT2)

The CFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32 MSB of the
Double Word.

The User Test 2 Register is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-11. CFlash User Test 1 register (CFLASH_UT1)

Table 27-22. CFLASH_UT1 field descriptions

Field Description

DAI[31:0] Data Array Input, bits 31–0
These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits
DAI[31:00] correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

670 Freescale Semiconductor

27.5.1.9 CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

The CFLASH_UMISR0 register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 0 represents the bits 31:0 of the whole 144 bits word (2 Double
Words including ECC).

The CFLASH_UMISR0 Register is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Offset: 0x00044 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-12. CFlash User Test 2 register (CFLASH_UT2)

Table 27-23. CFLASH_UT2 field descriptions

Field Description

DAI[63:32] Data Array Input, bits 63–32
These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits
DAI[63:32] correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 671

27.5.1.10 CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

The CFLASH_UMISR1 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double Words including
ECC).

The CFLASH_UMISR1 is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x00048 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-13. CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

Table 27-24. CFLASH_UMISR0 field descriptions

Field Description

MS0[31:0] Multiple input Signature, bits 31–0
These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR0 register.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

672 Freescale Semiconductor

27.5.1.11 CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

The CFLASH_UMISR2 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double Words including
ECC).

The CFLASH_UMISR2 is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x0004C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-14. CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

Table 27-25. CFLASH_UMISR1 field descriptions

Field Description

MS0[63:32] Multiple input Signature, bits 63–32
These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 673

27.5.1.12 CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

The CFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double Words including
ECC).

The CFLASH_UMISR3 is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x00050 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-15. CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

Table 27-26. CFLASH_UMISR2 field descriptions

Field Description

MS0[95:64] Multiple input Signature, bits 95–64
These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR2.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

674 Freescale Semiconductor

27.5.1.13 CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

The CFLASH_UMISR4 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR4 represents the ECC bits of the whole 144 bits word (2 Double Words including
ECC): bits 8:15 are ECC bits for the odd Double Word and bits 24:31 are the ECC bits for the even Double
Word; bits 4:5 and 20:21 of MISR are respectively the double and single ECC error detection for odd and
even Double Word.

The CFLASH_UMISR4 is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-16. CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

Table 27-27. CFLASH_UMISR3 field descriptions

Field Description

MS[127:96] Multiple input Signature, bits127–96
These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR3.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 675

27.5.1.14 CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

The nonvolatile private censorship password 0 register contains the 32 LSB of the Password used to
validate the Censorship information contained in NVSCC0–1 registers.

Offset: 0x00058 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-17. CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

Table 27-28. CFLASH_UMISR4 field descriptions

Field Description

MS[159:128] Multiple input Signature, bits 159–128
These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the CFLASH_UMISR4 register.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

676 Freescale Semiconductor

27.5.1.15 CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

The nonvolatile private censorship password 1 register contains the 32 MSB of the Password used to
validate the Censorship information contained in NVSCC0–1 registers.

Offset: 0x203DD8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[31:16]

W

Reset 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[15:0]

W

Reset 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Figure 27-18. CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

Table 27-29. NVPWD0 field descriptions

Field Description

PWD[31:0] Password, bits 31–0
These bits represent the 32 LSB of the Private Censorship Password.

Offset: 0x203DDC Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[63:48]

W

Reset 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[47:32]

W

Reset 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

Figure 27-19. CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 677

NOTE
In a secured device, starting with a serial boot, it is possible to read the
content of the four flash locations where the RCHW can be stored. For
example if the RCHW is stored at address 0x00000000, the reads at address
0x00000000, 0x00000004, 0x00000008 and 0x0000000C will return a
correct value. Any other flash address cannot be accessed.

27.5.1.16 CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

The NVSCC0 register stores the 32 LSB of the Censorship Control Word of the device.

The NVSCC0 is a nonvolatile register located in the Shadow sector: it is read during the reset phase of the
flash memory module and the protection mechanisms are activated consequently.

The parts are delivered uncensored to the user.

Table 27-30. NVPWD1 field descriptions

Field Description

PWD[63:32] Password, bits 63–32
These bits represent the 32 MSB of the Private Censorship Password.

Offset: 0x203DE0 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Figure 27-20. CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

678 Freescale Semiconductor

27.5.1.17 CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

The NVSCC1 register stores the 32 MSB of the Censorship Control Word of the device.

The NVSCC1 is a nonvolatile register located in the Shadow sector: it is read during the reset phase of the
flash memory module and the protection mechanisms are activated consequently.

The parts are delivered uncensored to the user.

Table 27-31. NVSCC0 field descriptions

Field Description

SC[15:0] Serial Censorship control word, bits 15-0
These bits represent the 16 LSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0 0x55AA or NVSCC1 NVSCC0 the Public Access is enabled.

CW[15:0] Censorship control Word, bits 15-0
These bits represent the 16 LSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0 0x55AA or NVSCC1 NVSCC0 the Censored Mode is enabled.

Offset: 0x203DE4 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Figure 27-21. CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

Table 27-32. NVSCC1 field descriptions

Field Description

SC[31:16] Serial Censorship control word, bits 31-16
These bits represent the 16 MSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0 0x55AA or NVSCC1 NVSCC0 the Public Access is enabled.

CW[31:16] Censorship control Word, bits 31-16
These bits represent the 16 MSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0 0x55AA or NVSCC1 NVSCC0 the Censored Mode is enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 679

27.5.1.18 CFlash Nonvolatile User Options register (NVUSRO)

The nonvolatile User Options Register contains configuration information for the user application.

The NVUSRO register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
are used to manage ECC codes.

Offset: 0x203E18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W
AT

C
H

D
O

G
_E

N

O
S

C
IL

LA
TO

R
_M

A
R

G
IN

PA
D

3V
5V

1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-22. CFlash Nonvolatile User Options register (NVUSRO)

Table 27-33. NVUSRO field descriptions

Field Description

WATCHDOG_EN WATCHDOG_EN
0: Disable after reset
1: Enable after reset
Default manufacturing value before flash memory initialization is ‘1’

OSCILLATOR_
MARGIN

OSCILLATOR_MARGIN
0: Low consumption configuration (4 MHz/8 MHz)
1: High margin configuration (4 MHz/16 MHz)
Default manufacturing value before flash memory initialization is ‘1’

PAD3V5V PAD3V5V
0: High voltage supply is 5.0 V
1: High voltage supply is 3.3 V
Default manufacturing value before flash memory initialization is ‘1’ (3.3 V) which should
ensure correct minimum slope for boundary scan.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

680 Freescale Semiconductor

27.5.2 DFlash register description

27.5.2.1 DFlash Module Configuration Register (DFLASH_MCR)

The Module Configuration Register is used to enable and monitor all modify operations of the flash
memory module.

Address offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EER RWE 0 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 27-23. DFlash Module Configuration Register (DFLASH_MCR)

Table 27-34. DFLASH_MCR field descriptions

Field Description

 EDC ECC Data Correction
EDC provides information on previous reads. If an ECC Single Error detection and correction
occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must occur before
this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EDC) were not corrected through ECC.
The function of this bit is device dependent and it can be configured to be disabled.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE array space SIZE
The value of SIZE field is dependent upon the size of the flash memory module; see
Table 27-35.

LAS Low Address Space
The value of the LAS field corresponds to the configuration of the Low Address Space; see
Table 27-36.

MAS Mid Address Space
The value of the MAS field corresponds to the configuration of the Mid Address Space; see
Table 27-37.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 681

EER ECC event Error
EER provides information on previous reads. If an ECC Double Error detection occurred, the
EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

RWE Read-while-Write event Error
RWE provides information on previous reads when a Modify operation is on going. If a RWW
Error occurs, the RWE bit will be set to ‘1’. Read-While-Write Error means that a read access
to the flash memory Matrix has occurred while the FPEC was performing a program or erase
operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations: main array
space or shadow/test space.
PEAS = 0 indicates that the main address space is active for all flash memory module
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify
operations. The value of PEAS is retained between sampling events (that is, subsequent first
interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space
disabled.

DONE modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.
DONE is set to 1 on termination of the flash memory module reset.
DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage
operation, or after
resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition
of EHV,
which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1
transition of ESUS,
which suspends an erase operation.
0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

Table 27-34. DFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

682 Freescale Semiconductor

PEG Program/Erase Good
The PEG bit indicates the completion status of the last flash memory program or erase
sequence for which high voltage operations were initiated. The value of PEG is updated
automatically during the program and erase high voltage operations.
Aborting a program/erase high voltage operation will cause PEG to be cleared to ‘0’,
indicating the sequence failed.
PEG is set to ‘1’ when the flash memory module is reset, unless a flash memory initialization
error has been detected.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions
from 0 to 1 due to an abort or the completion of a program/erase operation. PEG is valid until
PGM/ERS makes a 1 to 0 transition or EHV makes a 0 to 1 transition.
The value in PEG is not valid after a 0 to 1 transition of DONE caused by ESUS being set to
logic 1.
If program or erase are attempted on blocks that are locked, the response will be PEG = 1,
indicating that the operation was successful, and the content of the block were properly
protected from the program or erase operation.
If a Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating
that the requested operation has failed.
In Array Integrity Check or Margin Read PEG is set to 1 when the operation is completed,
regardless the occurrence of any error. The presence of errors can be detected only
comparing checksum value stored in UMIRS0-1.
Aborting an Array Integrity Check or a Margin Read operation will cause PEG to be cleared
to 0, indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode
completed.

PGM ProGraM
PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and DFLASH_UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS PSUS: Program SUSpend
Write this bit has no effect, but the written data can be read back.

ERS ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and DFLASH_UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

Table 27-34. DFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 683

ESUS Erase SUSpend
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the
process of entering a Suspend state. The flash memory module is in Erase Suspend when
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns
the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV Enable High Voltage
The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be set
under one of the following conditions:
Erase (ERS = 1, ESUS = 0, DFLASH_UT0[AIE] = 0)
Program (ERS = 0, ESUS = 0, PGM = 1, DFLASH_UT0[AIE] = 0)
In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a failing
program/erase; address locations being operated on by the aborted operation contain
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an
indeterminate data state. This may be recovered by executing an erase on the affected
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be
written after ESUS is set and before DONE transitions high. EHV may not be cleared after
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 27-35. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 Reserved (1024 KB)

100 Reserved (1536 KB)

101 Reserved (2048 KB)

Table 27-34. DFLASH_MCR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

684 Freescale Semiconductor

A number of DFLASH_MCR bits are protected against write when another bit, or set of bits, is in a specific
state. These write locks are covered on a bit by bit basis in the preceding description, but those locks do
not consider the effects of trying to write two or more bits simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would put the device
into an illegal state. This is implemented through a priority mechanism among the bits. The bit changing
priorities are detailed in the Table 27-38.

If the user attempts to write two or more DFLASH_MCR bits simultaneously then only the bit with the
lowest priority level is written.

110 64 KB

111 Reserved

Table 27-36. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 27-37. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128KB

1 Reserved

Table 27-38. DFLASH_MCR bits set/clear priority levels

Priority level DFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS

Table 27-35. Array space size (continued)

SIZE Array space size

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 685

If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while fetching code
from another then the following sequence is executed:

• CPU is stalled when flash is unavailable

• PEG flag set (stall case) or reset (abort case)

• Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the RWE flag.
The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See
Section 27.8.10, Read-while-write functionality.

27.5.2.2 DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

The DFlash Low/Mid Address Space Block Locking register provides a means to protect blocks from
being modified. These bits, along with bits in the DFLASH_SLL register, determine if the block is locked
from Program or Erase. An “OR” of DFLASH_LML and DFLASH_SLL determine the final lock status.

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0 0 0

W

Reset Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML

register.

Figure 27-24. DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

686 Freescale Semiconductor

Table 27-39. DFLASH_LML field descriptions

Field Description

LME Low/Mid address space block Enable
This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
DFLASH_LML register.
0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK Test/Shadow address space block LocK
This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK Low address space block LocK
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until DFLASH_MCR[DONE]
is set at the completion of the requested operation. Likewise, the LLK field is not writable if
a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field
may be written as a register. Reset will cause the field to go back to its TestFlash block value.
The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
field will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 687

27.5.2.2.1 DFlash Nonvolatile Low/Mid Address Space Block Locking Register
(DFLASH_NVLML)

The DFLASH_LML register has a related Nonvolatile Low/Mid Address Space Block Locking register
located in TestFlash that contains the default reset value for DFLASH_LML. During the reset phase of the
flash memory module, the DFLASH_NVLML register content is read and loaded into the
DFLASH_LML.

The DFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t
care’ and are used to manage ECC codes.

Offset: 0xC03DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-25. DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

688 Freescale Semiconductor

Table 27-40. DFLASH_NVLML field descriptions

Field Description

LME Low/Mid address space block Enable
This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
DFLASH_LML register.
0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK Test/Shadow address space block LocK
This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK Low address space block LocK
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 689

27.5.2.3 DFlash Secondary Low/Mid Address Space Block Locking Register
(DFLASH_SLL)

The DFlash Secondary Low/Mid Address Space Block Locking Register provides an alternative means to
protect blocks from being modified. These bits, along with bits in the DFLASH_LML register, determine
if the block is locked from Program or Erase. An “OR” of DFLASH_LML and DFLASH_SLL determine
the final lock status.

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 0 0

W

Reset Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL

register.

Figure 27-26. DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

690 Freescale Semiconductor

Table 27-41. DFLASH_SLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 691

27.5.2.3.1 DFlash Nonvolatile Secondary Low/Mid Address Space Block Locking
Register (DFLASH_NVSLL)

The DFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space Block Locking
register located in TestFlash that contains the default reset value for DFLASH_SLL. During the reset phase
of the flash memory module, the DFLASH_NVSLL register content is read and loaded into the
DFLASH_SLL.

The DFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t
care’ and are used to manage ECC codes.

Offset: 0xC03DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-27. DFlash Nonvolatile Secondary Low/mid address space block Locking register
(DFLASH_NVSLL)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

692 Freescale Semiconductor

Table 27-42. DFLASH_NVSLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 693

27.5.2.4 DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

The DFLASH_LMS register provides a means to select blocks to be operated on during erase.

27.5.2.5 DFlash Address Register (DFLASH_ADR)

The DFLASH_ADR provides the first failing address in the event module failures (ECC, RWW or FPEC)
occur or the first address at which an ECC single error correction occurs.

Offset: 0x00010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-28. DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

Table 27-43. DFLASH_LMS field descriptions

Field Description

LSL Low address space block SeLect
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value
for the select register is 0, or unselected.
LSL[3:0] are related to sectors B1F3-0, respectively. LSL[15:4] are not used for this memory cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the
erase sequence. The select register is not writable once an interlock write is completed or if a high
voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding LSL bits will default to unselected, and will not be writable. The reset value will
always be 0, and register writes will have no effect.
In the 80 KB flash memory module bits LSL[15:4] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for Erase.
1: Low Address Space Block is selected for Erase.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

694 Freescale Semiconductor

27.5.2.6 DFlash User Test 0 register (DFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash memory module.

Address offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-29. DFlash Address Register (DFLASH_ADR)

Table 27-44. DFLASH_ADR field descriptions

Field Description

AD[22:3] ADdress 22-3
The Address Register provides the first failing address in the event of ECC error
(DFLASH_MCR[EER] set) or the first failing address in the event of RWW error
(DFLASH_MCR[RWE] set), or the address of a failure that may have occurred in a FPEC operation
(DFLASH_MCR[PEG] cleared). The Address Register also provides the first address at which an
ECC single error correction occurs (DFLASH_MCR[EDC] set), if the device is configured to show this
feature.
The ECC double error detection takes the highest priority, followed by the RWW error, the FPEC error
and the ECC single error correction. When accessed DFLASH_ADR will provide the address related
to the first event occurred with the highest priority. The priorities between these four possible events
is summarized in the Table 27-45.
This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same page, bit
AD3 will output 0. The same is valid for a simultaneous ECC Single Error Correction on both Double
Words of the same page.
In User Mode the Address Register is read only.

Table 27-45. DFLASH_ADR content: priority list

Priority level Error flag DFLASH_ADR content

1 DFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 DFLASH_MCR[RWE] = 1 Address of first RWW Error

3 DFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 DFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 695

The User Test 0 Register allows to control the way in which the flash memory content check is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible whenever
DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading returns indeterminate data while
writing has no effect.

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 27-30. DFlash User Test 0 register (DFLASH_UT0)

Table 27-46. DFLASH_UT0 field descriptions

Field Description

UTE User Test Enable
This status bit gives indication when User Test is enabled. All bits in DFLASH_UT0-2 and
DFLASH_UMISR0-4 are locked when this bit is 0.
This bit is not writeable to a 1, but may be cleared. The reset value is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to
reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the DFLASH_UT0 register.

DSI Data Syndrome Input
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. Bits DSI[7:0]
correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X Reserved
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

696 Freescale Semiconductor

MRE Margin Read Enable
MRE enables margin reads to be done. This bit, combined with MRV, enables regular user mode reads
to be replaced by margin reads.
Margin reads are only active during Array Integrity Checks; Normal User reads are not affected by MRE.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data
while writing has no effect.
0: Margin reads are not enabled, all reads are User mode reads.
1: Margin reads are enabled.

MRV Margin Read Value
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked to an erased
level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE ECC data Input Enable
EIE enables the ECC Logic Check operation to be done.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: ECC Logic Check is not enabled.
1: ECC Logic Check is enabled.

AIS Array Integrity Sequence
AIS determines the address sequence to be used during array integrity checks or Margin Read.
The default sequence (AIS = 0) is meant to replicate sequences normal user code follows, and
thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS = 1) is just logically sequential. Proprietary sequence is forbidden in
Margin Read.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run
the proprietary sequence.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: Array Integrity equence is proprietary sequence.
1: Array Integrity or Margin Read sequence is sequential.

AIE Array Integrity Enable
AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (DFLASH_UMISR0-4) can be checked after the operation
is complete, to determine if a correct signature is obtained.
AIE can be set only if DFLASH_MCR[ERS], DFLASH_MCR[PGM] and DFLASH_MCR[EHV] are all low.
0: Array Integrity Checks are not enabled.
1: Array Integrity Checks are enabled.

AID Array Integrity Done
AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this time the
MISR (DFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 27-46. DFLASH_UT0 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 697

27.5.2.7 DFlash User Test 1 register (DFLASH_UT1)

The DFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32 LSB of the
Double Word.

The User Test 1 Register is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

27.5.2.8 DFlash User Test 2 register (DFLASH_UT2)

The DFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32 MSB of the
Double Word.

The User Test 2 Register is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Address offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-31. DFlash User Test 1 register (DFLASH_UT1)

Table 27-47. DFLASH_UT1 field descriptions

Field Description

DAI[31:16] Data Array Input, bits 31-0
These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits DAI[31:00]
correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

698 Freescale Semiconductor

27.5.2.9 DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

The DFLASH_UMISR0 provides a means to evaluate the Array Integrity.

The DFLASH_UMISR0 represents the bits 31:0 of the whole 144 bits word (2 Double Words including
ECC).

The DFLASH_UMISR0 is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Offset: 0x00044 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-32. DFlash User Test 2 register (DFLASH_UT2)

Table 27-48. DFLASH_UT2 field descriptions

Field Description

DAI[63:32] Data Array Input, bits 63-32
These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits DAI[63:32]
correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 699

27.5.2.10 DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

The DFLASH_UMISR1 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double Words including
ECC).

The DFLASH_UMISR1 is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Address offset: 0x00048 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-33. DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

Table 27-49. DFLASH_UMISR0 field descriptions

Field Description

MS[31:0] Multiple input Signature, bits 31–0
These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages read from the flash
memory.
The MS can be seeded to any value by writing the DFLASH_UMISR0 register.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

700 Freescale Semiconductor

27.5.2.11 DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

The DFLASH_UMISR2 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double Words including
ECC).

The DFLASH_UMISR2 is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Address offset: 0x0004C Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-34. DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

Table 27-50. DFLASH_UMISR1 field descriptions

Field Description

MS[63:32] Multiple input Signature, bits 63-32
These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 701

27.5.2.12 DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

The DFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double Words including
ECC).

The DFLASH_UMISR3 is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.

Address offset: 0x00050 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-35. DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

Table 27-51. DFLASH_UMISR2 field descriptions

Field Description

MS[95:64] Multiple input Signature, bits 95-64
These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR2.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

702 Freescale Semiconductor

27.5.2.13 DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 4 represents the ECC bits of the whole 144 bits word (2 Double
Words including ECC): bits 23-168:15 are ECC bits for the odd Double Word and bits 7-024:31 are the
ECC bits for the even Double Word; bits 27-264:5 and 11-1020:21 of MISR are respectively the double
and single ECC error detection for odd and even Double Word.

The DFLASH_UMISR4 Register is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Address offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-36. DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

Table 27-52. DFLASH_UMISR3 field descriptions

Field Description

MS[127:96] Multiple input Signature, bits 127096
These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR3.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 703

27.6 Programming considerations
In the following sections, register names can refer to the CFlash or DFlash versions of those registers.
Thus, for example, the term “MCR” can refer to the CFLASH_MCR or DFLASH_MCR based on context.

27.6.1 Modify operation

All modify operations of the flash memory module are managed through the flash memory User Registers
Interface.

All the sectors of the flash memory module belong to the same partition (Bank), therefore when a Modify
operation is active on some sectors no read access is possible on any other sector (Read-While-Write is not
supported).

During a flash memory modify operation any attempt to read any flash memory location will output invalid
data and bit MCR[RWE] will be automatically set. This means that the flash memory module is not
fetchable when a modify operation is active and these commands must be executed from another memory
(internal SRAM or another flash memory module).

Address offset: 0x00058 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-37. DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

Table 27-53. DFLASH_UMISR4 field descriptions

Field Description

MS[159:128] Multiple input Signature, bits 159-128
These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the DFLASH_UMISR4 register.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

704 Freescale Semiconductor

If during a Modify Operation a reset occurs, the operation is suddenly terminated and the Macrocell is reset
to Read Mode. The data integrity of the flash memory section where the Modify Operation has been
terminated is not guaranteed: the interrupted flash memory Modify Operation must be repeated.

In general each modify operation is started through a sequence of three steps:

1. The first instruction is used to select the desired operation by setting its corresponding selection bit
in MCR (PGM or ERS) or UT0 (MRE or EIE).

2. The second step is the definition of the operands: the Address and the Data for programming or the
Sectors for erase or margin read.

3. The third instruction is used to start the modify operation, by setting MCR[EHV] or UT0[AIE].

Once selected, but not yet started, one operation can be canceled by resetting the operation selection bit.

A summary of the available flash memory modify operations is shown in Table 27-54.

Once the MCR[EHV] bit (or UT0[AIE]) is set, all the operands can no more be modified until the
MCR[DONE] bit (or UT0[AID]) is high.

In general each modify operation is completed through a sequence of four steps:

1. Wait for operation completion: wait for the MCR[DONE] bit (or UT0[AID]) to go high.

2. Check operation result: check the MCR[PEG] bit (or compare UMISR0-4 with expected value).

3. Switch off FPEC by resetting the MCR[EHV] bit (or UT0[AIE]).

4. Deselect current operation by clearing the MCR[PGM] / MCR[ERS] fields (or UT0[MRE]
/UT0[EIE]).

If the device embeds more than one flash memory module and a modify operation is on-going on one of
them, then it is forbidden to start any other modify operation on the other flash memory modules.

In the following all the possible modify operations are described and some examples of the sequences
needed to activate them are presented.

27.6.2 Double word program

A flash memory Program sequence operates on any Double Word within the flash memory core.

Up to two words within the Double Word may be altered in a single Program operation.

Table 27-54. Flash memory modify operations

Operation Select bit Operands Start bit

Double word program MCR[PGM] Address and data by interlock writes MCR[EHV]

Sector erase MCR[ERS] LMS MCR[EHV]

Array integrity check None LMS UT0[AIE]

Margin read UT0[MRE] UT0[MRV] + LMS UT0[AIE]

ECC Logic Check UT0[EIE] UT0[DSI], UT1, UT2 UT0[AIE]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 705

ECC is handled on a 64-bit boundary. Thus, if only one word in any given 64-bit ECC segment is
programmed, the adjoining word (in that segment) should not be programmed since ECC calculation has
already completed for that 64-bit segment. Attempts to program the adjoining word will probably result in
an operation failure. It is recommended that all programming operations be of 64 bits. The programming
operation should completely fill selected ECC segments within the Double Word.

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1.

Addresses in locked/disabled blocks cannot be programmed.

The user may program the values in any or all of two words, of a Double Word, with a single program
sequence.

Double Word-bound words have addresses which differ only in address bit 2.

The Program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from 0 to 1.

2. Ensure the block that contains the address to be programmed is unlocked.
Write the first address to be programmed with the program data.
The flash memory module latches address bits (22:3) at this time.
The flash memory module latches data written as well.
This write is referred to as a program data interlock write. An interlock write may be as large as 64
bits, and as small as 32 bits (depending on the CPU bus).

3. If more than 1 word is to be programmed, write the additional address in the Double Word with
data to be programmed. This is referred to as a program data write.
The flash memory module ignores address bits (22:3) for program data writes.
The eventual unwritten data word default to 0xFFFFFFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm that the MCR[PEG] bit is 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program operation.

Program may be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the MCR[EHV]
bit at the end of a previous program.

The first write after a program is initiated determines the page address to be programmed. This first write
is referred to as an interlock write. The interlock write determines if the shadow, test or normal array space
will be programmed by causing the MCR[PEAS] field to be set/cleared.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a program
sequence by clearing MCR[PGM] prior to setting MCR[EHV].

MPC5604B/C Microcontroller Reference Manual, Rev. 8

706 Freescale Semiconductor

After the interlock write, additional writes only affect the data to be programmed at the word location
determined by address bit 2. Unwritten locations default to a data value of 0xFFFFFFFF. If multiple writes
are done to the same location the data for the last write is used in programming.

While MCR[DONE] is low and MCR[EHV] is high, the user may clear EHV, resulting in a program abort.
A Program abort forces the module to step 8 of the program sequence.

An aborted program will result in MCR[PEG] being set low, indicating a failed operation. MCR[DONE]
must be checked to know when the aborting command has completed.

The data space being operated on before the abort will contain indeterminate data. This may be recovered
by repeating the same program instruction or executing an erase of the affected blocks.

Example 27-1. Double word program of data 0x55AA55AA at address 0x00AAA8 and data 0xAA55AA55 at
address 0x00AAAC

MCR = 0x00000010; /* Set PGM in MCR: Select Operation */
(0x00AAA8) = 0x55AA55AA; /* Latch Address and 32 LSB data */
(0x00AAAC) = 0xAA55AA55; /* Latch 32 MSB data */
MCR = 0x00000011; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000010; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset PGM in MCR: Deselect Operation */

27.6.3 Sector erase

Erase changes the value stored in all bits of the selected block(s) to logic 1.

An erase sequence operates on any combination of blocks (sectors) in the low, mid or high address space,
or the shadow sector (if available). The test block cannot be erased.

The erase sequence is fully automated within the flash memory. The user only needs to select the blocks
to be erased and initiate the erase sequence.

Locked/disabled blocks cannot be erased.

If multiple blocks are selected for erase during an erase sequence, no specific operation order must be
assumed.

The erase operation consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to 1.

2. Select the block(s) to be erased by writing ‘1’s to the appropriate bit(s) in the LMS register.
If the shadow sector is to be erased, this step may be skipped, and LMS is ignored.
Note that Lock and Select are independent. If a block is selected and locked, no erase will occur.

3. Write to any address in flash memory. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR[EHV] bit to start the internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 707

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase operation.

After setting MCR[ERS], one write, referred to as an interlock write, must be performed before
MCR[EHV] can be set to ‘1’. Data words written during erase sequence interlock writes are ignored.

The user may terminate the erase sequence by clearing ERS before setting EHV.

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low, MCR[EHV]
is high and MCR[ESUS] is low.

An erase abort forces the module to step 8 of the erase sequence.

An aborted erase will result in MCR[PEG] being set low, indicating a failed operation. MCR[DONE] must
be checked to know when the aborting command has completed.

The block(s) being operated on before the abort contain indeterminate data. This may be recovered by
executing an erase on the affected blocks.

The user may not abort an erase sequence while in erase suspend.

Example 27-2. Erase of sectors B0F1 and B0F2

MCR = 0x00000004; /* Set ERS in MCR: Select Operation */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors to erase */
(0x000000) = 0xFFFFFFFF; /* Latch a flash memory Address with any data */
MCR = 0x00000005; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000004; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset ERS in MCR: Deselect Operation */

27.6.3.1 Erase suspend/resume

The erase sequence may be suspended to allow read access to the flash memory core.

It is not possible to program or to erase during an erase suspend.

During erase suspend, all reads to blocks targeted for erase return indeterminate data.

An erase suspend can be initiated by changing the value of the MCR[ESUS] bit from 0 to 1. MCR[ESUS]
can be set to ‘1’ at any time when MCR[ERS] and MCR[EHV] are high and MCR[PGM] is low. A 0 to 1
transition of MCR[ESUS] causes the module to start the sequence which places it in erase suspend.

The user must wait until MCR[DONE] = 1 before the module is suspended and further actions are
attempted. MCR[DONE] will go high no more than tESUS after MCR[ESUS] is set to ‘1’.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

708 Freescale Semiconductor

Once suspended, the array may be read. flash memory core reads while MCR[ESUS] = 1 from the block(s)
being erased return indeterminate data.

Example 27-3. Sector erase suspend

MCR = 0x00000007; /* Set ESUS in MCR: Erase Suspend */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));

Notice that there is no need to clear MCR[EHV] and MCR[ERS] in order to perform reads during erase
suspend.

The erase sequence is resumed by writing a logic 0 to MCR[ESUS].

MCR[EHV] must be set to ‘1’ before MCR[ESUS] can be cleared to resume the operation.

The module continues the erase sequence from one of a set of predefined points. This may extend the time
required for the erase operation.

Example 27-4. Sector erase resume

MCR = 0x00000005; /* Reset ESUS in MCR: Erase Resume */

27.6.3.2 User Test mode

The user can perform specific tests to check flash memory module integrity by putting the flash memory
module in User Test Mode.

Three kinds of test can be performed:

• Array Integrity Self Check

• Margin Read

• ECC Logic Check

The User Test Mode is equivalent to a Modify operation: read accesses attempted by the user during User
Test Mode generates a Read-While-Write Error (MCR[RWE] set).

It is not allowed to perform User Test operations on the Test and shadow sectors.

27.6.3.2.1 Array integrity self check

Array Integrity is checked using a predefined address sequence (proprietary), and this operation is
executed on selected and unlocked blocks. Once the operation is completed, the results of the reads can be
checked by reading the MISR value (stored in UMISR0–4), to determine if an incorrect read, or ECC
detection was noted.

The internal MISR calculator is a 32-bit register.

The 128 bit data, the 16 ECC data and the single and double ECC errors of the two Double Words are
therefore captured by the MISR through five different read accesses at the same location.

The whole check is done through five complete scans of the memory address space:

1. The first pass will scan only bits 31:0 of each page.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 709

2. The second pass will scan only bits 63:32 of each page.

3. The third pass will scan only bits 95:64 of each page.

4. The fourth pass will scan only bits 127:96 of each page.

5. The fifth pass will scan only the ECC bits (8 + 8) and the single and double ECC errors (2 + 2) of
both Double Words of each page.

The 128 bit data and the 16 ECC data are sampled before the eventual ECC correction, while the single
and double error flags are sampled after the ECC evaluation.

Only data from existing and unlocked locations are captured by the MISR.

The MISR can be seeded to any value by writing the UMISR0–4 registers.

The Array Integrity Self Check consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing ‘1’s to the appropriate bit(s) in the LMS register.
Note that Lock and Select are independent. If a block is selected and locked, no Array Integrity
Check will occur.

3. Set eventually UT0[AIS] bit for a sequential addressing only.

4. Write a logic 1 to the UT0[AIE] bit to start the Array Integrity Check.

5. Wait until the UT0[AID] bit goes high.

6. Compare UMISR0-4 content with the expected result.

7. Write a logic 0 to the UT0[AIE] bit.

8. If more blocks are to be checked, return to step 2.

It is recommended to leave UT0[AIS] at 0 and use the proprietary address sequence that checks the read
path more fully, although this sequence takes more time. During the execution of the Array Integrity Check
operation it is forbidden to modify the content of Block Select (LMS) and Lock (LML, SLL) registers,
otherwise the MISR value can vary in an unpredictable way. While UT0[AID] is low and UT0[AIE] is
high, the User may clear AIE, resulting in a Array Integrity Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 27-5. Array integrity check of sectors B0F1 and B0F2

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000002; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x00000000; /* Reset UTE and AIE in UT0: Operation End */

MPC5604B/C Microcontroller Reference Manual, Rev. 8

710 Freescale Semiconductor

27.6.3.2.2 Margin read

Margin read procedure (either Margin 0 or Margin 1), can be run on unlocked blocks in order to unbalance
the Sense Amplifiers, respect to standard read conditions, so that all the read accesses reduce the margin
vs ‘0’ (UT0[MRV] = ‘0’) or vs ‘1’ (UT0[MRV] = ‘1’). Locked sectors are ignored by MISR calculation
and ECC flagging. The results of the margin reads can be checked comparing checksum value in
UMISR0-4. Since Margin reads are done at voltages that differ than the normal read voltage, lifetime
expectancy of the flash memory macrocell is impacted by the execution of Margin reads. Doing Margin
reads repetitively results in degradation of the flash memory Array, and shorten expected lifetime
experienced at normal read levels. For these reasons the Margin Read usage is allowed only in Factory,
while it is forbidden to use it inside the User Application.

In any case the charge losses detected through the Margin Read cannot be considered failures of the device
and no Failure Analysis will be opened on them. The Margin Read Setup operation consists of the
following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate bit(s) in the LMS register.

Note that Lock and Select are independent. If a block is selected and locked, no Array Integrity Check will
occur.

3. Set T0.AIS bit for a sequential addressing only.

4. Change the value in the UT0[MRE] bit from 0 to 1.

5. Select the Margin level: UT0[MRV]=0 for 0’s margin, UT0[MRV]=1 for 1’s margin.

6. Write a logic 1 to the UT0[AIE] bit to start the Margin Read Setup or skip to step 6 to terminate.

7. Wait until the UT0[AID] bit goes high.

8. Compare UMISR0-4 content with the expected result.

9. Write a logic 0 to the UT0[AIE], UT0[MRE] and UT0[MRV] bits.

10. If more blocks are to be checked, return to step 2.

It is mandatory to leave UT0[AIS] at 1 and use the linear address sequence, the usage of the proprietary
sequence in Margin Read is forbidden.

During the execution of the Margin Read operation it is forbidden to modify the content of Block Select
(LMS) and Lock (LML, SLL) registers, otherwise the MISR value can vary in an unpredictable way.

The read accesses will be done with the addition of a proper number of Wait States to guarantee the
correctness of the result.

While UT0[AID] is low and UT0[AIE] is high, the User may clear AIE, resulting in a Array Integrity
Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 27-6. Margin read setup versus ‘1’s

UMISR0 = 0x00000000; /* Reset UMISR0 content */
UMISR1 = 0x00000000; /* Reset UMISR1 content */
UMISR2 = 0x00000000; /* Reset UMISR2 content */
UMISR3 = 0x00000000; /* Reset UMISR3 content */

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 711

UMISR4 = 0x00000000; /* Reset UMISR4 content */
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000004; /* Set AIS in UT0: Select Operation */
UT0 = 0x80000024; /* Set MRE in UT0: Select Operation */
UT0 = 0x80000034; /* Set MRV in UT0: Select Margin versus 1’s */
UT0 = 0x80000036; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x80000034; /* Reset AIE in UT0: Operation End */
UT0 = 0x00000000; /* Reset UTE, MRE, MRV, AIS in UT0: Deselect Op. */

To exit from the Margin Read Mode a Read Reset operation must be executed.

27.6.3.2.3 ECC logic check

ECC logic can be checked by forcing the input of ECC logic: The 64 bits of data and the 8 bits of ECC
syndrome can be individually forced and they will drive simultaneously at the same value the ECC logic
of the whole page (2 Double Words).

The results of the ECC Logic Check can be verified by reading the MISR value.

The ECC Logic Check operation consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Write in UT1[DAI31–0] and UT2[DAI63–32] the Double Word Input value.

3. Write in UT0[DSI7–0] the Syndrome Input value.

4. Select the ECC Logic Check: write a logic 1 to the UT0[EIE] bit.

5. Write a logic 1 to the UT0[AIE] bit to start the ECC Logic Check.

6. Wait until the UT0[AID] bit goes high.

7. Compare UMISR0–4 content with the expected result.

8. Write a logic 0 to the UT0[AIE] bit.

Notice that when UT0[AID] is low UMISR0–4, UT1–2 and bits MRE, MRV, EIE, AIS and DSI7–0 of UT0
are not accessible: reading returns indeterminate data and write has no effect.

Example 27-7. ECC logic check

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT1 = 0x55555555; /* Set DAI31-0 in UT1: Even Word Input Data */
UT2 = 0xAAAAAAAA; /* Set DAI63-32 in UT2: Odd Word Input Data */
UT0 = 0x80FF0000; /* Set DSI7-0 in UT0: Syndrome Input Data */
UT0 = 0x80FF0008; /* Set EIE in UT0: Select ECC Logic Check */
UT0 = 0x80FF000A; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content (expected 0x55555555) */

MPC5604B/C Microcontroller Reference Manual, Rev. 8

712 Freescale Semiconductor

data1 = UMISR1; /* Read UMISR1 content (expected 0xAAAAAAAA) */
data2 = UMISR2; /* Read UMISR2 content (expected 0x55555555) */
data3 = UMISR3; /* Read UMISR3 content (expected 0xAAAAAAAA) */
data4 = UMISR4; /* Read UMISR4 content (expected 0x00FF00FF) */
UT0 = 0x00000000; /* Reset UTE, AIE and EIE in UT0: Operation End */

27.6.3.3 Error correction code

The flash memory module provides a method to improve the reliability of the data stored in flash memory:
the usage of an Error Correction Code. The word size is fixed at 64 bits.

Eight ECC bits, programmed to guarantee a Single Error Correction and a Double Error Detection
(SEC-DED), are associated to each 64-bit Double Word.

ECC circuitry provides correction of single bit faults and is used to achieve automotive reliability targets.
Some units will experience single bit corrections throughout the life of the product with no impact to
product reliability.

27.6.3.3.1 ECC algorithms

The flash memory module supports one ECC Algorithm: “All ‘1’s No Error”. A modified Hamming code
is used that ensures the all erased state (that is, 0xFFFF.....FFFF) data is a valid state, and will not cause an
ECC error. This allows the user to perform a blank check after a sector erase operation.

27.6.3.4 EEPROM emulation

The choosen ECC algorithm allows some bit manipulations so that a Double Word can be rewritten several
times without needing an erase of the sector. This allows to use a Double Word to store flags useful for the
Eeprom Emulation. As an example the choosen ECC algorithm allows to start from an All ‘1’s Double
Word value and rewrite whichever of its four 16-bits Half-Words to an All ‘0’s content by keeping the same
ECC value.

Table 27-55 shows a set of Double Words sharing the same ECC value.

Table 27-55. Bit manipulation: Double words with the same ECC value

Double word ECC all ‘1’s no error

0xFFFF_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_FFFF_0000 0xFF

0xFFFF_FFFF_0000_FFFF 0xFF

0xFFFF_0000_FFFF_FFFF 0xFF

0x0000_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_0000_0000 0xFF

0xFFFF_0000_FFFF_0000 0xFF

0x0000_FFFF_FFFF_0000 0xFF

0xFFFF_0000_0000_FFFF 0xFF

0x0000_FFFF_0000_FFFF 0xFF

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 713

When some flash memory sectors are used to perform an Eeprom Emulation, it is reccomended for safety
reasons to reserve at least 3 sectors to this purpose.

27.6.3.4.1 All ‘1’s No Error

The All ‘1’s No Error Algorithm detects as valid any Double Word read on a just erased sector (all the 72
bits are ‘1’s).

This option allows to perform a Blank Check after a Sector Erase operation.

27.6.3.5 Protection strategy

Two kinds of protection are available: Modify Protection to avoid unwanted program/erase in flash
memory sectors and Censored Mode to avoid piracy.

27.6.3.5.1 Modify protection

The flash memory Modify Protection information is stored in nonvolatile flash memory cells located in
the TestFlash. This information is read once during the flash memory initialization phase following the
exiting from Reset and is stored in volatile registers that act as actuators.

The reset state of all the volatile modify protection registers is the protected state.

All the nonvolatile modify protection registers can be programmed through a normal Double Word
Program operation at the related locations in TestFlash.

The nonvolatile modify protection registers cannot be erased.

• The nonvolatile Modify Protection Registers are physically located in TestFlash their bits can be
programmed to ‘0’ only once and they can no more be restored to ‘1’.

• The Volatile Modify Protection Registers are Read/Write registers which bits can be written at ‘0’
or ‘1’ by the user application.

A software mechanism is provided to independently lock/unlock each Low, Mid and High Address Space
Block against program and erase.

Software locking is done through the LML register.

An alternate means to enable software locking for blocks of Low Address Space only is through the SLL.

All these registers have a nonvolatile image stored in TestFlash (NVLML, NVSLL), so that the locking
information is kept on reset.

0x0000_0000_FFFF_FFFF 0xFF

0xFFFF_0000_0000_0000 0xFF

0x0000_FFFF_0000_0000 0xFF

0x0000_0000_0000_0000 0xFF

Table 27-55. Bit manipulation: Double words with the same ECC value (continued)

Double word ECC all ‘1’s no error

MPC5604B/C Microcontroller Reference Manual, Rev. 8

714 Freescale Semiconductor

On delivery the TestFlash nonvolatile image is at all ‘1’s, meaning all sectors are locked.

By programming the nonvolatile locations in TestFlash the selected sectors can be unlocked.

Being the TestFlash One Time Programmable (that is, not erasable), once unlocked the sectors cannot be
locked again.

Of course, on the contrary, all the volatile registers can be written at 0 or 1 at any time, therefore the user
application can lock and unlock sectors when desired.

27.6.3.5.2 Censored mode

The Censored Mode information is stored in nonvolatile flash memory cells located in the Shadow Sector.
This information is read once during the flash memory initialization phase following the exiting from
Reset and is stored in volatile registers that act as actuators.

The reset state of all the Volatile Censored Mode Registers is the protected state.

All the nonvolatile Censored Mode registers can be programmed through a normal Double Word Program
operation at the related locations in the Shadow Sector.

The nonvolatile Censored Mode registers can be erased by erasing the Shadow Sector.

• The nonvolatile Censored Mode Registers are physically located in the Shadow Sector their bits
can be programmed to ‘0’ and restored to ‘1’ by erasing the Shadow Sector.

• The Volatile Censored Mode Registers are registers not accessible by the user application.

The flash memory module provides two levels of protection against piracy:

• If bits CW15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the Censored
Mode is disabled, while all the other possible values enable the Censored Mode.

• If bits SC15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the Public Access
is disabled, while all the other possible values enable the Public Access.

The parts are delivered to the user with Censored Mode and Public Access disabled.

27.7 Platform flash memory controller

27.7.1 Introduction

The platform flash memory controller acts as the interface between the system bus (AHB-Lite 2.v6) and
up to two banks of integrated flash memory arrays (Program and Data). It intelligently converts the
protocols between the system bus and the dedicated flash memory array interfaces.

A block diagram of the e200z0h Power Architecture reduced product platform (RPP) reference design is
shown below in Figure 27-38 with the platform flash memory controller module and its attached
off-platform flash memory arrays highlighted.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 715

Figure 27-38. Power Architecture e200z0h RPP reference platform block diagram

The module list includes:

• Power Architecture e200z0h (Harvard) core with Nexus1 or optional Nexus2+ debug

• AHB crossbar switch “lite” (XBAR)

• Memory Protection Unit (MPU)

• Platform flash memory controller with connections to 2 memory banks

• Platform SRAM memory controller (PRAM)

• AHB-to-IPS/APB bus controller (PBRIDGE) for access to on- and off-platform slave modules

• Interrupt Controller (INTC)

• 4-channel System Timers (STM)

• Software Watchdog Timer (SWT)

• Error Correction Status Module (ECSM)

XBAR
MemArray

RPP_Z0H_REF

s0

s2

m0

s7

MemArray

PRAM

PFlash

IPS/APB

INTC

AHB platform flash memory controller

Branch Unit

Load/Store

I-Fetcher

Dispatch

GPR Integer
Unit

e200z0h Core

p_i_h*p_d_h*

m1

m2

MPU

On-platform IRQs
Off-Platform IRQs

Debug

Unit
Nexus1,
Nexus2+

m3

STM
IPS Bus IPS+APB Bus

Flash Regs

IPS+APB
Slave
Modules

MemArray

Flash Regs

Bank0

Bank1

ECSM

SWT

MPC5604B/C Microcontroller Reference Manual, Rev. 8

716 Freescale Semiconductor

Throughout this document, several important terms are used to describe the platform flash memory
controller module and its connections. These terms are defined here:

• Port — This is used to describe the AMBA-AHB connection(s) into the platform flash memory
controller. From an architectural and programming model viewpoint, the definition supports up to
two AHB ports, even though this specific controller only supports a single AHB connection.

• Bank — This term is used to describe the attached flash memories. From the platform flash
memory controller’s perspective, there may be one or two attached banks of flash memory. The
“code flash memory” is required and always attached to bank0. Additionally, there is a “data flash
memory” attached to bank1. The platform flash memory controller interface supports two separate
connections, one to each memory bank.

• Array — Within each memory bank, there is one flash memory array instantiations.

• Page — This value defines the number of bits read from the flash memory array in a single access.
For this controller and memory, the page size is 128 bits (16 bytes).

The nomenclature “page buffers and “line buffers” are used interchangeably.

27.7.1.1 Overview

The platform flash memory controller supports a 32-bit data bus width at the AHB port and connections
to 128-bit read data interfaces from two memory banks, where each bank contains one instantiations of the
flash memory array. One flash memory bank is connected to the code flash memory and the other bank is
connected to the optional data flash memory. The memory controller capabilities vary between the two
banks with each bank’s functionality optimized with the typical use cases associated with the attached
flash memory. As an example, the platform flash memory controller logic associated with the code flash
memory bank contains a four-entry “page” buffer, each entry containing 128 bits of data (1 flash memory
page) plus an associated controller which prefetches sequential lines of data from the flash memory array
into the buffer, while the controller logic associated with the data flash memory bank only supports a
128-bit register which serves as a temporary page holding register and does not support any prefetching.
Prefetch buffer hits from the code flash memory bank support zero-wait AHB data phase responses. AHB
read requests which miss the buffers generate the needed flash memory array access and are forwarded to
the AHB upon completion, typically incurring two wait-states at an operating frequency of 60–64 MHz.

This memory controller is optimized for applications where a cacheless processor core, e.g., the Power
e200z0h, is connected through the platform to on-chip memories, e.g., flash memory and SRAM, where
the processor and platform operate at the same frequency. For these applications, the 2-stage pipeline
AMBA-AHB system bus is effectively mapped directly into stages of the processor’s pipeline and zero
wait-state responses for most memory accesses are critical for providing the required level of system
performance.

27.7.1.2 Features

The following list summarizes the key features of the platform flash memory controller:

• Dual array interfaces support up to a total of 16 MB of flash memory, partitioned as two separate
8 MB banks

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 717

• Single AHB port interface supports a 32-bit data bus. All AHB aligned and unaligned reads within
the 32-bit container are supported. Only aligned word writes are supported.

• Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each bank

• Interface with code flash memory (bank0) provides configurable read buffering and page prefetch
support. Four page read buffers (each 128 bits wide) and a prefetch controller are used to support
single-cycle read responses (zero AHB data phase wait-states) for hits in the buffers. The buffers
implement a least-recently-used replacement algorithm to maximize performance.

• Interface with optional data flash memory (bank1) includes a 128-bit register to temporarily hold
a single flash memory page. This logic supports single-cycle read responses (zero AHB data phase
wait-states) for accesses that hit in the holding register. There is no support for prefetching
associated with this bank.

• Programmable response for read-while-write sequences including support for stall-while-write,
optional stall notification interrupt, optional flash memory operation abort, and optional abort
notification interrupt

• Separate and independent configurable access timing (on a per bank basis) to support use across a
wide range of platforms and frequencies

• Support of address-based read access timing for emulation of other memory types

• Support for reporting of single- and multi-bit flash memory ECC events

• Typical operating configuration loaded into programming model by system reset

27.7.2 Memory map and register description

Two memory maps are associated with the platform flash memory controller: one for the flash memory
space and another for the program-visible control and configuration registers. The flash memory space is
accessed via the AMBA-AHB port and the program-visible registers are accessed via the slave peripheral
bus. Details on both memory spaces are provided in Section 27.7.2.1, Memory map.

There are no program-visible registers that physically reside inside the platform flash memory controller.
Rather, the platform flash memory controller receives control and configuration information from the flash
memory array controller(s) to determine the operating configuration. These are part of the flash memory
array’s configuration registers mapped into its slave peripheral (IPS) address space but are described here.

27.7.2.1 Memory map

First, consider the flash memory space accessed via transactions from the platform flash memory
controller’s AHB port.

To support the two separate flash memory banks, each up to 8 MB in size, the platform flash memory
controller uses address bit 23 (haddr[23]) to steer the access to the appropriate memory bank. In addition
to the actual flash memory regions, the system memory map includes shadow and test sectors. The
program-visible control and configuration registers associated with each memory array are included in the
slave peripheral address region. The system memory map defines one code flash memory array and one
data flash memory array. See Table 27-56.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

718 Freescale Semiconductor

For additional information on the address-based read access timing for emulation of other memory types,
see Section 27.8.11, Wait-state emulation”.

Next, consider the memory map associated with the control and configuration registers.

Regardless of the number of populated banks or the number of flash memory arrays included in a given
bank, the configuration of the platform flash memory controller is wholly specified by the platform flash
memory controller registers associated with code flash memory array 0. The code array0 register settings
define the operating behavior of both flash memory banks; it is recommended that the platform flash
memory controller registers for all physically-present arrays be set to the code flash memory array0 values.

NOTE
To perform program and erase operations, the control registers in the actual
referenced flash memory array must be programmed, but the configuration
of the platform flash memory controller module is defined by the platform
flash controller registers of code array0.

The 32-bit memory map for the platform flash memory controller control registers is shown in
Table 27-57. The base address of the controller is 0xC3F8_8000.

Table 27-56. Flash memory-related regions in the system memory map

Start address End address Size [KB] Region

0x0000_0000 0x0007_FFFF 512 Code flash memory array 0

0x0008_0000 0x001F_FFFF 1536 Reserved

0x0020_0000 0x0027_FFFF 16 Code flash memory array 0: shadow sector

0x0028_0000 0x002F_FFFF 1536 Reserved

0x0040_0000 0x0040_3FFF 16 Code flash memory array 0: test sector

0x0040_4000 0x007F_FFFF 4078 Reserved

0x0080_0000 0x0080_FFFF 64 Data flash memory array 0

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_0000 0x00C7_FFFF 16 Data flash memory array 0: test sector

0x00C8_0000 0x00FF_FFFF 3584 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Emulation mapping

0xC3F8_8000 0xC3F8_BFFF 16 Code flash memory array 0 configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data flash memory array 0 configuration

Table 27-57. Platform flash memory controller 32-bit memory map

Address offset Register Location

0x1C Platform Flash Configuration Register 0 (PFCR0) on page 719

0x20 Platform Flash Configuration Register 1 (PFCR1) on page 722

0x24 Platform Flash Access Protection Register (PFAPR) on page 724

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 719

See the MPC5604B data sheet for detailed settings for different values of frequency.

27.7.2.2 Register description

This section details the individual registers of the platform flash memory controller.

Flash memory configuration registers must be written only with 32-bit write operations to avoid any issues
associated with register “incoherency” caused by bits spanning smaller-size (8- or 16-bit) boundaries.

27.7.2.2.1 Platform Flash Configuration Register 0 (PFCR0)

This register defines the configuration associated with the code flash memory bank0. It includes fields that
provide specific information for up to two separate AHB ports (p0 and the optional p1). For the platform
flash memory controller module, the fields associated with AHB port p1 are ignored. The register is
described in Figure 27-39 and Table 27-58.

NOTE
Do not execute code from flash memory when you are programming
PFCR0. If you wish to program PFCR0, execute your application code from
RAM.

Offset 0x01C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

BK0_APC BK0_WWSC BK0_RWSC

B
K

0_
R

W
W

C

W

Reset 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
K

0_
R

W
W

C 0 0 0 0 0 0 0

B
K

0_
R

W
W

C

B
0_

P
0_

B
C

F
G

B
0_

P
0_

D
P

F
E

B
0_

P
0_

IP
F

E

B
0_

P
0_

P
F

LM

B
0_

P
0_

B
F

E

W

Reset 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1

Figure 27-39. PFlash Configuration Register 0 (PFCR0)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

720 Freescale Semiconductor

Table 27-58. PFCR0 field descriptions

Field Description

BK0_APC Bank0 Address Pipelining Control
This field is used to control the number of cycles between flash memory array access requests. This
field must be set to a value appropriate to the operating frequency of the PFlash. The required
settings are documented in the device data sheet. Higher operating frequencies require non-zero
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles
Note:

BK0_WWSC Bank0 Write Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access
time for writes. This field must be set to a value appropriate to the operating frequency of the PFlash.
The required settings are documented in the device data sheet. Higher operating frequencies
require non-zero settings for this field for proper flash memory operation. This field is set to an
appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added
Note:

BK0_RWSC Bank0 Read Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access
time for reads. This field must be set to a value corresponding to the operating frequency of the
PFlash and the actual read access time of the PFlash. The required settings are documented in the
device datasheet.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 721

BK0_RWWC Bank0 Read-While-Write Control
This 3-bit field defines the controller response to flash memory reads while the array is busy with a
program (write) or erase operation.

0––: This state should be avoided. Setting to this state can cause unpredictable operation.
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the
abort and notification interrupts.

B0_P0_BCFG Bank0, Port 0 Page Buffer Configuration
This field controls the configuration of the four page buffers in the PFlash controller. The buffers can
be organized as a “pool” of available resources, or with a fixed partition between instruction and data
buffers.

If enabled, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the group
and the just-fetched entry then marked as most-recently-used. If the flash memory access is for the
next-sequential line, the buffer is not marked as most-recently-used until the given address
produces a buffer hit.

00: All four buffers are available for any flash memory access, that is, there is no partitioning of the
buffers based on the access type.

01: Reserved
10: The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction fetches

and buffers 2 and 3 for data accesses.
11: The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction fetches and

buffer 3 for data accesses.

This field is set to 2b11 by hardware reset.

B0_P0_DPFE Bank0, Port 0 Data Prefetch Enable
This field enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset. Prefetching can be enabled/disabled on a per Master basis at PFAPR[MxPFD].

0: No prefetching is triggered by a data read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any data read access

B0_P0_IPFE Bank0, Port 0 Instruction Prefetch Enable
This field enables or disables prefetching initiated by an instruction fetch read access. This field is
set by hardware reset. Prefetching can be enabled/disabled on a per Master basis at
PFAPR[MxPFD].

0: No prefetching is triggered by an instruction fetch read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any instruction fetch

read access

Table 27-58. PFCR0 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

722 Freescale Semiconductor

27.7.2.2.2 Platform Flash Configuration Register 1 (PFCR1)

This register defines the configuration associated with flash memory bank1. This corresponds to the “data
flash memory”. It includes fields that provide specific information for up to two separate AHB ports (p0
and the optional p1). For the platform flash memory controller module, the fields associated with AHB
port p1 are ignored. The register is described below in Figure 27-40 and Table 27-59.

NOTE
Do not execute code from flash memory when you are programming
PFCR1. If you wish to program PFCR1, execute your application code from
RAM.

B0_P0_PFLM Bank0, Port 0 Prefetch Limit
This field controls the prefetch algorithm used by the PFlash controller. This field defines the
prefetch behavior. In all situations when enabled, only a single prefetch is initiated on each buffer
miss or hit. This field is set to 2b10 by hardware reset.

00: No prefetching is performed.
01: The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1–: The referenced line is prefetched on a buffer miss, or the next sequential page is prefetched on

a buffer hit (if not already present), that is, prefetch on miss or hit.

B0_P0_BFE Bank0, Port 0 Buffer Enable
This bit enables or disables page buffer read hits. It is also used to invalidate the buffers. This bit is
set by hardware reset.

0: The page buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1: The page buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when

the buffers are successfully filled.

Offset 0x020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

BK1_APC BK1_WWSC BK1_RWSC
B

K
1_

R
W

W
C

W

Reset 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
K

1_
R

W
W

C 0 0 0 0 0 0 0

B
K

1_
R

W
W

C 0 0 0 0 0 0

B
1_

P
0_

B
F

E

W

Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Figure 27-40. PFlash Configuration Register 1 (PFCR1)

Table 27-58. PFCR0 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 723

Table 27-59. PFCR1 field descriptions

Field Description

BK1_APC Bank1 Address Pipelining Control
This field is used to control the number of cycles between flash memory array access requests. This
field must be set to a value appropriate to the operating frequency of the PFlash. The required
settings are documented in the device data sheet. Higher operating frequencies require non-zero
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles

This field is ignored in single bank flash memory configurations.
Note:

BK1_WWSC Bank1 Write Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access
time for writes. This field must be set to a value appropriate to the operating frequency of the PFlash.
The required settings are documented in the device data sheet. Higher operating frequencies
require non-zero settings for this field for proper flash memory operation. This field is set to an
appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.
Note:

BK1_RWSC Bank1 Read Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access
time for reads. This field must be set to a value corresponding to the operating frequency of the
PFlash and the actual read access time of the PFlash. The required settings are documented in the
device data sheet.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

724 Freescale Semiconductor

27.7.2.2.3 Platform Flash Access Protection Register (PFAPR)

The PFlash Access Protection Register (PFAPR) is used to control read and write accesses to the flash
memory based on system master number. Prefetching capabilities are defined on a per master basis. This
register also defines the arbitration mode for controllers supporting two AHB ports. The register is
described below in Figure 27-41 and Table 27-60.

The contents of the register are loaded from location 0x203E00 of the shadow region in the code flash
memory (bank0) array at reset. To temporarily change the values of any of the fields in the PFAPR, a write
to the IPS-mapped register is performed. To change the values loaded into the PFAPR at reset, the word
location at address 0x203E00 of the shadow region in the flash memory array must be programmed using
the normal sequence of operations. The reset value shown in Table 27-41 reflects an erased or
unprogrammed value from the shadow region.

BK1_RWWC Bank1 Read-While-Write Control
This 3-bit field defines the controller response to flash memory reads while the array is busy with a
program (write) or erase operation.

0––: Terminate any attempted read while write/erase with an error response
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the
abort and notification interrupts.

This field is ignored in single bank flash memory configurations.

B1_P0_PFE Bank1, Port 0 Buffer Enable
This bit enables or disables read hits from the 128-bit holding register. It is also used to invalidate
the contents of the holding register. This bit is set by hardware reset, enabling the use of the holding
register.

0: The holding register is disabled from satisfying read requests.
1: The holding register is enabled to satisfy read requests on hits.

Table 27-59. PFCR1 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 725

27.7.2.2.3.1 Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

The NVPFAPR register has a related Nonvolatile PFAPR located in the Shadow Sector that contains the
default reset value for PFAPR. During the reset phase of the flash memory module, the NVPFAPR register
content is read and loaded into the PFAPR.

The NVPFAPR register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
are used to manage ECC codes.

Offset 0x024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
0P

F
D

W

Reset Defined by NVPFAPR at CFlash Test Sector Address 0x203E00

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M0AP

W

Reset Defined by NVPFAPR at CFlash Test Sector Address 0x203E00

Figure 27-41. PFlash Access Protection Register (PFAPR)

Table 27-60. PFAPR field descriptions

Field Description

M0PFD e200z0 core Master 0 Prefetch Disable
This field controls whether prefetching may be triggered based on the master number of the
requesting AHB master. This field is further qualified by the PFCR0[B0_Px_DPFE, B0_Px_IPFE,
Bx_Py_BFE] bits. For master numbering, see Table 17-1.

0: Prefetching may be triggered by this master
1: No prefetching may be triggered by this master

M0AP e200z0 core Master 0 Access Protection
These fields control whether read and write accesses to the flash memory are allowed based on the
master number of the initiating module. For master numbering, see Table 17-1.

00: No accesses may be performed by this master
01: Only read accesses may be performed by this master
10: Only write accesses may be performed by this master
11: Both read and write accesses may be performed by this master

MPC5604B/C Microcontroller Reference Manual, Rev. 8

726 Freescale Semiconductor

27.8 Functional description
The platform flash memory controller interfaces between the AHB system bus and the flash memory
arrays.

The platform flash memory controller generates read and write enables, the flash memory array address,
write size, and write data as inputs to the flash memory array. The platform flash memory controller
captures read data from the flash memory array interface and drives it onto the AHB. Up to four pages of
data (128-bit width) from bank0 are buffered by the platform flash memory controller. Lines may be
prefetched in advance of being requested by the AHB interface, allowing single-cycle (zero AHB
wait-states) read data responses on buffer hits.

Several prefetch control algorithms are available for controlling page read buffer fills. Prefetch triggering
may be restricted to instruction accesses only, data accesses only, or may be unrestricted. Prefetch
triggering may also be controlled on a per-master basis.

Buffers may also be selectively enabled or disabled for allocation by instruction and data prefetch; see
Section 27.7.2.2.1, Platform Flash Configuration Register 0 (PFCR0), and Section 27.7.2.2.2, Platform
Flash Configuration Register 1 (PFCR1).

Access protections may be applied on a per-master basis for both reads and writes to support security and
privilege mechanisms; see Section 27.7.2.2.3, Platform Flash Access Protection Register (PFAPR).

Offset: 0x203E00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M
0P

F
D

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M0AP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-42. Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

Table 27-61. NVPFAPR field descriptions

Field Description

M0PFD See Table 27-60.

M0AP See Table 27-60.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 727

Throughout this discussion, bkn_ is used as a prefix to refer to two signals, each for each bank: bk0_ and
bk1_. Also, the nomenclature Bx_Py_RegName is used to reference a program-visible register field
associated with bank “x” and port “y”.

27.8.1 Access protections

The platform flash memory controller provides programmable configurable access protections for both
read and write cycles from masters via the PFlash Access Protection Register (PFAPR). It allows
restriction of read and write requests on a per-master basis. This functionality is described in
Section 27.7.2.2.3, Platform Flash Access Protection Register (PFAPR)”. Detection of a protection
violation results in an error response from the platform flash memory controller on the AHB transfer.

27.8.2 Read cycles – Buffer miss

Read cycles from the flash memory array are initiated by the platform flash memory controller. The
platform flash memory controller then waits for the programmed number of read wait-states before
sampling the read data from the flash memory array. This data is normally stored in the least-recently
updated page read buffer for bank0 in parallel with the requested data being forwarded to the AHB. For
bank1, the data is captured in the page-wide temporary holding register as the requested data is forwarded
to the AHB bus.

If the flash memory access was the direct result of an AHB transaction, the page buffer is marked as
most-recently-used as it is being loaded. If the flash memory access was the result of a speculative prefetch
to the next sequential line, it is first loaded into the least-recently-used buffer. The status of this buffer is
not changed to most-recently-used until a subsequent buffer hit occurs.

27.8.3 Read cycles – Buffer hit

Single cycle read responses to the AHB are possible with the platform flash memory controller when the
requested read access was previously loaded into one of the bank0 page buffers. In these “buffer hit” cases,
read data is returned to the AHB data phase with a zero wait-state response.

Likewise, the bank1 logic includes a single 128-bit temporary holding register and sequential accesses
which “hit” in this register are also serviced with a zero wait-state response.

27.8.4 Write cycles

Write cycles are initiated by the platform flash memory controller. The platform flash memory controller
then waits for the appropriate number of write wait-states before terminating the write operation.

27.8.5 Error termination

The first case that can cause an error response to the AHB is when an access is attempted by an AHB
master whose corresponding Read Access Control or Write Access Control settings do not allow the
access, thus causing a protection violation. In this case, the platform flash memory controller does not
initiate a flash memory array access.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

728 Freescale Semiconductor

The second case that can cause an error response to the AHB is when an access is performed to the flash
memory array and is terminated with a flash memory error response. See Section 27.8.7, Flash error
response operation. This may occur for either a read or a write operation.

A third case involves an attempted read access while the flash memory array is busy doing a write
(program) or erase operation if the appropriate read-while-write control field is programmed for this
response. The 3-bit read-while-write control allows for immediate termination of an attempted read, or
various stall-while-write/erase operations are occurring.

27.8.6 Access pipelining

The platform flash memory controller does not support access pipelining since this capability is not
supported by the flash memory array. As a result, the APC (Address Pipelining Control) field should
typically be the same value as the RWSC (Read Wait-State Control) field for best performance, that is,
BKn_APC = BKn_RWSC. It cannot be less than the RWSC.

27.8.7 Flash error response operation

The flash memory array may signal an error response to terminate a requested access with an error. This
may occur due to an uncorrectable ECC error, or because of improper sequencing during program/erase
operations. When an error response is received, the platform flash memory controller does not update or
validate a bank0 page read buffer nor the bank1 temporary holding register. An error response may be
signaled on read or write operations. For additional information on the system registers which capture the
faulting address, attributes, data and ECC information, see the chapter “Error Correction Status Module
(ECSM).”

27.8.8 Bank0 page read buffers and prefetch operation

The logic associated with bank0 of the platform flash memory controller contains four 128-bit page read
buffers which are used to hold instructions and data read from the flash memory array. Each buffer operates
independently, and is filled using a single array access. The buffers are used for both prefetch and normal
demand fetches.

For the general case, a page buffer is written at the completion of an error-free flash memory access and
the valid bit asserted. Subsequent flash memory accesses that “hit” the buffer, that is, the current access
address matches the address stored in the buffer, can be serviced in 0 AHB wait-states as the stored read
data is routed from the given page buffer back to the requesting bus master.

As noted in Section 27.8.7, Flash error response operation”, a page buffer is not marked as valid if the flash
memory array access terminated with any type of transfer error. However, the result is that flash memory
array accesses that are tagged with a single-bit correctable ECC event are loaded into the page buffer and
validated. For additional comments on this topic, see Section 27.8.8.4, Buffer invalidation”.

Prefetch triggering is controllable on a per-master and access-type basis. Bus masters may be enabled or
disabled from triggering prefetches, and triggering may be further restricted based on whether a read
access is for instruction or data. A read access to the platform flash memory controller may trigger a
prefetch to the next sequential page of array data on the first idle cycle following the request. The access

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 729

address is incremented to the next-higher 16-byte boundary, and a flash memory array prefetch is initiated
if the data is not already resident in a page buffer. Prefetched data is always loaded into the
least-recently-used buffer.

Buffers may be in one of six states, listed here in order of priority:

1. Invalid — The buffer contains no valid data.

2. Used — The buffer contains valid data which has been provided to satisfy an AHB burst type read.

3. Valid — The buffer contains valid data which has been provided to satisfy an AHB single type
read.

4. Prefetched — The buffer contains valid data which has been prefetched to satisfy a potential future
AHB access.

5. Busy AHB — The buffer is currently being used to satisfy an AHB burst read.

6. Busy Fill — The buffer has been allocated to receive data from the flash memory array, and the
array access is still in progress.

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are multiple
invalid buffers, the one to be used is selected using a simple numeric priority, where buffer 0 is
selected first, then buffer 1, etc.

2. If there are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate page buffer has been selected, the flash memory array is accessed and read data loaded
into the buffer. If the buffer load was in response to a miss, the just-loaded buffer is immediately marked
as most-recently-used. If the buffer load was in response to a speculative fetch to the next-sequential line
address after a buffer hit, the recently-used status is not changed. Rather, it is marked as most-recently-used
only after a subsequent buffer hit.

This policy maximizes performance based on reference patterns of flash memory accesses and allows for
prefetched data to remain valid when non-prefetch enabled bus masters are granted flash memory access.

Several algorithms are available for prefetch control which trade off performance versus power. They are
defined by the Bx_Py_PFLM (prefetch limit) register field. More aggressive prefetching increases power
slightly due to the number of wasted (discarded) prefetches, but may increase performance by lowering
average read latency.

In order for prefetching to occur, a number of control bits must be enabled. Specifically, the global buffer
enable (PFCRn[Bx_Py_BFE]) must be set, the prefetch limit (PFCRn[Bx_Py_PFLM]) must be non-zero,
either instruction prefetching (PFCRn[Bx_Py_IPFE]) or data prefetching (PFCRn[Bx_Py_DPFE])
enabled, and Master Access must be enabled (PFAPR[MxPFD]). See Section 27.7.2.2, Register
description, for a description of these control fields.

27.8.8.1 Instruction/Data prefetch triggering

Prefetch triggering may be enabled for instruction reads via the Bx_Py_IPFE control field, while
prefetching for data reads is enabled via the Bx_Py_DPFE control field. Additionally, the Bx_Py_PFLIM
field must be set to enable prefetching. Prefetches are never triggered by write cycles.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

730 Freescale Semiconductor

27.8.8.2 Per-master prefetch triggering

Prefetch triggering may be also controlled for individual bus masters. See Section 27.7.2.2.3, Platform
Flash Access Protection Register (PFAPR), for details on these controls.

27.8.8.3 Buffer allocation

Allocation of the line read buffers is controlled via page buffer configuration (Bx_Py_BCFG) field. This
field defines the operating organization of the four page buffers. The buffers can be organized as a “pool”
of available resources (with all four buffers in the pool) or with a fixed partition between buffers allocated
to instruction or data accesses. For the fixed partition, two configurations are supported. In one
configuration, buffers 0 and 1 are allocated for instruction fetches and buffers 2 and 3 for data accesses. In
the second configuration, buffers 0, 1 and 2 are allocated for instruction fetches and buffer 3 reserved for
data accesses.

27.8.8.4 Buffer invalidation

The page read buffers may be invalidated under hardware or software control.

At the beginning of all program/erase operations, the flash memory array will invalidate the page read
buffers. Buffer invalidation occurs at the next AHB non-sequential access boundary, but does not affect a
burst from a page read buffer which is in progress.

Software may invalidate the buffers by clearing the Bx_Py_BFE bit, which also disables the buffers.
Software may then re-assert the Bx_Py_BFE bit to its previous state, and the buffers will have been
invalidated.

One special case needing software invalidation relates to page buffer “hits” on flash memory data which
was tagged with a single-bit ECC event on the original array access. Recall that the page buffer structure
includes an status bit signaling the array access detected and corrected a single-bit ECC error. On all
subsequent buffer hits to this type of page data, a single-bit ECC event is signaled by the platform flash
memory controller. Depending on the specific hardware configuration, this reporting of a single-bit ECC
event may generate an ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page
buffers need to be invalidated by software after the first notification of the single-bit ECC event.

Finally, the buffers are invalidated by hardware on any non-sequential access with a non-zero value on
haddr[28:24] to support wait-state emulation.

27.8.9 Bank1 Temporary Holding Register

Recall the bank1 logic within the platform flash memory controller includes a single 128-bit data register,
used for capturing read data. Since this bank does not support prefetching, the read data for the referenced
address is bypassed directly back to the AHB data bus. The page is also loaded into the temporary data
register and subsequent accesses to this page can hit from this register, if it is enabled (B1_P0_BFE).

For the general case, a temporary holding register is written at the completion of an error-free flash
memory access and the valid bit asserted. Subsequent flash memory accesses that “hit” the buffer, that is,
the current access address matches the address stored in the temporary holding register, can be serviced in

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 731

0 AHB wait-states as the stored read data is routed from the temporary register back to the requesting bus
master.

The contents of the holding register are invalidated by the flash memory array at the beginning of all
program/erase operations and on any non-sequential access with a non-zero value on haddr[28:24] (to
support wait-state emulation) in the same manner as the bank0 page buffers. Additionally, the B1_P0_BFE
register bit can be cleared by software to invalidate the contents of the holding register.

As noted in Section 27.8.7, Flash error response operation, the temporary holding register is not marked
as valid if the flash memory array access terminated with any type of transfer error. However, the result is
that flash memory array accesses that are tagged with a single-bit correctable ECC event are loaded into
the temporary holding register and validated. Accordingly, one special case needing software invalidation
relates to holding register “hits” on flash memory data which was tagged with a single-bit ECC event.
Depending on the specific hardware configuration, the reporting of a single-bit ECC event may generate
an ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need to be
invalidated by software after the first notification of the single-bit ECC event.

The bank1 temporary holding register effectively operates like a single page buffer.

27.8.10 Read-while-write functionality

The platform flash memory controller supports various programmable responses for read accesses while
the flash memory is busy performing a write (program) or erase operation. For all situations, the platform
flash memory controller uses the state of the flash memory array’s MCR[DONE] output to determine if it
is busy performing some type of high voltage operation, namely, if MCR[DONE] = 0, the array is busy.

Specifically, two 3-bit read-while-write (BKn_RWWC) control register fields define the platform flash
memory controller’s response to these types of access sequences. Five unique responses are defined by the
BKn_RWWC setting: one that immediately reports an error on an attempted read and four settings that
support various stall-while-write capabilities. Consider the details of these settings.

• BKn_RWWC = 0b0--

For this mode, any attempted flash memory read to a busy array is immediately terminated with an
AHB error response and the read is blocked in the controller and not seen by the flash memory
array.

• BKn_RWWC = 0b111

This defines the basic stall-while-write capability and represents the default reset setting. For this
mode, the platform flash memory controller module simply stalls any read reference until the flash
memory has completed its program/erase operation. If a read access arrives while the array is busy
or if MCR[DONE] goes low while a read is still in progress, the AHB data phase is stalled and the
read access address is saved. Once the array has completed its program/erase operation, the
platform flash memory controller uses the saved address and attribute information to create a
pseudo address phase cycle to “retry” the read reference and sends the registered information to the
array. Once the retried address phase is complete, the read is processed normally and once the data
is valid, it is forwarded to the AHB bus to terminate the system bus transfer.

• BKn_RWWC = 0b110

MPC5604B/C Microcontroller Reference Manual, Rev. 8

732 Freescale Semiconductor

This setting is similar to the basic stall-while-write capability provided when
BKn_RWWC = 0b111 with the added ability to generate a notification interrupt if a read arrives
while the array is busy with a program/erase operation. There are two notification interrupts, one
for each bank (see the INTC chapter of this reference manual).

• BKn_RWWC = 0b101

Again, this setting provides the basic stall-while-write capability with the added ability to abort any
program/erase operation if a read access is initiated. For this setting, the read request is captured
and retried as described for the basic stall-while-write, plus the program/erase operation is aborted
by the platform flash memory controller. For this setting, no notification interrupts are generated.

• BKn_RWWC = 0b100

This setting provides the basic stall-while-write capability with the ability to abort any
program/erase operation if a read access is initiated plus the generation of an abort notification
interrupt. For this setting, the read request is captured and retried as described for the basic
stall-while-write, the program/erase operation is aborted by the platform flash memory controller
and an abort notification interrupt generated. There are two abort notification interrupts, one for
each bank.

As detailed above, a total of four interrupt requests are associated with the stall-while-write functionality.
These interrupt requests are captured as part of ECSM’s interrupt register and logically summed together
to form a single request to the interrupt controller.

27.8.11 Wait-state emulation

Emulation of other memory array timings are supported by the platform flash memory controller on read
cycles to the flash memory. This functionality may be useful to maintain the access timing for blocks of
memory which were used to overlay flash memory blocks for the purpose of system calibration or tuning
during code development.

The platform flash memory controller inserts additional wait-states according to the values of
haddr[28:24]. When these inputs are non-zero, additional cycles are added to AHB read cycles. Write
cycles are not affected. In addition, no page read buffer prefetches are initiated, and buffer hits are ignored.

Table 27-63 and Table 27-64 show the relationship of haddr[28:24] to the number of additional primary
wait-states. These wait-states are applied to the initial access of a burst fetch or to single-beat read accesses
on the AHB system bus.

Note that the wait-state specification consists of two components: haddr[28:26] and haddr[25:24] and
effectively extends the flash memory read by (8 * haddr[25:24] + haddr[28:26]) cycles.

Table 27-62. Platform flash memory controller stall-while-write interrupts

MIR[n] Interrupt description

ECSM.MIR[0] Platform flash memory bank0 abort notification, MIR[FB0AI]

ECSM.MIR[1] Platform flash memory bank0 stall notification, MIR[FB0SI]

ECSM.MIR[2] Platform flash memory bank1 abort notification, MIR[FB1AI]

ECSM.MIR[3] Platform flash memory bank1 stall notification, MIR[FB1S1]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 733

Table 27-64 shows the relationship of haddr[25:24] to the number of additional wait-states. These are
applied in addition to those specified by haddr[28:26] and thus extend the total wait-state specification
capability.

Table 27-63. Additional wait-state encoding

Memory address
haddr[28:26]

Additional wait-states

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 27-64. Extended additional wait-state encoding

Memory address
haddr[25:24]

Additional wait-states
(added to those specified by haddr[28:26])

00 0

01 8

10 16

11 24

MPC5604B/C Microcontroller Reference Manual, Rev. 8

734 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 735

Chapter 28
Static RAM (SRAM)

28.1 Introduction
The general-purpose SRAM has a size of 48 KB. In every mode other than STANDBY all the 48 KB of
SRAM are powered, while during STANDBY mode the user can decide to retain 32 KB or just 8 KB. See
the MC_ME chapter in this reference manual for details.

The SRAM provides the following features:

• SRAM can be read/written from any bus master

• Byte, halfword and word addressable

• ECC (error correction code) protected with single-bit correction and double-bit detection

28.2 Low power configuration
In order to reduce leakage a portion of the SRAM can be switched off/unpowered during standby mode.

28.3 Register memory map
The L2SRAM occupies 48 KB of memory starting at the base address as shown in Table 28-2.

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM (see the Error
Correction Status Module (ECSM) chapter of the reference manual for more information).

28.4 SRAM ECC mechanism
The SRAM ECC detects the following conditions and produces the following results:

• Detects and corrects all 1-bit errors

• Detects and flags all 2-bit errors as non-correctable errors

Table 28-1. Low power configuration

Mode Configuration

RUN, TEST, SAFE and
STOP

The entire SRAM is powered and operational.

STANDBY Either 32 KB or just 8 KB of the SRAM remains powered. This option is
software-selectable.

Table 28-2. SRAM memory map

Address Register name Register description Size

0x4000_0000 (Base) — SRA up to 48 KB

MPC5604B/C Microcontroller Reference Manual, Rev. 8

736 Freescale Semiconductor

• Detects 39-bit reads (32-bit data bus plus the 7-bit ECC) that return all zeros or all ones, asserts an
error indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than 2 bits.

Internal SRAM write operations are performed on the following byte boundaries:

• 1 byte (0:7 bits)

• 2 bytes (0:15 bits)

• 4 bytes or 1 word (0:31 bits)

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is calculated
across the 32-bit data bus. The 8-bit ECC is appended to the data segment and written to SRAM.

If the write operation is less than the entire 32-bit data width (1 or 2-byte segment), the following occurs:

1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either correcting or
flagging errors.

2. The write data bytes (1 or 2-byte segment) are merged with the corrected 32 bits on the data bus.

3. The ECC is then calculated on the resulting 32 bits formed in the previous step.

4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value is then
written to SRAM.

28.4.1 Access timing

The system bus is a two-stage pipelined bus, which makes the timing of any access dependent on the access
during the previous clock cycle. Table 28-3 lists the various combinations of read and write operations to
SRAM and the number of wait states used for the each operation. The table columns contain the following
information:

• Current operation — Lists the type of SRAM operation currently executing

• Previous operation — Lists the valid types of SRAM operations that can precede the current
SRAM operation (valid operation during the preceding clock)

• Wait states — Lists the number of wait states (bus clocks) the operation requires which depends on
the combination of the current and previous operation

Table 28-3. Number of wait states required for SRAM operations

Operation type Current operation Previous operation Number of wait states required

Read Read Idle 1

Pipelined read

8, 16 or 32-bit write 0
(read from the same address)

1
(read from a different address)

Pipelined read Read 0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 737

28.4.2 Reset effects on SRAM accesses

Asynchronous reset will possibly corrupt SRAM if it asserts during a read or write operation to SRAM.
The completion of that access depends on the cycle at which the reset occurs. Data read from or written to
SRAM before the reset event occurred is retained, and no other address locations are accessed or changed.
In case of no access ongoing when reset occurs, the SRAM corruption does not happen.

Instead, synchronous reset (SW reset) should be used in controlled function (without SRAM accesses) in
case an initialization procedure without SRAM initialization is needed.

28.5 Functional description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) operation, and
ECC calculations are performed during the write portion of a R/W operation. Because the ECC bits can
contain random data after the device is powered on, the SRAM must be initialized by executing 32-bit
write operations prior to any read accesses. This is also true for implicit read accesses caused by any write
accesses of less than 32 bits as discussed in Section 28.4, “SRAM ECC mechanism.

28.6 Initialization and application information
To use the SRAM, the ECC must check all bits that require initialization after power on. All writes must
specify an even number of registers performed on 32-bit word-aligned boundaries. If the write is not the
entire 32 bits (8 or 16 bits), a read / modify / write operation is generated that checks the ECC value upon
the read. See Section 28.4, “SRAM ECC mechanism.

Write 8 or 16-bit write Idle 1

Read

Pipelined 8 or 16-bit write 2

32-bit write

8 or 16-bit write 0
(write to the same address)

Pipelined 8, 16 or 32-bit write 8, 16 or 32-bit write 0

32-bit write Idle 0

32-bit write

Read

Table 28-3. Number of wait states required for SRAM operations (continued)

Operation type Current operation Previous operation Number of wait states required

MPC5604B/C Microcontroller Reference Manual, Rev. 8

738 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 739

——— Integrity ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

740 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 741

Chapter 29
Register Protection

29.1 Introduction
The Register Protection module offers a mechanism to protect defined memory-mapped address locations
in a module under protection from being written. The address locations that can be protected are
module-specific.

The protection module is located between the module under protection and the peripheral bridge. This is
shown in Figure 29-1.

Figure 29-1. Register Protection block diagram

Please see the “Registers Under Protection” appendix for the list of protected registers.

29.2 Features
The Register Protection includes these distinctive features:

• Restrict write accesses for the module under protection to supervisor mode only

• Lock registers for first 6 KB of memory-mapped address space

• Address mirror automatically sets corresponding lock bit

• Once configured lock bits can be protected from changes

PBRIDGE

supervisor access /

Lock
Registers

Module
under

Protection

Protection Module

write data

address / access size

UAA

HLB
GCR

Access allowed?

peripheral enable

Other control signals

peripheral
enable

MPC5604B/C Microcontroller Reference Manual, Rev. 8

742 Freescale Semiconductor

29.3 Modes of operation
The Register Protection module is operable when the module under protection is operable.

29.4 External signal description
There are no external signals.

29.5 Memory map and register description
This section provides a detailed description of the memory map of a module using the Register Protection.
The original 16 KB module memory space is divided into five areas as shown in Figure 29-2.

Figure 29-2. Register protection memory diagram

Area 1 spans 6 KB and holds the normal functional module registers and is transparent for all read/write
operations.

Area 2 spans 2 KB starting at address 0x1800. It is a reserved area, which cannot be accessed.

Area 3 spans 6 KB, starting at address 0x2000 and is a mirror of area 1. A read/write access to a 0x2000+X
address will reads/writes the register at address X. As a side effect, a write access to address 0x2000+X
sets the optional soft lock bits for address X in the same cycle as the register at address X is written. Not
all registers in area 1 need to have protection defined by associated soft lock bits. For unprotected registers

module register space
Base + 0x0000

6 KB

2 KB Reserved

mirror module register space

6 KB

1.5 KB Lock Bits

with user defined

Base + 0x1800

Base + 0x2000

Base + 0x3800

soft locking function

512 B Configuration
Base + 0x3E00

Base + 0x3FFF

Area 1

Area 2

Area 3

Area 4

Area 5

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 743

at address Y, accesses to address 0x2000+Y will be identical to accesses at address Y. Only for registers
implemented in area 1 and defined as protectable soft lock bits are available in area 4.

Area 4 is 1.5 KB and holds the soft lock bits, one bit per byte in area 1. The four soft lock bits associated
with a module register word are arranged at byte boundaries in the memory map. The soft lock bit registers
can be directly written using a bit mask.

Area 5 is 512 byte and holds the configuration bits of the protection mode. There is one configuration hard
lock bit per module that prevents all further modifications to the soft lock bits and can only be cleared by
a system reset once set. The other bits, if set, will allow user access to the protected module.

If any locked byte is accessed with a write transaction, a transfer error will be issued to the system and the
write transaction will not be executed. This is true even if not all accessed bytes are locked.

Accessing unimplemented 32-bit registers in Areas 4 and 5 results in a transfer error.

29.5.1 Memory map

Table 29-1 gives an overview on the Register Protection registers implemented.

NOTE
Reserved registers in area #2 will be handled according to the protected IP
(module under protection).

Table 29-1. Register protection memory map

Address offset Register Location

0x0000 Module Register 0 (MR0) on page 744

0x0001 Module Register 1 (MR1) on page 744

0x0002 Module Register 2 (MR2) on page 744

0x0003–0x17FF Module Register 3 (MR3) - Module Register 6143 (MR6143) on page 744

0x1800–0x1FFF Reserved —

0x2000 Module Register 0 (MR0) + Set soft lock bit 0 (LMR0) on page 744

0x2001 Module Register 1 (MR1) + Set soft lock bit 1 (LMR1) on page 744

0x2002–0x37FF Module Register 2 (MR2) + Set soft lock bit 2 (LMR2) –
Module Register 6143 (MR6143) + Set soft lock bit 6143 (LMR6143)

on page 744

0x3800 Soft Lock Bit Register 0 (SLBR0): soft lock bits 0-3 on page 744

0x3801 Soft Lock Bit Register 1 (SLBR1): soft lock bits 4-7 on page 744

0x3802–0x3DFF Soft Lock Bit Register 2 (SLBR2): soft lock bits 8-11 –
Soft Lock Bit Register 1535 (SLBR1535): soft lock bits 6140-6143

on page 744

0x3E00–0x3FFB Reserved —

0x3FFC Global Configuration Register (GCR) on page 745

MPC5604B/C Microcontroller Reference Manual, Rev. 8

744 Freescale Semiconductor

29.5.2 Register description

29.5.2.1 Module Registers (MR0-6143)

This is the lower 6 KB module memory space which holds all the functional registers of the module that
is protected by the Register Protection module.

29.5.2.2 Module Register and Set Soft Lock Bit (LMR0-6143)

This is memory area #3 that provides mirrored access to the MR0-6143 registers with the side effect of
setting soft lock bits in case of a write access to a MR that is defined as protectable by the locking
mechanism. Each MR is protectable by one associated bit in a SLBRn.SLBm, according to the mapping
described in Table 29-2.

29.5.2.3 Soft Lock Bit Register (SLBR0-1535)

These registers hold the soft lock bits for the protected registers in memory area #1.

Figure 29-3 gives some examples how SLBRn.SLB and MRn go together.

 Address 0x3800-0x3DFF Access: Read always
Supervisor write

0 1 2 3 4 5 6 7

R 0 0 0 0
SLB0 SLB1 SLB2 SLB3

W WE0 WE1 WE2 WE3

Reset 0 0 0 0 0 0 0 0

Figure 29-3. Soft Lock Bit Register (SLBRn)

Table 29-2. SLBRn field descriptions

Field Description

WE0
WE1
WE2
WE3

Write Enable Bits for soft lock bits (SLB):
WE0 enables writing to SLB0
WE1 enables writing to SLB1
WE2 enables writing to SLB2
WE3 enables writing to SLB3

1 Value is written to SLB
0 SLB is not modified

SLB0
SLB1
SLB2
SLB3

Soft lock bits for one MRn register:
SLB0 can block accesses to MR[n *4 + 0]
SLB1 can block accesses to MR[n *4 + 1]
SLB2 can block accesses to MR[n *4 + 2]
SLB3 can block accesses to MR[n *4 + 3]

1 Associated MRn byte is locked against write accesses
0 Associated MRn byte is unprotected and writeable

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 745

29.5.2.4 Global Configuration Register (GCR)

This register is used to make global configurations related to register protection.

Table 29-3. Soft lock bits vs. protected address

Soft lock bit Protected address

SLBR0.SLB0 MR0

SLBR0.SLB1 MR1

SLBR0.SLB2 MR2

SLBR0.SLB3 MR3

SLBR1.SLB0 MR4

SLBR1.SLB1 MR5

SLBR1.SLB2 MR6

SLBR1.SLB3 MR7

SLBR2.SLB0 MR8

... ...

Address 0x3FFC Access: Read Always Supervisor write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HLB 0 0 0 0 0 0 0 UAA 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-4. Global Configuration Register (GCR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

746 Freescale Semiconductor

NOTE
The GCR.UAA bit has no effect on the allowed access modes for the
registers in the Register Protection module.

29.6 Functional description

29.6.1 General

This module provides a generic register (address) write-protection mechanism. The protection size can be:

• 32-bit (address == multiples of 4)

• 16-bit (address == multiples of 2)

• 8-bit (address == multiples of 1)

• unprotected (address == multiples of 1)

Which addresses are protected and the protection size depend on the SoC and/or module. Therefore this
section can just give examples for various protection configurations.

For all addresses that are protected there are SLBRn.SLBm bits that specify whether the address is locked.
When an address is locked it can be read but not written in any mode (supervisor/normal). If an address is
unprotected the corresponding SLBRn.SLBm bit is always 0b0 no matter what software is writing to.

29.6.2 Change lock settings

To change the setting whether an address is locked or unlocked the corresponding SLBRn.SLBm bit needs
to be changed. This can be done using the following methods:

• Modify the SLBRn.SLBm directly by writing to area #4

• Set the SLBRn.SLBm bit(s) by writing to the mirror module space (area #3)

Both methods are explained in the following sections.

Table 29-4. GCR field descriptions

Field Description

HLB Hard Lock Bit.
This register can not be cleared once it is set by software. It can only be cleared by a system reset.

1 All SLB bits are write protected and can not be modified
0 All SLB bits are accessible and can be modified.

UAA User Access Allowed.

1 The registers in the module under protection can be accessed in the mode defined for the module
registers without any additional restrictions.

0 The registers in the module under protection can only be written in supervisor mode. All write
accesses in non-supervisor mode are not executed and a transfer error is issued. This access
restriction is in addition to any access restrictions imposed by the protected IP module.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 747

29.6.2.1 Change lock settings directly via area #4

Memory area #4 contains the lock bits. They can be modified by writing to them. Each SLBRn.SLBm bit
has a mask bit SLBRn.WEm, which protects it from being modified. This masking makes
clear-modify-write operations unnecessary.

Figure 29-5 shows two modification examples. In the left example there is a write access to the SLBRn
register specifying a mask value which allows modification of all SLBRn.SLBm bits. The example on the
right specifies a mask which only allows modification of the bits SLBRn.SLB[3:1].

Figure 29-5. Change Lock Settings Directly Via Area #4

Figure 29-5 shows four registers that can be protected 8-bit wise. In Figure 29-6 registers with 16-bit
protection and in Figure 29-7 registers with 32-bit protection are shown:

Figure 29-6. Change Lock Settings for 16-bit Protected Addresses

On the right side of Figure 29-6 it is shown that the data written to SLBRn.SLB[0] is automatically written
to SLBRn.SLB[1] also. This is done as the address reflected by SLBRn.SLB[0] is protected 16-bit wise.
Note that in this case the write enable SLBRn.WE[0] must be set while SLBRn.WE[1] does not matter. As
the enable bits SLBRn.WE[3:2] are cleared the lock bits SLBRn.SLB[3:2] remain unchanged.

In the example on the left side of Figure 29-6 the data written to SLBRn.SLB[0] is mirrored to
SLBRn.SLB[1] and the data written to SLBRn.SLB[2] is mirrored to SLBRn.SLB[3] as for both registers
the write enables are set.

1

SLB3SLB2SLB1SLB0

SLBRn.WE[3:0]

SLBRn.SLB[3:0] SLB3SLB2SLB1SLB0 SLBRn.SLB[3:0]

change allowed

to SLB3 write datato SLB2to SLB1to SLB0

111 1 SLBRn.WE[3:0]

to SLB3 write datato SLB2to SLB1to SLB0

110

change allowed

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 1 X

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 0 0

MPC5604B/C Microcontroller Reference Manual, Rev. 8

748 Freescale Semiconductor

In Figure 29-7 a 32-bit wise protected register is shown. When SLBRn.WE[0] is set the data written to
SLBRn.SLB[0] is automatically written to SLBRn.SLB[3:1] also. Otherwise SLBRn.SLB[3:0] remains
unchanged.

Figure 29-7. Change Lock Settings for 32-bit Protected Addresses

In Figure 29-8 an example is shown which has a mixed protection size configuration:

Figure 29-8. Change Lock Settings for Mixed Protection

The data written to SLBRn.SLB[0] is mirrored to SLBRn.SLB[1] as the corresponding register is 16-bit
protected. The data written to SLBRn.SLB[2] is blocked as the corresponding register is unprotected. The
data written to SLBRn.SLB[3] is written to SLBRn.SLB[3].

29.6.2.2 Enable locking via mirror module space (area #3)

It is possible to enable locking for a register after writing to it. To do so the mirrored module address space
must be used. Figure 29-9 shows one example:

1

SLB0 SLB1 SLB2 SLB3

SLBRn.WE[3:0]

SLBR.SLB[3:0]

update lock bits

to SLB0 write datato SLB1 to SLB2 to SLB3

X X X

SLB0 SLB1 0 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X X 1

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 749

Figure 29-9. Enable Locking Via Mirror Module Space (Area #3)

When writing to address 0x0008 the registers MR9 and MR8 in the protected module are updated. The
corresponding lock bits remain unchanged (left part of Figure 29-6).

When writing to address 0x2008 the registers MR9 and MR8 in the protected module are updated. The
corresponding lock bits SLBR2.SLB[1:0] are set while the lock bits SLBR2.SLB[3:2] remain unchanged
(right part of Figure 29-6).

Figure 29-10 shows an example where some addresses are protected and some are not:

Figure 29-10. Enable Locking for Protected and Unprotected Addresses

In the example in Figure 29-10 addresses 0x0C and 0x0D are unprotected. Therefore their corresponding
lock bits SLBR3.SLB[1:0] are always 0b0 (shown in bold). When doing a 32-bit write access to address
0x200C only lock bits SLBR3.SLB[3:2] are set while bits SLBR3.SLB[1:0] stay 0b0.

NOTE
Lock bits can only be set via writes to the mirror module space. Reads from
the mirror module space will not change the lock bits.

29.6.2.3 Write protection for locking bits

Changing the locking bits through any of the procedures mentioned in Section 29.6.2.1, Change lock
settings directly via area #4 and Section 29.6.2.2, Enable locking via mirror module space (area #3) is only
possible as long as the bit GCR.HLB is cleared. Once this bit is set the locking bits can no longer be
modified until there is a system reset.

SLBR2

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

16-bit write to address 0x0008

no change

write to MR[9:8]

SLBR2

WE[3:0]

0 0 0 0 1 1 0 0

SLB[3:0]

16-bit write to address 0x2008

set lock bits

write to MR[9:8]

SLBR3

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

Before write access

SLBR3

WE[3:0]

0 0 0 0 0 0 1 1

SLB[3:0]

32-bit write to address 0x200C

set lock bits

write to MR[15:12]

After
write access

MPC5604B/C Microcontroller Reference Manual, Rev. 8

750 Freescale Semiconductor

29.6.3 Access errors

The protection module generates transfer errors under several circumstances. For the area definition refer
to Figure 29-2.

1. If accessing area #1 or area #3, the protection module transfers any access error from the
underlying Module under Protection.

2. If user mode is not allowed, user write attempts to all areas will assert a transfer error and the writes
will be blocked.

3. Access attempts to the reserved area #2 cause a transfer error to be asserted.

4. Access attempts to unimplemented 32-bit registers in area #4 or area #5 cause a transfer error to be
asserted.

5. Attempted writes to a register in area #1 or area #3 with soft lock bit set for any of the affected
bytes causes a transfer error to be asserted and the write is blocked. The complete write operation
to non-protected bytes in this word is ignored.

6. If writing to a soft lock register in area #4 with the hard lock bit being set a transfer error is asserted.

7. Any write operation in any access mode to area #3 while GCR.HLB is set result in a error.

29.7 Reset
The reset state of each individual bit is shown within the Register Description section (See Section 29.5.2,
Register description). In summary, after reset, locking for all MRn registers is disabled. The registers can
be accessed in Supervisor Mode only.

29.8 Protected registers
For MPC5604B the Register Protection module protects the registers shown in Table 29-5.

Table 29-5. Protected registers

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

Code flash memory , 4 registers to protect

Code Flash MCR 32 C3F88000 000 bits[0:31]

Code Flash PFCR0 32 C3F88000 01C bits[0:31]

Code Flash PFCR1 32 C3F88000 020 bits[0:31]

Code Flash PFAPR 32 C3F88000 024 bits[0:31]

Data flash memory, 1 register to protect

Data Flash MCR 32 C3F8C000 000 bits[0:31]

SIU lite, 64 registers to protect

SIUL IRER 32 C3F90000 018 bits[0:31]

SIUL IREER 32 C3F90000 028 bits[0:31]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 751

SIUL IFEER 32 C3F90000 02C bits[0:31]

SIUL IFER 32 C3F90000 030 bits[0:31]

SIUL PCR0 16 C3F90000 040 bits[0:15]

SIUL PCR1 16 C3F90000 042 bits[0:15]

SIUL PCR2 16 C3F90000 044 bits[0:15]

SIUL PCR3 16 C3F90000 046 bits[0:15]

SIUL PCR4 16 C3F90000 048 bits[0:15]

SIUL PCR5 16 C3F90000 04A bits[0:15]

SIUL PCR6 16 C3F90000 04C bits[0:15]

SIUL PCR7 16 C3F90000 04E bits[0:15]

SIUL PCR8 16 C3F90000 050 bits[0:15]

SIUL PCR9 16 C3F90000 052 bits[0:15]

SIUL PCR10 16 C3F90000 054 bits[0:15]

SIUL PCR11 16 C3F90000 056 bits[0:15]

SIUL PCR12 16 C3F90000 058 bits[0:15]

SIUL PCR13 16 C3F90000 05A bits[0:15]

SIUL PCR14 16 C3F90000 05C bits[0:15]

SIUL PCR15 16 C3F90000 05E bits[0:15]

SIUL PCR16 16 C3F90000 060 bits[0:15]

SIUL PCR17 16 C3F90000 062 bits[0:15]

SIUL PCR18 16 C3F90000 064 bits[0:15]

SIUL PCR19 16 C3F90000 066 bits[0:15]

SIUL PCR34 16 C3F90000 084 bits[0:15]

SIUL PCR35 16 C3F90000 086 bits[0:15]

SIUL PCR36 16 C3F90000 088 bits[0:15]

SIUL PCR37 16 C3F90000 08A bits[0:15]

SIUL PCR38 16 C3F90000 08C bits[0:15]

SIUL PCR39 16 C3F90000 08E bits[0:15]

SIUL PCR40 16 C3F90000 090 bits[0:15]

SIUL PCR41 16 C3F90000 092 bits[0:15]

SIUL PCR42 16 C3F90000 094 bits[0:15]

SIUL PCR43 16 C3F90000 096 bits[0:15]

Table 29-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

752 Freescale Semiconductor

SIUL PCR44 16 C3F90000 098 bits[0:15]

SIUL PCR45 16 C3F90000 09A bits[0:15]

SIUL PCR46 16 C3F90000 09C bits[0:15]

SIUL PCR47 16 C3F90000 09E bits[0:15]

SIUL PSMI0 8 C3F90000 500 bits[0:7]

SIUL PSMI4 8 C3F90000 504 bits[0:7]

SIUL PSMI8 8 C3F90000 508 bits[0:7]

SIUL PSMI12 8 C3F90000 50C bits[0:7]

SIUL PSMI16 8 C3F90000 510 bits[0:7]

SIUL IFMC0 32 C3F90000 1000 bits[0:31]

SIUL IFMC1 32 C3F90000 1004 bits[0:31]

SIUL IFMC2 32 C3F90000 1008 bits[0:31]

SIUL IFMC3 32 C3F90000 100C bits[0:31]

SIUL IFMC4 32 C3F90000 1010 bits[0:31]

SIUL IFMC5 32 C3F90000 1014 bits[0:31]

SIUL IFMC6 32 C3F90000 1018 bits[0:31]

SIUL IFMC7 32 C3F90000 101C bits[0:31]

SIUL IFMC8 32 C3F90000 1020 bits[0:31]

SIUL IFMC9 32 C3F90000 1024 bits[0:31]

SIUL IFMC10 32 C3F90000 1028 bits[0:31]

SIUL IFMC11 32 C3F90000 102C bits[0:31]

SIUL IFMC12 32 C3F90000 1030 bits[0:31]

SIUL IFMC13 32 C3F90000 1034 bits[0:31]

SIUL IFMC14 32 C3F90000 1038 bits[0:31]

SIUL IFMC15 32 C3F90000 103C bits[0:31]

SIUL IFCPR 32 C3F90000 1080 bits[0:31]

 Mode Entry Module, 41 registers to protect

MC ME ME_ME 32 C3FDC000 008 bits[0:31]

MC ME ME_IM 32 C3FDC000 010 bits[0:31]

MC ME ME_TEST_MC 32 C3FDC000 024 bits[0:31]

MC ME ME_SAFE_MC 32 C3FDC000 028 bits[0:31]

MC ME ME_DRUN_MC 32 C3FDC000 02C bits[0:31]

Table 29-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 753

MC ME ME_RUN0_MC 32 C3FDC000 030 bits[0:31]

MC ME ME_RUN1_MC 32 C3FDC000 034 bits[0:31]

MC ME ME_RUN2_MC 32 C3FDC000 038 bits[0:31]

MC ME ME_RUN3_MC 32 C3FDC000 03C bits[0:31]

MC ME ME_HALT_MC 32 C3FDC000 040 bits[0:31]

MC ME ME_STOP_MC 32 C3FDC000 048 bits[0:31]

MC ME ME_STANDBY_MC 32 C3FDC000 054 bits[0:31]

MC ME ME_RUN_PC0 32 C3FDC000 080 bits[0:31]

MC ME ME_RUN_PC1 32 C3FDC000 084 bits[0:31]

MC ME ME_RUN_PC2 32 C3FDC000 088 bits[0:31]

MC ME ME_RUN_PC3 32 C3FDC000 08C bits[0:31]

MC ME ME_RUN_PC4 32 C3FDC000 090 bits[0:31]

MC ME ME_RUN_PC5 32 C3FDC000 094 bits[0:31]

MC ME ME_RUN_PC6 32 C3FDC000 098 bits[0:31]

MC ME ME_RUN_PC7 32 C3FDC000 09C bits[0:31]

MC ME ME_LP_PC0 32 C3FDC000 0A0 bits[0:31]

MC ME ME_LP_PC1 32 C3FDC000 0A4 bits[0:31]

MC ME ME_LP_PC2 32 C3FDC000 0A8 bits[0:31]

MC ME ME_LP_PC3 32 C3FDC000 0AC bits[0:31]

MC ME ME_LP_PC4 32 C3FDC000 0B0 bits[0:31]

MC ME ME_LP_PC5 32 C3FDC000 0B4 bits[0:31]

MC ME ME_LP_PC6 32 C3FDC000 0B8 bits[0:31]

MC ME ME_LP_PC7 32 C3FDC000 0BC bits[0:31]

MC ME ME_PCTL[4..7] 32 C3FDC000 0C4 bits[0:31]

MC ME ME_PCTL[16..19] 32 C3FDC000 0D0 bits[0:31]

MC ME ME_PCTL[20..23] 32 C3FDC000 0D4 bits[0:31]

MC ME ME_PCTL[32..35] 32 C3FDC000 0E0 bits[0:31]

MC ME ME_PCTL[44..47] 32 C3FDC000 0EC bits[0:31]

MC ME ME_PCTL[48..51] 32 C3FDC000 0F0 bits[0:31]

MC ME ME_PCTL[56..59] 32 C3FDC000 0F8 bits[0:31]

MC ME ME_PCTL[60..63] 32 C3FDC000 0FC bits[0:31]

MC ME ME_PCTL[68..71] 32 C3FDC000 104 bits[0:31]

Table 29-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

754 Freescale Semiconductor

MC ME ME_PCTL[72..75] 32 C3FDC000 108 bits[0:31]

MC ME ME_PCTL[88..91] 32 C3FDC000 118 bits[0:31]

MC ME ME_PCTL[92..95] 32 C3FDC000 11C bits[0:31]

MC ME ME_PCTL[104..107] 32 C3FDC000 128 bits[0:31]

 Clock Generation Module, 3 registers to protect

MC CGM CGM_OC_EN 8 C3FE0000 373 bits[0:7]

MC CGM CGM_OCDS_SC 8 C3FE0000 374 bits[0:7]

MC CGM CGM_SC_DC[0..3] 32 C3FE0000 37C bits[0:31]

CMU, 1 register to protect

CMU CMU_CSR 8 C3FE0100 000 bits[24:31]

 Reset Generation Module, 7 registers to protect

MC RGM RGM_FERD 16 C3FE4000 004 bits[0:15]

MC RGM RGM_DERD 16 C3FE4000 006 bits[0:15]

MC RGM RGM_FEAR 16 C3FE4000 010 bits[0:15]

MC RGM RGM_DEAR 16 C3FE4000 012 bits[0:15]

MC RGM RGM_FESS 16 C3FE4000 018 bits[0:15]

MC RGM RGM_STDBY 16 C3FE4000 01A bits[0:15]

MC RGM RGM_FBRE 16 C3FE4000 01C bits[0:15]

Power Control Unit, 1 registers to protect

MC PCU PCONF2 32 C3FE8000 008 bits[0:31]

Table 29-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 755

Chapter 30
Software Watchdog Timer (SWT)

30.1 Overview
The SWT is a peripheral module that can prevent system lockup in situations such as software getting
trapped in a loop or if a bus transaction fails to terminate. When enabled, the SWT requires periodic
execution of a watchdog servicing sequence. Writing the sequence resets the timer to a specified time-out
period. If this servicing action does not occur before the timer expires the SWT generates an interrupt or
hardware reset. The SWT can be configured to generate a reset or interrupt on an initial time-out, a reset
is always generated on a second consecutive time-out.

The SWT provides a window functionality. When this functionality is programmed, the servicing action
should take place within the defined window. When occurring outside the defined period, the SWT
generates a reset.

30.2 Features
The SWT has the following features:

• 32-bit time-out register to set the time-out period

• The unique SWT counter clock is the undivided slow internal RC oscillator 128 kHz (SIRC), no
other clock source can be selected

• Programmable selection of window mode or regular servicing

• Programmable selection of reset or interrupt on an initial time-out

• Master access protection

• Hard and soft configuration lock bits

• The SWT is started on exit of power-on phase (RGM phase 2) to monitor flash boot sequence
phase. It is then reset during RGM phase3 and optionally enabled when platform reset is released
depending on value of flash user option bit 31 (WATCHDOG_EN).

30.3 Modes of operation
The SWT supports three device modes of operation: normal, debug and stop. When the SWT is enabled
in normal mode, its counter runs continuously. In debug mode, operation of the counter is controlled by
the FRZ bit in the SWT_CR. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it
continues to run. In STOP mode, operation of the counter is controlled by the STP bit in the SWT_CR. If
the STP bit is set, the counter is stopped in STOP mode, otherwise it continues to run. On exit from STOP
mode, the SWT will continue from the state it was before entering this mode.

The software watchdog is not available during standby. On exit from standby, the SWT behaves in a usual
“out of reset” situation.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

756 Freescale Semiconductor

30.4 External signal description
The SWT module does not have any external interface signals.

30.5 Memory map and register description
The SWT programming model has six 32-bit registers. The programming model can only be accessed
using 32-bit (word) accesses. References using a different size are invalid. Other types of invalid accesses
include: writes to read only registers, incorrect values written to the service register when enabled,
accesses to reserved addresses and accesses by masters without permission. A bus error is generated on
invalid accesses. If the SWT_CR[RIA] bit is set, then the SWT system reset is also generated. If either the
HLK or SLK bits in the SWT_CR are set then the SWT_CR, SWT_TO and SWT_WN registers are read
only.

30.5.1 Memory map

The SWT memory map is shown in Table 30-1. The reset values of SWT_CR, SWT_TO and SWT_WN
are device specific. These values are determined by SWT inputs.

Table 30-1. SWT memory map

Base address: 0xFFF3_8000

Address offset Register Location

0x0000 SWT Control Register (SWT_CR) on page 757

0x0004 SWT Interrupt Register (SWT_IR) on page 758

0x0008 SWT Time-Out Register (SWT_TO) on page 759

0x000C SWT Window Register (SWT_WN) on page 759

0x0010 SWT Service Register (SWT_SR) on page 760

0x0014 SWT Counter Output Register (SWT_CO) on page 760

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 757

30.5.2 Register description

30.5.2.1 SWT Control Register (SWT_CR)

The SWT_CR contains fields for configuring and controlling the SWT. The reset value of this register is
device specific. Some devices can be configured to automatically clear the SWT_CR.WEN bit during the
boot process. This register is read only if either the SWT_CR.HLK or SWT_CR.SLK bits are set.

Default value for SWT_CR_RST is 0x4000_011B, corresponding to MAP1 = 1 (only data bus access
allowed), RIA = 1 (reset on invalid SWT access), SLK = 1 (soft lock), CSL = 1 (IRC clock source for
counter), FRZ = 1 (freeze on debug), WEN = 1 (watchdog enable). This last bit is cleared when exiting
ME RESET mode in case flash user option bit 31 (WATCHDOG_EN) is ‘0’.

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP

0

MAP

1

MAP

2

MAP

3

MAP

4

MAP

5

MAP

6

MAP

7

0 0 0 0 0 0 0 0

W

Reset1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
KEY RIA WND ITR HLK SLK CSL STP FRZ WEN

W

Reset1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

1 The reset value for the SWT_CR is device specific.

Figure 30-1. SWT Control Register (SWT_CR)

Table 30-2. SWT_CR field descriptions

Field Description

MAPn Master Access Protection for Master n. The platform bus master assignments are device specific.
0 = Access for the master is not enabled
1 = Access for the master is enabled

KEY Keyed Service Mode.
0 = Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog
1 = Keyed Service Mode, two pseudorandom key value are used to service the watchdog

RIA Reset on Invalid Access.
0 = Invalid access to the SWT generates a bus error
1 = Invalid access to the SWT causes a system reset if WEN=1

WND Window Mode.
0 = Regular mode, service sequence can be done at any time
1 = Windowed mode, the service sequence is only valid when the down counter is less than the value
in the SWT_WN register.

ITR Interrupt Then Reset.
0 = Generate a reset on a time-out
1 = Generate an interrupt on an initial time-out, reset on a second consecutive time-out

MPC5604B/C Microcontroller Reference Manual, Rev. 8

758 Freescale Semiconductor

30.5.2.2 SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

HLK Hard Lock. This bit is only cleared at reset.
0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if SLK=0
1 = SWT_CR, SWT_TO and SWT_WN are read only registers

SLK Soft Lock. This bit is cleared by writing the unlock sequence to the service register.
0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if HLK=0
1 = SWT_CR, SWT_TO and SWT_WN are read only registers

CSL Clock Selection. Selects the SIRC oscillator clock that drives the internal timer.
CSL bit can be written.The status of the bit has no effect on counter clock selection on MPC5604B
device.
0 = System clock (Not applicable in MPC5604B)
1 = Oscillator clock

STP Stop Mode Control. Allows the watchdog timer to be stopped when the device enters STOP mode.
0 = SWT counter continues to run in STOP mode
1 = SWT counter is stopped in STOP mode

FRZ Debug Mode Control. Allows the watchdog timer to be stopped when the device enters debug mode.
0 = SWT counter continues to run in debug mode
1 = SWT counter is stopped in debug mode

WEN Watchdog Enabled.
0 = SWT is disabled
1 = SWT is enabled

Offset 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-2. SWT Interrupt Register (SWT_IR)

Table 30-2. SWT_CR field descriptions

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 759

30.5.2.3 SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. The reset value for this
register is device specific. This register is read only if either the SWT_CR.HLK or SWT_CR.SLK bits are
set.

Default counter value (SWT_TO_RST) is 1280 (0x00000500 hexadecimal) which correspond to around
10 ms with a 128 kHz clock.

30.5.2.4 SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register is cleared on
reset. This register is read only if either the SWT_CR.HLK or SWT_CR.SLK bits are set.

Table 30-3. SWT_IR field descriptions

Field Description

TIF Time-out Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has
no effect.
0 = No interrupt request
1 = Interrupt request due to an initial time-out

Offset 0x008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WTO

W

Reset1

1 The reset value of the SWT_TO register is device specific.

0 1 0 1 0 0 0 0 0 0 0 0

Figure 30-3. SWT Time-Out Register (SWT_TO)

Table 30-4. SWT_TO Register field descriptions

Field Description

WTO Watchdog time-out period in clock cycles. An internal 32-bit down counter is loaded with this value or
0x100 which ever is greater when the service sequence is written or when the SWT is enabled.

Offset 0x00C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WST

W

Reset 0

Figure 30-4. SWT Window Register (SWT_WN)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

760 Freescale Semiconductor

30.5.2.5 SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service sequence writes used to reset the
watchdog timer.

30.5.2.6 SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read only register that shows the value of the internal
down counter when the SWT is disabled.

Table 30-5. SWT_WN Register field descriptions

Field Description

WST Window start value. When window mode is enabled, the service sequence can only be written when
the internal down counter is less than this value.

Offset 0x010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W WSC

Reset 0

Figure 30-5. SWT Service Register (SWT_SR)

Table 30-6. SWT_SR field descriptions

Field Description

WSC Watchdog Service Code.This field is used to service the watchdog and to clear the soft lock bit
(SWT_CR.SLK). To service the watchdog, the value 0xA602 followed by 0xB480 is written to the
WSC field. To clear the soft lock bit (SWT_CR.SLKSWT_CR.), the value 0xC520 followed by 0xD928
is written to the WSC field.

Offset 0x014 Access: Read Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0

Figure 30-6. SWT Counter Output Register (SWT_CO)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 761

30.6 Functional description
The SWT is a 32-bit timer designed to enable the system to recover in situations such as software getting
trapped in a loop or if a bus transaction fails to terminate. It includes a a control register (SWT_CR), an
interrupt register (SWT_IR), time-out register (SWT_TO), a window register (SWT_WN), a service
register (SWT_SR) and a counter output register (SWT_CO).

The SWT_CR includes bits to enable the timer, set configuration options and lock configuration of the
module. The watchdog is enabled by setting the SWT_CR.WEN bit. The reset value of the
SWT_CR.WEN bit is device specific1 (enabled). This last bit is cleared when exiting ME RESET mode
in case flash user option bit 31 (WATCHDOG_EN) is ‘0’. If the reset value of this bit is 1, the watchdog
starts operation automatically after reset is released. Some devices can be configured to clear this bit
automatically during the boot process.

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is less than
0x100 in which case the time-out period is set to 0x100. This time-out period is loaded into an internal
32-bit down counter when the SWT is enabled and each time a valid service sequence is written. The
SWT_CR.CSL bit selects which clock (system or oscillator) is used to drive the down counter. The reset
value of the SWT_TO register is device-specific as described previously.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock. In either case,
when locked the SWT_CR, SWT_TO and SWT_WN registers are read only. The hard lock is enabled by
setting the SWT_CR.HLK bit which can only be cleared by a reset. The soft lock is enabled by setting the
SWT_CR.SLK bit and is cleared by writing the unlock sequence to the service register. The unlock
sequence is a write of 0xC520 followed by a write of 0xD928 to the SWT_SR.WSC field. There is no
timing requirement between the two writes. The unlock sequence logic ignores service sequence writes
and recognizes the 0xC520, 0xD928 sequence regardless of previous writes. The unlock sequence can be
written at any time and does not require the SWT_CR.WEN bit to be set.

When enabled, the SWT requires periodic execution of the watchdog servicing sequence. The service
sequence is a write of 0xA602 followed by a write of 0xB480 to the SWT_SR.WSC field. Writing the
service sequence loads the internal down counter with the time-out period. There is no timing requirement
between the two writes. The service sequence logic ignores unlock sequence writes and recognizes the
0xA602, 0xB480 sequence regardless of previous writes. Accesses to SWT registers occur with no
peripheral bus wait states. (The peripheral bus bridge may add one or more system wait states.) However,
due to synchronization logic in the SWT design, recognition of the service sequence or configuration
changes may require up to three system plus seven counter clock cycles.

Table 30-7. SWT_CO field descriptions

Field Description

CNT Watchdog Count. When the watchdog is disabled (SWT_CR.WENSWT_CR.=0) this field shows the
value of the internal down counter. When the watchdog is enabled the value of this field is
0x0000_0000. Values in this field can lag behind the internal counter value for up to six system plus
eight counter clock cycles. Therefore, the value read from this field immediately after disabling the
watchdog may be higher than the actual value of the internal counter.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

762 Freescale Semiconductor

If window mode is enabled (SWT_CR.WND bit is set), the service sequence must be performed in the last
part of the time-out period defined by the window register. The window is open when the down counter is
less than the value in the SWT_WN register. Outside of this window, service sequence writes are invalid
accesses and generate a bus error or reset depending on the value of the SWT_CR.RIA bit. For example,
if the SWT_TO register is set to 5000 and SWT_WN register is set to 1000 then the service sequence must
be performed in the last 20% of the time-out period. There is a short lag in the time it takes for the window
to open due to synchronization logic in the watchdog design. This delay could be up to three system plus
four counter clock cycles.

The interrupt then reset bit (SWT_CR.ITR) controls the action taken when a time-out occurs. If the
SWT_CR.ITR bit is not set, a reset is generated immediately on a time-out. If the SWT_CR.ITR bit is set,
an initial time-out causes the SWT to generate an interrupt and load the down counter with the time-out
period. If the service sequence is not written before the second consecutive time-out, the SWT generates
a system reset. The interrupt is indicated by the time-out interrupt flag (SWT_IR.TIF). The interrupt
request is cleared by writing a one to the SWT_IR.TIF bit.

The SWT_CO register shows the value of the down counter when the watchdog is disabled. When the
watchdog is enabled this register is cleared. The value shown in this register can lag behind the value in
the internal counter for up to six system plus eight counter clock cycles.

The SWT_CO can be used during a software self test of the SWT. For example, the SWT can be enabled
and not serviced for a fixed period of time less than the time-out value. Then the SWT can be disabled
(SWT_CR.WEN cleared) and the value of the SWT_CO read to determine if the internal down counter is
working properly.

NOTE
Watchdog is disabled at the start of BAM execution. In the case of an
unexpected issue during BAM execution, the CPU may be stalled and an
external reset needs to be generated to recover.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 763

Chapter 31
Error Correction Status Module (ECSM)

31.1 Introduction
The Error Correction Status Module (ECSM) provides a myriad of miscellaneous control functions for the
device including program-visible information about configuration and revision levels, a reset status
register, and information on memory errors reported by error-correcting codes.

31.2 Overview
The Error Correction Status Module is mapped into the IPS space and supports a number of miscellaneous
control functions for the device.

31.3 Features
The ECSM includes these features:

• Program-visible information on the device configuration and revision

• Registers for capturing information on memory errors due to error-correction codes

• Registers to specify the generation of single- and double-bit memory data inversions for test
purposes to check ECC protection

• Configuration for additional SRAM WS for system frequency above 64 + 4% MHz

31.4 Memory map and register description
This section details the programming model for the Error Correction Status Module. This is a 128-byte
space mapped to the region serviced by an IPS bus controller.

31.4.1 Memory map

The Error Correction Status Module does not include any logic which provides access control. Rather, this
function is supported using the standard access control logic provided by the IPS controller.

Table 31-1 shows the ECSM’s memory map.

Table 31-1. ECSM memory map

Base address: 0xFFF4_0000

Address offset Register Location

0x00 Processor Core Type Register (PCT) on page 765

0x02 SoC-Defined Platform Revision Register (REV) on page 765

0x04 Reserved

0x08 IPS On-Platform Module Configuration Register (IOPMC) on page 765

MPC5604B/C Microcontroller Reference Manual, Rev. 8

764 Freescale Semiconductor

31.4.2 Register description

Attempted accesses to reserved addresses result in an error termination, while attempted writes to
read-only registers are ignored and do not terminate with an error. Unless noted otherwise, writes to the
programming model must match the size of the register, e.g., an n-bit register only supports n-bit writes,

0x0C–0x12 Reserved

0x13 Miscellaneous Wakeup Control Register (MWCR) on page 766

0x14–0x1E Reserved

0x1F Miscellaneous Interrupt Register (MIR) on page 768

0x20–0x23 Reserved

0x24 Miscellaneous User-Defined Control Register (MUDCR) on page 769

0x28–0x42 Reserved

0x43 ECC Configuration Register (ECR) on page 770

0x44–0x46 Reserved

0x47 ECC Status Register (ESR) on page 772

0x48–0x49 Reserved

0x4A ECC Error Generation Register (EEGR) on page 773

0x4C–0x4F Reserved

0x50 Platform Flash ECC Address Register (PFEAR) on page 776

0x54–0x55 Reserved

0x56 Platform Flash ECC Master Number Register (PFEMR) on page 777

0x57 Platform Flash ECC Attributes Register (PFEAT) on page 777

0x58–0x5B Reserved

0x5C Platform Flash ECC Data Register (PFEDR) on page 778

0x60 Platform RAM ECC Address Register (PREAR) on page 779

0x64 Reserved

0x65 Platform RAM ECC Syndrome Register (PRESR) on page 779

0x66 Platform RAM ECC Master Number Register (PREMR) on page 781

0x67 Platform RAM ECC Attributes Register (PREAT) on page 782

0x68–0x6B Reserved

0x6C Platform RAM ECC Data Register (PREDR) on page 783

Table 31-1. ECSM memory map (continued)

Base address: 0xFFF4_0000

Address offset Register Location

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 765

etc. Attempted writes of a different size than the register width produce an error termination of the bus
cycle and no change to the targeted register.

31.4.2.1 Processor Core Type Register (PCT)

The PCT is a 16-bit read-only register specifying the architecture of the processor core in the device. The
state of this register is defined by a module input signal; it can only be read from the IPS programming
model. Any attempted write is ignored.

31.4.2.2 SoC-Defined Platform Revision Register (REV)

The REV is a 16-bit read-only register specifying a revision number. The state of this register is defined
by an input signal; it can only be read from the IPS programming model. Any attempted write is ignored.

31.4.2.3 IPS On-Platform Module Configuration Register (IOPMC)

The IOPMC is a 32-bit read-only register identifying the presence/absence of the 32 low-order IPS
peripheral modules connected to the primary IPI slave bus controller. The state of this register is defined

Offset: 0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PCT

W

Reset 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Figure 31-1. Processor Core Type Register (PCT)

Table 31-2. PCT field descriptions

Field Description

PCT Processor Core Type

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-2. SoC-Defined Platform Revision Register (REV)

Table 31-3. REV field descriptions

Field Description

REV Revision
The REV field is specified by an input signal to define a software-visible revision number.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

766 Freescale Semiconductor

by a module input signal; it can only be read from the IPS programming model. Any attempted write is
ignored.

31.4.2.4 Miscellaneous Wakeup Control Register (MWCR)

Implementation of low-power sleep modes and exit from these modes via an interrupt require
communication between the ECSM, the interrupt controller and off-platform external logic typically
associated with phase-locked loop clock generation circuitry. The Miscellaneous Wakeup Control Register
(MWCR) provides an 8-bit register controlling entry into these types of low-power modes as well as
definition of the interrupt level needed to exit the mode.

The following sequence of operations is generally needed to enable this functionality. Note that the exact
details are likely to be system-specific.

1. The processor core loads the appropriate data value into the MWCR, setting the ENBWCR bit and
the desired interrupt priority level.

2. At the appropriate time, the processor ceases execution. The exact mechanism varies by processor
core. In some cases, a processor-is-stopped status is signaled to the ECSM and off-platform
external logic. This assertion, if properly enabled by MWCR[ENBWCR], causes the ECSM output
signal “enter_low_power_mode” to be set. This, in turn, causes the selected off-platform external,
low-power mode, as specified by MWCR[LPMD], to be entered, and the appropriate clock signals
disabled. In most implementations, there are multiple low-power modes, where the exact clocks to
be disabled vary across the different modes.

Offset: 0x08 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MC[31:16]

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MC[15:0]

W

Reset: 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

Figure 31-3. IPS On-Platform Module Configuration Register (IOPMC)

Table 31-4. IOPMC field descriptions

Field Description

MC IPS Module Configuration
MC[n] = 0 if an IPS module connection to decoded slot “n” is absent
MC[n] = 1 if an IPS module connection to decoded slot “n” is present

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 767

3. After entering the low-power mode, the interrupt controller enables a special combinational logic
path which evaluates all unmasked interrupt requests. The device remains in this mode until an
event which generates an unmasked interrupt request with a priority level greater than the value
programmed in the MWCR[PRILVL] occurs.

4. Once the appropriately-high interrupt request level arrives, the interrupt controller signals its
presence, and the ECSM responds by asserting an “exit_low_power_mode” signal.

5. The off-platform external logic senses the assertion of the “exit” signal, and re-enables the
appropriate clock signals.

6. With the processor core clocks enabled, the core handles the pending interrupt request.

Offset: 0x13 Access: Read/write

0 1 2 3 4 5 6 7

R
ENBWCR

0 0 0
PRILVL

W

Reset: 0 0 0 0 0 0 0 0

Figure 31-4. Miscellaneous Wakeup Control (MWCR) Register

Table 31-5. MWCR field descriptions

Field Description

ENBWCR Enable WCR
0 MWCR is disabled.
1 MWCR is enabled.

PRILVL Interrupt Priority Level
The interrupt priority level is a core-specific definition. It specifies the interrupt priority level needed
to exit the low-power mode. Specifically, an unmasked interrupt request of a priority level greater
than the PRILVL value is required to exit the mode.

Certain interrupt controller implementations include logic associated with this priority level that
restricts the data value contained in this field to a [0, maximum - 1] range. See the specific interrupt
controller module for details.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

768 Freescale Semiconductor

31.4.2.5 Miscellaneous Interrupt Register (MIR)

All interrupt requests associated with ECSM are collected in the MIR. This includes the processor core
system bus fault interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt source contained in
the MIR must be explicitly cleared. See Figure 31-5 and Table 31-6.

Offset: 0x1F Access: Special

0 1 2 3 4 5 6 7

R FB0AI FB0SI FB1AI FB1SI 0 0 0 0

W 1 1 1 1

Reset: 0 0 0 0 0 0 0 0

Figure 31-5. Miscellaneous Interrupt (MIR) Register

Table 31-6. MIR field descriptions

Field Description

FB0AI Flash Bank 0 Abort Interrupt
0 A flash bank 0 abort has not occurred.
1 A flash bank 0 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB0SI Flash Bank 0 Stall Interrupt
0 A flash bank 0 stall has not occurred.
1 A flash bank 0 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.

FB1AI Flash Bank 1 Abort Interrupt
0 A flash bank 1 abort has not occurred.
1 A flash bank 1 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB1SI Flash Bank 1 Stall Interrupt
0 A flash bank 1 stall has not occurred.
1 A flash bank 1 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 769

31.4.2.6 Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register for user-defined control functions. It typically is used as
configuration control for miscellaneous SoC-level modules. The contents of this register is simply output
from the ECSM to other modules where the user-defined control functions are implemented.

31.4.2.7 ECC registers

For designs including error-correcting code (ECC) implementations to improve the quality and reliability
of memories, there are a number of program-visible registers for the sole purpose of reporting and logging
of memory failures. These registers include:

• ECC Configuration Register (ECR)

• ECC Status Register (ESR)

• ECC Error Generation Register (EEGR)

• Platform Flash ECC Address Register (PFEAR)

• Platform Flash ECC Master Number Register (PFEMR)

• Platform Flash ECC Attributes Register (PFEAT)

• Platform Flash ECC Data Register (PFEDR)

• Platform RAM ECC Address Register (PREAR)

Offset: 0x24 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
U

D
C

R
[3

1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-6. Miscellaneous User-Defined Control (MUDCR) Register

Table 31-7. MUDCR field descriptions

Field Description

MUDCR[31] XBAR force_round_robin bit
This bit is used to drive the force_round_robin bit of the XBAR. This will force the slaves into round
robin mode of arbitration rather than fixed mode (unless a master is using priority elevation, which
forces the design back into fixed mode regardless of this bit). By setting the hardware definition to
ENABLE_ROUND_ROBIN_RESET, this bit will reset to 1.
1 XBAR is in round robin mode
0 XBAR is in fixed priority mode

MPC5604B/C Microcontroller Reference Manual, Rev. 8

770 Freescale Semiconductor

• Platform RAM ECC Syndrome Register (PRESR)

• Platform RAM ECC Master Number Register (PREMR)

• Platform RAM ECC Attributes Register (PREAT)

• Platform RAM ECC Data Register (PREDR)

The details on the ECC registers are provided in the subsequent sections.

31.4.2.7.1 ECC Configuration Register (ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of memory errors
are reported. In all systems with ECC, the occurrence of a non-correctable error causes the current access
to be terminated with an error condition. In many cases, this error termination is reported directly by the
initiating bus master. However, there are certain situations where the occurrence of this type of
non-correctable error is not reported by the master. Examples include speculative instruction fetches which
are discarded due to a change-of-flow operation, and buffered operand writes. The ECC reporting logic in
the ECSM provides an optional error interrupt mechanism to signal all non-correctable memory errors. In
addition to the interrupt generation, the ECSM captures specific information (memory address, attributes
and data, bus master number, etc.) which may be useful for subsequent failure analysis.

Offset: 0x43 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
ER1BR EF1BR

0 0
ERNCR EFNCR

W

Reset: 0 0 0 0 0 0 0 0

Figure 31-7. ECC Configuration (ECR) Register

Table 31-8. ECR field descriptions

Field Description

ER1BR Enable SRAM 1-bit Reporting
The occurrence of a single-bit SRAM correction generates a ECSM ECC interrupt request as
signalled by the assertion of ESR[R1BC]. The address, attributes and data are also captured in the
PREAR, PRESR, PREMR, PREAT and PREDR registers.
0 Reporting of single-bit SRAM corrections is disabled.
1 Reporting of single-bit SRAM corrections is enabled.

EF1BR Enable Flash 1-bit Reporting
The occurrence of a single-bit flash correction generates a ECSM ECC interrupt request as signalled
by the assertion of ESR[F1BC]. The address, attributes and data are also captured in the PFEAR,
PFEMR, PFEAT and PFEDR registers.
0 Reporting of single-bit flash corrections is disabled.
1 Reporting of single-bit flash corrections is enabled.

ERNCR Enable SRAM Non-Correctable Reporting
The occurrence of a non-correctable multi-bit SRAM error generates a ECSM ECC interrupt request
as signalled by the assertion of ESR[RNCE]. The faulting address, attributes and data are also
captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers.
0 Reporting of non-correctable SRAM errors is disabled.
1 Reporting of non-correctable SRAM errors is enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 771

EFNCR Enable Flash Non-Correctable Reporting
The occurrence of a non-correctable multi-bit flash error generates a ECSM ECC interrupt request
as signalled by the assertion of ESR[FNCE]. The faulting address, attributes and data are also
captured in the PFEAR, PFEMR, PFEAT and PFEDR registers.
0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.

Table 31-8. ECR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

772 Freescale Semiconductor

31.4.2.7.2 ECC Status Register (ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly-enabled ECC
events have been detected. The ESR signals the last, properly-enabled memory event to be detected. ECC
interrupt generation is separated into single-bit error detection/correction, uncorrectable error detection
and the combination of the two as defined by the following boolean equations:

ECSM_ECC1BIT_IRQ

 = ECR[ER1BR] & ESR[R1BC]// ram, 1-bit correction

 | ECR[EF1BR] & ESR[F1BC]// flash, 1-bit correction

ECSM_ECCRNCR_IRQ

 = ECR[ERNCR] & ESR[RNCE]// ram, noncorrectable error

ECSM_ECCFNCR_IRQ

 = ECR[EFNCR] & ESR[FNCE]// flash, noncorrectable error

ECSM_ECC2BIT_IRQ

 = ECSM_ECCRNCR_IRQ// ram, noncorrectable error

 | ECSM_ECCFNCR_IRQ// flash, noncorrectable error

ECSM_ECC_IRQ

 = ECSM_ECC1BIT_IRQ // 1-bit correction

 | ECSM_ECC2BIT_IRQ// noncorrectable error

where the combination of a properly-enabled category in the ECR and the detection of the corresponding
condition in the ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This preserves the
association between the ESR and the corresponding address and attribute registers, which are loaded on
each occurrence of an properly-enabled ECC event. If there is a pending ECC interrupt and another
properly-enabled ECC event occurs, the ECSM hardware automatically handles the ESR reporting,
clearing the previous data and loading the new state and thus guaranteeing that only a single flag is
asserted.

To maintain the coherent software view of the reported event, the following sequence in the ECSM error
interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the two values
are different, go back to step 1 and repeat.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt request.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 773

In the event that multiple status flags are signaled simultaneously, ECSM records the event with the R1BC
as highest priority, then F1BC, then RNCE, and finally FNCE.

31.4.2.7.3 ECC Error Generation Register (EEGR)

The ECC Error Generation Register is a 16-bit control register used to force the generation of single- and
double-bit data inversions in the memories with ECC, most notably the SRAM. This capability is provided
for two purposes:

• It provides a software-controlled mechanism for “injecting” errors into the memories during data
writes to verify the integrity of the ECC logic.

Offset: 0x47 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
R1BC F1BC

0 0
RNCE FNCE

W

Reset: 0 0 0 0 0 0 0 0

Figure 31-8. ECC Status Register (ESR)

Table 31-9. ESR field descriptions

Field Description

R1BC SRAM 1-bit Correction
This bit can only be set if ECR[EPR1BR] is asserted. The occurrence of a properly-enabled
single-bit SRAM correction generates a ECSM ECC interrupt request. The address, attributes and
data are also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers. To clear this
interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit SRAM correction has been detected.
1 A reportable single-bit SRAM correction has been detected.

F1BC Flash Memory 1-bit Correction
This bit can only be set if ECR[EPF1BR] is asserted. The occurrence of a properly-enabled single-bit
flash memory correction generates a ECSM ECC interrupt request. The address, attributes and data
are also captured in the PFEAR, PFEMR, PFEAT and PFEDR registers. To clear this interrupt flag,
write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit flash memory correction has been detected.
1 A reportable single-bit flash memory correction has been detected.

RNCE SRAM Non-Correctable Error
The occurrence of a properly-enabled non-correctable SRAM error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PREAR, PRESR,
PREMR, PREAT and PREDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0
has no effect.
0 No reportable non-correctable SRAM error has been detected.
1 A reportable non-correctable SRAM error has been detected.

FNCE Flash Memory Non-Correctable Error
The occurrence of a properly-enabled non-correctable flash memory error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PFEAR, PFEMR,
PFEAT and PFEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable flash memory error has been detected.
1 A reportable non-correctable flash memory error has been detected.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

774 Freescale Semiconductor

• It provides a mechanism to allow testing of the software service routines associated with memory
error logging.

It should be noted that while the EEGR is associated with the SRAM, similar capabilities exist for the
flash, that is, the ability to program the non-volatile memory with single- or double-bit errors is supported
for the same two reasons previously identified.

For both types of memories (SRAM and flash), the intent is to generate errors during data write cycles,
such that subsequent reads of the corrupted address locations generate ECC events, either single-bit
corrections or double-bit non-correctable errors that are terminated with an error response.

Offset: 0x4A Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

F
R

C
1B

I

F
R

11
B

I

0 0

F
R

C
N

C
I

F
R

1N
C

I

0
ERRBIT

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-9. ECC Error Generation Register (EEGR)

Table 31-10. EEGR field descriptions

Field Description

FRC1BI Force SRAM Continuous 1-bit Data Inversions
The assertion of this bit forces the SRAM controller to create 1-bit data inversions, as defined by the
bit position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be
cleared before being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM continuous 1-bit data inversions are generated.
1 1-bit data inversions in the SRAM are continuously generated.

FR11BI Force SRAM One 1-bit Data Inversion
The assertion of this bit forces the SRAM controller to create one 1-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before
being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM single 1-bit data inversion is generated.
1 One 1-bit data inversion in the SRAM is generated.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 775

FRCNCI Force SRAM Continuous Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create 2-bit data inversions, as defined by the
bit position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write
operation.

After this bit has been enabled to generate another continuous non-correctable data inversion, it
must be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

0 No SRAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the SRAM are continuously generated.

FR1NCI Force SRAM One Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create one 2-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation
after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set
again to properly re-enable the error generation logic.

0 No SRAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the SRAM is generated.

ERRBIT Error Bit Position
The vector defines the bit position which is complemented to create the data inversion on the write
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity
bit of the ECC code are inverted.

The SRAM controller follows a vector bit ordering scheme where LSB = 0. Errors in the ECC
syndrome bits can be generated by setting this field to a value greater than the SRAM width. For
example, consider a 32-bit SRAM implementation.
The 32-bit ECC approach requires 7 code bits for a 32-bit word. For PRAM data width of 32 bits, the
actual SRAM (32b data + 7b for ECC) = 39 bits. The following association between the ERRBIT field
and the corrupted memory bit is defined:

if ERRBIT = 0, then SRAM[0] of the odd bank is inverted
if ERRBIT = 1, then SRAM[1] of the odd bank is inverted
...
if ERRBIT = 31, then SRAM[31] of the odd bank is inverted
if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted
...
if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted

For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.

Table 31-10. EEGR field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

776 Freescale Semiconductor

If an attempt to force a non-correctable inversion (by asserting EEGR[FRCNCI] or EEGR[FRC1NCI])
and EEGR[ERRBIT] equals 64, then no data inversion will be generated.

The only allowable values for the 4 control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI} are
{0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in undefined behavior.

31.4.2.7.4 Platform Flash ECC Address Register (PFEAR)

The PFEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the
flash memory. Depending on the state of the ECC Configuration Register, an ECC event in the flash causes
the address, attributes and data associated with the access to be loaded into the PFEAR, PFEMR, PFEAT
and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Offset: 0x50 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 31-10. Platform Flash ECC Address Register (PFEAR)

Table 31-11. PFEAR field descriptions

Field Description

FEAR Flash ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled flash ECC
event.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 777

31.4.2.7.5 Platform Flash ECC Master Number Register (PFEMR)

The PFEMR is a 4-bit register for capturing the XBAR bus master number of the last, properly-enabled
ECC event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event
in the flash causes the address, attributes and data associated with the access to be loaded into the PFEAR,
PFEMR, PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.
.

31.4.2.7.6 Platform Flash ECC Attributes Register (PFEAT)

The PFEAT is an 8-bit register for capturing the XBAR bus master attributes of the last, properly-enabled
ECC event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event
in the flash causes the address, attributes and data associated with the access to be loaded into the PFEAR,
PFEMR, PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Offset: 0x56 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset: 0 0 0 0 – – – –

Figure 31-11. Platform Flash ECC Master Number Register (PFEMR)

Table 31-12. PFEMR field descriptions

Field Description

FEMR Flash ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled flash ECC event.

Offset: 0x57 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –

Figure 31-12. Platform Flash ECC Attributes Register (PFEAT)

Table 31-13. PFEAT field descriptions

Field Description

WRITE AMBA-AHB HWRITE
0 AMBA-AHB read access
1 AMBA-AHB write access

MPC5604B/C Microcontroller Reference Manual, Rev. 8

778 Freescale Semiconductor

31.4.2.7.7 Platform Flash ECC Data Register (PFEDR)

The PFEDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event in the flash
causes the address, attributes and data associated with the access to be loaded into the PFEAR, PFEMR,
PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be
asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is ignored.

SIZE AMBA-AHB HSIZE[2:0]
000 8-bit AMBA-AHB access
001 16-bit AMBA-AHB access
010 32-bit AMBA-AHB access
1xx Reserved

PROTECTION AMBA-AHB HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable
Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable
Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

Offset: 0x5C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 31-13. Platform Flash ECC Data Register (PFEDR)

Table 31-14. PFEDR field descriptions

Field Description

FEDR Flash ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-enabled
flash ECC event. The register contains the data value taken directly from the data bus.

Table 31-13. PFEAT field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 779

31.4.2.7.8 Platform RAM ECC Address Register (PREAR)

The PREAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the
SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the SRAM
causes the address, attributes and data associated with the access to be loaded into the PREAR, PRESR,
PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

31.4.2.7.9 Platform RAM ECC Syndrome Register (PRESR)

The PRESR is an 8-bit register for capturing the error syndrome of the last, properly-enabled ECC event
in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the
SRAM causes the address, attributes and data associated with the access to be loaded into the PREAR,
PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC
Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Offset: 0x60 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 31-14. Platform RAM ECC Address Register (PREAR)

Table 31-15. PREAR field descriptions

Field Description

REAR SRAM ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled SRAM ECC
event.

Offset: 0x65 Access: Read

0 1 2 3 4 5 6 7

R RESR

W

Reset: – – – – – – – –

Figure 31-15. Platform RAM ECC Syndrome Register (PRESR)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

780 Freescale Semiconductor

Table 31-17 associates the upper 7 bits of the ECC syndrome with the exact data bit in error for single-bit
correctable codewords. This table follows the bit vectoring notation where the LSB = 0. Note that the
syndrome value of 0x01 implies no error condition but this value is not readable when the PRESR is read
for the no error case.

Table 31-16. PRESR field descriptions

Field Description

RESR SRAM ECC Syndrome Register
This 8-bit syndrome field includes 6 bits of Hamming decoded parity plus an odd-parity bit for the
entire 39-bit (32-bit data + 7 ECC) code word. The upper 7 bits of the syndrome specify the exact bit
position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit
syndrome plus overall incorrect parity bit signal a multi-bit, non-correctable error.

For correctable single-bit errors, the mapping shown in Table 31-17 associates the upper 7 bits of
the syndrome with the data bit in error.

Table 31-17. RAM syndrome mapping for single-bit correctable errors

PRESR[RESR] Data bit in error

0x00 ECC ODD[0]

0x01 No error

0x02 ECC ODD[1]

0x04 ECC ODD[2]

0x06 DATA ODD BANK[31]

0x08 ECC ODD[3]

0x0a DATA ODD BANK[30]

0x0c DATA ODD BANK[29]

0x0e DATA ODD BANK[28]

0x10 ECC ODD[4]

0x12 DATA ODD BANK[27]

0x14 DATA ODD BANK[26]

0x16 DATA ODD BANK[25]

0x18 DATA ODD BANK[24]

0x1a DATA ODD BANK[23]

0x1c DATA ODD BANK[22]

0x50 DATA ODD BANK[21]

0x20 ECC ODD[5]

0x22 DATA ODD BANK[20]

0x24 DATA ODD BANK[19]

0x26 DATA ODD BANK[18]

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 781

31.4.2.7.10 Platform RAM ECC Master Number Register (PREMR)

The PREMR is a 4-bit register for capturing the XBAR bus master number of the last, properly-enabled
ECC event in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC
event in the SRAM causes the address, attributes and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in
the ECC Status Register to be asserted.

See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

This register can only be read from the IPS programming model; any attempted write is ignored.

0x28 DATA ODD BANK[17]

0x2a DATA ODD BANK[16

0x2c DATA ODD BANK[15]

0x58 DATA ODD BANK[14]

0x30 DATA ODD BANK[13]

0x32 DATA ODD BANK[12]

0x34 DATA ODD BANK[11]

0x64 DATA ODD BANK[10]

0x38 DATA ODD BANK[9]

0x62 DATA ODD BANK[8]

0x70 DATA ODD BANK[7]

0x60 DATA ODD BANK[6]

0x40 ECC ODD[6]

0x42 DATA ODD BANK[5]

0x44 DATA ODD BANK[4]

0x46 DATA ODD BANK[3]

0x48 DATA ODD BANK[2]

0x4a DATA ODD BANK[1]

0x4c DATA ODD BANK[0]

0x03,0x05........0x4d Multiple bit error

> 0x4d Multiple bit error

Table 31-17. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[RESR] Data bit in error

MPC5604B/C Microcontroller Reference Manual, Rev. 8

782 Freescale Semiconductor

31.4.2.7.11 Platform RAM ECC Attributes Register (PREAT)

The PREAT is an 8-bit register for capturing the XBAR bus master attributes of the last, properly-enabled
ECC event in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC
event in the SRAM causes the address, attributes and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in
the ECC Status Register to be asserted.

Offset: 0x66 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset: 0 0 0 0 – – – –

Figure 31-16. Platform RAM ECC Master Number Register (PREMR)

Table 31-18. PREMR field descriptions

Field Description

REMR SRAM ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled SRAM ECC event.
See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

Offset: 0x67 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –

Figure 31-17. Platform RAM ECC Attributes Register (PREAT)

Table 31-19. PREAT field descriptions

Field Description

WRITE XBAR HWRITE
0 XBAR read access
1 XBAR write access

SIZE XBAR HSIZE[2:0]
000 8-bit XBAR access
001 16-bit XBAR access
010 32-bit XBAR access
1xx Reserved

PROTECTION XBAR HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable
Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable
Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 783

31.4.2.7.12 Platform RAM ECC Data Register (PREDR)

The PREDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the
SRAM causes the address, attributes and data associated with the access to be loaded into the PREAR,
PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC
Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

31.4.3 Register protection

Logic exists which restricts accesses to INTC, ECSM, MPU, STM and SWT to supervisor mode only.
Accesses in User mode are not possible.

Offset: 0x6C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 31-18. Platform RAM ECC Data Register (PREDR)

Table 31-20. PREDR field descriptions

Field Description

REDR SRAM ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-enabled
SRAM ECC event. The register contains the data value taken directly from the data bus.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

784 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 785

——— Debug ———

MPC5604B/C Microcontroller Reference Manual, Rev. 8

786 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 787

Chapter 32
IEEE 1149.1 Test Access Port Controller (JTAGC)

32.1 Introduction
The JTAG port of the device consists of three inputs and one output. These pins include test data input
(TDI), test data output (TDO), test mode select (TMS), and test clock input (TCK). TDI, TDO, TMS and
TCK are compliant with the IEEE 1149.1-2001 standard and are shared with the NDI through the test
access port (TAP) interface.

Support of IEEE 1149.7 (cJTAGC) is planned but not actually supported on this device. for more
information, please contact your sales representative.

32.2 Block diagram
Figure 32-1 is a block diagram of the JTAG Controller (JTAGC) block.

Figure 32-1. JTAG Controller Block Diagram

32.3 Overview
The JTAGC provides the means to test chip functionality and connectivity while remaining transparent to
system logic when not in TEST mode. Testing is performed via a boundary scan technique, as defined in
the IEEE 1149.1-2001 standard. In addition, instructions can be executed that allow the Test Access Port

TCK

TMS

TDI

Test access port (TAP)

TDO

32-bit device identification register

Boundary scan register

.

.

controller

1-bit bypass register.

5-bit TAP instruction decoder

5-bit TAP instruction register

.

.

.

Power-on
reset

MPC5604B/C Microcontroller Reference Manual, Rev. 8

788 Freescale Semiconductor

(TAP) to be shared with other modules on the MCU. All data input to and output from the JTAGC is
communicated in serial format.

32.4 Features
The JTAGC is compliant with the IEEE 1149.1-2001 standard, and supports the following features:

• IEEE 1149.1-2001 Test Access Port (TAP) interface

• 4 pins (TDI, TMS, TCK, and TDO)—Refer to Section 32.6, “External signal description

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, as well as
several public and private MCU specific instructions

• 2 test data registers:

— Bypass register

— Device identification register

• A TAP controller state machine that controls the operation of the data registers, instruction register
and associated circuitry

32.5 Modes of operation
The JTAGC uses a power-on reset indication as its primary reset signals. Several IEEE 1149.1-2001
defined TEST modes are supported, as well as a bypass mode.

32.5.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state.
The TEST-LOGIC-RESET state is entered upon the assertion of the power-on reset signal, or through TAP
controller state machine transitions controlled by TMS. Asserting power-on reset results in asynchronous
entry into the reset state. While in reset, the following actions occur:

• The TAP controller is forced into the test-logic-reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered.

• The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system reset. These
instructions include EXTEST.

32.5.2 IEEE 1149.1-2001 defined test modes

The JTAGC supports several IEEE 1149.1-2001 defined TEST modes. The TEST mode is selected by
loading the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, SAMPLE and SAMPLE/PRELOAD. Each instruction defines the set of
data registers that can operate and interact with the on-chip system logic while the instruction is current.
Only one test data register path is enabled to shift data between TDI and TDO for each instruction.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 789

The boundary scan register is external to JTAGC but can be accessed by JTAGC TAP through
EXTEST,SAMPLE,SAMPLE/PRELOAD instructions. The functionality of each TEST mode is
explained in more detail in Section 32.8.4, “JTAGC instructions.

32.5.2.1 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC into bypass
mode. While in bypass mode, the single-bit bypass shift register is used to provide a minimum-length
serial path to shift data between TDI and TDO.

32.5.2.2 TAP sharing mode

There are three selectable auxiliary TAP controllers that share the TAP with the JTAGC. Selectable TAP
controllers include the Nexus port controller (NPC) and PLATFORM. The instructions required to grant
ownership of the TAP to the auxiliary TAP controllers are ACCESS_AUX_TAP_NPC,
ACCESS_AUX_TAP_ONCE, ACCESS_AUX_TAP_TCU. Instruction opcodes for each instruction are
shown in Table 32-3.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is transferred to the
selected TAP controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any
TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers refer to the Nexus port controller chapter of the reference
manual.

32.6 External signal description
The JTAGC consists of four signals that connect to off-chip development tools and allow access to test
support functions. The JTAGC signals are outlined in Table 32-1:

The JTAGC pins are shared with GPIO. TDO at reset is a input pad and output direction control from
JTAGC. Once TAP enters shift-ir or shift-dr then output direction control from JTAGC which allows the
value to see on pad. It is up to the user to configure them as GPIOs accordingly, in this case MPC5604B
get incompliance with IEEE 1149.1-2001.

Table 32-1. JTAG signal properties

Name I/O Function Reset State

TCK I Test clock Pull Up

TDI I Test data in Pull Up

TDO O Test data out High Z

TMS I Test mode select Pull Up

MPC5604B/C Microcontroller Reference Manual, Rev. 8

790 Freescale Semiconductor

32.7 Memory map and register description
This section provides a detailed description of the JTAGC registers accessible through the TAP interface,
including data registers and the instruction register. Individual bit-level descriptions and reset states of
each register are included. These registers are not memory-mapped and can only be accessed through the
TAP.

32.7.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Table 32-2. The instruction register allows
instructions to be loaded into the module to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can only be
changed in the update-IR and test-logic-reset TAP controller states. Synchronous entry into the
test-logic-reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the test-logic-reset state results in asynchronous loading of the IDCODE
instruction. During the capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

32.7.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, or reserve instructions are active. After entry into the capture-DR state, the single-bit
shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the bypass register is
always a logic 0.

32.7.3 Device Identification Register

The device identification register, shown in Table 32-3, allows the part revision number, design center, part
identification number, and manufacturer identity code to be determined through the TAP. The device
identification register is selected for serial data transfer between TDI and TDO when the IDCODE
instruction is active. Entry into the capture-DR state while the device identification register is selected
loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action occurs
in the update-DR state.

4 3 2 1 0

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 32-2. 5-bit Instruction Register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 791

32.7.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 32.8.5, “Boundary Scan. The size of the boundary scan register is 464 bits.

32.8 Functional Description

32.8.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the test logic and
allowing normal operation of the on-chip system logic. In addition, the instruction register is loaded with
the IDCODE instruction.

32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with other
TAP controllers on the MCU. For more detail on TAP sharing via JTAGC instructions refer to
Section 32.8.4.2, “ACCESS_AUX_TAP_x instructions.

IR[4:0]: 0_0001 (IDCODE) Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1

Figure 32-3. Device Identification Register

Table 32-2. Device Identification Register Field Descriptions

Field Description

0–3
PRN

Part revision number. Contains the revision number of the device. This field changes with each revision
of the device or module.

4–9
DC

Design center. For the MPC5604B this value is 0x2B.

10–19
PIN

Part identification number. Contains the part number of the device. For the MPC5604B, this value is
0x241.

20–30
MIC

Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID
for Freescale, 0xE

31
ID

IDCODE register ID. Identifies this register as the device identification register and not the bypass
register. Always set to 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

792 Freescale Semiconductor

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as
illustrated in Figure 32-4. This applies for the instruction register, test data registers, and the bypass
register.

Figure 32-4. Shifting data through a register

32.8.3 TAP controller state machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 32-5 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal.

As Figure 32-5 shows, holding TMS at logic 1 while clocking TCK through a sufficient number of rising
edges also causes the state machine to enter the test-logic-reset state.

Selected register

MSB LSB

TDI TDO

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 793

Figure 32-5. IEEE 1149.1-2001 TAP controller finite state machine

32.8.3.1 Selecting an IEEE 1149.1-2001 register

Access to the JTAGC data registers is done by loading the instruction register with any of the JTAGC
instructions while the JTAGC is enabled. Instructions are shifted in via the select-IR-scan path and loaded
in the update-IR state. At this point, all data register access is performed via the select-DR-scan path.

Test logic
reset

Run-test/idle Select-DR-scan Select-IR-scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

794 Freescale Semiconductor

The select-DR-scan path is used to read or write the register data by shifting in the data (LSB first) during
the shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting can be terminated after fetching the required number of bits.

32.8.4 JTAGC instructions

This section gives an overview of each instruction, refer to the IEEE 1149.1-2001 standard for more
details.

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 32-3.

32.8.4.1 BYPASS instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active the system logic operates
normally.

Table 32-3. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and
preloading without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling without
disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded values to
output pins and asserting functional reset

ACCESS_AUX_TAP_TCU 11011 Grants the TCU ownership of the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the PLATFORM ownership of the TAP

ACCESS_AUX_TAP_NPC 10000 Grants the Nexus port controller (NPC) ownership of the TAP

Reserved 10010 —

BYPASS 11111 Selects bypass register for data operations

Factory Debug Reserved1

1 Intended for factory debug, and not customer use

00101
00110
01010

Intended for factory debug only

Reserved2

2 Freescale reserves the right to change the decoding of reserved instruction codes

All other codes Decoded to select bypass register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 795

32.8.4.2 ACCESS_AUX_TAP_x instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take control of the TAP.
When this instruction is loaded, control of the TAP pins is transferred to the selected auxiliary TAP
controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any TDO output
from the selected TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains
control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP
controllers are held in RUN-TEST/IDLE while they are inactive.

32.8.4.3 EXTEST — External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan
register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

32.8.4.4 IDCODE instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC is reset.

32.8.4.5 SAMPLE instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising
edge of TCK in the capture-DR state when the SAMPLE instruction is active. The sampled data is viewed
by shifting it through the boundary scan register to the TDO output during the Shift-DR state. There is no
defined action in the update-DR state. Both the data capture and the shift operation are transparent to
system operation.

During the SAMPLE instruction, the following pad status is enforced:

• Weak pull is disabled (independent from PCRx[WPE])

• Analog switch is disabled (independent of PCRx[APC])

• Slew rate control is forced to the slowest configuration (independent from PCRx[SRC[1]])

32.8.4.6 SAMPLE/PRELOAD instruction

The SAMPLE/PRELOAD instruction has two functions:

• The SAMPLE part of the instruction samples the system data and control signals on the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the
rising-edge of TCK in the capture-DR state when the SAMPLE/PRELOAD instruction is active.
The sampled data is viewed by shifting it through the boundary scan register to the TDO output

MPC5604B/C Microcontroller Reference Manual, Rev. 8

796 Freescale Semiconductor

during the shift-DR state. Both the data capture and the shift operation are transparent to system
operation.

• The PRELOAD part of the instruction initializes the boundary scan register cells before selecting
the EXTEST instructions to perform boundary scan tests. This is achieved by shifting in
initialization data to the boundary scan register during the shift-DR state. The initialization data is
transferred to the parallel outputs of the boundary scan register cells on the falling edge of TCK in
the update-DR state. The data is applied to the external output pins by the EXTEST instruction.
System operation is not affected.

During the SAMPLE/PRELOAD instruction, the following pad status is enforced:

• Weak pull is disabled (independent from PCRx[WPE])

• Analog switch is disabled (independent of PCRx[APC])

• Slew rate control is forced to the slowest configuration (independent from PCRx[SRC[1]])

32.8.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

32.9 e200z0 OnCE controller
The e200z0 core OnCE controller supports a complete set of Nexus 1 debug features, as well as providing
access to the Nexus2+ configuration registers. A complete discussion of the e200z0 OnCE debug features
is available in the e200z0 Reference Manual.

32.9.1 e200z0 OnCE Controller Block Diagram

Figure 32-6 is a block diagram of the e200z0 OnCE block.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 797

Figure 32-6. e200z0 OnCE Block Diagram

32.9.2 e200z0 OnCE Controller Functional Description

The functional description for the e200z0 OnCE controller is the same as for the JTAGC, with the
differences described below.

32.9.2.1 Enabling the TAP Controller

To access the e200z0 OnCE controller, the proper JTAGC instruction needs to be loaded in the JTAGC
instruction register, as discussed in Section 32.5.2.2, “TAP sharing mode.

32.9.3 e200z0 OnCE Controller Register Description

Most e200z0 OnCE debug registers are fully documented in the e200z0 Reference Manual.

32.9.3.1 OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and serves as the instruction register (IR). It holds the 10-bit commands to be used as input for the
e200z0 OnCE Decoder. The OCMD is shown in Table 32-7. The OCMD is updated when the TAP
controller enters the update-IR state. It contains fields for controlling access to a resource, as well as
controlling single-step operation and exit from OnCE mode.

TCK

e200z0_TMS

TDI

Test Access Port (TAP)

e200z0_TDO

Bypass Register

External Data Register

.

.

Controller

TAP Instruction Register
.

OnCE Mapped Debug Registers

Auxiliary Data Register

.

.

.

e200z0_TRST

(OnCE OCMD)

TDO Mux
Control

{From
JTAGC

(to JTAGC)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

798 Freescale Semiconductor

Although the OCMD is updated during the update-IR TAP controller state, the corresponding resource is
accessed in the DR scan sequence of the TAP controller, and as such, the update-DR state must be
transitioned through in order for an access to occur. In addition, the update-DR state must also be
transitioned through in order for the single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated with it.

0 1 2 3 4 5 6 7 8 9

R R/W GO EX RS[0:6]

W

Reset: 0 0 0 0 0 1 1 0 1 1

Figure 32-7. OnCE Command Register (OCMD)

Table 32-4. e200z0 OnCE Register Addressing

RS[0:6] Register Selected

000 0000 000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011 – 000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 – 001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Data Value Compare 1 (DVC1)

010 0111 Data Value Compare 2 (DVC2)

010 1000 – 010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 – 101 1111 Reserved (do not access)

110 1111 Shared Nexus Control Register (SNC)
(only available on the e200z0 core)

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 799

32.10 Initialization/application information
The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is required:

1. Place the JTAGC in reset through TAP controller state machine transitions controlled by TMS

2. Load the appropriate instruction for the test or action to be performed.

111 0000 – 111 1001 General Purpose Register Selects [0:9]

111 1010 – 111 1011 Reserved

111 1100 Nexus2+ Access

111 1101 LSRL Select
(factory test use only)

111 1110 Enable_OnCE

111 1111 Bypass

Table 32-4. e200z0 OnCE Register Addressing (continued)

RS[0:6] Register Selected

MPC5604B/C Microcontroller Reference Manual, Rev. 8

800 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 801

Chapter 33
Nexus Development Interface (NDI)

33.1 Introduction
The Nexus Development Interface (NDI) block provides real-time development support capabilities for
the MPC5604B MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support
is supplied for MCUs without requiring external address and data pins for internal visibility.

The NDI block is an integration of several individual Nexus blocks that are selected to provide the
development support interface for MPC5604B.

The NDI block interfaces to the e200z0, and internal buses to provide development support as per the
IEEE-ISTO 5001-2003 standard. The development support provided includes program trace, watchpoint
messaging, ownership trace, watchpoint triggering, processor overrun control, run-time access to the
MCU’s internal memory map, and access to the e200z0 internal registers during halt, via the JTAG port.

33.2 Block diagram
Figure 33-1 shows a functional block diagram of the NDI.

A simplified block diagram of the NDI illustrates the functionality and interdependence of major blocks
(see Figure 33-2) and how the individual Nexus blocks are combined to form the NDI.

Figure 33-1. NDI Functional Block Diagram

Power-on

TCK

EVTO

MSEO

MDO

reset

Message
queue

Program trace

Ownership trace

Watchpoint trace

CPU
snoop

Message
formatter

Arbiter

Divided system
clock

e200z1
trace

information

e200z0
trace

information

MCKO

Input
TAP

controller

Control registers
to trace blocks

TDO

TDI

TMS

EVTI
Reset
control

MPC5604B/C Microcontroller Reference Manual, Rev. 8

802 Freescale Semiconductor

Figure 33-2. NDI Implementation Block Diagram

33.3 Features
The NDI module of the MPC5604B is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with
additional Class 3 and Class 4 features available.The following features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code may be traced.

• Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership trace
message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Watchpoint messaging via the auxiliary pins

• Watchpoint trigger enable of program trace messaging

• Auxiliary interface for higher data input/output

— 4 message data out pins

TDO

Cross-bar

Power-on

MCKO

EVTO

MDO[3:0]

MSEO

CPU

reset

BP/WP
control

OnCE/
Nexus1

TAP

Program/
ownership

Register
control

Read/write
access

Message
FIFO

Message
transmitter

Nexus2+
interface

Auxiliary
port

arbitration/
MUXing

Reset
control

TAP
Register
control

Clock
control

e200z0

Nexus port
controller

TDO
MUXing

JTAG controller

TDI

EVTI

TMS

Nexus Development Interface

z0_tdo

z0_tms

z0_tdi

tclk

trace

tdi

TAP

npc_tms

z0_tdo

z0_tms

npc_tdo

Access
auxiliary

TAP

npc_tdo
npc_tms
tdi, tclk

TCK

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 803

— 1 message start/end out pins (MSEO)

— 1 watchpoint event pin (EVTO)

— 1 event-in pin (EVTI)

— 1 message clock out pin (MCKO)

— 4-pin JTAG port (TDI, TDO, TMS, and TCK)

• Registers for program trace, ownership trace, and watchpoint trigger.

• All features controllable and configurable via the JTAG port.

• Run-time access to the on-chip memory map via the Nexus read/write access protocol. This allows
for enhanced download/upload capabilities.

• All features are independently configurable and controllable via the IEEE 1149.1 I/O port.

• The NDI block reset is controlled with power-on reset, and the TAP state machine. All these
sources are independent of system reset.

• Support for internal censorship mode to prevent external access to flash memory contents when
censorship is enabled.

NOTE
If the e200z0 cores has executed a wait instruction, then the Nexus2+
controller clocks are gated off. While the core is in this state, it is not be
possible to perform Nexus read/write operations.

33.4 Modes of Operation
The NDI block is in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state. The
TEST-LOGIC-RESET state is entered on the assertion of the power-on reset signal or through state
machine transitions controlled by TMS. Ownership of the TAP is achieved by loading the appropriate
enable instruction for the desired Nexus client in the JTAGC controller (JTAGC) block.

The Nexus port controller (NPC) transitions out of the reset state immediately following negation of
power-on reset.

33.4.1 Nexus Reset

In Nexus reset mode, the following actions occur:

• Register values default back to their reset values.

• The message queues are marked as empty.

• The auxiliary output port pins are negated if the NDI controls the pads.

• The TDO output buffer is disabled if the NDI has control of the TAP.

• The TDI, TMS, and TCK inputs are ignored.

• The NDI block indicates to the MCU that it is not using the auxiliary output port. This indication
can be used to three-state the output pins or use them for another function.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

804 Freescale Semiconductor

33.4.2 Operating Mode

In full-port mode, all available MDO pins are used to transmit messages. All trace features are enabled or
can be enabled by writing the configuration registers via the JTAG port. Four MDO pins are available in
full-port mode.

33.4.2.1 Disabled-Port Mode

In disabled-port mode, message transmission is disabled. Any debug feature that generates messages can
not be used. The primary features available are class 1 features and read/write access.

33.4.2.2 Censored Mode

The NDI supports internal flash censorship mode by preventing the transmission of trace messages and
Nexus access to memory-mapped resources when censorship is enabled.

33.4.2.3 Stop Mode

Stop mode logic is implemented in the NPC. When a request is made to enter STOP mode, the NDI block
completes monitoring of any pending bus transaction, transmits all messages already queued, and
acknowledges the stop request. After the acknowledgment, the system clock input are shut off by the clock
driver on the device. While the clocks are shut off, the development tool cannot access NDI registers via
the JTAG port.

33.5 External Signal Description
All the signals are available in the 208BGA without any multiplexing scheme. Refer to Chapter 4, “Signal
description for details.

33.5.1 Nexus Signal Reset States

33.6 Memory Map and Register Description
The NDI block contains no memory-mapped registers. Nexus registers are accessed by a development tool
via the JTAG port using a client-select value and a register index. OnCE registers are accessed by loading
the appropriate value in the RS[0:6] field of the OnCE command register (OCMD) via the JTAG port.

Table 33-1. NDI Signal Reset State

Name Function
Nexus Reset

State
Pull

EVTI Event-in pin — Up

EVTO Event-out pin 0b1 —

MCKO Message clock out pin 0b0 —

MDO[3:0] Message data out pins 0 —

MSEO Message start/end out pin 0b1 —

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 805

33.6.1 Nexus Debug Interface Registers

Table 33-2 shows the NDI registers by client select and index values. OnCE register addressing is
documented in the JTAGC chapter of this reference manual.

Table 33-2. Nexus Debug Interface Registers

Client select Index Register Location

Client-Independent Registers

0bxxxx 0 Nexus Device ID (DID) Register1

1 Implemented in NPC block. All other registers implemented in e200z0 Nexus2+ block.

on page 806

0bxxxx 127 Port Configuration Register (PCR)1 on page 806

e200z0 Control/Status Registers

0b0000 2 Development Control Register 1 (DC1) on page 809

0b0000 3 Development Control Register 2 (DC2) on page 809

0b0000 4 Development Status (DS) Register on page 811

0b0000 7 Read/Write Access Control/Status (RWCS) Register on page 812

0b0000 9 Read/Write Access Address (RWA) Register on page 813

0b0000 10 Read/Write Access Data (RWD) Register on page 814

0b0000 11 Watchpoint Trigger (WT) Register on page 814

MPC5604B/C Microcontroller Reference Manual, Rev. 8

806 Freescale Semiconductor

33.6.2 Register Description

This section lists the NDI registers and describes the registers and their bit fields.

33.6.2.1 Nexus Device ID (DID) Register

The NPC device identification register, shown in Figure 33-3, allows the part revision number, design
center, part identification number, and manufacturer identity code of the device to be determined through
the auxiliary output port, and serially through TDO. This register is read-only.

33.6.2.2 Port Configuration Register (PCR)

The PCR is used to select the NPC mode of operation, enable MCKO and select the MCKO frequency,
and enable or disable MCKO gating. This register should be configured as soon as the NDI is enabled.

The PCR register may be rewritten by the debug tool subsequent to the enabling of the NPC for low power
debug support. In this case, the debug tool may set and clear the LP_DBG_EN, SLEEP_SYNC, and
STOP_SYNC bits, but must preserve the original state of the remaining bits in the register.

Reg Index: 0 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R Part Revision Number Design Center Part Identification Number

W

Reset 1

1 Part Revision Number default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

* * * * 1 0 0 0 0 0 0 1 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R Part Identification Number
(continued)

Manufacturer Identity Code 1

W

Reset 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1

Figure 33-3. Nexus Device ID (DID) Register

Table 33-3. DID field descriptions

Field Description

0–3
PRN

Part Revision Number
Contains the revision number of the part. This field changes with each revision of the device or module.

4–9
DC

Design Center

10–19
PIN

Part Identification Number
Contains the part number of the device.

20–30
MIC

Manufacturer Identity Code
Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID: 0x20.

31 Fixed per JTAG 1149.1
Always set to 1.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 807

NOTE
The mode or clock division must not be modified after MCKO has been
enabled. Changing the mode or clock division while MCKO is enabled can
produce unpredictable results.

Reg Index: 127 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FPM MCKO
_GT

MCKO
_EN

MCKO_DIV EVT
_EN

0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LP_
DBG_

EN

0 0 0 0 0 SLEEP
_SYNC

STOP_
SYNC

0 0 0 0 0 0 0 PSTAT
_EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-4. Port Configuration Register (PCR)

Table 33-4. PCR field descriptions

Field Description

0
FPM

Full Port Mode
The value of the FPM bit determines if the auxiliary output port uses the full MDO port or a reduced
MDO port to transmit messages.
0 A subset of MDO pins are used to transmit messages.
1 All MDO pins are used to transmit messages.

1
MCKO_GT

MCKO Clock Gating Control
This bit is used to enable or disable MCKO clock gating. If clock gating is enabled, the MCKO clock
is gated when the NPC is in enabled mode but not actively transmitting messages on the auxiliary
output port. When clock gating is disabled, MCKO is allowed to run even if no auxiliary output port
messages are being transmitted.
0 MCKO gating is disabled.
1 MCKO gating is enabled.

2
MCKO_EN

MCKO Enable
This bit enables the MCKO clock to run. When enabled, the frequency of MCKO is determined by
the MCKO_DIV field.
0 MCKO clock is driven to zero.
1 MCKO clock is enabled.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

808 Freescale Semiconductor

3–5
MCKO_DIV

[2:0]

MCKO Division Factor
The value of this signal determines the frequency of MCKO relative to the system clock frequency
when MCKO_EN is asserted. SYS_CLK represents the system clock frequency:

Note: MCKO_DIV value and associated MCKO frequency should be configured taking into account
the frequency limitation of the associated MCKO pad. Please refer to datasheet IO section.

6
EVT_EN

EVTO/EVTI Enable
This bit enables the EVTO/EVTI port functions.
0 EVTO/EVTI port disabled
1 EVTO/EVTI port enabled

7–15 Reserved

16
LP_DBG_EN

Low Power Debug Enable
The LP_DBG_EN bit enables debug functionality to support entry and exit from low power sleep and
STOP modes.
0 Low power debug disabled
1 Low power debug enabled

17–21 Reserved

22
SLEEP_SYN

C

Sleep Mode Synchronization
The SLEEP_SYNC bit is used to synchronize the entry into sleep mode between the device and
debug tool. The device sets this bit before a pending entry into sleep mode. After reading
SLEEP_SYNC as set, the debug tool then clears SLEEP_SYNC to acknowledge to the device that
it may enter into sleep mode.
0 Sleep mode entry acknowledge
1 Sleep mode entry pending

23
STOP_SYNC

Stop Mode Synchronization
The STOP_SYNC bit is used to synchronize the entry into STOP mode between the device and
debug tool. The device sets this bit before a pending entry into STOP mode. After reading
STOP_SYNC as set, the debug tool then clears STOP_SYNC to acknowledge to the device that it
may enter into STOP mode.
0 Stop mode entry acknowledge
1 Stop mode entry pending

24–30 Reserved

31
PSTAT_EN

Processor Status Mode Enable

Table 33-4. PCR field descriptions (continued)

Field Description

Value MCKO frequency
0b000 SYS_CLK
0b001 SYS_CLK2 (default value if a reserved encoding is

programmed)
0b010 Reserved
0b011 SYS_CLK4
0b100 Reserved
0b101 Reserved
0b110 Reserved
0b111 SYS_CLK8

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 809

33.6.2.3 Development Control Register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the Nexus module.
Figure 33-5 shows development control register 1 and Table 33-5 describes the register’s fields.

Nexus Reg: 0x0002 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OPC MCK_DIV EOC 0 PTM WEN 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-5. Development Control Register 1 (DC1)

Table 33-5. DC1 field descriptions

Field Description

0
OPC1

Output Port Mode Control
0 Reduced-port mode configuration (2 MDO pins)
1 Full-port mode configuration (4 MDO pins)

1–2
MCK_DIV[1:0]

1

MCKO Clock Divide Ratio (see note below)
00 MCKO is 1x processor clock freq.
01 MCKO is 1/2x processor clock freq.
10 MCKO is 1/4x processor clock freq.
11 MCKO is 1/8x processor clock freq.

3–4
EOC[1:0]

EVTO Control
00 EVTO upon occurrence of watchpoints (configured in DC2)
01 EVTO upon entry into debug mode
10 EVTO upon timestamping event
11 Reserved

5 Reserved

6
PTM

Program Trace Method
0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

7
WEN

Watchpoint Trace Enable
0 Watchpoint messaging disabled
1 Watchpoint messaging enabled

8–23 Reserved

24–26
OVC[2:0]

Overrun Control
000 Generate overrun messages.
001–010 Reserved
011 Delay processor for BTM / DTM / OTM overruns.
1XX Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

810 Freescale Semiconductor

Development control register 2 is shown in Figure 33-6 and its fields are described in Table 33-6.

27–28
EIC[1:0]

EVTI Control
00 EVTI is used for synchronization (program trace/ data trace)
01 EVTI is used for debug request
1X Reserved

29–31
TM[2:0]

Trace Mode
Any or all of the TM bits may set, enabling one or more traces.
000 No trace
1XX Program trace enabled
X1X Data trace enabled (not supported mode)
XX1 Ownership trace enabled

1 The output port mode control bit (OPC) and MCKO divide bits (MCK_DIV) are shown for clarity. These functions
are controlled globally by the NPC port control register (PCR). These bits are writable in the PCR but have no effect.

Nexus Reg: 0x0003 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EWC 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-6. Development Control Register 2 (DC2)

Table 33-6. DC2 field descriptions

Field Description

0–7
EWC[7:0]

EVTO Watchpoint Configuration
Any or all of the bits in EWC may be set to configure the EVTO watchpoint.
00000000No Watchpoints trigger EVTO
1XXXXXXXWatchpoint #0 (IAC1 from Nexus1) triggers EVTO.
X1XXXXXXWatchpoint #1 (IAC2 from Nexus1) triggers EVTO.
XX1XXXXXWatchpoint #2 (IAC3 from Nexus1) triggers EVTO.
XXX1XXXXWatchpoint #3 (IAC4 from Nexus1) triggers EVTO.
XXXX1XXXWatchpoint #4 (DAC1 from Nexus1) triggers EVTO.
XXXXX1XXWatchpoint #5 (DAC2 from Nexus1) triggers EVTO.
XXXXXX1XWatchpoint #6 (DCNT1 from Nexus1) triggers EVTO.
XXXXXXX1Watchpoint #7 (DCNT2 from Nexus1) triggers EVTO.

8–31 Reserved

Table 33-5. DC1 field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 811

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

33.6.2.4 Development Status (DS) Register

The development status register is used to report system debug status. When debug mode is entered or
exited, or a core-defined low-power mode is entered, a debug status message is transmitted with
DS[31:24]. The external tool can read this register at any time.

Nexus Reg: 0x0004 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DBG 0 0 0 LPC CHK 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-7. Development Status (DS) Register

Table 33-7. DS field descriptions

Field Description

0
DBG

CPU Debug Mode Status
0 CPU not in debug mode
1 CPU in debug mode

1–3 Reserved

4–5
LPC[1:0]

CPU Low-Power Mode Status
00 Normal (run) mode
01 CPU in halted state
10 CPU in stopped state
11 Reserved

6
CHK

CPU Checkstop Status
0 CPU not in checkstop state
1 CPU in checkstop state

7–31 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

812 Freescale Semiconductor

33.6.2.5 Read/Write Access Control/Status (RWCS) Register

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus while the processor is halted
or during runtime. The RWCS register also provides read/write access status information as shown in
Table 33-9.

Nexus Reg: 0x0007 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R AC RW SZ MAP PR BST 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-8. Read/Write Access Control/Status (RWCS) Register

Table 33-8. RWCS field descriptions

Field Description

0
AC

Access Control
0 End access.
1 Start access.

1
RW

Read/Write Select
0 Read access
1 Write access

2–4
SZ[2:0]

Word Size
000 8-bit (byte)
001 16-bit (halfword)
010 32-bit (word)
011 64-bit (doubleword—only in burst mode)
100–111 Reserved (default to word)

5–7
MAP[2:0]

MAP Select
000 Primary memory map
001–111 Reserved

8–9
PR[1:0]

Read/Write Access Priority
00 Lowest access priority
01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

10
BST

Burst Control
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

11–15 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 813

Table 33-9 details the status bit encodings.

33.6.2.6 Read/Write Access Address (RWA) Register

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

16–31
CNT[13:0]

Access Control Count
Number of accesses of word size SZ

30
ERR

Read/Write Access Error
See Table 33-9.

31
DV

Read/Write Access Data Valid
See Table 33-9.

Table 33-9. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x0009 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RWA[0-15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RWA[16-31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-9. Read/Write Access Address (RWA) Register

Table 33-8. RWCS field descriptions (continued)

Field Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

814 Freescale Semiconductor

33.6.2.7 Read/Write Access Data (RWD) Register

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

33.6.2.8 Watchpoint Trigger (WT) Register

The watchpoint trigger register allows the watchpoints defined within the Nexus1 logic to trigger actions.
These watchpoints can control program and/or data trace enable and disable. The WT bits can be used to
produce an address-related window for triggering trace messages.

Table 33-10 details the watchpoint trigger register fields.

Nexus Reg: 0x000A Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RWD[0-15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RWD[16-31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-10. Read/Write Access Data (RWD) Register

Nexus Reg: 0x000B Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PTS PTE 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-11. Watchpoint Trigger (WT) Register

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 815

33.7 Functional description
The NDI block is implemented by integrating the following blocks on the MPC5604B:

• Nexus e200z0 development interface (OnCE and Nexus2p subblocks)

• Nexus port controller (NPC) block

• NPC_HNDSHK module

33.7.1 NPC_HNDSHK module

This module enables debug entry/exit across low power modes (Stop, Halt, standby).

The NPC_HNDSHK supports:

• Setting and clearing of the NPC PCR sync bit on low-power mode entry and exit

• Putting the core into debug mode on low-power mode exit

• Generating a falling edge on the JTAG TDO pad on low-power mode exit

On HALT, STOP, or STANDBY mode entry, the MC_ME asserts the lp_mode_entry_req input after the
clock disable process has completed and before the processor enters its halted or stopped state. The mode
transition will then not proceed until the lp_mode_entry_ack output has been asserted. The notification to
the debugger of a low-power mode entry consists of setting the low-power mode handshake bit in the port
control register (read by the debugger) via the lp_sync_in output. The debugger acknowledges that the
transition into a low-power mode may proceed by clearing the low-power mode handshake bit in the port
control register (written by the debugger), which results in the deassertion of the lp_sync_out input.

In anticipation of the low-power mode exit notification, the TDO pad is driven to `1'.

Table 33-10. WT field descriptions

Field Description

0–2
PTS[2:0]

Program Trace Start Control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

3–5
PTE[2:0]

Program Trace End Control
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

12–31 Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

816 Freescale Semiconductor

On HALT or STOP mode exit, the MC_ME asserts the lp_mode_exit_req input after ensuring that the
regulator and memories are in normal mode and before the processor exits its halted or stopped state. The
mode transition will then not proceed until the lp_mode_exit_ack output has been asserted. The MC_RGM
asserts the exit_from_standby input when executing a reset sequence due to a STANDBY exit. The reset
sequence will then not complete until the lp_mode_exit_ack output has been asserted.

The notification to the debugger of a low-power mode exit consists of driving the TDO pad to `0'. The
debugger acknowledges that the transition from a low-power mode can continue by setting the low-power
mode sync bit in the port control register (written by debugger), which results in the assertion of the
lp_sync_out input.

NOTE
The debugger clock multiplexer may not guarantee glitch free switching.
Therefore, TCK should be disabled from when the debugger clears the sync
bit in ENTRY_CLR until the debugger senses the falling edge of TDO in
TDO_SET.

33.7.2 Enabling Nexus Clients for TAP Access

After the conditions have been met to bring the NDI out of the reset state, the loading of a specific
instruction in the JTAG controller (JTAGC) block is required to grant the NDI ownership of the TAP. Each
Nexus client has its own JTAGC instruction opcode for ownership of the TAP, granting that client the
means to read/write its registers. The JTAGC instruction opcode for each Nexus client is shown in
Table 33-11. After the JTAGC opcode for a client has been loaded, the client is enabled by loading its
NEXUS-ENABLE instruction. The NEXUS-ENABLE instruction opcode for each Nexus client is listed
in Table 33-12. Opcodes for all other instructions supported by Nexus clients can be found in the relevant
sections of this chapter.

Table 33-11. JTAGC Instruction Opcodes to Enable Nexus Clients

JTAGC Instruction Opcode Description

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z0 TAP controller

Table 33-12. Nexus Client JTAG Instructions

Instruction Description Opcode

NPC JTAG Instruction Opcodes

NEXUS_ENABLE Opcode for NPC Nexus ENABLE instruction (4-bits) 0x0

BYPASS Opcode for the NPC BYPASS instruction (4-bits) 0xF

e200z0 OnCE JTAG Instruction Opcodes1

1 Refer to the e200z0 reference manual for a complete list of available OnCE instructions.

NEXUS2_ACCESS Opcode for e200z0 OnCE Nexus ENABLE instruction (10-bits) 0x7C

BYPASS Opcode for the e200z0 OnCE BYPASS instruction (10-bits) 0x7F

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 817

33.7.3 Configuring the NDI for Nexus Messaging

The NDI is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the port configuration register (PCR) located in the NPC is then required to enable the
NDI and select the mode of operation. Asserting MCKO_EN in the PCR places the NDI in enabled mode
and enables MCKO. The frequency of MCKO is selected by writing the MCKO_DIV field. Asserting or
negating the FPM bit selects full-port or reduced-port mode, respectively. When writing to the PCR, the
PCR LSB must be written to a logic zero. Setting the LSB of the PCR enables factory debug mode and
prevents the transmission of Nexus messages.

Table 33-13 describes the NDI configuration options.

33.7.4 Programmable MCKO Frequency

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock, and its frequency is determined by the value of the MCKO_DIV
field in the port configuration register (PCR) located in the NPC. Possible operating frequencies include
one-quarter and one-eighth system clock speed.

Refer to the MCKO_DIV [2:0] field description in Table 33-4 for the MCKO_DIV encodings, where
SYS_CLK represents the system clock frequency. The default value selected if a reserved encoding is
programmed is SYS_CLK2.

33.7.5 Nexus Messaging

Most of the messages transmitted by the NDI include an SRC field. This field is used to identify which
source generated the message. Table 33-14 shows the values used for the SRC field by the different clients
on the MPC5604B. These values are specific to the MPC5604B. The size of the SRC field in transmitted
messages is 4 bits. This value is also specific to the MPC5604B.

33.7.6 EVTO Sharing

The NPC block controls sharing of the EVTO output between all Nexus clients that generate an EVTO
signal. The sharing mechanism is a logical AND of all incoming EVTO signals from Nexus blocks,

Table 33-13. NDI configuration options

MCKO_EN bit of PCR FPM bit of PCR Configuration

0 X Disabled

1 1 Full-Port Mode

1 0 Reduced Port Mode

Table 33-14. SRC Packet Encodings

SRC[3:0] MPC5604B Client

0b0000 e200z0

All other combinations Reserved

MPC5604B/C Microcontroller Reference Manual, Rev. 8

818 Freescale Semiconductor

thereby asserting EVTO whenever any block drives its EVTO. When there is no active MCKO, such as in
disabled mode, the NPC drives EVTO for two system clock periods. EVTO sharing is active as long as the
NDI is not in reset.

33.7.7 Debug Mode Control

On MPC5604B, program breaks can be requested either by using the EVTI pin as a break request, or when
a Nexus event is triggered.

33.7.7.1 EVTI Generated Break Request

To use the EVTI pin as a debug request, the EIC field in the e200z0 Nexus2+ Development Control
Register 1 (DC1[4:3]) must be set to configure the EVTI input as a debug request.

33.7.8 Ownership Trace

33.7.8.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. This is especially useful when the developer is not interested in
debugging at lower levels.

33.7.8.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an ownership trace message (OTM).
The e200z0h processor contains a Power Architecture platform defined process ID register within the
CPU.

The process ID register is updated by the operating system software to provide task/process ID
information. The contents of this register are replicated on the pins of the processor and connected to
Nexus. The process ID register value can be accessed using the mfspr/mtspr instructions.

There is one condition which will cause an ownership trace message: When new information is updated
in the OTR register or process ID register by the e200z0h processor, the data is latched within Nexus, and
is messaged out via the auxiliary port, allowing development tools to trace ownership flow.

Ownership trace information is messaged out in the following format:

Figure 33-12. Ownership Trace Message Format

PROCESS

msb lsb

12

SRC TCODE (000010)

3

6 bits4 bits32 bits

Fixed length = 42 bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 819

33.7.8.3 OTM Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO will discard incoming messages until it has completely emptied the queue. Once emptied, an error
message will be queued. The error encoding will indicate which types of messages attempted to be queued
while the FIFO was being emptied.

If only an OTM message attempts to enter the queue while it is being emptied, the error message will
incorporate the OTM only error encoding (00000). If both OTM and either BTM or DTM messages
attempt to enter the queue, the error message will incorporate the OTM and (program or data) trace error
encoding (00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the
error message will incorporate error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 33-15)

Figure 33-13. Error Message Format

Table 33-15. Error Code Encoding (TCODE = 8)

Error Code
(ECODE)

Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Data trace overrun

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 (Program trace or data trace) and ownership trace overrun

01000 (Program trace or data trace or ownership trace) and watchpoint overrun

01001–0111 Reserved

11000 BTM lost due to collision w/ higher priority message

11001–11111 Reserved

ECODE (00000 / 00111 / 01000)

msb lsb

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

MPC5604B/C Microcontroller Reference Manual, Rev. 8

820 Freescale Semiconductor

33.7.8.4 OTM Flow

Ownership trace messages are generated when the operating system writes to the e200z0h process ID
register or the memory mapped ownership trace register.

The following flow describes the OTM process:

1. The process ID register is a system control register. It is internal to the e200z0h processor and can
be accessed by using PPC instructions mtspr and mfspr. The contents of this register are replicated
on the pins of the processor and connected to Nexus.

2. OTR/process ID register reads do not cause ownership trace messages to be transmitted by the
NZ0H module.

3. If the periodic OTM message counter expires (after 255 queued messages without an OTM), an
OTM is sent using the latched data from the previous OTM or process ID register write.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 821

Appendix A
Register Map

Table A-1. Module base addresses

Module name Base addresses Page

Code Flash A Configuration 0xC3F8_8000 on page 822

Data Flash A Configuration 0xC3F8_C000 on page 823

System Integration Unit Lite (SIUL) 0xC3F9_0000 on page 823

WakeUp Unit 0xC3F9_4000 on page 823

eMIOS_0 0xC3FA_0000 on page 832

eMIOS_1 0xC3FA_4000 on page 837

System Status and Configuration Module (SSCM) 0xC3FD_8000 on page 843

Mode Entry Module (MC_ME) 0xC3FD_C000 on page 843

FXOSC 0xC3FE_0000 on page 846

SXOSC 0xC3FE_0040 on page 846

FIRC 0xC3FE_0060 on page 846

SIRC 0xC3FE_0080 on page 846

FMPLL 0xC3FE_00A0 on page 846

CMU 0xC3FE_0100 on page 846

Clock Generation Module (MC_CGM) 0xC3FE_0370 on page 847

Reset Generation Module (MC_RGM) 0xC3FE_4000 on page 847

Power Control Unit (MC_PCU) 0xC3FE_8000 on page 847

Real Time Counter (RTC/API) 0xC3FE_C000 on page 848

Periodic Interrupt Timer (PIT) 0xC3FF_0000 on page 848

ADC 0xFFE0_0000 on page 849

I2C 0xFFE3_0000 on page 852

LINFlex_0 0xFFE4_0000 on page 853

LINFlex_1 0xFFE4_4000 on page 854

LINFlex_2 0xFFE4_8000 on page 854

LINFlex_3 0xFFE4_C000 on page 855

CTU 0xFFE6_4000 on page 856

CAN sampler 0xFFE7_0000 on page 858

MPU 0xFFF1_0000 on page 858

SWT 0xFFF3_8000 on page 859

MPC5604B/C Microcontroller Reference Manual, Rev. 8

822 Freescale Semiconductor

STM 0xFFF3_C000 on page 860

ECSM 0xFFF4_0000 on page 860

INTC 0xFFF4_8000 on page 862

DSPI_0 0xFFF9_0000 on page 864

DSPI_1 0xFFF9_4000 on page 864

DSPI_2 0xFFF9_8000 on page 865

FlexCAN_0 (CAN0) 0xFFFC_0000 on page 866

FlexCAN_1 (CAN1) 0xFFFC_4000 on page 872

FlexCAN_2 (CAN2) 0xFFFC_8000 on page 878

FlexCAN_3 (CAN3) 0xFFFC_C000 on page 884

FlexCAN_4 (CAN4) 0xFFFD_0000 on page 889

FlexCAN_5 (CAN5) 0xFFFD_4000 on page 895

Table A-2. Detailed register map

Register description Register name
Used
size

Address

Code Flash A Configuration 0xC3F8_8000

Module Configuration Register CFLASH_MCR 32-bit Base + 0x0000

Low/Mid Address Space Block Locking Register CFLASH_LML 32-bit Base + 0x0004

High Address Space Block Locking Register CFLASH_HBL 32-bit Base + 0x0008

Secondary Low/Mid Address Space Block Locking Register CFLASH_SLL 32-bit Base + 0x000C

Low/Mid Address Space Block Select Register CFLASH_LMS 32-bit Base + 0x0010

High Address Space Block Select Register CFLASH_HBS 32-bit Base + 0x0014

Address Register CFLASH_ADR 32-bit Base + 0x0018

Bus Interface Unit Register 0 CFLASH_BIU0 32-bit Base + 0x001C

Bus Interface Unit Register 1 CFLASH_BIU1 32-bit Base + 0x0020

Bus Interface Unit Register 2 CFLASH_BIU2 32-bit Base + 0x0024

Reserved — — (Base + 0x0028) –
(Base + 0x003B)

User Test Register 0 CFLASH_UT0 32-bit Base + 0x003C

User Test Register 1 CFLASH_UT1 32-bit Base + 0x0040

User Test Register 2 CFLASH_UT2 32-bit Base + 0x0044

User Multiple Input Signature Register 0 CFLASH_UMISR0 32-bit Base + 0x0048

User Multiple Input Signature Register 1 CFLASH_UMISR1 32-bit Base + 0x004C

Table A-1. Module base addresses (continued)

Module name Base addresses Page

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 823

User Multiple Input Signature Register 2 CFLASH_UMISR2 32-bit Base + 0x0050

User Multiple Input Signature Register 3 CFLASH_UMISR3 32-bit Base + 0x0054

User Multiple Input Signature Register 4 CFLASH_UMISR4 32-bit Base + 0x0058

Data Flash A Configuration 0xC3F8_C000

Module Configuration Register DFLASH_MCR 32-bit Base + 0x0000

Low/Mid Address Space Block Locking Register DFLASH_LML 32-bit Base + 0x0004

High Address Space Block Locking Register DFLASH_HBL 32-bit Base + 0x0008

Secondary Low/Mid Address Space Block Locking Register DFLASH_SLL 32-bit Base + 0x000C

Low/Mid Address Space Block Select Register DFLASH_LMS 32-bit Base + 0x0010

High Address Space Block Select Register DFLASH_HBS 32-bit Base + 0x0014

Address Register DFLASH_ADR 32-bit Base + 0x0018

Reserved — — (Base + 0x001C) –
(Base + 0x003B)

User Test Register 0 DFLASH_UT0 32-bit Base + 0x003C

User Test Register 1 DFLASH_UT1 32-bit Base + 0x0040

User Test Register 2 DFLASH_UT2 32-bit Base + 0x0044

User Multiple Input Signature Register 0 DFLASH_UMISR0 32-bit Base + 0x0048

User Multiple Input Signature Register 1 DFLASH_UMISR1 32-bit Base + 0x004C

User Multiple Input Signature Register 2 DFLASH_UMISR2 32-bit Base + 0x0050

User Multiple Input Signature Register 3 DFLASH_UMISR3 32-bit Base + 0x0054

User Multiple Input Signature Register 4 DFLASH_UMISR4 32-bit Base + 0x0058

System Integration Unit Lite (SIUL) 0xC3F9_0000

Reserved — — Base + (0x0000 –
0x0003)

MCU ID Register 1 MIDR1 32-bit Base + 0x0004

MCU ID Register 2 MIDR2 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x0013)

Interrupt Status Flag Register ISR 32-bit Base + 0x0014

Interrupt Request Enable Register IRER 32-bit Base + 0x0018

Reserved — — Base + (0x001C –
0x0027)

Interrupt Rising Edge Event Enable IREER 32-bit Base + 0x0028

Interrupt Falling-Edge Event Enable IFEER 32-bit Base + 0x002C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

824 Freescale Semiconductor

IFER Interrupt Filter Enable Register IFER 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x003F)

Pad Configuration Register 0 PCR0 16-bit Base + 0x0040

Pad Configuration Register 1 PCR1 16-bit Base + 0x0042

Pad Configuration Register 2 PCR2 16-bit Base + 0x0044

Pad Configuration Register 3 PCR3 16-bit Base + 0x0046

Pad Configuration Register 4 PCR4 16-bit Base + 0x0048

Pad Configuration Register 5 PCR5 16-bit Base + 0x004A

Pad Configuration Register 6 PCR6 16-bit Base + 0x004C

Pad Configuration Register 7 PCR7 16-bit Base + 0x004E

Pad Configuration Register 8 PCR8 16-bit Base + 0x0050

Pad Configuration Register 9 PCR9 16-bit Base + 0x0052

Pad Configuration Register 10 PCR10 16-bit Base + 0x0054

Pad Configuration Register 11 PCR11 16-bit Base + 0x0056

Pad Configuration Register 12 PCR12 16-bit Base + 0x0058

Pad Configuration Register 13 PCR13 16-bit Base + 0x005A

Pad Configuration Register 14 PCR14 16-bit Base + 0x005C

Pad Configuration Register 15 PCR15 16-bit Base + 0x005E

Pad Configuration Register 16 PCR16 16-bit Base + 0x0060

Pad Configuration Register 17 PCR17 16-bit Base + 0x0062

Pad Configuration Register 18 PCR18 16-bit Base + 0x0064

Pad Configuration Register 19 PCR19 16-bit Base + 0x0066

Pad Configuration Register 20 PCR20 16-bit Base + 0x0068

Pad Configuration Register 21 PCR21 16-bit Base + 0x006A

Pad Configuration Register 22 PCR22 16-bit Base + 0x006C

Pad Configuration Register 23 PCR23 16-bit Base + 0x006E

Pad Configuration Register 24 PCR24 16-bit Base + 0x0070

Pad Configuration Register 25 PCR25 16-bit Base + 0x0072

Pad Configuration Register 26 PCR26 16-bit Base + 0x0074

Pad Configuration Register 27 PCR27 16-bit Base + 0x0076

Pad Configuration Register 28 PCR28 16-bit Base + 0x0078

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 825

Pad Configuration Register 29 PCR29 16-bit Base + 0x007A

Pad Configuration Register 30 PCR30 16-bit Base + 0x007C

Pad Configuration Register 31 PCR31 16-bit Base + 0x007E

Pad Configuration Register 32 PCR32 16-bit Base + 0x0080

Pad Configuration Register 33 PCR33 16-bit Base + 0x0082

Pad Configuration Register 34 PCR34 16-bit Base + 0x0084

Pad Configuration Register 35 PCR35 16-bit Base + 0x0086

Pad Configuration Register 36 PCR36 16-bit Base + 0x0088

Pad Configuration Register 37 PCR37 16-bit Base + 0x008A

Pad Configuration Register 38 PCR38 16-bit Base + 0x008C

Pad Configuration Register 39 PCR39 16-bit Base + 0x008E

Pad Configuration Register 40 PCR40 16-bit Base + 0x0090

Pad Configuration Register 41 PCR41 16-bit Base + 0x0092

Pad Configuration Register 42 PCR42 16-bit Base + 0x0094

Pad Configuration Register 43 PCR43 16-bit Base + 0x0096

Pad Configuration Register 44 PCR44 16-bit Base + 0x0098

Pad Configuration Register 45 PCR45 16-bit Base + 0x009A

Pad Configuration Register 46 PCR46 16-bit Base + 0x009C

Pad Configuration Register 47 PCR47 16-bit Base + 0x009E

Pad Configuration Register 48 PCR48 16-bit Base + 0x00A0

Pad Configuration Register 49 PCR49 16-bit Base + 0x00A2

Pad Configuration Register 50 PCR50 16-bit Base + 0x00A4

Pad Configuration Register 51 PCR51 16-bit Base + 0x00A6

Pad Configuration Register 52 PCR52 16-bit Base + 0x00A8

Pad Configuration Register 53 PCR53 16-bit Base + 0x00AA

Pad Configuration Register 54 PCR54 16-bit Base + 0x00AC

Pad Configuration Register 55 PCR55 16-bit Base + 0x00AE

Pad Configuration Register 56 PCR56 16-bit Base + 0x00B0

Pad Configuration Register 57 PCR57 16-bit Base + 0x00B2

Pad Configuration Register 58 PCR58 16-bit Base + 0x00B4

Pad Configuration Register 59 PCR59 16-bit Base + 0x00B6

Pad Configuration Register 60 PCR60 16-bit Base + 0x00B8

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

826 Freescale Semiconductor

Pad Configuration Register 61 PCR61 16-bit Base + 0x00BA

Pad Configuration Register 62 PCR62 16-bit Base + 0x00BC

Pad Configuration Register 63 PCR63 16-bit Base + 0x00BE

Pad Configuration Register 64 PCR64 16-bit Base + 0x00C0

Pad Configuration Register 65 PCR65 16-bit Base + 0x00C2

Pad Configuration Register 66 PCR66 16-bit Base + 0x00C4

Pad Configuration Register 67 PCR67 16-bit Base + 0x00C6

Pad Configuration Register 68 PCR68 16-bit Base + 0x00C8

Pad Configuration Register 69 PCR69 16-bit Base + 0x00CA

Pad Configuration Register 70 PCR70 16-bit Base + 0x00CC

Pad Configuration Register 71 PCR71 16-bit Base + 0x00CE

Pad Configuration Register 72 PCR72 16-bit Base + 0x00D0

Pad Configuration Register 73 PCR73 16-bit Base + 0x00D2

Pad Configuration Register 74 PCR74 16-bit Base + 0x00D4

Pad Configuration Register 75 PCR75 16-bit Base + 0x00D6

Pad Configuration Register 76 PCR76 16-bit Base + 0x00D8

Pad Configuration Register 77 PCR77 16-bit Base + 0x00DA

Pad Configuration Register 78 PCR78 16-bit Base + 0x00DC

Pad Configuration Register 79 PCR79 16-bit Base + 0x00DE

Pad Configuration Register 80 PCR80 16-bit Base + 0x00E0

Pad Configuration Register 81 PCR81 16-bit Base + 0x00E2

Pad Configuration Register 82 PCR82 16-bit Base + 0x00E4

Pad Configuration Register 83 PCR83 16-bit Base + 0x00E6

Pad Configuration Register 84 PCR84 16-bit Base + 0x00E8

Pad Configuration Register 85 PCR85 16-bit Base + 0x00EA

Pad Configuration Register 86 PCR86 16-bit Base + 0x00EC

Pad Configuration Register 87 PCR87 16-bit Base + 0x00EE

Pad Configuration Register 88 PCR88 16-bit Base + 0x00F0

Pad Configuration Register 89 PCR89 16-bit Base + 0x00F2

Pad Configuration Register 90 PCR90 16-bit Base + 0x00F4

Pad Configuration Register 91 PCR91 16-bit Base + 0x00F6

Pad Configuration Register 92 PCR92 16-bit Base + 0x00F8

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 827

Pad Configuration Register 93 PCR93 16-bit Base + 0x00FA

Pad Configuration Register 94 PCR94 16-bit Base + 0x00FC

Pad Configuration Register 95 PCR95 16-bit Base + 0x00FE

Pad Configuration Register 96 PCR96 16-bit Base + 0x0100

Pad Configuration Register 97 PCR97 16-bit Base + 0x0102

Pad Configuration Register 98 PCR98 16-bit Base + 0x0104

Pad Configuration Register 99 PCR99 16-bit Base + 0x0106

Pad Configuration Register 100 PCR100 16-bit Base + 0x0108

Pad Configuration Register 101 PCR101 16-bit Base + 0x010A

Pad Configuration Register 102 PCR102 16-bit Base + 0x010C

Pad Configuration Register 103 PCR103 16-bit Base + 0x010E

Pad Configuration Register 104 PCR104 16-bit Base + 0x0110

Pad Configuration Register 105 PCR105 16-bit Base + 0x0112

Pad Configuration Register 106 PCR106 16-bit Base + 0x0114

Pad Configuration Register 107 PCR107 16-bit Base + 0x0116

Pad Configuration Register 108 PCR108 16-bit Base + 0x0118

Pad Configuration Register 109 PCR109 16-bit Base + 0x011A

Pad Configuration Register 110 PCR110 16-bit Base + 0x011C

Pad Configuration Register 111 PCR111 16-bit Base + 0x011E

Pad Configuration Register 112 PCR112 16-bit Base + 0x0120

Pad Configuration Register 113 PCR113 16-bit Base + 0x0122

Pad Configuration Register 114 PCR114 16-bit Base + 0x0124

Pad Configuration Register 115 PCR115 16-bit Base + 0x0126

Pad Configuration Register 116 PCR116 16-bit Base + 0x0128

Pad Configuration Register 117 PCR117 16-bit Base + 0x012A

Pad Configuration Register 118 PCR118 16-bit Base + 0x012C

Pad Configuration Register 119 PCR119 16-bit Base + 0x012E

Pad Configuration Register 120 PCR120 16-bit Base + 0x0130

Pad Configuration Register 121 PCR121 16-bit Base + 0x0132

Pad Configuration Register 122 PCR122 16-bit Base + 0x0134

Reserved — — Base + (0x0136 –
0x04FF)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

828 Freescale Semiconductor

Pad Selection for Multiplexed Inputs PSMI0_3 32-bit Base + 0x0500

Pad Selection for Multiplexed Inputs PSMI4_7 32-bit Base + 0x0504

Pad Selection for Multiplexed Inputs PSMI8_11 32-bit Base + 0x0508

Pad Selection for Multiplexed Inputs PSMI12_15 32-bit Base + 0x050C

Pad Selection for Multiplexed Inputs PSMI16_19 32-bit Base + 0x0510

Pad Selection for Multiplexed Inputs PSMI20_23 32-bit Base + 0x0514

Pad Selection for Multiplexed Inputs PSMI24_27 32-bit Base + 0x0518

Pad Selection for Multiplexed Inputs PSMI28_31 32-bit Base + 0x051C

Reserved — — Base + (0x0520 –
0x05FF)

GPIO Pad Data Output Register GPDO0_3 32-bit Base + 0x0600

GPIO Pad Data Output Register GPDO4_7 32-bit Base + 0x0604

GPIO Pad Data Output Register GPDO8_11 32-bit Base + 0x0608

GPIO Pad Data Output Register GPDO12_15 32-bit Base + 0x060C

GPIO Pad Data Output Register GPDO16_19 32-bit Base + 0x0610

GPIO Pad Data Output Register GPDO20_23 32-bit Base + 0x0614

GPIO Pad Data Output Register GPDO24_27 32-bit Base + 0x0618

GPIO Pad Data Output Register GPDO28_31 32-bit Base + 0x061C

GPIO Pad Data Output Register GPDO32_35 32-bit Base + 0x0620

GPIO Pad Data Output Register GPDO36_39 32-bit Base + 0x0624

GPIO Pad Data Output Register GPDO40_43 32-bit Base + 0x0628

GPIO Pad Data Output Register GPDO44_47 32-bit Base + 0x062C

GPIO Pad Data Output Register GPDO48_51 32-bit Base + 0x0630

GPIO Pad Data Output Register GPDO52_55 32-bit Base + 0x0634

GPIO Pad Data Output Register GPDO56_59 32-bit Base + 0x0638

GPIO Pad Data Output Register GPDO60_63 32-bit Base + 0x063C

GPIO Pad Data Output Register GPDO64_67 32-bit Base + 0x0640

GPIO Pad Data Output Register GPDO68_71 32-bit Base + 0x0644

GPIO Pad Data Output Register GPDO72_75 32-bit Base + 0x0648

GPIO Pad Data Output Register GPDO76_79 32-bit Base + 0x064C

GPIO Pad Data Output Register GPDO80_83 32-bit Base + 0x0650

GPIO Pad Data Output Register GPDO84_87 32-bit Base + 0x0654

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 829

GPIO Pad Data Output Register GPDO88_91 32-bit Base + 0x0658

GPIO Pad Data Output Register GPDO92_95 32-bit Base + 0x065C

GPIO Pad Data Output Register GPDO96_99 32-bit Base + 0x0660

GPIO Pad Data Output Register GPDO100_103 32-bit Base + 0x0664

GPIO Pad Data Output Register GPDO104_107 32-bit Base + 0x0668

GPIO Pad Data Output Register GPDO108_111 32-bit Base + 0x066C

GPIO Pad Data Output Register GPDO112_115 32-bit Base + 0x0670

GPIO Pad Data Output Register GPDO116_119 32-bit Base + 0x0674

GPIO Pad Data Output Register GPDO120_123 32-bit Base + 0x0678

Reserved — — Base + (0x067C –
0x07FF)

GPIO Pad Data Input Register GPDI0_3 32-bit Base + 0x0800

GPIO Pad Data Input Register GPDI4_7 32-bit Base + 0x0804

GPIO Pad Data Input Register GPDI8_11 32-bit Base + 0x0808

GPIO Pad Data Input Register GPDI12_15 32-bit Base + 0x080C

GPIO Pad Data Input Register GPDI16_19 32-bit Base + 0x0810

GPIO Pad Data Input Register GPDI20_23 32-bit Base + 0x0814

GPIO Pad Data Input Register GPDI24_27 32-bit Base + 0x0818

GPIO Pad Data Input Register GPDI28_31 32-bit Base + 0x081C

GPIO Pad Data Input Register GPDI32_35 32-bit Base + 0x0820

GPIO Pad Data Input Register GPDI36_39 32-bit Base + 0x0824

GPIO Pad Data Input Register GPDI40_43 32-bit Base + 0x0828

GPIO Pad Data Input Register GPDI44_47 32-bit Base + 0x082C

GPIO Pad Data Input Register GPDI48_51 32-bit Base + 0x0830

GPIO Pad Data Input Register GPDI52_55 32-bit Base + 0x0834

GPIO Pad Data Input Register GPDI56_59 32-bit Base + 0x0838

GPIO Pad Data Input Register GPDI60_63 32-bit Base + 0x083C

GPIO Pad Data Input Register GPDI64_67 32-bit Base + 0x0840

GPIO Pad Data Input Register GPDI68_71 32-bit Base + 0x0844

GPIO Pad Data Input Register GPDI72_75 32-bit Base + 0x0848

GPIO Pad Data Input Register GPDI76_79 32-bit Base + 0x084C

GPIO Pad Data Input Register GPDI80_83 32-bit Base + 0x0850

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

830 Freescale Semiconductor

GPIO Pad Data Input Register GPDI84_87 32-bit Base + 0x0854

GPIO Pad Data Input Register GPDI88_91 32-bit Base + 0x0858

GPIO Pad Data Input Register GPDI92_95 32-bit Base + 0x085C

GPIO Pad Data Input Register GPDI96_99 32-bit Base + 0x0860

GPIO Pad Data Input Register GPDI100_103 32-bit Base + 0x0864

GPIO Pad Data Input Register GPDI104_107 32-bit Base + 0x0868

GPIO Pad Data Input Register GPDI108_111 32-bit Base + 0x086C

GPIO Pad Data Input Register GPDI112_115 32-bit Base + 0x0870

GPIO Pad Data Input Register GPDI116_119 32-bit Base + 0x0874

GPIO Pad Data Input Register GPDI120_123 32-bit Base + 0x0878

Reserved — — Base + (0x087C –
0x0BFF)

Parallel GPIO Pad Data Out Register PGPDO0 32-bit Base + 0x0C00

Parallel GPIO Pad Data Out Register PGPDO1 32-bit Base + 0x0C04

Parallel GPIO Pad Data Out Register PGPDO2 32-bit Base + 0x0C08

Parallel GPIO Pad Data Out Register PGPDO3 32-bit Base + 0x0C0C

Reserved — — (Base + 0x0C10) –
(Base + 0x0C3F)

Parallel GPIO Pad Data In Register PGPDI0 32-bit Base + 0x0C40

Parallel GPIO Pad Data In Register PGPDI1 32-bit Base + 0x0C44

Parallel GPIO Pad Data In Register PGPDI2 32-bit Base + 0x0C48

Parallel GPIO Pad Data In Register PGPDI3 32-bit Base + 0x0C4C

Reserved — — (Base + 0x0C50) –
(Base + 0x0C7F)

Masked Parallel GPIO Pad Data Out Register MPGPDO0 32-bit Base + 0x0C80

Masked Parallel GPIO Pad Data Out Register MPGPDO1 32-bit Base + 0x0C84

Masked Parallel GPIO Pad Data Out Register MPGPDO2 32-bit Base + 0x0C88

Masked Parallel GPIO Pad Data Out Register MPGPDO3 32-bit Base + 0x0C8C

Masked Parallel GPIO Pad Data Out Register MPGPDO4 32-bit Base + 0x0C90

Masked Parallel GPIO Pad Data Out Register MPGPDO5 32-bit Base + 0x0C94

Masked Parallel GPIO Pad Data Out Register MPGPDO6 32-bit Base + 0x0C98

Masked Parallel GPIO Pad Data Out Register MPGPDO7 32-bit Base + 0x0C9C

Reserved — — Base + (0x0CA0 –
0x0FFF)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 831

Interrupt Filter Maximum Counter Register IFMC0 32-bit Base + 0x1000

Interrupt Filter Maximum Counter Register IFMC1 32-bit Base + 0x1004

Interrupt Filter Maximum Counter Register IFMC2 32-bit Base + 0x1008

Interrupt Filter Maximum Counter Register IFMC3 32-bit Base + 0x100C

Interrupt Filter Maximum Counter Register IFMC4 32-bit Base + 0x1010

Interrupt Filter Maximum Counter Register FMC5 32-bit Base + 0x1014

Interrupt Filter Maximum Counter Register IFMC6 32-bit Base + 0x1018

Interrupt Filter Maximum Counter Register IFMC7 32-bit Base + 0x101C

Interrupt Filter Maximum Counter Register IFMC8 32-bit Base + 0x1020

Interrupt Filter Maximum Counter Register IFMC9 32-bit Base + 0x1024

Interrupt Filter Maximum Counter Register IFMC10 32-bit Base + 0x1028

Interrupt Filter Maximum Counter Register IFMC11 32-bit Base + 0x102C

Interrupt Filter Maximum Counter Register IFMC12 32-bit Base + 0x1030

Interrupt Filter Maximum Counter Register IFMC13 32-bit Base + 0x1034

Interrupt Filter Maximum Counter Register IFMC14 32-bit Base + 0x1038

Interrupt Filter Maximum Counter Register IFMC15 32-bit Base + 0x103C

Reserved — — (Base + 0x1044 –
0x107C)

Inerrupt Filter Clock Prescaler Register IFCP 32-bit Base + 0x1080

Reserved — — Base + (0x1084 –
0x3FFF)

WakeUp Unit 0xC3F9_4000

NMI Status Flag Register WKPU_NSR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x0007)

NMI Configuration Register WKPU_NCR 32-bit Base + 0x0008

Reserved — — (Base + 0x000C) –
(Base + 0x0013)

Wakeup/Interrupt Status Flag Register WKPU_WISR 32-bit Base + 0x0014

Interrupt Request Enable Register WKPU_IRER 32-bit Base + 0x0018

Wakeup Request Enable Register WKPU_WRER 32-bit Base + 0x001C

Reserved — — (Base + 0x0020) –
(Base + 0x0027)

Wakeup/Interrupt Rising-Edge Event Enable Register WKPU_WIREER 32-bit Base + 0x0028

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

832 Freescale Semiconductor

Wakeup/Interrupt Falling-Edge Event Enable Register WKPU_WIFEER 32-bit Base + 0x002C

Wakeup/Interrupt Filter Enable Register WKPU_WIFER 32-bit Base + 0x0030

Wakeup/Interrupt Pullup Enable Register WKPU_WIPUER 32-bit Base + 0x0034

Reserved — — (Base + 0x0038) –
(Base + 0xFFFF)

eMIOS_0 0xC3FA_0000

EMIOS Module Configuration Register EMIOS0_MCR 32-bit Base + 0x0000

EMIOS Global FLAG Register EMIOS0_GFLAG 32-bit Base + 0x0004

EMIOS Output Update Disable Register EMIOS0_OUDIS 32-bit Base + 0x0008

EMIOS Disable Channel Register EMIOS0_UCDIS 32-bit Base + 0x000C

Reserved — — (Base + 0x0010) –
(Base + 0x001F)

eMIOS_0 UC0 A Register EMIOS0_UC0_A 32-bit Base + 0x0020

eMIOS_0 UC0 B Register EMIOS0_UC0_B 32-bit Base + 0x0024

eMIOS_0 UC0 CNT EMIOS0_UC0_CNT 32-bit Base + 0x0028

eMIOS_0 UC0 Control Register EMIOS0_UC0_SC 32-bit Base + 0x002C

eMIOS_0 UC0 Status Register EMIOS0_UC0_SS 32-bit Base + 0x0030

Reserved — — Base + 0x0034 –
Base + 0x003F

eMIOS_0 UC1 A Register EMIOS0_UC1_A 32-bit Base + 0x0040

eMIOS_0 UC1 B Register EMIOS0_UC1_B 32-bit Base + 0x0044

Reserved — — Base + 0x0048 -–
Base + 0x004B

eMIOS_0 UC1 Control Register EMIOS0_UC1_SC 32-bit Base + 0x004C

eMIOS_0 UC1 Status Register EMIOS0_UC1_SS 32-bit Base + 0x0050

Reserved — — Base + 0x0054 –
Base + 0x005F

eMIOS_0 UC2 A Register EMIOS0_UC2_A 32-bit Base + 0x0060

eMIOS_0 UC2 B Register EMIOS0_UC2_B 32-bit Base + 0x0064

Reserved — — Base + 0x0068 –
Base + 0x006B

eMIOS_0 UC2 Control Register EMIOS0_UC2_SC 32-bit Base + 0x006C

eMIOS_0 UC2 Status Register EMIOS0_UC2_SS 32-bit Base + 0x0070

Reserved — — Base + 0x0074 –
Base + 0x007F

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 833

eMIOS_0 UC3 A Register EMIOS0_UC3_A 32-bit Base + 0x0080

eMIOS_0 UC3 B Register EMIOS0_UC3_B 32-bit Base + 0x0084

Reserved — — Base + 0x0088 –
Base + 0x008B

eMIOS_0 UC3 Control Register EMIOS0_UC3_SC 32-bit Base + 0x008C

eMIOS_0 UC3 Status Register EMIOS0_UC3_SS 32-bit Base + 0x0090

Reserved — — Base + 0x0094 –
Base + 0x009F

eMIOS_0 UC4 A Register EMIOS0_UC4_A 32-bit Base + 0x00A0

eMIOS_0 UC4 B Register EMIOS0_UC4_B 32-bit Base + 0x00A4

Reserved — — Base + 0x00A8 –
Base + 0x00AB

eMIOS_0 UC4 Control Register EMIOS0_UC4_SC 32-bit Base + 0x00AC

eMIOS_0 UC4 Status Register EMIOS0_UC4_SS 32-bit Base + 0x00B0

Reserved — — Base + 0x00B4 –
Base + 0x00BF

eMIOS_0 UC5 A Register EMIOS0_UC5_A 32-bit Base + 0x00C0

eMIOS_0 UC5 B Register EMIOS0_UC5_B 32-bit Base + 0x00C4

Reserved — — Base + 0x00C8 –
Base + 0x00CB

eMIOS_0 UC5 Control Register EMIOS0_UC5_SC 32-bit Base + 0x00CC

eMIOS_0 UC5 Status Register EMIOS0_UC5_SS 32-bit Base + 0x00D0

Reserved — — Base + 0x00D4 –
Base + 0x00DF

eMIOS_0 UC6 A Register EMIOS0_UC6_A 32-bit Base + 0x00E0

eMIOS_0 UC6 B Register EMIOS0_UC6_B 32-bit Base + 0x00E4

Reserved — — Base + 0x00E8 –
Base + 0x00EB

eMIOS_0 UC6 Control Register EMIOS0_UC6_SC 32-bit Base + 0x00EC

eMIOS_0 UC6 Status Register EMIOS0_UC6_SS 32-bit Base + 0x00F0

Reserved — — Base + 0x00F4 –
Base + 0x00FF

eMIOS_0 UC7 A Register EMIOS0_UC7_A 32-bit Base + 0x0100

eMIOS_0 UC7 B Register EMIOS0_UC7_B 32-bit Base + 0x0104

Reserved — — Base + 0x0108 –
Base + 0x010B

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

834 Freescale Semiconductor

eMIOS_0 UC7 Control Register EMIOS0_UC7_SC 32-bit Base + 0x010C

eMIOS_0 UC7 Status Register EMIOS0_UC7_SS 32-bit Base + 0x0110

Reserved — — Base + 0x0114 –
Base + 0x011F

eMIOS_0 UC8 A Register EMIOS0_UC8_A 32-bit Base + 0x0120

eMIOS_0 UC8 B Register EMIOS0_UC8_B 32-bit Base + 0x0124

eMIOS_0 UC8 CNT EMIOS0_UC8_CNT 32-bit Base + 0x0128

eMIOS_0 UC8 Control Register EMIOS0_UC8_SC 32-bit Base + 0x012C

eMIOS_0 UC8 Status Register EMIOS0_UC8_SS 32-bit Base + 0x0130

Reserved — — Base + 0x0134 –
Base + 0x013F

eMIOS_0 UC9 A Register EMIOS0_UC9_A 32-bit Base + 0x0140

eMIOS_0 UC9 B Register EMIOS0_UC9_B 32-bit Base + 0x0144

Reserved — — Base + 0x0148 –
Base + 0x014B

eMIOS_0 UC9 Control Register EMIOS0_UC9_SC 32-bit Base + 0x014C

eMIOS_0 UC9 Status Register EMIOS0_UC9_SS 32-bit Base + 0x0150

Reserved — — Base + 0x0154 –
Base + 0x015F

eMIOS_0 UC10 A Register EMIOS0_UC10_A 32-bit Base + 0x0160

eMIOS_0 UC10 B Register EMIOS0_UC10_B 32-bit Base + 0x0164

Reserved — — Base + 0x0168 –
Base + 0x016B

eMIOS_0 UC10 Control Register EMIOS0_UC10_SC 32-bit Base + 0x016C

eMIOS_0 UC10 Status Register EMIOS0_UC10_SS 32-bit Base + 0x0170

Reserved — — Base + 0x0174 –
Base + 0x017F

eMIOS_0 UC11 A Register EMIOS0_UC11_A 32-bit Base + 0x0180

eMIOS_0 UC11 B Register EMIOS0_UC11_B 32-bit Base + 0x0184

Reserved — — Base + 0x0188 –
Base + 0x018B

eMIOS_0 UC11 Control Register EMIOS0_UC11_SC 32-bit Base + 0x018C

eMIOS_0 UC11 Status Register EMIOS0_UC11_SS 32-bit Base + 0x0190

Reserved — — Base + 0x0194 –
Base + 0x019F

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 835

eMIOS_0 UC12 A Register EMIOS0_UC12_A 32-bit Base + 0x01A0

eMIOS_0 UC12 B Register EMIOS0_UC12_B 32-bit Base + 0x01A4

Reserved — — Base + 0x01A8 –
Base + 0x01AB

eMIOS_0 UC12 Control Register EMIOS0_UC12_SC 32-bit Base + 0x01AC

eMIOS_0 UC12 Status Register EMIOS0_UC12_SS 32-bit Base + 0x01B0

Reserved — — Base + 0x01B4 –
Base + 0x01BF

eMIOS_0 UC13 A Register EMIOS0_UC13_A 32-bit Base + 0x01C0

eMIOS_0 UC13 B Register EMIOS0_UC13_B 32-bit Base + 0x01C4

Reserved — — Base + 0x01C8 –
Base + 0x01CB

eMIOS_0 UC13 Control Register EMIOS0_UC13_SC 32-bit Base + 0x01CC

eMIOS_0 UC13 Status Register EMIOS0_UC13_SS 32-bit Base + 0x01D0

Reserved — — Base + 0x01D4 –
Base + 0x01DF

eMIOS_0 UC14 A Register EMIOS0_UC14_A 32-bit Base + 0x01E0

eMIOS_0 UC14 B Register EMIOS0_UC14_B 32-bit Base + 0x01E4

Reserved — — Base + 0x01E8 –
Base + 0x01EB

eMIOS_0 UC14 Control Register EMIOS0_UC14_SC 32-bit Base + 0x01EC

eMIOS_0 UC14 Status Register EMIOS0_UC14_SS 32-bit Base + 0x01F0

Reserved — — Base + 0x01F4 –
Base + 0x01FF

eMIOS_0 UC15 A Register EMIOS0_UC15_A 32-bit Base + 0x0200

eMIOS_0 UC15 B Register EMIOS0_UC15_B 32-bit Base + 0x0204

Reserved — — Base + 0x0208 –
Base + 0x020B

eMIOS_0 UC15 Control Register EMIOS0_UC15_SC 32-bit Base + 0x020C

eMIOS_0 UC15 Status Register EMIOS0_UC15_SS 32-bit Base + 0x0210

Reserved — — Base + 0x0214 –
Base + 0x021F

eMIOS_0 UC16 A Register EMIOS0_UC16_A 32-bit Base + 0x0220

eMIOS_0 UC16 B Register EMIOS0_UC16_B 32-bit Base + 0x0224

eMIOS_0 UC16 CNT EMIOS0_UC16_CNT 32-bit Base + 0x0228

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

836 Freescale Semiconductor

eMIOS_0 UC16 Control Register EMIOS0_UC16_SC 32-bit Base + 0x022C

eMIOS_0 UC16 Status Register EMIOS0_UC16_SS 32-bit Base + 0x0230

Reserved — — Base + 0x0234 –
Base + 0x023F

eMIOS_0 UC17 A Register EMIOS0_UC17_A 32-bit Base + 0x0240

eMIOS_0 UC17 B Register EMIOS0_UC17_B 32-bit Base + 0x0244

Reserved — — Base + 0x0248 –
Base + 0x024B

eMIOS_0 UC17 Control Register EMIOS0_UC17_SC 32-bit Base + 0x024C

eMIOS_0 UC17 Status Register EMIOS0_UC17_SS 32-bit Base + 0x0250

Reserved — — Base + 0x0254 –
Base + 0x025F

eMIOS_0 UC18 A Register EMIOS0_UC18_A 32-bit Base + 0x0260

eMIOS_0 UC18 B Register EMIOS0_UC18_B 32-bit Base + 0x0264

Reserved — — Base + 0x0268 –
Base + 0x026B

eMIOS_0 UC18 Control Register EMIOS0_UC18_SC 32-bit Base + 0x026C

eMIOS_0 UC18 Status Register EMIOS0_UC18_SS 32-bit Base + 0x0270

Reserved — — Base + 0x0274 –
Base + 0x027F

eMIOS_0 UC19 A Register EMIOS0_UC19_A 32-bit Base + 0x0280

eMIOS_0 UC19 B Register EMIOS0_UC19_B 32-bit Base + 0x0284

Reserved — — Base + 0x0288 –
Base + 0x028B

eMIOS_0 UC19 Control Register EMIOS0_UC19_SC 32-bit Base + 0x028C

eMIOS_0 UC19 Status Register EMIOS0_UC19_SS 32-bit Base + 0x0290

Reserved — — Base + 0x0294 –
Base + 0x029F

eMIOS_0 UC20 A Register EMIOS0_UC20_A 32-bit Base + 0x02A0

eMIOS_0 UC20 B Register EMIOS0_UC20_B 32-bit Base + 0x02A4

Reserved — — Base + 0x02A8 –
Base + 0x02AB

eMIOS_0 UC20 Control Register EMIOS0_UC20_SC 32-bit Base + 0x02AC

eMIOS_0 UC20 Status Register EMIOS0_UC20_SS 32-bit Base + 0x02B0

Reserved — — Base + 0x02B4 –
Base + 0x02BF

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 837

eMIOS_0 UC21 A Register EMIOS0_UC21_A 32-bit Base + 0x02C0

eMIOS_0 UC21 B Register EMIOS0_UC21_B 32-bit Base + 0x02C4

Reserved — — Base + 0x02C8 –
Base + 0x02CB

eMIOS_0 UC21 Control Register EMIOS0_UC21_SC 32-bit Base + 0x02CC

eMIOS_0 UC21 Status Register EMIOS0_UC21_SS 32-bit Base + 0x02D0

Reserved — — Base + 0x02D4 –
Base + 0x02DF

eMIOS_0 UC22 A Register EMIOS0_UC22_A 32-bit Base + 0x02E0

eMIOS_0 UC22 B Register EMIOS0_UC22_B 32-bit Base + 0x02E4

Reserved — — Base + 0x02E8 –
Base + 0x02EB

eMIOS_0 UC22 Control Register EMIOS0_UC22_SC 32-bit Base + 0x02EC

eMIOS_0 UC22 Status Register EMIOS0_UC22_SS 32-bit Base + 0x02F0

Reserved — — Base + 0x02F4 –
Base + 0x02FF

eMIOS_0 UC23 A Register EMIOS0_UC23_A 32-bit Base + 0x0300

eMIOS_0 UC23 B Register EMIOS0_UC23_B 32-bit Base + 0x0304

eMIOS_0 UC23 CNT EMIOS0_UC23_CNT 32-bit Base + 0x0308

eMIOS_0 UC23 Control Register EMIOS0_UC23_SC 32-bit Base + 0x030C

eMIOS_0 UC23 Status Register EMIOS0_UC23_SS 32-bit Base + 0x0310

Reserved — — Base + 0x0314 –
Base + 0x031F

eMIOS_1 0xC3FA_4000

EMIOS Module Configuration Register eMIOS1_MCR 32-bit Base + 0x0000

EMIOS Global FLAG Register eMIOS1_GFLAG 32-bit Base + 0x0004

EMIOS Output Update Disable Register eMIOS1_OUDIS 32-bit Base + 0x0008

EMIOS Disable Channel Register eMIOS1_UCDIS 32-bit Base + 0x000C

Reserved — — (Base + 0x001C) –
(Base + 0x001F)

eMIOS_1 UC0 A Register eMIOS1_UC0_A 32-bit Base + 0x0020

eMIOS_1 UC0 B Register eMIOS1_UC0_B 32-bit Base + 0x0024

eMIOS_1 UC0 CNT eMIOS1_UC0_CNT 32-bit Base + 0x0028

eMIOS_1 UC0 Control Register eMIOS1_UC0_SC 32-bit Base + 0x002C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

838 Freescale Semiconductor

eMIOS_1 UC0 Status Register eMIOS1_UC0_SS 32-bit Base + 0x0030

Reserved — — Base + 0x0034 –
Base + 0x003F

eMIOS_1 UC1 A Register eMIOS1_UC1_A 32-bit Base + 0x0040

eMIOS_1 UC1 B Register eMIOS1_UC1_B 32-bit Base + 0x0044

Reserved — — Base + 0x0048 –
Base + 0x004B

eMIOS_1 UC1 Control Register eMIOS1_UC1_SC 32-bit Base + 0x004C

eMIOS_1 UC1 Status Register eMIOS1_UC1_SS 32-bit Base + 0x0050

Reserved — — Base + 0x0054 –
Base + 0x005F

eMIOS_1 UC2 A Register eMIOS1_UC2_A 32-bit Base + 0x0060

eMIOS_1 UC2 B Register eMIOS1_UC2_B 32-bit Base + 0x0064

Reserved — — Base + 0x0068 –
Base + 0x006B

eMIOS_1 UC2 Control Register eMIOS1_UC2_SC 32-bit Base + 0x006C

eMIOS_1 UC2 Status Register eMIOS1_UC2_SS 32-bit Base + 0x0070

Reserved — — Base + 0x0074 –
Base + 0x007F

eMIOS_1 UC3 A Register eMIOS1_UC3_A 32-bit Base + 0x0080

eMIOS_1 UC3 B Register eMIOS1_UC3_B 32-bit Base + 0x0084

Reserved — — Base + 0x0088 –
Base + 0x008B

eMIOS_1 UC3 Control Register eMIOS1_UC3_SC 32-bit Base + 0x008C

eMIOS_1 UC3 Status Register eMIOS1_UC3_SS 32-bit Base + 0x0090

Reserved — — Base + 0x0094 –
Base + 0x009F

eMIOS_1 UC4 A Register eMIOS1_UC4_A 32-bit Base + 0x00A0

eMIOS_1 UC4 B Register eMIOS1_UC4_B 32-bit Base + 0x00A4

Reserved — — Base + 0x00A8 –
Base + 0x00AB

eMIOS_1 UC4 Control Register eMIOS1_UC4_SC 32-bit Base + 0x00AC

eMIOS_1 UC4 Status Register eMIOS1_UC4_SS 32-bit Base + 0x00B0

Reserved — — Base + 0x00B4 –
Base + 0x00BF

eMIOS_1 UC5 A Register eMIOS1_UC5_A 32-bit Base + 0x00C0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 839

eMIOS_1 UC5 B Register eMIOS1_UC5_B 32-bit Base + 0x00C4

Reserved — — Base + 0x00C8 –
Base + 0x00CB

eMIOS_1 UC5 Control Register eMIOS1_UC5_SC 32-bit Base + 0x00CC

eMIOS_1 UC5 Status Register eMIOS1_UC5_SS 32-bit Base + 0x00D0

Reserved — — Base + 0x00D4 –
Base + 0x00DF

eMIOS_1 UC6 A Register eMIOS1_UC6_A 32-bit Base + 0x00E0

eMIOS_1 UC6 B Register eMIOS1_UC6_B 32-bit Base + 0x00E4

Reserved — — Base + 0x00E8 –
Base + 0x00EB

eMIOS_1 UC6 Control Register eMIOS1_UC6_SC 32-bit Base + 0x00EC

eMIOS_1 UC6 Status Register eMIOS1_UC6_SS 32-bit Base + 0x00F0

Reserved — — Base + 0x00F4 –
Base + 0x00FF

eMIOS_1 UC7 A Register eMIOS1_UC7_A 32-bit Base + 0x0100

eMIOS_1 UC7 B Register eMIOS1_UC7_B 32-bit Base + 0x0104

Reserved — — Base + 0x0108 –
Base + 0x010B

eMIOS_1 UC7 Control Register eMIOS1_UC7_SC 32-bit Base + 0x010C

eMIOS_1 UC7 Status Register eMIOS1_UC7_SS 32-bit Base + 0x0110

Reserved — — Base + 0x0114 –
Base + 0x011F

eMIOS_1 UC8 A Register eMIOS1_UC8_A 32-bit Base + 0x0120

eMIOS_1 UC8 B Register eMIOS1_UC8_B 32-bit Base + 0x0124

eMIOS_1 UC8 CNT eMIOS1_UC8_CNT 32-bit Base + 0x0128

eMIOS_1 UC8 Control Register eMIOS1_UC8_SC 32-bit Base + 0x012C

eMIOS_1 UC8 Status Register eMIOS1_UC8_SS 32-bit Base + 0x0130

Reserved — — Base + 0x0134 –
Base + 0x013F

eMIOS_1 UC9 A Register eMIOS1_UC9_A 32-bit Base + 0x0140

eMIOS_1 UC9 B Register eMIOS1_UC9_B 32-bit Base + 0x0144

Reserved — — Base + 0x0148 –
Base + 0x014B

eMIOS_1 UC9 Control Register eMIOS1_UC9_SC 32-bit Base + 0x014C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

840 Freescale Semiconductor

eMIOS_1 UC9 Status Register eMIOS1_UC9_SS 32-bit Base + 0x0150

Reserved — — Base + 0x0154 –
Base + 0x015F

eMIOS_1 UC10 A Register eMIOS1_UC10_A 32-bit Base + 0x0160

eMIOS_1 UC10 B Register eMIOS1_UC10_B 32-bit Base + 0x0164

Reserved — — Base + 0x0168 –
Base + 0x016B

eMIOS_1 UC10 Control Register eMIOS1_UC10_SC 32-bit Base + 0x016C

eMIOS_1 UC10 Status Register eMIOS1_UC10_SS 32-bit Base + 0x0170

Reserved — — Base + 0x0174 –
Base + 0x017F

eMIOS_1 UC11 A Register eMIOS1_UC11_A 32-bit Base + 0x0180

eMIOS_1 UC11 B Register eMIOS1_UC11_B 32-bit Base + 0x0184

Reserved — — Base + 0x0188 –
Base + 0x018B

eMIOS_1 UC11 Control Register eMIOS1_UC11_SC 32-bit Base + 0x018C

eMIOS_1 UC11 Status Register eMIOS1_UC11_SS 32-bit Base + 0x0190

Reserved — — Base + 0x0194 –
Base + 0x019F

eMIOS_1 UC12 A Register eMIOS1_UC12_A 32-bit Base + 0x01A0

eMIOS_1 UC12 B Register eMIOS1_UC12_B 32-bit Base + 0x01A4

Reserved — — Base + 0x01A8 –
Base + 0x01AB

eMIOS_1 UC12 Control Register eMIOS1_UC12_SC 32-bit Base + 0x01AC

eMIOS_1 UC12 Status Register eMIOS1_UC12_SS 32-bit Base + 0x01B0

Reserved — — Base + 0x01B4 –
Base + 0x01BF

eMIOS_1 UC13 A Register eMIOS1_UC13_A 32-bit Base + 0x01C0

eMIOS_1 UC13 B Register eMIOS1_UC13_B 32-bit Base + 0x01C4

Reserved — — Base + 0x01C8 –
Base + 0x01CB

eMIOS_1 UC13 Control Register eMIOS1_UC13_SC 32-bit Base + 0x01CC

eMIOS_1 UC13 Status Register eMIOS1_UC13_SS 32-bit Base + 0x01D0

Reserved — — Base + 0x01D4 –
Base + 0x01DF

eMIOS_1 UC14 A Register eMIOS1_UC14_A 32-bit Base + 0x01E0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 841

eMIOS_1 UC14 B Register eMIOS1_UC14_B 32-bit Base + 0x01E4

Reserved — — Base + 0x01E8 –
Base + 0x01EB

eMIOS_1 UC14 Control Register eMIOS1_UC14_SC 32-bit Base + 0x01EC

eMIOS_1 UC14 Status Register eMIOS1_UC14_SS 32-bit Base + 0x01F0

Reserved — — Base + 0x01F4 –
Base + 0x01FF

eMIOS_1 UC15 A Register eMIOS1_UC15_A 32-bit Base + 0x0200

eMIOS_1 UC15 B Register eMIOS1_UC15_B 32-bit Base + 0x0204

Reserved — — Base + 0x0208 –
Base + 0x020B

eMIOS_1 UC15 Control Register eMIOS1_UC15_SC 32-bit Base + 0x020C

eMIOS_1 UC15 Status Register eMIOS1_UC15_SS 32-bit Base + 0x0210

Reserved — — Base + 0x0214 –
Base + 0x021F

eMIOS_1 UC16 A Register eMIOS1_UC16_A 32-bit Base + 0x0220

eMIOS_1 UC16 B Register eMIOS1_UC16_B 32-bit Base + 0x0224

eMIOS_1 UC16 CNT eMIOS1_UC16_CNT 32-bit Base + 0x0228

eMIOS_1 UC16 Control Register eMIOS1_UC16_SC 32-bit Base + 0x022C

eMIOS_1 UC16 Status Register eMIOS1_UC16_SS 32-bit Base + 0x0230

Reserved — — Base + 0x0234 –
Base + 0x023F

eMIOS_1 UC17 A Register eMIOS1_UC17_A 32-bit Base + 0x0240

eMIOS_1 UC17 B Register eMIOS1_UC17_B 32-bit Base + 0x0244

Reserved — — Base + 0x0248 –
Base + 0x024B

eMIOS_1 UC17 Control Register eMIOS1_UC17_SC 32-bit Base + 0x024C

eMIOS_1 UC17 Status Register eMIOS1_UC17_SS 32-bit Base + 0x0250

Reserved — — Base + 0x0254 –
Base + 0x025F

eMIOS_1 UC18 A Register eMIOS1_UC18_A 32-bit Base + 0x0260

eMIOS_1 UC18 B Register eMIOS1_UC18_B 32-bit Base + 0x0264

Reserved — — Base + 0x0268 –
Base + 0x026B

eMIOS_1 UC18 Control Register eMIOS1_UC18_SC 32-bit Base + 0x026C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

842 Freescale Semiconductor

eMIOS_1 UC18 Status Register eMIOS1_UC18_SS 32-bit Base + 0x0270

Reserved — — Base + 0x0274 –
Base + 0x027F

eMIOS_1 UC19 A Register eMIOS1_UC19_A 32-bit Base + 0x0280

eMIOS_1 UC19 B Register eMIOS1_UC19_B 32-bit Base + 0x0284

Reserved — — Base + 0x0288 –
Base + 0x028B

eMIOS_1 UC19 Control Register eMIOS1_UC19_SC 32-bit Base + 0x028C

eMIOS_1 UC19 Status Register eMIOS1_UC19_SS 32-bit Base + 0x0290

Reserved — — Base + 0x0294 –
Base + 0x029F

eMIOS_1 UC20 A Register eMIOS1_UC20_A 32-bit Base + 0x02A0

eMIOS_1 UC20 B Register eMIOS1_UC20_B 32-bit Base + 0x02A4

Reserved — — Base + 0x02A8 –
Base + 0x02AB

eMIOS_1 UC20 Control Register eMIOS1_UC20_SC 32-bit Base + 0x02AC

eMIOS_1 UC20 Status Register eMIOS1_UC20_SS 32-bit Base + 0x02B0

Reserved — — Base + 0x02B4 –
Base + 0x02BF

eMIOS_1 UC21 A Register eMIOS1_UC21_A 32-bit Base + 0x02C0

eMIOS_1 UC21 B Register eMIOS1_UC21_B 32-bit Base + 0x02C4

Reserved — — Base + 0x02C8 –
Base + 0x02CB

eMIOS_1 UC21 Control Register eMIOS1_UC21_SC 32-bit Base + 0x02CC

eMIOS_1 UC21 Status Register eMIOS1_UC21_SS 32-bit Base + 0x02D0

Reserved — — Base + 0x02D4 –
Base + 0x02DF

eMIOS_1 UC22 A Register eMIOS1_UC22_A 32-bit Base + 0x02E0

eMIOS_1 UC22 B Register eMIOS1_UC22_B 32-bit Base + 0x02E4

Reserved — — Base + 0x02E8 –
Base + 0x02EB

eMIOS_1 UC22 Control Register eMIOS1_UC22_SC 32-bit Base + 0x02EC

eMIOS_1 UC22 Status Register eMIOS1_UC22_SS 32-bit Base + 0x02F0

Reserved — — Base + 0x02F4 –
Base + 0x02FF

eMIOS_1 UC23 A Register eMIOS1_UC23_A 32-bit Base + 0x0300

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 843

eMIOS_1 UC23 B Register eMIOS1_UC23_B 32-bit Base + 0x0304

eMIOS_1 UC23 CNT eMIOS1_UC23_CNT 32-bit Base + 0x0308

eMIOS_1 UC23 Control Register eMIOS1_UC23_SC 32-bit Base + 0x030C

eMIOS_1 UC23 Status Register eMIOS1_UC23_SS 32-bit Base + 0x0310

System Status and Configuration Module (SSCM) 0xC3FD_8000

System Status Register STATUS 16-bit Base + 0x0000

System Memory Configuration Register MEMCONFIG 16-bit Base + 0x0002

Reserved — — Base + (0x0004 –
0x0005)

Error Configuration ERROR 16-bit Base + 0x0006

Reserved — — Base + (0x0008 –
0x000B)

Password Comparison Register High Word PWCMPH 32-bit Base + 0x000C

Password Comparison Register Low Word PWCMPL 32-bit Base + 0x0010

Reserved — — Base + (0x0014 –
0x3FFF)

Mode Entry Module (MC_ME) 0xC3FD_C000

Global Status ME_GS 32-bit Base + 0x0000

Mode Control ME_MCTL 32-bit Base + 0x0004

Mode Enable ME_ME 32-bit Base + 0x0008

Interrupt Status ME_IS 32-bit Base + 0x000C

Interrupt Mask ME_IM 32-bit Base + 0x0010

Invalid Mode Transition status ME_IMTS 32-bit Base + 0x0014

Debug Mode Transition status ME_DMTS 32-bit Base + 0x0018

RESET Mode Configuration ME_RESET_MC 32-bit Base + 0x0020

TEST Mode Configuration ME_TEST_MC 32-bit Base + 0x0024

SAFE Mode Configuration ME_SAFE_MC 32-bit Base + 0x0028

DRUN Mode Configuration ME_DRUN_MC 32-bit Base + 0x002C

RUN0 Mode Configuration ME_RUN0_MC 32-bit Base + 0x0030

RUN1 Mode Configuration ME_RUN1_MC 32-bit Base + 0x0034

RUN2 Mode Configuration ME_RUN2_MC 32-bit Base + 0x0038

RUN3 Mode Configuration ME_RUN3_MC 32-bit Base + 0x003C

HALT Mode Configuration ME_HALT_MC 32-bit Base + 0x0040

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

844 Freescale Semiconductor

Reserved — — Base + 0x0044 –
Base + 0x0047

STOP Mode Configuration ME_STOP_MC 32-bit Base + 0x0048

Reserved — — Base + 0x004C –
Base + 0x0053

STANDBY Mode Configuration ME_STANDBY_MC 32-bit Base + 0x0054

Reserved — — Base + 0x0058 –
Base + 0x005F

Peripheral Status Registers ME_PS0 32-bit Base + 0x0060

Peripheral Status Registers ME_PS1 32-bit Base + 0x0064

Peripheral Status Registers ME_PS2 32-bit Base + 0x0068

Peripheral Status Registers ME_PS3 32-bit Base + 0x006C

Reserved — — (Base + 0x0070) –
(Base + 0x007F)

RUN Peripheral Configuration Registers ME_RUN_PC0 32-bit Base + 0x0080

RUN Peripheral Configuration Registers ME_RUN_PC1 32-bit Base + 0x0084

RUN Peripheral Configuration Registers ME_RUN_PC2 32-bit Base + 0x0088

RUN Peripheral Configuration Registers ME_RUN_PC3 32-bit Base + 0x008C

RUN Peripheral Configuration Registers ME_RUN_PC4 32-bit Base + 0x0090

RUN Peripheral Configuration Registers ME_RUN_PC5 32-bit Base + 0x0094

RUN Peripheral Configuration Registers ME_RUN_PC6 32-bit Base + 0x0098

RUN Peripheral Configuration Registers ME_RUN_PC7 32-bit Base + 0x009C

Low Power Peripheral Configuration Registers ME_LP_PC0 32-bit Base + 0x00A0

Low Power Peripheral Configuration Registers ME_LP_PC1 32-bit Base + 0x00A4

Low Power Peripheral Configuration Registers ME_LP_PC2 32-bit Base + 0x00A8

Low Power Peripheral Configuration Registers ME_LP_PC3 32-bit Base + 0x00AC

Low Power Peripheral Configuration Registers ME_LP_PC4 32-bit Base + 0x00B0

Low Power Peripheral Configuration Registers ME_LP_PC5 32-bit Base + 0x00B4

Low Power Peripheral Configuration Registers ME_LP_PC6 32-bit Base + 0x00B8

Low Power Peripheral Configuration Registers ME_LP_PC7 32-bit Base + 0x00BC

Reserved — — (Base + 0x00C0) –
(Base + 0x00C3)

DSPI0 Control ME_PCTL4 8-bit Base + 0x00C4

DSPI1 Control ME_PCTL5 8-bit Base + 0x00C5

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 845

DSPI2 Control ME_PCTL6 8-bit Base + 0x00C6

Reserved — — (Base + 0x00C7) –
(Base + 0x00CF)

FlexCAN0 Control ME_PCTL16 8-bit Base + 0x00D0

FlexCAN1 Control ME_PCTL17 8-bit Base + 0x00D1

FlexCAN2 Control ME_PCTL18 8-bit Base + 0x00D2

FlexCAN3 Control ME_PCTL19 8-bit Base + 0x00D3

FlexCAN4 Control ME_PCTL20 8-bit Base + 0x00D4

FlexCAN5 Control ME_PCTL21 8-bit Base + 0x00D5

Reserved — — (Base + 0x00D6) –
(Base + 0x00DF)

ADC0 Control ME_PCTL32 8-bit Base + 0x00E0

Reserved — — (Base + 0x00E1) –
(Base + 0x00EB)

I2C0 Control ME_PCTL44 8-bit Base + 0x00EC

Reserved — — (Base + 0x00ED) –
(Base + 0x00EF)

LINFlex0 Control ME_PCTL48 8-bit Base + 0x00F0

LINFlex1 Control ME_PCTL49 8-bit Base + 0x00F1

LINFlex2 Control ME_PCTL50 8-bit Base + 0x00F2

LINFlex3 Control ME_PCTL51 8-bit Base + 0x00F3

Reserved — — (Base + 0x00F4) –
(Base + 0x00F8)

CTU Control ME_PCTL57 8-bit Base + 0x00F9

Reserved — — (Base + 0x00FA) –
(Base + 0x00FB)

CAN Sampler Control ME_PCTL60 8-bit Base + 0x00FC

Reserved — — (Base + 0x00FD) –
(Base + 0x0103)

SIUL Control ME_PCTL68 8-bit Base + 0x0104

WKPU Control ME_PCTL69 8-bit Base + 0x0105

Reserved — — (Base + 0x0106) –
(Base + 0x0107)

eMIOS0 Control ME_PCTL72 8-bit Base + 0x0108

eMIOS1 Control ME_PCTL73 8-bit Base + 0x0109

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

846 Freescale Semiconductor

Reserved — — (Base + 0x010A) –
(Base + 0x011A)

RTC_API Control ME_PCTL91 8-bit Base + 0x011B

PIT Control ME_PCTL92 8-bit Base + 0x011C

Reserved — — (Base + 0x011D) –
(Base + 0x0127)

CMU Control ME_PCTL104 8-bit Base + 0x0128

Reserved — — (Base + 0x0129) –
(Base + 0x014F)

FXOSC 0xC3FE_0000

Fast External Crystal Oscillator Control Register FXOSC_CTL 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x003F)

SXOSC 0xC3FE_0040

Slow External Crystal Oscillator Control Register SXOSC_CTL 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x005F)

FIRC Digital Interface 0xC3FE_0060

RC Digital Interface Registers RC_CTL 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x007F)

SIRC Digital Interface 0xC3FE_0080

Slow Power RC Control Register LPRC_CTL 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x009F)

FMPLL 0xC3FE_00A0

Control Register PLLD0_CR 32-bit Base + 0x0000

PLLD Modulation Register PLLD0_MR 32-bit Base + 0x0004

Reserved — — (Base + 0x0008) –
(Base + 0x00FF)

CMU 0xC3FE_0100

Control Status Register CMU_CSR 32-bit Base + 0x0000

Frequency Display Register CMU_FDR 32-bit Base + 0x0004

High Frequency Reference Register CMU_HFREFR_A 32-bit Base + 0x0008

Low Frequency Reference Register CMU_LFREFR_A 32-bit Base + 0x000C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 847

Interrupt Status Register CMU_ISR 32-bit Base + 0x0010

Reserved — — (Base + 0x0014) –
(Base + 0x0017)

Measurement Duration Register CMU_MDR 32-bit Base + 0x0018

Reserved — — (Base + 0x001C) –
(Base + 0x036F)

Clock Generation Module (MC_CGM) 0xC3FE_0370

Output Clock Enable Register CGM_OC_EN 32-bit Base + 0x0000

Output Clock Division Select Register CGM_OCDS_SC 32-bit Base + 0x0004

System Clock Select Status Register CGM_SC_SS 32-bit Base + 0x0008

System Clock Divider Configuration 0 Registers CGM_SC_DC0 8-bit Base + 0x000C

System Clock Divider Configuration 1 Registers CGM_SC_DC1 8-bit Base + 0x000D

System Clock Divider Configuration 2 Registers CGM_SC_DC2 8-bit Base + 0x000E

Reset Generation Module (MC_RGM) 0xC3FE_4000

Functional Event Status RGM_FES 16-bit Base + 0x0000

Destructive Event Status RGM_DES 16-bit Base + 0x0002

Functional Event Reset Disable RGM_FERD 16-bit Base + 0x0004

Destructive Event Reset Disable RGM_DERD 16-bit Base + 0x0006

Reserved — — (Base + 0x0008) –
(Base + 0x000F)

Functional Event Alternate Request RGM_FEAR 16-bit Base + 0x0010

Destructive Event Alternate Request RGM_DEAR 16-bit Base + 0x0012

Reserved — — (Base + 0x0014) –
(Base + 0x0017)

Functional Event Short Sequence RGM_FESS 16-bit Base + 0x0018

STANDBY reset sequence RGM_STDBY 16-bit Base + 0x001A

Functional Bidirectional Reset Enable RGM_FBRE 16-bit Base + 0x001C

Reserved — — (Base + 0x001E) –
(Base + 0x3FFF)

Power Control Unit (MC_PCU) 0xC3FE_8000

Power domain #0 configuration register PCONF0 32-bit Base + 0x0000

Power domain #1 configuration register PCONF1 32-bit Base + 0x0004

Power domain #2 configuration register PCONF2 32-bit Base + 0x0008

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

848 Freescale Semiconductor

Reserved — — (Base + 0x000C) –
(Base + 0x003F)

Power Domain Status Register PSTAT 32-bit Base + 0x0040

Reserved — — (Base + 0x0044) –
(Base + 0x007C)

Voltage Regulator Control Register VCTL 32-bit Base + 0x0080

Reserved — — (Base + 0x0084) –
(Base + 0x3FFF)

Real Time Counter (RTC/API) 0xC3FE_C000

RTC Supervisor Control Register RTCSUPV 32-bit Base + 0x0000

RTC Control Register RTCC 32-bit Base + 0x0004

RTC Status Register RTCS 32-bit Base + 0x0008

RTC Counter Register RTCCNT 32-bit Base + 0x000C

Reserved — — (Base + 0x0010) –
(Base + 0x3FFF)

Periodic Interrupt Timer (PIT) 0xC3FF_0000

PIT Module Control Register PITMCR 32-bit Base + 0x0000

Reserved — — Base + (0x0004 –
0x00FC)

Timer Load Value Register LDVAL0 32-bit Base + 0x0100

Current Timer Value Register 0 CVAL0 32-bit Base + 0x0104

Timer Control Register 0 TCTRL0 32-bit Base + 0x0108

Timer Flag Register 0 TFLG0 32-bit Base + 0x010C

Timer Load Value Register 1 LDVAL1 32-bit Base + 0x0110

Current Timer Value Register 1 CVAL1 32-bit Base + 0x0114

Timer Control Register 1 TCTRL1 32-bit Base + 0x0118

Timer Flag Register 1 TFLG1 32-bit Base + 0x011C

Timer Load Value Register 2 LDVAL2 32-bit Base + 0x0120

Current Timer Value Register 2 CVAL2 32-bit Base + 0x0124

Timer Control Register 2 TCTRL2 32-bit Base + 0x0128

Timer Flag Register 2 TFLG2 32-bit Base + 0x012C

Timer Load Value Register 3 LDVAL3 32-bit Base + 0x0130

Current Timer Value Register 3 CVAL3 32-bit Base + 0x0134

Timer Control Register 3 TCTRL3 32-bit Base + 0x0138

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 849

Timer Flag Register 3 TFLG3 32-bit Base + 0x013C

Timer Load Value Register 4 LDVAL4 32-bit Base + 0x0140

Current Timer Value Register 4 CVAL4 32-bit Base + 0x0144

Timer Control Register 4 TCTRL4 32-bit Base + 0x0148

Timer Flag Register 4 TFLG4 32-bit Base + 0x014C

Timer Load Value Register 5 LDVAL5 32-bit Base + 0x0150

Current Timer Value Register 5 CVAL5 32-bit Base + 0x0154

Timer Control Register 5 TCTRL5 32-bit Base + 0x0158

Timer Flag Register 5 TFLG5 32-bit Base + 0x015C

Reserved — — Base + 0x0160 –
0x01FF

ADC 0xFFE0_0000

Main Configuration Register MCR 32-bit Base + 0x0000

Main Status Register MSR 32-bit Base + 0x0004

Reserved — — Base + 0x0008 –
0x000F

Interrupt Status Register ISR 32-bit Base + 0x0010

Channel Pending Register CEOCFR0 32-bit Base + 0x0014

Channel Pending Register CEOCFR1 32-bit Base + 0x0018

Channel Pending Register CEOCFR2 32-bit Base + 0x001C

Interrupt Mask Register IMR 32-bit Base + 0x0020

Channel Interrupt Mask Register CIMR0 32-bit Base + 0x0024

Channel Interrupt Mask Register CIMR1 32-bit Base + 0x0028

Channel Interrupt Mask Register CIMR2 32-bit Base + 0x002C

Watchdog Threshold Interrupt Status Register WTISR 32-bit Base + 0x0030

Watchdog Threshold Interrupt Mask Register WTIMR 32-bit Base + 0x0034

Reserved — — Base + 0x0038 –
0x004F

Threshold Control Register 0 TRC0 32-bit Base + 0x0050

Threshold Control Register 1 TRC1 32-bit Base + 0x0054

Threshold Control Register 2 TRC2 32-bit Base + 0x0058

Threshold Control Register 3 TRC3 32-bit Base + 0x005C

Threshold Register 0 THRHLR0 32-bit Base + 0x0060

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

850 Freescale Semiconductor

Threshold Register 1 THRHLR1 32-bit Base + 0x0064

Threshold Register 2 THRHLR2 32-bit Base + 0x0068

Threshold Register 3 THRHLR3 32-bit Base + 0x006C

Presampling Control Register PSCR 32-bit Base + 0x0080

Presampling Register 0 PSR0 32-bit Base + 0x0084

Presampling Register 1 PSR1 32-bit Base + 0x0088

Presampling Register 2 PSR2 32-bit Base + 0x008C

Reserved — — Base + 0x0090 –
0x0093

Conversion Timing Register 0 CTR0 32-bit Base + 0x0094

Conversion Timing Register 1 CTR1 32-bit Base + 0x0098

Conversion Timing Register 2 CTR2 32-bit Base + 0x009C

Reserved — — Base + 0x00A0 –
0x00A3

Normal Conversion Mask Register 0 NCMR0 32-bit Base + 0x00A4

Normal Conversion Mask Register 1 NCMR1 32-bit Base + 0x00A8

Normal Conversion Mask Register 2 NCMR2 32-bit Base + 0x00AC

Reserved — — Base + 0x00B0 –
0x00B3

Injected Conversion Mask Register 0 JCMR0 32-bit Base + 0x00B4

Injected Conversion Mask Register 1 JCMR1 32-bit Base + 0x00B8

Injected Conversion Mask Register 2 JCMR2 32-bit Base + 0x00BC

Reserved — — Base + 0x00C0 –
0x00C3

Decode Signals Delay Register DSDR 32-bit Base + 0x00C4

Power-down Exit Delay Register PDEDR 32-bit Base + 0x00C8

Reserved — — Base + 0x00CC –
0x00FF

Channel 0 Data Register CDR0 32-bit Base + 0x0100

Channel 1 Data Register CDR1 32-bit Base + 0x0104

Channel 2 Data Register CDR2 32-bit Base + 0x0108

Channel 3 Data Register CDR3 32-bit Base + 0x010C

Channel 4 Data Register CDR4 32-bit Base + 0x0110

Channel 5 Data Register CDR5 32-bit Base + 0x0114

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 851

Channel 6 Data Register CDR6 32-bit Base + 0x0118

Channel 7 Data Register CDR7 32-bit Base + 0x011C

Channel 8 Data Register CDR8 32-bit Base + 0x0120

Channel 9 Data Register CDR9 32-bit Base + 0x0124

Channel 10 Data Register CDR10 32-bit Base + 0x0128

Channel 11 Data Register CDR11 32-bit Base + 0x012C

Channel 12 Data Register CDR12 32-bit Base + 0x0130

Channel 13 Data Register CDR13 32-bit Base + 0x0134

Channel 14 Data Register CDR14 32-bit Base + 0x0138

Channel 15 Data Register CDR15 32-bit Base + 0x013C

Reserved — — Base + 0x0140 –
0x017F

Channel 32 Data Register CDR32 32-bit Base + 0x0180

Channel 33 Data Register CDR33 32-bit Base + 0x0184

Channel 34 Data Register CDR34 32-bit Base + 0x0188

Channel 35 Data Register CDR35 32-bit Base + 0x018C

Channel 36 Data Register CDR36 32-bit Base + 0x0190

Channel 37 Data Register CDR37 32-bit Base + 0x0194

Channel 38 Data Register CDR38 32-bit Base + 0x0198

Channel 39 Data Register CDR39 32-bit Base + 0x019C

Channel 40 Data Register CDR40 32-bit Base + 0x01A0

Channel 41 Data Register CDR41 32-bit Base + 0x01A4

Channel 42 Data Register CDR42 32-bit Base + 0x01A8

Channel 43 Data Register CDR43 32-bit Base + 0x01AC

Channel 44 Data Register CDR44 32-bit Base + 0x01B0

Channel 45 Data Register CDR45 32-bit Base + 0x01B4

Channel 46 Data Register CDR46 32-bit Base + 0x01B8

Channel 47 Data Register CDR47 32-bit Base + 0x01BC

Reserved — — Base + 0x01C0 –
0x01FF

Channel 64 Data Register CDR64 32-bit Base + 0x0200

Channel 65 Data Register CDR65 32-bit Base + 0x0204

Channel 66 Data Register CDR66 32-bit Base + 0x0208

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

852 Freescale Semiconductor

Channel 67 Data Register CDR67 32-bit Base + 0x020C

Channel 68 Data Register CDR68 32-bit Base + 0x0210

Channel 69 Data Register CDR69 32-bit Base + 0x0214

Channel 70 Data Register CDR70 32-bit Base + 0x0218

Channel 71 Data Register CDR71 32-bit Base + 0x021C

Channel 72 Data Register CDR72 32-bit Base + 0x0220

Channel 73 Data Register CDR73 32-bit Base + 0x0224

Channel 74 Data Register CDR74 32-bit Base + 0x0228

Channel 75 Data Register CDR75 32-bit Base + 0x022C

Channel 76 Data Register CDR76 32-bit Base + 0x0230

Channel 77 Data Register CDR77 32-bit Base + 0x0234

Channel 78 Data Register CDR78 32-bit Base + 0x0238

Channel 79 Data Register CDR79 32-bit Base + 0x023C

Channel 80 Data Register CDR80 32-bit Base + 0x0240

Channel 81 Data Register CDR81 32-bit Base + 0x0244

Channel 82 Data Register CDR82 32-bit Base + 0x0248

Channel 83 Data Register CDR83 32-bit Base + 0x024C

Channel 84 Data Register CDR84 32-bit Base + 0x0250

Channel 85 Data Register CDR85 32-bit Base + 0x0254

Channel 86 Data Register CDR86 32-bit Base + 0x0258

Channel 87 Data Register CDR87 32-bit Base + 0x025C

Channel 88 Data Register CDR88 32-bit Base + 0x0260

Channel 89 Data Register CDR89 32-bit Base + 0x0264

Channel 90 Data Register CDR90 32-bit Base + 0x0268

Channel 91 Data Register CDR91 32-bit Base + 0x026C

Channel 92 Data Register CDR92 32-bit Base + 0x0270

Channel 93 Data Register CDR93 32-bit Base + 0x0274

Channel 94 Data Register CDR94 32-bit Base + 0x0278

Channel 95 Data Register CDR95 32-bit Base + 0x027C

Reserved — — Base + 0x0280 –
0x02FF

I2C 0xFFE3_0000

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 853

I2C Bus Address Register IBAD 8-bit Base + 0x0000

I2C Bus Frequency Divider Register IBFD 8-bit Base + 0x0001

I2C Bus Control Register IBCR 8-bit Base + 0x0002

I2C Bus Status Register IBSR 8-bit Base + 0x0003

I2C Bus Data I/O Register IBDR 8-bit Base + 0x0004

I2C Bus Interrupt Configuration Register IBIC 8-bit Base + 0x0005

Reserved — — (Base + 0x0006) –
(Base + 0xFFFF)

LINFlex_0 0xFFE4_0000

LIN control register 1 LINCR1 32-bit Base + 0x0000

LIN interrupt enable register LINIER 32-bit Base + 0x0004

LIN status register LINSR 32-bit Base + 0x0008

LIN error status register LINESR 32-bit Base + 0x000C

UART mode control register UARTCR 32-bit Base + 0x0010

UART mode status register UARTSR 32-bit Base + 0x0014

LIN timeout control status register LINTCSR 32-bit Base + 0x0018

LIN output compare register LINOCR 32-bit Base + 0x001C

LIN timeout control register LINTOCR 32-bit Base + 0x0020

LIN fractional baud rate register LINFBRR 32-bit Base + 0x0024

LIN integer baud rate register LINIBRR 32-bit Base + 0x0028

LIN checksum field register LINCFR 32-bit Base + 0x002C

LIN control register 2 LINCR2 32-bit Base + 0x0030

Buffer identifier register BIDR 32-bit Base + 0x0034

Buffer data register LSB BDRL 32-bit Base + 0x0038

Buffer data register MSB BDRM 32-bit Base + 0x003C

Identifier filter enable register IFER 32-bit Base + 0x0040

Identifier filter match index IFMI 32-bit Base + 0x0044

Identifier filter mode register IFMR 32-bit Base + 0x0048

Identifier filter control register 0 IFCR0 32-bit Base + 0x004C

Identifier filter control register 1 IFCR1 32-bit Base + 0x0050

Identifier filter control register 2 IFCR2 32-bit Base + 0x0054

Identifier filter control register 3 IFCR3 32-bit Base + 0x0058

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

854 Freescale Semiconductor

Identifier filter control register 4 IFCR4 32-bit Base + 0x005C

Identifier filter control register 5 IFCR5 32-bit Base + 0x0060

Identifier filter control register 6 IFCR6 32-bit Base + 0x0064

Identifier filter control register 7 IFCR7 32-bit Base + 0x0068

Identifier filter control register 8 IFCR8 32-bit Base + 0x006C

Identifier filter control register 9 IFCR9 32-bit Base + 0x0070

Identifier filter control register 10 IFCR10 32-bit Base + 0x0074

Identifier filter control register 11 IFCR11 32-bit Base + 0x0078

Identifier filter control register 12 IFCR12 32-bit Base + 0x007C

Identifier filter control register 13 IFCR13 32-bit Base + 0x0080

Identifier filter control register 14 IFCR14 32-bit Base + 0x0084

Identifier filter control register 15 IFCR15 32-bit Base + 0x0088

LINFlex_1 0xFFE4_4000

LIN control register 1 LINCR1 32-bit Base + 0x0000

LIN interrupt enable register LINIER 32-bit Base + 0x0004

LIN status register LINSR 32-bit Base + 0x0008

LIN error status register LINESR 32-bit Base + 0x000C

UART mode control register UARTCR 32-bit Base + 0x0010

UART mode status register UARTSR 32-bit Base + 0x0014

LIN timeout control status register LINTCSR 32-bit Base + 0x0018

LIN output compare register LINOCR 32-bit Base + 0x001C

LIN timeout control register LINTOCR 32-bit Base + 0x0020

LIN fractional baud rate register LINFBRR 32-bit Base + 0x0024

LIN integer baud rate register LINIBRR 32-bit Base + 0x0028

LIN checksum field register LINCFR 32-bit Base + 0x002C

LIN control register 2 LINCR2 32-bit Base + 0x0030

Buffer identifier register BIDR 32-bit Base + 0x0034

Buffer data register LSB BDRL 32-bit Base + 0x0038

Buffer data register MSB BDRM 32-bit Base + 0x003C

Reserved — — (Base + 0x0040)–
(Base + 0x7FFF)

LINFlex_2 0xFFE4_8000

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 855

LIN control register 1 LINCR1 32-bit Base + 0x0000

LIN interrupt enable register LINIER 32-bit Base + 0x0004

LIN status register LINSR 32-bit Base + 0x0008

LIN error status register LINESR 32-bit Base + 0x000C

UART mode control register UARTCR 32-bit Base + 0x0010

UART mode status register UARTSR 32-bit Base + 0x0014

LIN timeout control status register LINTCSR 32-bit Base + 0x0018

LIN output compare register LINOCR 32-bit Base + 0x001C

LIN timeout control register LINTOCR 32-bit Base + 0x0020

LIN fractional baud rate register LINFBRR 32-bit Base + 0x0024

LIN integer baud rate register LINIBRR 32-bit Base + 0x0028

LIN checksum field register LINCFR 32-bit Base + 0x002C

LIN control register 2 LINCR2 32-bit Base + 0x0030

Buffer identifier register BIDR 32-bit Base + 0x0034

Buffer data register LSB BDRL 32-bit Base + 0x0038

Buffer data register MSB BDRM 32-bit Base + 0x003C

Reserved — — (Base + 0x0040)–
(Base + 0xBFFF)

LINFlex_3 0xFFE4_C000

LIN control register 1 LINCR1 32-bit Base + 0x0000

LIN interrupt enable register LINIER 32-bit Base + 0x0004

LIN status register LINSR 32-bit Base + 0x0008

LIN error status register LINESR 32-bit Base + 0x000C

UART mode control register UARTCR 32-bit Base + 0x0010

UART mode status register UARTSR 32-bit Base + 0x0014

LIN timeout control status register LINTCSR 32-bit Base + 0x0018

LIN output compare register LINOCR 32-bit Base + 0x001C

LIN timeout control register LINTOCR 32-bit Base + 0x0020

LIN fractional baud rate register LINFBRR 32-bit Base + 0x0024

LIN integer baud rate register LINIBRR 32-bit Base + 0x0028

LIN checksum field register LINCFR 32-bit Base + 0x002C

LIN control register 2 LINCR2 32-bit Base + 0x0030

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

856 Freescale Semiconductor

Buffer identifier register BIDR 32-bit Base + 0x0034

Buffer data register LSB BDRL 32-bit Base + 0x0038

Buffer data register MSB BDRM 32-bit Base + 0x003C

Reserved — — (Base + 0x0040)–
(Base + 0x3FFF)

CTU 0xFFE6_4000

Reserved — — Base + 0x0000 –
Base + 0x002C

Event Configuration Register0 CTU_EVTCFGR0 32-bit Base + 0x0030

Event Configuration Register1 CTU_EVTCFGR1 32-bit Base + 0x0034

Event Configuration Register2 CTU_EVTCFGR2 32-bit Base + 0x0038

Event Configuration Register3 CTU_EVTCFGR3 32-bit Base + 0x003C

Event Configuration Register4 CTU_EVTCFGR4 32-bit Base + 0x0040

Event Configuration Register5 CTU_EVTCFGR5 32-bit Base + 0x0044

Event Configuration Register6 CTU_EVTCFGR6 32-bit Base + 0x0048

Event Configuration Register7 CTU_EVTCFGR7 32-bit Base + 0x004C

Event Configuration Register8 CTU_EVTCFGR8 32-bit Base + 0x0050

Event Configuration Register9 CTU_EVTCFGR9 32-bit Base + 0x0054

Event Configuration Register10 CTU_EVTCFGR10 32-bit Base + 0x0058

Event Configuration Register11 CTU_EVTCFGR11 32-bit Base + 0x005C

Event Configuration Register12 CTU_EVTCFGR12 32-bit Base + 0x0060

Event Configuration Register13 CTU_EVTCFGR13 32-bit Base + 0x0064

Event Configuration Register14 CTU_EVTCFGR14 32-bit Base + 0x0068

Event Configuration Register15 CTU_EVTCFGR15 32-bit Base + 0x006C

Event Configuration Register16 CTU_EVTCFGR16 32-bit Base + 0x0070

Event Configuration Register17 CTU_EVTCFGR17 32-bit Base + 0x0074

Event Configuration Register18 CTU_EVTCFGR18 32-bit Base + 0x0078

Event Configuration Register19 CTU_EVTCFGR19 32-bit Base + 0x007C

Event Configuration Register20 CTU_EVTCFGR20 32-bit Base + 0x0080

Event Configuration Register21 CTU_EVTCFGR21 32-bit Base + 0x0084

Event Configuration Register22 CTU_EVTCFGR22 32-bit Base + 0x0088

Event Configuration Register23 CTU_EVTCFGR23 32-bit Base + 0x008C

Event Configuration Register24 CTU_EVTCFGR24 32-bit Base + 0x0090

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 857

Event Configuration Register25 CTU_EVTCFGR25 32-bit Base + 0x0094

Event Configuration Register26 CTU_EVTCFGR26 32-bit Base + 0x0098

Event Configuration Register27 CTU_EVTCFGR27 32-bit Base + 0x009C

Event Configuration Register28 CTU_EVTCFGR28 32-bit Base + 0x00A0

Event Configuration Register29 CTU_EVTCFGR29 32-bit Base + 0x00A4

Event Configuration Register30 CTU_EVTCFGR30 32-bit Base + 0x00A8

Event Configuration Register31 CTU_EVTCFGR31 32-bit Base + 0x00AC

Event Configuration Register32 CTU_EVTCFGR32 32-bit Base + 0x00B0

Event Configuration Register33 CTU_EVTCFGR33 32-bit Base + 0x00B4

Event Configuration Register34 CTU_EVTCFGR34 32-bit Base + 0x00B8

Event Configuration Register35 CTU_EVTCFGR35 32-bit Base + 0x00BC

Event Configuration Register36 CTU_EVTCFGR36 32-bit Base + 0x00C0

Event Configuration Register37 CTU_EVTCFGR37 32-bit Base + 0x00C4

Event Configuration Register38 CTU_EVTCFGR38 32-bit Base + 0x00C8

Event Configuration Register39 CTU_EVTCFGR39 32-bit Base + 0x00CC

Event Configuration Register40 CTU_EVTCFGR40 32-bit Base + 0x00D0

Event Configuration Register41 CTU_EVTCFGR41 32-bit Base + 0x00D4

Event Configuration Register42 CTU_EVTCFGR42 32-bit Base + 0x00D8

Event Configuration Register43 CTU_EVTCFGR43 32-bit Base + 0x00DC

Event Configuration Register44 CTU_EVTCFGR44 32-bit Base + 0x00E0

Event Configuration Register45 CTU_EVTCFGR45 32-bit Base + 0x00E4

Event Configuration Register46 CTU_EVTCFGR46 32-bit Base + 0x00E8

Event Configuration Register47 CTU_EVTCFGR47 32-bit Base + 0x00EC

Event Configuration Register48 CTU_EVTCFGR48 32-bit Base + 0x00F0

Event Configuration Register49 CTU_EVTCFGR49 32-bit Base + 0x00F4

Event Configuration Register50 CTU_EVTCFGR50 32-bit Base + 0x00F8

Event Configuration Register51 CTU_EVTCFGR51 32-bit Base + 0x00FC

Event Configuration Register52 CTU_EVTCFGR52 32-bit Base + 0x0100

Event Configuration Register53 CTU_EVTCFGR53 32-bit Base + 0x0104

Event Configuration Register54 CTU_EVTCFGR54 32-bit Base + 0x0108

Event Configuration Register55 CTU_EVTCFGR55 32-bit Base + 0x010C

Event Configuration Register56 CTU_EVTCFGR56 32-bit Base + 0x0110

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

858 Freescale Semiconductor

Event Configuration Register57 CTU_EVTCFGR57 32-bit Base + 0x0114

Event Configuration Register58 CTU_EVTCFGR58 32-bit Base + 0x0118

Event Configuration Register59 CTU_EVTCFGR59 32-bit Base + 0x011C

Event Configuration Register60 CTU_EVTCFGR60 32-bit Base + 0x0120

Event Configuration Register61 CTU_EVTCFGR61 32-bit Base + 0x0124

Event Configuration Register62 CTU_EVTCFGR62 32-bit Base + 0x0128

Event Configuration Register63 CTU_EVTCFGR63 32-bit Base + 0x012C

Reserved — — (Base + 0x0130) –
0xFFE6_FFFF

CAN Sampler 0xFFE7_0000

Control Status Register CANS_CR 32-bit Base + 0x0000

Sample Register 0 CAN_SR0 32-bit Base + 0x0004

Sample Register 1 CAN_SR1 32-bit Base + 0x0008

Sample Register 2 CAN_SR2 32-bit Base + 0x000C

Sample Register 3 CAN_SR3 32-bit Base + 0x0010

Sample Register 4 CAN_SR4 32-bit Base + 0x0014

Sample Register 5 CAN_SR5 32-bit Base + 0x0018

Sample Register 6 CAN_SR6 32-bit Base + 0x001C

Sample Register 7 CAN_SR7 32-bit Base + 0x0020

Sample Register 8 CAN_SR8 32-bit Base + 0x0024

Sample Register 9 CAN_SR9 32-bit Base + 0x0028

Sample Register 10 CAN_SR10 32-bit Base + 0x002C

Sample Register 11 CAN_SR11 32-bit Base + 0x0030

Reserved — — (Base + 0x0034) –
0xFFF0_FFFF

MPU 0xFFF1_0000

MPU Control/Error Status Register MPU_CESR 32-bit Base + 0x0000

Reserved — — Base + 0x0004 –
Base + 0x000F

MPU Error Address Register, Slave Port 0 MPU_EAR0 32-bit Base + 0x0010

MPU Error Detail Register, Slave Port 0 MPU_EDR0 32-bit Base + 0x0014

MPU Error Address Register, Slave Port 1 MPU_EAR1 32-bit Base + 0x0018

MPU Error Detail Register, Slave Port 1 MPU_EDR1 32-bit Base + 0x001c

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 859

MPU Error Address Register, Slave Port 2 MPU_EAR2 32-bit Base + 0x0020

MPU Error Detail Register, Slave Port 2 MPU_EDR2 32-bit Base + 0x0024

MPU Error Address Register, Slave Port 3 MPU_EAR3 32-bit Base + 0x0028

MPU Error Detail Register, Slave Port 3 MPU_EDR3 32-bit Base + 0x002C

Reserved — — Base + 0x0030 –
Base + 0x03FF

MPU Region Descriptor 0 MPU_RGD0 128 Base + 0x0400

MPU Region Descriptor 1 MPU_RGD1 128 Base + 0x0410

MPU Region Descriptor 2 MPU_RGD2 128 Base + 0x0420

MPU Region Descriptor 3 MPU_RGD3 128 Base + 0x0430

MPU Region Descriptor 4 MPU_RGD4 128 Base + 0x0440

MPU Region Descriptor 5 MPU_RGD5 128 Base + 0x0450

MPU Region Descriptor 6 MPU_RGD6 128 Base + 0x0460

MPU Region Descriptor 7 MPU_RGD7 128 Base + 0x0470

Reserved — — Base + 0x0480 –
Base + 0x07FF

MPU RGD Alternate Access Control 0 MPU_RGDAAC0 32-bit Base + 0x0800

MPU RGD Alternate Access Control 1 MPU_RGDAAC1 32-bit Base + 0x0804

MPU RGD Alternate Access Control 2 MPU_RGDAAC2 32-bit Base + 0x0808

MPU RGD Alternate Access Control 3 MPU_RGDAAC3 32-bit Base + 0x080C

MPU RGD Alternate Access Control 4 MPU_RGDAAC4 32-bit Base + 0x0810

MPU RGD Alternate Access Control 5 MPU_RGDAAC5 32-bit Base + 0x0814

MPU RGD Alternate Access Control 6 MPU_RGDAAC6 32-bit Base + 0x0818

MPU RGD Alternate Access Control 7 MPU_RGDAAC7 32-bit Base + 0x081C

Reserved — — Base + 0x0820 –
Base + 0x3FFF

SWT 0xFFF3_8000

Control Register SWT_CR 32-bit Base + 0x0000

SWT Interrupt Register SWT_IR 32-bit Base + 0x0004

SWT Time-Out Register SWT_TO 32-bit Base + 0x0008

SWT Window Register SWT_WN 32-bit Base + 0x000C

SWT Service Register SWT_SR 32-bit Base + 0x0010

SWT Counter Output Register SWT_CO 32-bit Base + 0x0014

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

860 Freescale Semiconductor

Reserved — — (Base + 0x0018) –
0xFFF3_BFFF

STM 0xFFF3_C000

Control Register STM_CR 32-bit Base + 0x0000

STM Count Register STM_CNT 32-bit Base + 0x0004

Reserved — — Base + (0x0008 –
0x000F)

STM Channel 0 Control Register STM_CCR0 32-bit Base + 0x00010

STM Channel 0 Interrupt Register STM_CIR0 32-bit Base + 0x00014

STM Channel 0 Compare Register STM_CMP0 32-bit Base + 0x00018

Reserved — — Base + (0x001C –
0x001F)

STM Channel 1 Control Register STM_CCR1 32-bit Base + 0x00020

STM Channel 1 Interrupt Register STM_CIR1 32-bit Base + 0x00024

STM Channel 1 Compare Register STM_CMP1 32-bit Base + 0x00028

Reserved — — Base + (0x002C –
0x002F)

STM Channel 2 Control Register STM_CCR2 32-bit Base + 0x00030

STM Channel 2 Interrupt Register STM_CIR2 32-bit Base + 0x00034

STM Channel 2 Compare Register STM_CMP2 32-bit Base + 0x00038

Reserved — — Base + (0x003C –
0x003F)

STM Channel 3 Control Register STM_CCR3 32-bit Base + 0x00040

STM Channel 3 Interrupt Register STM_CIR3 32-bit Base + 0x00044

STM Channel 3 Compare Register STM_CMP3 32-bit Base + 0x00048

Reserved — — Base + (0x003C –
0x03FFF)

ECSM 0xFFF4_0000

Processor Core Type ECSM_PCT 16-bit Base + 0x0000

SOC-Defined Platform Revision ECSM_REV 16-bit Base + 0x0002

Reserved — — Base + (0x0004 –
0x0007)

IPS On-Platform Module Configuration ECSM_IMC 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x0012)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 861

Miscellaneous Wakeup Control Register ECSM_MWCR 8-bit Base + 0x0013

Reserved — — Base + (0x0014 –
0x001E)

Miscellaneous Interrupt Register ECSM_MIR 8-bit Base + 0x001F

Reserved — — Base + (0x0020 –
0x0023)

Miscellaneous User Defined Control Register ECSM_MUDCR 32-bit Base + 0x0024

Reserved — — Base + (0x0028 –
0x0042)

ECC Configuration Register ECSM_ECR 8-bit Base + 0x0043

Reserved — — Base + (0x0044 –
0x0046)

ECC Status Register ECSM_ESR 8-bit Base + 0x0047

Reserved — — Base + (0x0048 –
0x0049)

ECC Error Generation Register ECSM_EEGR 16-bit Base + 0x004A

Reserved — — Base + (0x04C –
0x004F)

Platform Flash ECC Error Address Register ECSM_PFEAR 32-bit Base + 0x0050

Reserved — — Base + (0x054 –
0x0055)

Platform Flash ECC Master Number Register ECSM_PFEMR 8-bit Base + 0x0056

Platform Flash ECC Attributes Register ECSM_PFEAT 8-bit Base + 0x0057

Reserved — — Base + (0x058 –
0x005B)

Platform Flash ECC Data Register ECSM_PFEDR 32-bit Base + 0x005C

Platform RAM ECC Address Register ECSM_PREAR 32-bit Base + 0x0060

Reserved — — Base + 0x064

Platform RAM ECC Syndrome Register ECSM_PRESR 8-bit Base + 0x0065

Platform RAM ECC Master Number Register ECSM_PREMR 8-bit Base + 0x0066

Platform RAM ECC Attributes Register ECSM_PREAT 8-bit Base + 0x0067

Reserved — — Base + (0x068 –
0x006B)

Platform RAM ECC Data Register ECSM_PREDR 32-bit Base + 0x006C

Reserved — — Base + (0x0070 –
0x3FFF)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

862 Freescale Semiconductor

INTC 0xFFF4_8000

Block Configuration Register INTC_PBCR 32-bit Base + 0x0000

Reserved — — Base + (0x0004 –
0x0007)

Current Priority Register INTC_CPR 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Interrupt Acknowledge Register INTC_IACKR 32-bit Base + 0x0010

Reserved — — Base + (0x0014 –
0x0017)

End of Interrupt Register INTC_EOIR 32-bit Base + 0x0018

Reserved — — Base + (0x001C –
0x001F)

Software Set/Clear Interrupt Register INTC_SSCIR0_3 32-bit Base + 0x0020

Software Set/Clear Interrupt Register INTC_SSCIR4_7 32-bit Base + 0x0024

Reserved — — Base + (0x0028 –
0x003F)

Priority Select Register INTC_PSR0_3 32-bit Base + 0x0040

Priority Select Register INTC_PSR4_7 32-bit Base + 0x0044

Priority Select Register INTC_PSR8_11 32-bit Base + 0x0048

Priority Select Register INTC_PSR12_15 32-bit Base + 0x004C

Priority Select Register INTC_PSR16_19 32-bit Base + 0x0050

Priority Select Register INTC_PSR20_23 32-bit Base + 0x0054

Priority Select Register INTC_PSR24_27 32-bit Base + 0x0058

Priority Select Register INTC_PSR28_31 32-bit Base + 0x005C

Priority Select Register INTC_PSR32_35 32-bit Base + 0x0060

Priority Select Register INTC_PSR36_39 32-bit Base + 0x0064

Priority Select Register INTC_PSR40_43 32-bit Base + 0x0068

Priority Select Register INTC_PSR44_47 32-bit Base + 0x006C

Priority Select Register INTC_PSR48_51 32-bit Base + 0x0070

Priority Select Register INTC_PSR52_55 32-bit Base + 0x0074

Priority Select Register INTC_PSR56_59 32-bit Base + 0x0078

Priority Select Register INTC_PSR60_63 32-bit Base + 0x007C

Priority Select Register INTC_PSR64_67 32-bit Base + 0x0080

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 863

Priority Select Register INTC_PSR68_71 32-bit Base + 0x0084

Priority Select Register INTC_PSR72_75 32-bit Base + 0x0088

Priority Select Register INTC_PSR76_79 32-bit Base + 0x008C

Priority Select Register INTC_PSR80_83 32-bit Base + 0x0090

Priority Select Register INTC_PSR84_87 32-bit Base + 0x0094

Priority Select Register INTC_PSR88_91 32-bit Base + 0x0098

Priority Select Register INTC_PSR92_95 32-bit Base + 0x009C

Priority Select Register INTC_PSR96_99 32-bit Base + 0x00A0

Priority Select Register INTC_PSR100_103 32-bit Base + 0x00A4

Priority Select Register INTC_PSR104_107 32-bit Base + 0x00A8

Priority Select Register INTC_PSR108_111 32-bit Base + 0x00AC

Priority Select Register INTC_PSR112_115 32-bit Base + 0x00B0

Priority Select Register INTC_PSR116_119 32-bit Base + 0x00B4

Priority Select Register INTC_PSR120_123 32-bit Base + 0x00B8

Priority Select Register INTC_PSR124_127 32-bit Base + 0x00BC

Priority Select Register INTC_PSR128_131 32-bit Base + 0x00C0

Priority Select Register INTC_PSR132_135 32-bit Base + 0x00C4

Priority Select Register INTC_PSR136_139 32-bit Base + 0x00C8

Priority Select Register INTC_PSR140_143 32-bit Base + 0x00CC

Priority Select Register INTC_PSR144_147 32-bit Base + 0x00D0

Priority Select Register INTC_PSR148_151 32-bit Base + 0x00D4

Priority Select Register INTC_PSR152_155 32-bit Base + 0x00D8

Priority Select Register INTC_PSR156_159 32-bit Base + 0x00DC

Priority Select Register INTC_PSR160_163 32-bit Base + 0x00E0

Priority Select Register INTC_PSR164_167 32-bit Base + 0x00E4

Priority Select Register INTC_PSR168_171 32-bit Base + 0x00E8

Priority Select Register INTC_PSR172_175 32-bit Base + 0x00EC

Priority Select Register INTC_PSR176_179 32-bit Base + 0x00F0

Priority Select Register INTC_PSR180_183 32-bit Base + 0x00F4

Priority Select Register INTC_PSR184_187 32-bit Base + 0x00F8

Priority Select Register INTC_PSR188_191 32-bit Base + 0x00FC

Priority Select Register INTC_PSR192_195 32-bit Base + 0x0100

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

864 Freescale Semiconductor

Priority Select Register INTC_PSR196_199 32-bit Base + 0x0104

Priority Select Register INTC_PSR200_203 32-bit Base + 0x0108

Priority Select Register INTC_PSR204_207 32-bit Base + 0x010C

Priority Select Register INTC_PSR208_210 32-bit Base + 0x0110

DSPI_0 0xFFF9_0000

Module Configuration Register PMCR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x0007)

Transfer Count Register TCR 32-bit Base + 0x0008

Clock and Transfer Attribute Registers CTAR0 32-bit Base + 0x000C

Clock and Transfer Attribute Registers CTAR1 32-bit Base + 0x0010

Clock and Transfer Attribute Registers CTAR2 32-bit Base + 0x0014

Clock and Transfer Attribute Registers CTAR3 32-bit Base + 0x0018

Clock and Transfer Attribute Registers CTAR4 32-bit Base + 0x001C

Clock and Transfer Attribute Registers CTAR5 32-bit Base + 0x0020

Reserved — — (Base + 0x0024) –
(Base + 0x0028)

Status Register SR 32-bit Base + 0x002C

DSPI Interrupt Request Enable Register RSER 32-bit Base + 0x0030

PUSH TX FIFO Register PUSHR 32-bit Base + 0x0034

POP RX FIFO Register POPR 32-bit Base + 0x0038

DSPI Transmit FIFO Registers TXFR0 32-bit Base + 0x003C

DSPI Transmit FIFO Registers TXFR1 32-bit Base + 0x0040

DSPI Transmit FIFO Registers TXFR2 32-bit Base + 0x0044

DSPI Transmit FIFO Registers TXFR3 32-bit Base + 0x0048

Reserved — — (Base + 0x004C) –
(Base + 0x007B)

Receive FIFO Registers RXFR0 32-bit Base + 0x007C

Receive FIFO Registers RXFR1 32-bit Base + 0x0080

Receive FIFO Registers RXFR2 32-bit Base + 0x0084

Receive FIFO Registers RXFR3 32-bit Base + 0x0088

Reserved — — (Base + 0x008C) –
(Base + 0x3FFF)

DSPI_1 0xFFF9_4000

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 865

Module Configuration Register PMCR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x0007)

Transfer Count Register TCR 32-bit Base + 0x0008

Clock and Transfer Attribute Registers CTAR0 32-bit Base + 0x000C

Clock and Transfer Attribute Registers CTAR1 32-bit Base + 0x0010

Clock and Transfer Attribute Registers CTAR2 32-bit Base + 0x0014

Clock and Transfer Attribute Registers CTAR3 32-bit Base + 0x0018

Clock and Transfer Attribute Registers CTAR4 32-bit Base + 0x001C

Clock and Transfer Attribute Registers CTAR5 32-bit Base + 0x0020

Clock and Transfer Attribute Registers CTAR6 32-bit Base + 0x0024

Clock and Transfer Attribute Registers CTAR7 32-bit Base + 0x0028

Status Register SR 32-bit Base + 0x002C

DSPI Interrupt Request Enable Register RSER 32-bit Base + 0x0030

PUSH TX FIFO Register PUSHR 32-bit Base + 0x0034

POP RX FIFO Register POPR 32-bit Base + 0x0038

DSPI Transmit FIFO Registers TXFR0 32-bit Base + 0x003C

DSPI Transmit FIFO Registers TXFR1 32-bit Base + 0x0040

DSPI Transmit FIFO Registers TXFR2 32-bit Base + 0x0044

DSPI Transmit FIFO Registers TXFR3 32-bit Base + 0x0048

Reserved — — (Base + 0x004C) –
(Base + 0x007B)

Receive FIFO Registers RXFR0 32-bit Base + 0x007C

Receive FIFO Registers RXFR1 32-bit Base + 0x0080

Receive FIFO Registers RXFR2 32-bit Base + 0x0084

Receive FIFO Registers RXFR3 32-bit Base + 0x0088

Reserved — — (Base + 0x0090) –
(Base + 0x3FFF)

DSPI_2 0xFFF9_8000

Module Configuration Register PMCR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004) –
(Base + 0x0007)

Transfer Count Register TCR 32-bit Base + 0x0008

Clock and Transfer Attribute Registers CTAR0 32-bit Base + 0x000C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

866 Freescale Semiconductor

Clock and Transfer Attribute Registers CTAR1 32-bit Base + 0x0010

Clock and Transfer Attribute Registers CTAR2 32-bit Base + 0x0014

Clock and Transfer Attribute Registers CTAR3 32-bit Base + 0x0018

Clock and Transfer Attribute Registers CTAR4 32-bit Base + 0x001C

Clock and Transfer Attribute Registers CTAR5 32-bit Base + 0x0020

Clock and Transfer Attribute Registers CTAR6 32-bit Base + 0x0024

Clock and Transfer Attribute Registers CTAR7 32-bit Base + 0x0028

Status Register SR 32-bit Base + 0x002C

DSPI Interrupt Request Enable Register RSER 32-bit Base + 0x0030

PUSH TX FIFO Register PUSHR 32-bit Base + 0x0034

POP RX FIFO Register POPR 32-bit Base + 0x0038

DSPI Transmit FIFO Registers TXFR0 32-bit Base + 0x003C

DSPI Transmit FIFO Registers TXFR1 32-bit Base + 0x0040

DSPI Transmit FIFO Registers TXFR2 32-bit Base + 0x0044

DSPI Transmit FIFO Registers TXFR3 32-bit Base + 0x0048

Reserved — — (Base + 0x004C) –
(Base + 0x007B)

Receive FIFO Registers RXFR0 32-bit Base + 0x007C

Receive FIFO Registers RXFR1 32-bit Base + 0x0080

Receive FIFO Registers RXFR2 32-bit Base + 0x0084

Receive FIFO Registers RXFR3 32-bit Base + 0x0088

Reserved — — (Base + 0x0090) –
(0xFFFF_BFFF)

FlexCAN_0 0xFFFC_0000

Module Configuration Register MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 867

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

868 Freescale Semiconductor

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 869

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

870 Freescale Semiconductor

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 871

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

872 Freescale Semiconductor

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

FlexCAN_1 0xFFFC_4000

Module Configuration MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 873

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

874 Freescale Semiconductor

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 875

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

876 Freescale Semiconductor

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 877

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

878 Freescale Semiconductor

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

FlexCAN_2 0xFFFC_8000

Module Configuration MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 879

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

880 Freescale Semiconductor

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 881

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

882 Freescale Semiconductor

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 883

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

884 Freescale Semiconductor

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

FlexCAN_3 0xFFFC_C000

Module Configuration MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 885

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

886 Freescale Semiconductor

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 887

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

888 Freescale Semiconductor

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 889

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

FlexCAN_4 0xFFFD_0000

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

890 Freescale Semiconductor

Module Configuration MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 891

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

892 Freescale Semiconductor

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 893

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

894 Freescale Semiconductor

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 895

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

FlexCAN_5 0xFFFD_4000

Module Configuration MCR 32-bit Base + 0x0000

Control Register CTRL 32-bit Base + 0x0004

Free Running Timer TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C –
0x000F)

Rx Global Mask Register RXGMASK 32-bit Base + 0x0010

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

896 Freescale Semiconductor

Rx 14 Mask Register RX14MASK 32-bit Base + 0x0014

Rx 15 Mask Register RX15MASK 32-bit Base + 0x0018

Error Counter Register ECR 32-bit Base + 0x001C

Error and Status Register ESR 32-bit Base + 0x0020

Interrupt Masks 2 Register IMASK2 32-bit Base + 0x0024

Interrupt Masks 1 Register IMASK1 32-bit Base + 0x0028

Interrupt Flags 2 Register IFLAG2 32-bit Base + 0x002C

Interrupt Flags 1 Register IFLAG1 32-bit Base + 0x0030

Reserved — — Base + (0x0034 –
0x007F)

Message Buffer 0 MB0 128 bits
per MB

Base + 0x0080

Message Buffer 1 MB1 128 bits
per MB

Base + 0x0090

Message Buffer 2 MB2 128 bits
per MB

Base + 0x00A0

Message Buffer 3 MB3 128 bits
per MB

Base + 0x00B0

Message Buffer 4 MB4 128 bits
per MB

Base + 0x00C0

Message Buffer 5 MB5 128 bits
per MB

Base + 0x00D0

Message Buffer 6 MB6 128 bits
per MB

Base + 0x00E0

Message Buffer 7 MB7 128 bits
per MB

Base + 0x00F0

Message Buffer 8 MB8 128 bits
per MB

Base + 0x0100

Message Buffer 9 MB9 128 bits
per MB

Base + 0x0110

Message Buffer 10 MB10 128 bits
per MB

Base + 0x0120

Message Buffer 11 MB11 128 bits
per MB

Base + 0x0130

Message Buffer 12 MB12 128 bits
per MB

Base + 0x0140

Message Buffer 13 MB13 128 bits
per MB

Base + 0x0150

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 897

Message Buffer 14 MB14 128 bits
per MB

Base + 0x0160

Message Buffer 15 MB15 128 bits
per MB

Base + 0x0170

Message Buffer 16 MB16 128 bits
per MB

Base + 0x0180

Message Buffer 17 MB17 128 bits
per MB

Base + 0x0190

Message Buffer 18 MB18 128 bits
per MB

Base + 0x01A0

Message Buffer 19 MB19 128 bits
per MB

Base + 0x01B0

Message Buffer 20 MB20 128 bits
per MB

Base + 0x01C0

Message Buffer 21 MB21 128 bits
per MB

Base + 0x01D0

Message Buffer 22 MB22 128 bits
per MB

Base + 0x01E0

Message Buffer 23 MB23 128 bits
per MB

Base + 0x01F0

Message Buffer 24 MB24 128 bits
per MB

Base + 0x0200

Message Buffer 25 MB25 128 bits
per MB

Base + 0x0210

Message Buffer 26 MB26 128 bits
per MB

Base + 0x0220

Message Buffer 27 MB27 128 bits
per MB

Base + 0x0230

Message Buffer 28 MB28 128 bits
per MB

Base + 0x0240

Message Buffer 29 MB29 128 bits
per MB

Base + 0x0250

Message Buffer 30 MB30 128 bits
per MB

Base + 0x0260

Message Buffer 31 MB31 128 bits
per MB

Base + 0x0270

Message Buffer 32 MB32 128 bits
per MB

Base + 0x0280

Message Buffer 33 MB33 128 bits
per MB

Base + 0x0290

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

898 Freescale Semiconductor

Message Buffer 34 MB34 128 bits
per MB

Base + 0x02A0

Message Buffer 35 MB35 128 bits
per MB

Base + 0x02B0

Message Buffer 36 MB36 128 bits
per MB

Base + 0x02C0

Message Buffer 37 MB37 128 bits
per MB

Base + 0x02D0

Message Buffer 38 MB38 128 bits
per MB

Base + 0x02E0

Message Buffer 39 MB39 128 bits
per MB

Base + 0x02F0

Message Buffer 40 MB40 128 bits
per MB

Base + 0x0300

Message Buffer 41 MB41 128 bits
per MB

Base + 0x0310

Message Buffer 42 MB42 128 bits
per MB

Base + 0x0320

Message Buffer 43 MB43 128 bits
per MB

Base + 0x0330

Message Buffer 44 MB44 128 bits
per MB

Base + 0x0340

Message Buffer 45 MB45 128 bits
per MB

Base + 0x0350

Message Buffer 46 MB46 128 bits
per MB

Base + 0x0360

Message Buffer 47 MB47 128 bits
per MB

Base + 0x0370

Message Buffer 48 MB48 128 bits
per MB

Base + 0x0380

Message Buffer 49 MB49 128 bits
per MB

Base + 0x0390

Message Buffer 50 MB50 128 bits
per MB

Base + 0x03A0

Message Buffer 51 MB51 128 bits
per MB

Base + 0x03B0

Message Buffer 52 MB52 128 bits
per MB

Base + 0x03C0

Message Buffer 53 MB53 128 bits
per MB

Base + 0x03D0

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 899

Message Buffer 54 MB54 128 bits
per MB

Base + 0x03E0

Message Buffer 55 MB55 128 bits
per MB

Base + 0x03F0

Message Buffer 56 MB56 128 bits
per MB

Base + 0x0400

Message Buffer 57 MB57 128 bits
per MB

Base + 0x0410

Message Buffer 58 MB58 128 bits
per MB

Base + 0x0420

Message Buffer 59 MB59 128 bits
per MB

Base + 0x0430

Message Buffer 60 MB60 128 bits
per MB

Base + 0x0440

Message Buffer 61 MB61 128 bits
per MB

Base + 0x0450

Message Buffer 62 MB62 128 bits
per MB

Base + 0x0460

Message Buffer 63 MB63 128 bits
per MB

Base + 0x0470

Reserved — — (Base + 0x0480) –
(Base + 0x087F)

RX Individual Mask Register 0 RXIMR0 32-bit Base + 0x0880

RX Individual Mask Register 1 RXIMR1 32-bit Base + 0x0884

RX Individual Mask Register 2 RXIMR2 32-bit Base + 0x0888

RX Individual Mask Register 3 RXIMR3 32-bit Base + 0x088C

RX Individual Mask Register 4 RXIMR4 32-bit Base + 0x0890

RX Individual Mask Register 5 RXIMR5 32-bit Base + 0x0894

RX Individual Mask Register 6 RXIMR6 32-bit Base + 0x0898

RX Individual Mask Register 7 RXIMR7 32-bit Base + 0x089C

RX Individual Mask Register 8 RXIMR8 32-bit Base + 0x08A0

RX Individual Mask Register 9 RXIMR9 32-bit Base + 0x08A4

RX Individual Mask Register 10 RXIMR10 32-bit Base + 0x08A8

RX Individual Mask Register 11 RXIMR11 32-bit Base + 0x08AC

RX Individual Mask Register 12 RXIMR12 32-bit Base + 0x08B0

RX Individual Mask Register 13 RXIMR13 32-bit Base + 0x08B4

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

900 Freescale Semiconductor

RX Individual Mask Register 14 RXIMR14 32-bit Base + 0x08B8

RX Individual Mask Register 15 RXIMR15 32-bit Base + 0x08BC

RX Individual Mask Register 16 RXIMR16 32-bit Base + 0x08C0

RX Individual Mask Register 17 RXIMR17 32-bit Base + 0x08C4

RX Individual Mask Register 18 RXIMR18 32-bit Base + 0x08C8

RX Individual Mask Register 19 RXIMR19 32-bit Base + 0x08CC

RX Individual Mask Register 20 RXIMR20 32-bit Base + 0x08D0

RX Individual Mask Register 21 RXIMR21 32-bit Base + 0x08D4

RX Individual Mask Register 22 RXIMR22 32-bit Base + 0x08D8

RX Individual Mask Register 23 RXIMR23 32-bit Base + 0x08DC

RX Individual Mask Register 24 RXIMR24 32-bit Base + 0x08E0

RX Individual Mask Register 25 RXIMR25 32-bit Base + 0x08E4

RX Individual Mask Register 26 RXIMR26 32-bit Base + 0x08E8

RX Individual Mask Register 27 RXIMR27 32-bit Base + 0x08EC

RX Individual Mask Register 28 RXIMR28 32-bit Base + 0x08F0

RX Individual Mask Register 29 RXIMR29 32-bit Base + 0x08F4

RX Individual Mask Register 30 RXIMR30 32-bit Base + 0x08F8

RX Individual Mask Register 31 RXIMR31 32-bit Base + 0x08FC

RX Individual Mask Register 32 RXIMR32 32-bit Base + 0x0900

RX Individual Mask Register 33 RXIMR33 32-bit Base + 0x0904

RX Individual Mask Register 34 RXIMR34 32-bit Base + 0x0908

RX Individual Mask Register 35 RXIMR35 32-bit Base + 0x090C

RX Individual Mask Register 36 RXIMR36 32-bit Base + 0x0910

RX Individual Mask Register 37 RXIMR37 32-bit Base + 0x0914

RX Individual Mask Register 38 RXIMR38 32-bit Base + 0x0918

RX Individual Mask Register 39 RXIMR39 32-bit Base + 0x091C

RX Individual Mask Register 40 RXIMR40 32-bit Base + 0x0920

RX Individual Mask Register 41 RXIMR41 32-bit Base + 0x0924

RX Individual Mask Register 42 RXIMR42 32-bit Base + 0x0928

RX Individual Mask Register 43 RXIMR43 32-bit Base + 0x092C

RX Individual Mask Register 44 RXIMR44 32-bit Base + 0x0930

RX Individual Mask Register 45 RXIMR45 32-bit Base + 0x0934

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 901

RX Individual Mask Register 46 RXIMR46 32-bit Base + 0x0938

RX Individual Mask Register 47 RXIMR47 32-bit Base + 0x093C

RX Individual Mask Register 48 RXIMR48 32-bit Base + 0x0940

RX Individual Mask Register 49 RXIMR49 32-bit Base + 0x0944

RX Individual Mask Register 50 RXIMR50 32-bit Base + 0x0948

RX Individual Mask Register 51 RXIMR51 32-bit Base + 0x094C

RX Individual Mask Register 52 RXIMR52 32-bit Base + 0x0950

RX Individual Mask Register 53 RXIMR53 32-bit Base + 0x0954

RX Individual Mask Register 54 RXIMR54 32-bit Base + 0x0958

RX Individual Mask Register 55 RXIMR55 32-bit Base + 0x095C

RX Individual Mask Register 56 RXIMR56 32-bit Base + 0x0960

RX Individual Mask Register 57 RXIMR57 32-bit Base + 0x0964

RX Individual Mask Register 58 RXIMR58 32-bit Base + 0x0968

RX Individual Mask Register 59 RXIMR59 32-bit Base + 0x096C

RX Individual Mask Register 60 RXIMR60 32-bit Base + 0x0970

RX Individual Mask Register 61 RXIMR61 32-bit Base + 0x0974

RX Individual Mask Register 62 RXIMR62 32-bit Base + 0x0978

RX Individual Mask Register 63 RXIMR63 32-bit Base + 0x097C

Reserved — — (Base + 0x0980) –
(Base + 0x3FFF)

Table A-2. Detailed register map (continued)

Register description Register name
Used
size

Address

MPC5604B/C Microcontroller Reference Manual, Rev. 8

902 Freescale Semiconductor

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 903

Appendix B
Revision History
This appendix describes corrections to the MPC5604B Microcontroller Reference Manual. For
convenience, the corrections are grouped by revision.

B.1 Changes between revisions 7 and 8
Table B-1. Changes between revisions 7 and 8

Chapter Description

Throughout Editorial changes and improvements (including reformatting of memory maps, register
figures, and field descriptions to a consistent format).

Rearranged the chapter order.

Preface Added this chapter.

Introduction Changed the chapter title (was “Overview”, is “Introduction”).
Renamed “Introduction” to “The MPC5604B microcontroller family” and revised the section.
Renamed “Feature summary” to “Feature details”.
In the device-comparison table, deleted the note “All 64 LQFP information is indicative and

must be confirmed during silicon validation”.
Moved the “Memory map” section to its own separate chapter.
Deleted the duplicate device-comparison tables.
In the Packages section, added a line for the 64-pin LQFP.

Memory Map Added this chapter (content previously contained in the Overview chapter).
Changed “Test Sector Data Flash Array 0” to “Data test sector”.
Revised the numbers in the “Code Flash Sector” entries.
Changed “Flash Shadow Sector” to “Code Flash Shadow Sector”.
Changed “Code Flash Array 0 Test Sector” to “Code Flash Test Sector”.
Revised the numbers in the “Data Flash Array” entries.
Consolidated multiple adjacent reserved rows into single rows.

Signal Description Added the 64-pin LQFP package figure.
In the “Voltage supply pin descriptions” table, added pin 6 to the entry for VSS_HV in the

64-pin package.
Changed “Functional ports A, B, C, D, E, F, G, H” to “Functional ports”.
In the “Functional ports” table, changed ANP[0]–ANP[15] to GPI[0]–GPI[15].

Safety Migrated the chapter contents to the “Register Protection” and “SWT” chapters.

Microcontroller Boot Added this chapter.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

904 Freescale Semiconductor

Clock Description Replaced the “MPC5604B system clock generation” figure with the version present in Rev.
5 of the MPC5604B reference manual.

Fast external crystal oscillator (FXOSC) digital interface section: Changed the sentence
from “The FXOSC digital interface controls the 4–40 MHz fast external crystal oscillator
(FXOSC).” to “The FXOSC digital interface controls the operation of the 4–40 MHz fast
external crystal oscillator (FXOSC).”

Truth table of crystal oscillator table: Replaced "ME_GS.S_XOSC" with
“ME_xxx_MC[FXOSCON]", replaced “FXOSC_CTL.OSCBYP” with
“FXOSC_CTL[OSCBYP]”

Slow external crystal oscillator (SXOSC) digital interface section: Changed the sentence
from “The SXOSC digital interface controls the 32 KHz slow external crystal oscillator
(SXOSC).” to “The SXOSC digital interface controls the operation of the 32 KHz slow
external crystal oscillator (SXOSC).”

SXOSC truth table: Replaced "S_OSC” with “OSCON"
Renamed the figure title

from “RC Oscillator Control Register (RC_CTL)”
to “FIRC Oscillator Control Register (FIRC_CTL)”

Renamed the table title
from “RC Oscillator Control Register (RC_CTL) field descriptions”
to “FIRC Oscillator Control Register (FIRC_CTL) field descriptions”

In the FXOSC_CTL figure, added footnotes to clarify the access to the OSCBYP and
I_OSC fields.

Deleted the “CMU register map” section.
Added notes for clarifying field access to the following registers
 • FXOSC_CTL
 • SXOSC_CTL
 • CMU_CSR
Revised the SXOSC_CTL section.
In the SIRC “Functional description” section, revised the information of SIRC output

frequency trimming.
In the FIRC “Functional description” section, revised the information of FIRC output

frequency trimming.
In the FIRC_CTL section, deleted the FIRCON_STDBY field.
Revised the reset values in the FMPLL CR.
Revised the SIRC_CTL[SIRCTRIM] field description.
Revised the FIRC_CTL[FIRCTRIM] field description.
Changed STANDBY0 to STANDBY.
In the FMPLL features, changed “SSCG” to “frequency modulation”.
In the FMPLL functional description, added the “FMPLL lookup table” table.
In the CMU introduction, changed “towards the mode” to “towards the MC_ME”.
In the CMU introduction, deleted the “CMU block diagram” figure.
In the CMU Introduction section, changed “clock management unit” to MC_CGM.

Mode Entry Module Changed “WARNING” to “CAUTION”.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Added the “Peripheral control registers by peripheral” table.
In the ME_<mode>_MC[DFLAON] field description, added a note about configuring reset

sources as long resets.

Table B-1. Changes between revisions 7 and 8 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 905

Reset Generation
Module

Changed STANDBY0 to STANDBY.
Revised the chapter to reflect the fact that the RGM_DEAR and RGM_DERD registers are

always read-only.
In the “External Reset” section, changed “In this case, the external reset is forced low by

the product until the beginning of PHASE3” to “In this case, the external reset is asserted
until the end of PHASE3”.

Revised the RGM_FEAR[AR_CMU_OLR] field description.
Revised the RGM_FES[F_CORE] field description.
Changed “core reset” to “debug control core reset”.

Power Control Unit Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.

Voltage Regulators and
Power Supplies

In the “Register description” section, added information on where to find the VREG_CTL
base address.

Revised the “Register description” section to include the address offset and MC_PCU
mapping.

Wakeup Unit Changed WKUP to WKPU to match the official module abbreviation.
In the Overview section, replaced the wakeup vector mapping information with a table.
In the Overview section, changed the entries in “Interrupt vector 2” so that the footnote “Not

available in 100-pin LQFP” is associated only with WKPU[19].
In the “NMI management” section, changed “This register is a clear-by-write-1 register type,

preventing inadvertent overwriting of other flags in the same register.” to “The NIF and
NOVF fields in this register are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.”

In the “External interrupt management” section, changed “This register is a clear-by-write-1
register type, preventing inadvertent overwriting of other flags in the same register.” to
“The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents
inadvertent overwriting of other flags in the register.”

In the NSR, changed NIF to NIF0 and NOVF to NOVF0.
In the NCR, changed all field names to contain a trailing ‘0’ (example: NLOCK0).
In the “WKPU block diagram” figure, deleted single 0s.
In the “Memory map” section, changed “If supported and enabled by the SoC” to “If

SSCM_ERROR[RAE] is enabled”.
In the WIFER section, deleted “The number of wakeups ... 1 and 18”.
In the “WKPU memory map” table, added the module base address.
In the NCR[NWRE0] field description, added a note about the proper sequence for enabling

the NMI.

Real Time Clock /
Autonomous Periodic

Interrupt

Replaced ipg_clk with “system clock”.
Changed “32 kHz” to “32 KHz”.
Revised the RTCC[FRZEN] field description.
Added the following note to the RTCC[RTCVAL] field description: “RTCVAL = 0 does not

generate an interrupt.”.
In the “RTC functional description” section, deleted “The RTCC[RTCVAL] field may only be

updated when the RTCC[CNTEN] bit is cleared to disable the counter”.
In the “RTC/API register map” table, added the module base address.

CAN Sampler Deleted the duplicate register map.
In the “CAN sampler memory map” table, added the module base address.

e200z0h Core In the “e200z0h block diagram” figure, added a box around the core elements.

Table B-1. Changes between revisions 7 and 8 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

906 Freescale Semiconductor

Interrupt Controller Revised “INTC Priority Select Registers“ and “INTC Priority Select Register Address
Offsets“ table to show that “INTC_PSR208_210“ contains PRI208, PRI209, and PRI210
fields.

Revised the INTC_IACKR section to illustrate the register’s dependence on
INTC_MCR[VTES] more clearly.

In the INTC_EOIR register figure, added “See text” to the W row.
In the “Interrupt vector table” table, changed “WKUP” to “WKPU”.
In the “INTC memory map” table, added the module base address.

Memory Protection
Unit

In the “MPU block diagram” figure, changed the text at the top left to “Platform” and removed
“z0hn1 or”.

Revised the Introduction section.
Changed AHB to XBAR.
Deleted references to IPS and replaced with “peripheral” as needed.
In the “MPU access evaluation macro” figure, changed “AHB_ap” to “System bus address

phase”.
In the “MPU memory map” table, added the module base address.

System Integration Unit
Lite

In the MIDR1[PARTNUM] field, removed the “(560x)” text fragments.
Changed “WARNING” to “CAUTION”.
In the register figures, changed “Access: None” to the corresponding actual level of access.
In the MIDR1[PKG] field description:
 • Added “Any values not explicitly specified are reserved”.
 • Added the 64-pin LQFP setting.
Revised the description of the PARTNUM field in MIDR1 and MIDR2 to clarify that the field

is split between the two registers.
In the PCRx section, revised the WPS and WPE field descriptions to indicate the correct

functionality.
In the “External interrupts” section, changed “This register is a clear-by-write-1 register

type, preventing inadvertent overwriting of other flags in the same register.” to “The bits
in the ISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.”

Revised the “MIDR2 field descriptions” table to show how to calculate total flash memory
size.

In the “MIDR2 field descriptions” table, deleted the entry for FR (not implemented).
In the “SIUL memory map” table, added the module base address.

Inter-Integrated Circuit
Bus Controller Module

In the IBCR section, changed “MS/SL” to “MSSL” and “Tx/Rx” to “TXRX” to ensure
compliance with field name convention.

In the IBCR figure, changed bit 7 (was IBDOZE, is reserved).
In the IBSR figure, changed the IBAL and IBIF fields to w1c.
In the “Interrupt description” section, changed “(TCF bit set - To be checked)” to “(a Byte

Transfer interrupt occurs whenever the TCF bit changes from 0 to 1, that is, Transfer
Under Progress to Transfer Complete state)”.

Revised the last paragraph of the Overview section.
In the IBCR[MDIS] field description, added “Status register bits (IBSR) are not valid when

module is disabled”.
In the IBSR[RXAK] field description, added “This bit is valid only after transfer is complete”.
In the “Interrupt description” section, revised the entry for “Byte transfer condition”.
In the “Initialization sequence” section, changed IBCR[IBDIS] to IBCR[MDIS].
Revised the “Post-transfer software response” section.
Added the “Transmit/receive sequence” section.
In the “Generation of STOP” section, in the code sample, changed “bit 1” to “bit 5”.
In the “I2C memory map” table, added the module base address.

Table B-1. Changes between revisions 7 and 8 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 907

LIN Controller In the “IFER field descriptions” table, switched “activated” and “deactivated” in order to
match with “IFER[FACT] configuration” table.

Deleted the “Register map and reset values” section (duplicate content).
In the “UART mode” section, in the “9-bit frames” subsection, changed “sum of the 7 data

bits” to “sum of the 8 data bits”.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved and

always reads 1”.
Changed “kbps” to “Kbit/s”.

FlexCAN In the “FlexCAN memory map” table, added the module base addresses.

Deserial Serial
Peripheral Interface

In the “Continuous selection format” section, added a note about filling the TX FIFO.
Added new rules to the “Continuous serial communications clock” section.
In the “DSPI memory map” table, added the module base addresses.

Timers Added this chapter (incorporates content from STM, eMIOS, and PIT chapters).

Analog-to-Digital
Converter

Updated MCR[WLSIDE] bit description.
Updated CDR register.
Replaced ADCDig with ADC, rewriting content as necessary.
In the PDEDR[PDED] field description, added “The delay is to allow time for the ADC power

supply to settle before commencing conversions.”.
In the “Threshold registers” Introduction section, deleted the sentence “The inverter bit and

the mask bit for mask the interrupt are stored in the TRC registers.”.
Deleted the “Bit access descriptions” table.
In the CIMR section, deleted the duplicate CIMR1 figure.

Cross Triggering Unit Removed remaining references to CTU_CSR (not implemented on this chip).
In the “CTU memory map” table:
 • Changed the end address of the reserved space (was 0x002C, is 0x002F).
 • Added the module base address.

Flash Memory Replaced the entire chapter.

Register Protection Added this chapter.

Software Watchdog
Timer

Added this chapter.

Error Correction Status
Module

Revised the Introduction section.
Revised the Features section.
Revised the MUDCR section to show completely that bit 1 is reserved.
In the register descriptions, revised the names as needed to match the names in the

memory map.
In the PREMR section, added text on where to find bus master IDs.
Aligned register names in the descriptions and the memory map.
Deleted the second paragraph in the Introduction section.
Deleted the last bullet (about spp_ips_reg_protection) in the Features section.
In the PREAT field descriptions, changed “AMBA-AHB” to “XBAR”.
Renamed the “Spp_ips_reg_protection” section to “Register protection” and revised the

section.
Revised the “ECC registers” section.
In the “ECSM memory map” table, added the module base address.

IEEE 1149.1 Test
Access Port Controller

In the Features section, changed “Three test data registers” to “2 test data registers”.
In the “SAMPLE instruction” section, added information about pad status.
In the “SAMPLE/PRELOAD instruction” section, added information about pad status.

Table B-1. Changes between revisions 7 and 8 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

908 Freescale Semiconductor

B.2 Changes between revisions 5 and 71

Nexus Development
Interface

Added the “NPC_HNDSHK module” section.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Replaced the “NDI configuration options” table.

Boot Assist Module Deleted this chapter (relevant content is now represented by the “Microcontroller boot”
chapter).

Enhanced Modular IO
Subsystem

Deleted this chapter (relevant content is now represented by the “Timers” chapter).

System Status and
Configuration Module

Deleted this chapter (relevant content is now represented by the “Microcontroller Boot”
chapter).

Appendix: Register
Protection

Deleted this appendix (relevant content is now represented by the “Register Protection”
chapter).

Appendix: Register
Map

Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Extended “Priority Select Register” to INTC_PSR208_210.
Removed CTU_CSR (not implemented on this microcontroller).

Appendix: Revision
History

Changed the format of the revision-history content.
Added a note that Rev. 6 was not publicly released.

1.Rev. 6 was not publicly released.

Table B-2. Changes between revisions 5 and 7

Chapter Description

Throughout Editorial changes and improvements.

Signal Description 100 LQFP pinout and 144 LQFP pinout:
 • Removed alternate functions
208 MAPBGA pinout:
 • OSC32K_XTAL at R9 changed to XTAL32
 • OSC32K_EXTAL at T9 changed to EXTAL32

Clock Description Revised “Progressive clock switching” section.
Added “Progressive clock switching” scheme figure
Update definition of en_pll_sw bit filed on Control Register
Interrupt functionalities are not available on SXOSC

Boot Assist Module Added notes in the following section:
Download 64-bit password and password check
Download data
Execute code

Table B-1. Changes between revisions 7 and 8 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 909

System Integration Unit
Lite

Clarified description of I/O pad function in overview section
Clarification: Not all GPIO pins have both input and output functions
Replaced parallel port register sections (PGPDO, PGPDI, and MPGDO), clarifying register

function and bit ordering

IEEE 1149.1 Test
Access Port Controller

Changed the code values for ACCESS_AUX_TAP_TCU and ACCESS_AUX_TAP_NPC in
the “JTAG Instructions” table

Flash Memory Added a note in thr “Censorship password register” sections
Added information on RWW-Error during stall-while-write in the “Module Configuration

Register (MCR)”

Analog-to-Digital
Converter

Updated following section:
 • Overview
 • Introduction
 • Injected channel conversion
 • Abort conversion
 • ADC CTU (Cross Triggering Unit)
 • Presampling
Updated following registers:
 • CEOCFR
 • CIMR
 • WTISR
 • DMAR
 • PSR
 • NCMR
 • JCMR
 • CDR
 • CWSEL
 • CWENR
 • AWORR
Inserted "CTU triggered conversion" in the conversion list of "Functional description"

section
Replaced generic “system clock” with “peripheral set 3 clock”
added information about “ADC_1” in the “ADC sampling and conversion timing” section
Moved CWSEL, CWENR and AWORR register within “Watchdog register“ section
Inserted a footnote about OFFSHIFT field in the CTR register
Changed the access type of DSDR in "read/write"
Updated the DSD description in the DSDR field description table

Cross Triggering Unit Replaced “Channel number value mapping” table with “CTU-to-ADC Channel Assignment”
table
Removed “Control Status Register (CTU_CSR)” because the interrupt feature is not
implemented.
Cross Triggering Unit block diagram: trigger output control and output signals removed
Main Features section: Removed “Maskable interrupt generation whenever a trigger output
is generated”. Feature not implemented.

Table B-2. Changes between revisions 5 and 7 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

910 Freescale Semiconductor

B.3 Changes between revisions 4 and 5
Table B-3. Changes between revisions 4 and 5

Chapter Description

Throughout Editorial changes and improvements.

Overview “MPC5604B series block diagram”figure:
– Added “Interrupt request with wake-up functionality” as an input to the WKPU block.

Signal Description “Functional port pin description” table:
– Improved the footnote regarding JTAGC pins in order to explain when the device get
incompliance with IEEE 1149.1-2001.
– Added a footnote concerning the family compatibility.
– Footnote 11: Replaced MPC5603B with MPC5602B

Clock Description “MPC5604B System Clock Generation” figure:
– Changed the dividers from 1 to 15 to 1 to 16 of the system clock selectors.

“Progressive clock switching” section:
– Revised.
– Added “Progressive clock switching scheme” figure.
– Update definition of en_pll_sw bit filed on Control Register.

“Slow external crystal oscillator (SXOSC) digital interface“ section:
– Interrupt functionalities are not available on SXOSC.

Boot Assist Module “Hardware configuration to select boot mode“ table:
– Renamed the flag "Standby-RAM Boot Flag" to "BOOT_FROM_BKP_RAM".

“Download 64-bit password and password check“ section:
– Added note about password management.

“Boot from FlexCAN“ section:
– Added note about the distirb provided by CAN traffic.

Interrupt Controller Replaced INTC_PSR121 with “INTC_PSR147
Updated “INTC Priority Select Registers“ and “INTC Priority Select Register Address
Offsets“ table in according to “Interrupt Vector Table“ table

IEEE 1149.1 Test
Access Port Controller

“External Signal Description“ section:
– Emphasized when the device get incompliance with IEEE 1149.1-2001.

Nexus Development
Interface

“Ownership Trace“ section:
– Added it.

Flash Memory – Updated delivery values of NVPWD0 and NVPWD1 for Code Flash.
– Revised the “Margin read“ section for both Flash.
– Replaced “Margin Mode“ with “Margin Read”.

Deserial Serial
Peripheral Interface

“DSPIx_MCR register“:
– Included Bit fields CLR_TXF and CLR_RXF.

LIN Controller “LINTCSR“ register:
– Updated the reset value.

FlexCAN “Control Register (CTRL) field description” table:
– Sorted correctly the bit fields.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 911

B.4 Changes between revisions 2 and 4

Analog-to-Digital
Converter

“Threshold Control” Register:
– Removed THRINV field.

Decode Signals Delay Register (DSDR):
– Update the description.

“Max AD_clk frequency and related configuration settings“ table:
– Adeed a footnote.

Safety “SWT_CR” Register:
– Added the field “KEY”.

Real Time Clock /
Autonomous Periodic

Interrupt

“RTCC“ Register:
– Updated the APIVAL description.

Table B-4. Changes between revisions 2 and 4

Chapter Description

Throughout Editorial changes and improvements.

Overview Minor editorial and formatting changes
Updated block diagram
Section 1.2.3, “Chip-level features”: Changed eMIOS-lite to eMIOS
Section 1.4, “Developer support”: Added footnote defining AUTOSAR
Memory map:
– Changed Periodic Interrupt Timer (PIT/RTI) to Periodic Interrupt Timer (PIT)
– Changed CTU-LITE to CTU
– Changed SRAM size from 32 KB to 48 KB

Signal Description Section 2.2, “Package pinouts”: Inverted the order of Figure 2 and Figure 3
208 MAPBGALBGA208 configuration: Changed description for ball H1 from NC to
VSS_HV
Section 2.3, “Pad configuration during reset phases”: Added BAM function ABS[0] to PA[8]
Voltage supply pin descriptions: Added ball H1 to VSS_HV pins
Functional port pin descriptions:
– Added a footnote regarding “I/O Direction” column
– Replaced GPIO[20] with GPI[20]
– Changed GPI[21] to GPIO[21]
– Changed the “Reset config.” of PB[7] and PB[8] to Tristate
– Changed “Pad Type“ from S to M in 27 pads
– Changed pad type from S to M on port pin PE[7]

Table B-3. Changes between revisions 4 and 5 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

912 Freescale Semiconductor

Clock Description Section 3.5, “Memory Map and Register Definition”, Section 3.5.1, “Register Descriptions”
Added ‘Location’ column to MC_CGM Register Description; added clock domain
information to clock source selection register descriptions
Section 3.6, “Slow internal RC oscillator (SIRC) digital interface”: Replaced all LPRC
occurrences with SIRC
Section 3.8.6.1, “Normal mode”: Replaced “CR“ with “CR.NDIV“ and “LDF” with “NDIV“
Fast External Crystal Oscillator Control Register (FXOSC_CTL) field descriptions: Updated
description of EOCV[7:0]
FMPLL block diagram: Added footnote to DIV2
FMPLL memory map: Updated access types
CR field descriptions: Updated description of field EN_PLL_SW
Progressive clock switching on pll_select rising edge: Updated column header titles
Added figure “FMPLL output clock division flow during progressive switching”

Mode Entry Module added note for S_MTRANS polling; cleaned up MC_ME Mode Diagram; added details to
RESET mode description; added details of booting from backup RAM on STANDBY0 exit

Boot Assist Module Updated oscillator naming
Removed all references to “autobaud” and to ABD field of SSCM_STATUS register
(autobaud feature not supported by device)
Section 8.3.2, “Reset Configuration Half Word Source (RCHW)”: Changed offset from 0x02
to 0x00
Section 8.3.3, “Single chip boot mode”: Added a footnote
BAM memory organization: Added column header “Parameter”
Updated Fields of SSCM STATUS register used by BAM
Section 8.3.4.3, “BAM resources”: Updated list of MCU resources
Section 8.3.4.4, “Download and execute the new code”: Removed optional first step No. 0
(step concerned send/receive message for autobaud rate selection)
Updated Serial boot mode – baud rates
Updated System clock frequency related to external clock frequency
Reset Configuration Half Word (RCHW): Changed reset value for all fields: was 0; is 1
Updated Section 8.3.4.5, “Download 64-bit password and password check”

System Integration Unit
Lite

Updated SIUL signal properties
Updated SIUL memory map
Updated register descriptions
Section 7.6.2, “General purpose input and output pads (GPIO)”: Updated number of
interrupt vectors and number of external interrupts

e200z0h Core Updated e200z0h block diagram
Section 10.2.1.5, “e200z0h system bus features”: Added footnotes

Peripheral Bridge Chapter title change
Replaced “AIPS” with “peripheral bridge”, or “PBRIDGE” where appropriate, throughout
chapter
Peripheral bridge interface: Updated PBRIDGE1 peripheral names
Updated Section 11.1.4, “Modes of operation”

Crossbar Switch Updated XBAR block diagram

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 913

Memory Protection
Unit

Updated MPU block diagram
Updated Section 13.5.2, “Register description” to include adding bit numbers to field names
and changing field bit numbers format to LSB=0 where needed
MPU memory map: Removed MPU_EAR3 and MPU_EDR3
MPU Error Address Register, Slave Port n (MPU_EARn): Removed MPU_EAR3 content
MPU Error Detail Register, Slave Port n (MPU_EDRn): Removed MPU_EDR3 content
MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0): Replaced asterisks with
‘0’ as reset value for bits 27:31
MPU_RGDn.Word0 field descriptions: Replaced SRTADDR[31:0] with SRTADDR[26:0]
MPU_RGDn.Word1 field descriptions: Replaced ENDADDR[31:0] with ENDADDR[26:0]

Error Correction Status
Module

Replaced AIPS with “peripheral bridge” or “PBRIDGE”
Section 18.4.2, “Register description”: Applied LSB=0 to field internal bit numbers
ECSM 32-bit memory map: Added ECSM base address
Section 18.4.2.1, “Processor Core Type Register (PCT)”: Added reset values to bitmap
Section 18.4.2.2, “SoC-Defined Platform Revision Register (REV)”: Added reset values to
bitmap
Section 18.4.2.3, “IPS On-Platform Module Configuration Register (IOPMC)”: Added reset
values to bitmap
Section 18.4.2.6, “Miscellaneous User-Defined Control Register (MUDCR)”
– Updated bit numbers and field descriptions
– Updated text following field description table
Section 18.4.2.7.1, “ECC Configuration Register (ECR)”: Removed paragraph about
reporting of single-bit memory corrections
Updated ECC Configuration (ECR) field descriptions
Section 18.4.2.7.3, “ECC Error Generation Register (EEGR)”: Removed paragraph about
enabling of error generation modes
Section 18.4.2.7.3, “ECC Error Generation Register (EEGR)”: Replaced “for the ECC
Configuration Register definition” with “for the ECC Error Generation Register definition” in
sentence above bitmap
Updated ECC Error Generation (EEGR) field descriptions

IEEE 1149.1 Test
Access Port Controller

Section 15.1, “Introduction”: Removed paragraph about IEEE 1149.7
e200z0 OnCE Register Addressing: Replaced ‘Shared Nexus Control Register (SNC)’ with
‘Reserved’ (SNC register not implemented on this device)

Nexus Development
Interface

NDI Implementation Block Diagram: Replaced PPC with CPU
Nexus Debug Interface Registers:
– Added ‘Location’ column as navigational aid
– Removed Client Select Control (CSC) Register (CSC register not implemented on this
device)
– Updated register names
– Removed sentence referencing device MPC5516 from footnote 1
Nexus Device ID (DID) Register bitmap: Changed reset value for field MIC—was 0xE, is
0x20
DID field descriptions: Removed “for STMicroelectronics” from MIC field description
PCR field descriptions: Updated description of MCKO_DIV[2:0] and corrected numbering
for LSB=0 throughout table
Updated Section 16.7.3, “Programmable MCKO Frequency”
Section 16.7.4, “Nexus Messaging”: Removed sentence referencing Client Select Control
Register
Section 16.7.6.1, “EVTI Generated Break Request”: Removed sentence referencing
Shared Nexus Control (SNC) Register (SNC register not implemented on this device)

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

914 Freescale Semiconductor

Static RAM Modification of chapter title
Section 20.3, “Register memory map”: Replaced “32 KB” with “48 KB” in first sentence

Flash Memory Section 18.1, “Introduction”: Replaced 544 Kbyte with 512 Kbyte
Flash memory architecture: Replaced “EEE” with “EEPROM emulation”
Section 18.2, “Code flash memory”: Changed title and content to replace “Program Flash”
with “Code Flash”
Updated Section 18.2.1, “Introduction”
Section 18.2.2, “Main features”: Removed bullet “Usable as main Code Memory”
Updated Section 18.2.3, “Block diagram”
Updated Section 18.2.4.2, “Flash module sectorization”
Updated Section 18.2.6, “Module Configuration Register (MCR)”
Updated Section 18.2.8, “High address space Block Locking register (HBL)”
Updated Section 18.2.11, “High address space Block Select register (HBS)”
ADR field descriptions: Removed the phrase “if the device is configured to show this
feature” in the AD22-3 description
Section 18.2.13, “Bus Interface Unit 0 register (BIU0)”:
– Removed sentence “The availability of this register is device dependent.”
– Updated BIU0 field descriptions
Section 18.2.14, “Bus Interface Unit 1 register (BIU1)”:
– Removed sentence “The availability of this register is device dependent.”
– Updated BIU1 field descriptions
Section 18.2.15.1, “Nonvolatile Bus Interface Unit 2 register (NVBIU2)”:
– Removed sentence “The availability of this register is device dependent.”
– Updated BIU2 field descriptions
Section 18.2.17, “User Test 0 register (UT0)”: Modified first sentence
Non-volatile private censorship PassWord 0 register (NVPWD0): Changed delivery value
0xXXXXXXXX to 0xFFFF_FFFF
Non-volatile private censorship PassWord 1 register (NVPWD1): Changed delivery value
0xXXXXXXXX to 0xFFFF_FFFF
NVSCI0 field descriptions: Replaced “or NVSCI1 = NVSCI0” with “or NVSCI1 != NVSCI0”
in fields SC and CW
NVSCI1 field descriptions:
– Replaced “SC32-16: Serial Censorship control word 32-16 (Read/Write)” with
“SC[31:16]: Serial Censorship control word 31-16 (Read/Write)”
– Replaced “CW32-16: Censorship control Word 32-16 (Read/Write)” with “CW[31:16]:
Censorship control Word 31-16 (Read/Write)”
– Replaced “or NVSCI1 = NVSCI0” with “or NVSCI1 != NVSCI0” in fields SC and CW
Section 18.2.29, “Nonvolatile User Options register (NVUSRO)”:
– Removed sentence “The availability of this register is device dependent.”
– Updated Table 200
Updated Table 202
Section 18.3.14, “User Test 0 register (UT0)”: Modified first sentence
Section 18.4.1, “Introduction”: Replaced AIPS-Lite with PBRIDGE
PFCR0 field descriptions: Modified field descriptions for BK0_APC, BK0_WWSC and
BK0_RWSC
PFCR1 field descriptions: Modified field descriptions for BK1_APC, BK1_WWSC and
BK1_RWSC
Section 18.5.13, “Timing diagrams”: Reformatted and rescaled timing diagrams to improve
readability and alignment of content

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 915

Deserial Serial
Peripheral Interface

Removed all references to DSI (Deserial Serial Interface) and CSI (Combined Serial
Interface) (device does not implement DSI and CSI)
Removed all references to DMA (DSPI does not support DMA in this device)
DSPI Module Configuration Register (DSPIx_MCR): Replaced the reset value of MDIS
bitfield with ‘1’. Made same modification on DSPIx_MCR field descriptions.
Section 19.4.2, “Signal names and descriptions”: Formatted all CS signals as “CSn_x”
Section 19.5, “Memory map and register description”: Removed all DMA requests content
Section 19.5.4, “DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)”:
Changed number of clock and transfer attribute registers from eight to six
Section 19.5.5, “DSPI Status Register (DSPIx_SR)”: Modified first paragraph
DSPI detailed memory map: Added ‘Location’ column as navigational aid
Baud rate computation example: Changed fSYS from 100 MHz to 64 MHz and updated
baud rate accordingly
Section 19.6, “Functional description”: Removed all DMA requests content and eDMA
controller content
Section 19.7.1, “How to change queues”: Modified list of events: Was 1–11, is 1–7
Updated Section 19.7.3, “Delay settings”

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

916 Freescale Semiconductor

LIN Controller Updated Section 20.3.1, “LIN mode features”
Added names for Example 1 and Example 2
Replaced LINFlex memory map
Section 20.8.2, “Register description”
– Aligned hexidecimal reset values to reset values shown in bitmaps where necessary
– Aligned bit numbering in register field description tables to numbering in register bitmaps
where necessary
LIN control register 1 (LINCR1):
– Changed reset value from 0x0082_0000 to 0x0000_0082
– Changed access from w1c to R/W for fields CCD, CFD, LASE, AWUM, MBL[0:3], BF,
SFTM, LBKM, MME, SBDT, RBLM, SLEEP and INIT
LIN interrupt enable register (LINIER):
– Updated LSIE field description
– Changed access from w1c to R/W for fields SZIE, OCIE, BEIE, CEIE, HEIE, FEIE, BOIE,
LSIE, WUIE, DBFIE, DBEIE, DRIE, DTIE and HRIE
Section 20.8.2.3, “LIN status register (LINSR)”: Updated LINS field description; changed
access from w1c to read-only for field RPS
Section 20.8.2.4, “LIN error status register (LINESR)”: Updated SZF field description
UART mode control register (UARTCR): Changed access from w1c to R/W for fields RXEN,
TXEN, OP, PCE, WL and UART
UARTSR field descriptions: Added footnote 1
LIN timeout control status register (LINTCSR): Changed access from w1c to R/W for fields
LTOM, IOT and TOCE
LIN output compare register (LINOCR): Changed access from w1c to R/W for OCx
Section 20.8.2.9, “LIN timeout control register (LINTOCR)”: Updated HTO field description
LIN fractional baud rate register (LINFBRR): Changed access from w1c to R/W for DIV_F
LIN integer baud rate register (LINIBRR): Changed access from w1c to R/W for DIV_M
LIN checksum field register (LINCFR): Changed access from w1c to R/W for CF
LIN control register 2 (LINCR2):
– Changed access from w1c to R/W for fields IOBE and IOPE
– Changed access from w1c to write-only for fields WURQ, DDRQ, DTRQ, ABRQ and
HTRQ
Section 21.7.1.14, “Buffer identifier register (BIDR): Updated CCS field description;
changed access from w1c to R/W for fields DIR and CCS
Buffer data register LSB (BDRL): Changed access from w1c to R/W for DATAx
Section 21.7.1.17, “Identifier filter enable register (IFER): Updated description of
FACT[0:7]; added IFER[FACT] configuration table
Section 21.7.1.18, “Identifier filter match index (IFMI): Replaced IFMI[0 with IFMI[0:4]
Section 21.7.1.19, “Identifier filter mode register (IFMR): Replaced IFM[0:3] with IFM[0:7];
added IFMR[IFM] configuration table; changed register access from User read-only to User
read/write; changed access from read-only to R/W for IFM[0:7]
Section 21.7.1.20, “Identifier filter control register (IFCR2n): Amended address offsets;
changed access from w1c to R/W for fields DIR and CCS
Section 21.7.1.21, “Identifier filter control register (IFCR2n + 1): Amended address offsets;
changed access from w1c to R/W for fields DIR and CCS
Register map and reset values:
– Updated bits of IFMI and IFMR
– Amended address offsets for IFCR2n and for IFCR2n+1
Added Section 21.8.1.4, “Clock gating to Section 21.8.1, “UART mode
Section 21.8.2, “LIN mode: Added footnote regarding slave mode
Updated Section 21.8.2.1.3, “Data reception (transceiver as subscriber)

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 917

LIN Controller
(continued)

Updated Section 21.8.2.1.4, “Data discard
Updated Section 21.8.2.2.1, “Data transmission (transceiver as publisher)
Updated Section 21.8.2.2.2, “Data reception (transceiver as subscriber)
Updated Section 21.8.2.2.3, “Data discard
Filter configuration—register organization: Replaced ID5:0 with ID[0:5]
Added Section 21.8.2.5, “Clock gating
Updated Section 21.8.3, “8-bit timeout counter
Header and response timeout: Updated arrows for OCHeader, OCResponse and OCFrame

FlexCAN Removed all references to consulting a device user guide.
Removed any reference to the FlexCAN wake-up interrupt
Module memory map: Added ‘Location’ column as navigational aid
Updated Section 22.3.4.1, “Module Configuration Register (MCR)
Updated Section 22.3.4.2, “Control Register (CTRL)
Added text in Section 22.3.4.4, “Rx Global Mask (RXGMASK), Section 22.3.4.5, “Rx 14
Mask (RX14MASK) and Section 22.3.4.6, “Rx 15 Mask (RX15MASK) referring to
Section 22.4.8, “Rx FIFO
Section 22.4.7.3, “Message buffer lock mechanism: Added a note
Error and Status Register (ESR) field description: Updated titles of bits TX_WRN and
RX_WRN
CAN standard compliant bit time segment settings: specified that it refers to the official CAN
specification

CAN Sampler Updated oscillator naming (“16 MHz fast internal RC oscillator”)
Updated Section 22.3, “Register description”
Section 22.4, “Functional description”: Removed section “Selecting the Rx port”
(information already exists in register field description in Table 329)
Section 22.4.2, “Baud rate generation”: Replaced BRP bits 5:1 with BRP[4:0]
CAN sampler register map: Updated field descriptions

Inter-Integrated Circuit
Bus Controller Module

Harmonized register names.
Module Memory Map: Added ‘Location’ column as navigational aid
IBSR field descriptions: Removed comment “Check w/design if this is the case (only TCF)”
from description of field IBIF
Section 26.5.2.2, “Interrupt description”: Removed comment “To be checked” from Byte
Transfer condition

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

918 Freescale Semiconductor

Enhanced Modular IO
Subsystem

Organizational, editorial and formatting changes, including changing ‘$’ to ‘0x’ throughout
Section 27.1.2, “Features of the eMIOS module”: Removed “identical” from first bullet in list
Removed “identical’ from first bullet in features list
Channel configuration:
– Modified eMIOS block numbering—Was eMIOS_A and eMIOS_B, is eMIOS_0 and
eMIOS_1
– Corrected position of horizontal arrow between Counter Bus_B and Ch1 in eMIOS_0
– Added GPIO to diagram key
Updated Section 27.1.5.1, “Channel mode selection”
Section 27.3, “Memory map and register description”: Harmonized register naming and
added location columns to memory map tables
eMIOS Module Configuration Register (EMIOSMCR): Changed reset value of MDIS to ‘0’
EMIOSMCR field descriptions: Corrected table title
EMIOSOUDIS register field descriptions: Replaced OU31:OU0 with OU27:OU0
Updated Section 27.3.2.8, “eMIOS UC Control Register (EMIOSC[n])”
UC BSL bits: Added “Channels 24 to 27: counter bus[E]” to selected bus for field value ‘01’
EMIOSS[n] register field descriptions: Updated FLAG field description
Section 27.4, “Functional description”: Changed the number of channel types; was three,
is five
Updated Section 27.5.2.2, “Coherent accesses”
Unified Channel block diagram:
– Changed ips_wda to ips_wdata[0:31]
– Changed uc_rd_d to uc_rd_data[0:31]
– Changed ips_add to ips_addr[27:29]

Analog-to-Digital
Converter

Section 25.1.4, “Device-specific features”:
– Replaced MA[0:2] with MA[2:0]
– Removed 1.2 V from presampling options
Updated ADC implementation diagram
Updated Section 25.2, “Introduction”
Section 25.3.1.1, “Normal conversion”: Minor editorial change
Section 25.3.1.2, “Start of normal conversion”: Minor editorial change
Updated second paragraph in Section 25.3.2, “Analog clock generator and conversion
timings”
Updated Section 25.3.3, “ADC sampling and conversion timing”
Updated Section 25.3.5.2, “Presampling channel enable signals”
Updated Presampling voltage selection based on PREVALx fields
Updated Section 25.3.8, “Interrupts”
Main Configuration Register (MCR) field descriptions: Updated description for field
OWREN
Main Status Register (MSR) field descriptions: Updated values for ADCSTATUS[0:2] (and
removed stand-alone description table for this field)
Watchdog Threshold Interrupt Status Register (WTISR) field descriptions: Changed
“corresponds to the interrupt generated “ to “corresponds to the status flag generated” in
both bit descriptions
Presampling Control Register (PSCR) field descriptions: Updated descriptions for PREVAL
fields
Section 25.4.12, “Conversion timing registers CTR[01..12]”: Restored OFFSHIFT field
Channel Data Register (CDR[0..95]) field descriptions:
– Updated description for field OVERW
– Added value ‘11’ to field RESULT[0:1]

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 919

Cross Triggering Unit CTU register map: Added ‘Location’ column and base address
Trigger source: Corrected eMIOS channel assignment on CTU inputs
Amended end of Section 29.4.1, “Event Configuration Registers (CTU_EVTCFGRx) (x =
0...3163)”

Safety Section 27.1.1.1, “Overview”: Replaced AIPS with PBRIDGE
Section 27.2, “Software Watchdog Timer (SWT)”: Replaced “Software” by “System”
Replaced “system watchdog” with “software watchdog” throughout chapter

System Status and
Configuration Module

Section 28.2.2, “Register description”: Updated introduction and applied LSB=0 numbering
to field bit numbers where needed
Module memory map: Added ‘Location’ column as navigational aid
Error Configuration (ERROR) field descriptions: Replaced “AIPS” with “PBRIDGE” in RAE
field description
System Memory Configuration Register (MEMCONFIG) field descriptions: Modified
descriptions of fields PRSZ and PVLB to replace “Program Flash” and “Instruction Flash”
with “Code Flash”

Wakeup Unit Updated Section 29.1, “Overview”
Updated Wakeup unit block diagram
WKPU memory map: Added ‘Location’ column as navigational aid
Interrupt vector 1: Updated PB[3]
Interrupt vector 2: Updated PG[3] and PG[5]
Wakeup/Interrupt Status Flag Register (WISR): Updated footnote
Updated WISR field descriptions
Interrupt Request Enable Register (IRER): Updated footnote
Wakeup Request Enable Register (WRER): Updated footnote
Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER): Updated footnote
Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER): Updated footnote
Wakeup/Interrupt Filter Enable Register (WIFER): Updated footnote
Wakeup/Interrupt Pullup Enable Register (WIPUER): Updated footnote
Section 29.5.3, “External wakeups/interrupts”: Replaced “supports up to two interrupt
vectors” with “supports up to three interrupt vectors”

Periodic Interrupt Timer Replaced PIT_RTI with PIT throughout document
Tables PIT memory map and Timer Channel n: Added “Location” column as navigational
aid
Section 30.6.1, “Example configuration”: Removed RTI lines from code

Voltage Regulators and
Power Supplies

Updated figure
Updated Section 33.1.1, “High power regulator (HPREG)”
Section 33.3, “Power domain organization”: Modified number of power domains; was two,
is three

Appendix B: Register
Map

Module base addresses:
– Changed Periodic Interrupt Timer (PIT/RTI) to Periodic Interrupt Timer (PIT)
– Changed CTU-LITE to CTU
Detailed register map:
– Changed register name PIT_RTI Control to PIT_Control
– Changed Periodic Interrupt Timer (PIT/RTI) to Periodic Interrupt Timer (PIT)
– Changed CTU-LITE to CTU
– Updated description of RSER
– Replaced “Program Flash A Configuration” with “Code Flash A Configuration”
– Replaced registers IFER, IFMI, IFMR, IFCR2n and IFCR2n+1 with “Reserved” for
LINFlex modules 1, 2 and 3

Table B-4. Changes between revisions 2 and 4 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

920 Freescale Semiconductor

B.5 Changes between revisions 1 and 2
Table B-5. Changes between revisions 1 and 2

Chapter Description

Throughout Editorial changes and improvements.
Harmonized the name of the 4 different clock source with the name listened here:
- FXOSC or fast external crystal oscillator 4-16 MHz
- FIRC or fast internal RC oscillator 16 MHz
- SIRC or slow internal RC oscillator 128 KHz
- SXOSC or slow external crystal oscillator 32 KHz
- FMPLL or frequency modulated phase locked loop
- Harmonized the cross reference to sections.
- Replaced every “Miscellaneous Control Module” or “MCM“ occurrences respectively with
“Error Correction Status Module“ or “(ECSM)“.

Cover page Replaced RPN: from “MPC5602x, MPC5603x,MPC5604x” to “MPC5602Bx, MPC5603Bx,
MPC5604Bx, MPC5602Cx, MPC5603Cx, MPC5604Cx“.

Overview - Section 1.1, “Introduction”: replaced with a new one.
- Table 2: Added rows, extended the SRAM memory to 48 KB.
- Table 4: removed the cell of “AP“.

Signal Description - Section 2.2, “Package pinouts”: updated all pin map.
- Section 2.3, “Pad configuration during reset phases” and Section 2.6, “System pins”:
Updated because After power-up phase the majority of pins is in tristate end not inpu waek
pull-up.
- Table 7:
- PC[1] type changed from “F“ to “M“.
- footnote 9: included also PH[9:10] among the exepted pins.
- Section 2.5, “Pad types”: Changed the Note .

Clock Description - Removed the reference to normal end test access, all accesses are seen as supervisor.
- Table 10: Replaced PIT_RIT with PIT.
- Table 15:
- Replaced “ENABLE“ heading rows with “ME_GS.S_XOSC“.
- Replaced “BYP“ heading rows with “OSC_CTL.OSCBYOP“.
- Replaced “Hiz‘ with “High Z“.
- Table 18:
- Replaced “ENABLE“ heading rows with “OSC_CTL.S_OSC“.
- Replaced “BYP“ heading rows with “OSC_CTL.OSCBYOP“.
- Replaced “Hiz‘ with “High Z“.
- Table 39: Removed FLCI_A field.
- Figure 14: Removed MODE and DIV4 path.
- Section 3.3, “Clock Generation Module (MC_CGM)”: Replaced with a new section.

Mode Entry Module Replaced the entire chapter.

Boot Assist Module - Aligned naming of LINFlex module.
- Section 8.3.4.3, “BAM resources”: Removed any references to STM, CMU and FMPLL.

Reset Generation
Module

Replaced the entire chapter.

MPC5604B/C Microcontroller Reference Manual, Rev. 8

Freescale Semiconductor 921

System Integration Unit
Lite

- Repleced the number of I/O pins from “121“ to “123“ for 144-pin and 208-pin packages.
- Repleced the number of I/O pins from “77“ to “79“ for 100-pin packages.
- Table 77: modified the reset value for bit 28:31 to “0“.
- Table 83: changed the size of the field “SRC“ form 2 to 1 bit.
- Table 86: Changed the definition of PCRx.SRC.

Power Control Unit Replaced the entire chapter.

e200z0h Core Replaced all e200z0 e200z1 occurrences with e200z0h.

Error Correction Status
Module

- removed MRSR register and descibed as reserved.
- removed section “13.4.3 High Priority Enables“.
Table 179: removed MRSR register and descibed as reserved.
Section 15.6, “External Signal Description”:
- Updated the period since all 4 JTAG pin are shared with GPIO.
- Table 149: updated DC field description.
- Section 15.8.4, “JTAGC Instructions”: Removed Cut.1 information.

Nexus Development
Interface

- Removed references to JCOMP.
- Removed section “Nexus Reset Control“.

Static RAM - Updated the size of the RAM from 38 to 42KB.
- Section 20.6, “Initialization and application information”: Reformatted.

Flash Memory - Table 168 Updated.
- Section 18.4.1, “Introduction”: Replaced “SPP” with “RPP”.
- Removed figure”FLASH Memory Controller Block Diagram”.
- Table 229: Replaced the reset value with which ones defined in the table footnote and
removed them.

Deserial Serial
Peripheral Interface

- Removed all the note that refer to Rx Mask.
- Removed DSPIx_CTAR6 and DSPIx_CTAR7 register.
- Added following tables: Table 244, Table 245, Table 246, Table 247, Table 248, Table 249,
Table 250, Table 251, Table 252, Table 253, Table 254, Table 255, Table 256.
Section 19.2, “Features”: Replaced “Eight clock and transfer attribute registers“ with “Six
clock and transfer attribute registers“.
Section 19.5.2, “DSPI Module Configuration Register (DSPIx_MCR)”: Removed CLR_TXF
and CLR_RXF fields from DSPIx_MCR register.

LIN Controller Replaced the entire chapter.

FlexCAN - Removed “[Ref.1]”.
- Section 21.1.2, “FlexCAN module features”.
- Added bullet “Hardware cancellation on Tx message buffers.“ .
- Removed note.
- Table 328: Replaced the footnote with new one.
- Section 21.3.3, “Rx FIFO structure”: Table 282 fixed the offset value.
- Updated Section 21.3.4.1, “Module Configuration Register (MCR)” (MAXMB note).
- Updated Section 21.3.4.8, “Error and Status Register (ESR)” (bit numbers in first
paragraph).
- Fixed information about the number of frames accumulated in the FIFO to generate a
warning interrupt, which is 5. (Affected sections: Section 21.3.4.12, “Interrupt Flags 1
Register (IFLAG1)” and Section 21.4.8, “Rx FIFO”).
- Section 21.4.2, “Local priority transmission”: added.

Table B-5. Changes between revisions 1 and 2 (continued)

Chapter Description

MPC5604B/C Microcontroller Reference Manual, Rev. 8

922 Freescale Semiconductor

Inter-Integrated Circuit
Bus Controller Module

- Replaced “I2C_DMA“ “I2C“ through whole chapter.
- Section 26.1.1, “Overview”: Replaced the capacitance value from “400pF“ to “50pF“.
- Table 384: Removed Mode column.

Enhanced Modular I/O
Subsystem

Replaced the entire chapter.

Analog-to-Digital
Converter

Replaced the entire chapter.

Cross Triggering Unit Table 454: Corrected eMIOS channel assignment on CTU inputs.

System Status and
Configuration Module

- Section 28.4.2, “System Memory Configuration Register (MEMCONFIG)”: Updated
register definition.
- Removed section “Initialization/Application Information“.

Wakeup Unit - Related Bit12 and Bit13 to the wakeup line respectively 19 and 18 of the following register:
WISR, IRER, WRER, WIREER, WIFEER, WIFER, WIPUER.
- WKUP line 0: Previously = RTC/API; Now = API.
- 'Old'WKUP line 1 -> Now WKUP line 19.
- 'New' WKUP line 1 -> RTC.
- Replaced “NMI[0]“ whti [NMI].
- Moved the note of “Interrupt Vector 2”, this note is valid only for PF[13], PG[3] and PG[5].
- Figure 432: Replaced “0-18” instead “0-19”.
- Figure 443: updated in according to the previous change.
- Section 29.2, “Features”:
- Updated the “External wakeup/interrupt support” list to explain that system interrupt
vectors are 3.
- Updated the “On-chip wakeup support“ list to explain that wakeup spurces are 2.
- Section 29.4.1, “Memory map”: Table 411 Removed redundant rows.

Periodic Interrupt Timer Figure 445: Replaced “Timer 3” with “Timer 5”.

Real Time Clock /
Autonomous Periodic

Interrupt

- Added “/Autonomous Periodic Interrupt“ in the title.
- Figure 13-1: Updated to explain that “RTC Rollover wakeup“ and “RTC cnt_or_rlovr“ are
not connected on MPC5604B.
- Figure 13.4: Removed section “Test mode“.
- Removed section “External Signal Description“.

Voltage Regulators and
Power Supplies

Aligned the electrical value with data sheet.

Table B-5. Changes between revisions 1 and 2 (continued)

Chapter Description

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2008–2011. All rights reserved.

MPC5604BCRM
Rev. 8
5 May 2011

