MAXIMUM RATINGS

MAXIMUM RATINGS						
Rating	Symbol	MPF211 MPF212	MPF213	Unit		
Drain-Source Voltage	V _{DS}	27	35	Vdc		
Drain-Gate Voltage	V _{DG1} V _{DG2}	35 35	40 40	Vdc		
Drain Current — Continuous	ΙD	50		mAdc		
Gate Current	I _{G1}	± 10 ± 10		mAdc		
Total Device Dissipation (a T _A = 25°C Derate above 25°C	PD	300 1.71		mW mW/°C		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0		Watt mW.°C		
Lead Temperature, 1/16" From Seated Surface for 10 Seconds	TL	260		°C		
Junction Temperature Range	TJ	- 65 to + 150		°C		
Storage Channel Temperature Range	T _{stg}	-65 to +150		°C		

MPF211 MPF212 MPF213

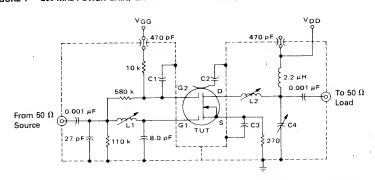
CASE 317-01, STYLE 1

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL — DEPLETION

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					·
Drain-Source Breakdown Voltage (VG1S = VG2S = -4.0 Vdc, ID = $10 \mu Adc$)	MPF211,212 MPF213	V(BR)DSX	25 30	_	Vdc
Instantaneous Drain-Source Breakdown Voltage(1) $(V_{G1S} = V_{G2S} = -4.0 \text{ Vdc}, I_D = 10 \mu \text{Adc})$	MPF211,212 MPF213	V _{(BR)DSX}	27 35	_	Vdc
Gate 1-Source Breakdown Voltage(2) $(V_{G2S} = V_{DS} = 0, I_{G1} = \pm 10 \text{ mAdc})$		V _{(BR)G1SO}	± 6.0	_	Vdc
Gate 2-Source Breakdown Voltage(2) (VG1S = VDS = 0, IG2 = ±10 mAdc)		V _{(BR)G2SO}	± 6.0	_	Vdc
Gate 1 Leakage Current ($V_{G1S} = \pm 5.0 \text{ Vdc}$, $V_{G2S} = V_{DS} = 0$) ($V_{G1S} = -5.0 \text{ Vdc}$, $V_{G2S} = V_{DS} = 0$, $T_A = 150^{\circ}\text{C}$)		I _{G1SS}	± 0.04(Typ)	± 100 - 100	nAdc μAdc
Gate 2 Leakage Current (VG2S = ± 5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150° C)		^I G2SS	± 0.04(Typ)	± 100 - 100	nAdc μAdc
Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 2.0 μ Adc)	MPF211,213 MPF212	VG1S(off)	- 0.5 - 0.5	- 5.5 - 4.0	Vdc
Gate 2 to Source Cutoff Voltage (Vps = 15 Vdc, Vg1s = 0, Ip = 20 μ Adc)	MPF211 MPF212,213	V _{G2S(off)}	- 0.2 - 0.2	- 2.5 - 4.0	Vdc
ON CHARACTERISTICS					-
Zero-Gate-Voltage Drain Current(3) (VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc)		IDSS	6.0	4.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					4
Forward Transfer Admittance(4) (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, V_{G1S} = 0, f = 1.0 kHz)	MPF211,212 MPF213	Y _{fs}	17 15	40 35	mmhos
Reverse Transfer Capacitance (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 10 mAdc, f = 1.0 MH	tz)	C _{rss}	0.005	0.05	pF
FUNCTIONAL CHARACTERISTICS					1
Noise Figure (VDD = 18 Vdc, V $_{GG}$ = 7.0 Vdc, f = 200 MHz) (Figure 1) (VDD = 24 Vdc, V $_{GG}$ = 6.0 Vdc, f = 45 MHz) (Figure 2)	MPF211 MPF211,213	NF	_	4.0 4.5	dB


MPF211, MPF212, MPF213

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain		Gps		3	dB
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	MPF211	-	24	35	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211		29	37	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF213		27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$	MPF212	G _C (6)	21	38	
Bandwidth		BW			MHz
(V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1)	MPF211		5.0	12	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$	MPF212		4.0	7.0	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211,213		3.5	6.0	
Gain Control Gate-Supply Voltage(5)		V _{GG(GC)}			Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$	MPF211	- 5,557		- 2.0	
$(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 2)}$	MPF211,213			± 1.0	

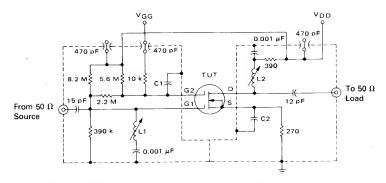
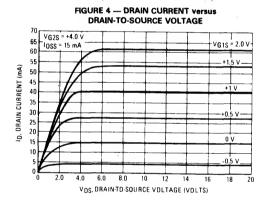

- (1) Measured after five seconds of applied voltage.
- (2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly.
- (3) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.
- (4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to Gate 1 with Gate 2 at ac ground.
- (5) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG} = 7.0$ Volts (MPF211) and $V_{GG} = 6.0$ Volts (MPF213).
- (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum Gc.

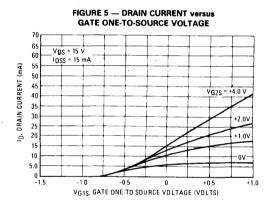
FIGURE 1 — 200 MHz POWER GAIN, GAIN CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT

- C1, C2 & C3: Leadless disc ceramic, 0.001 μ F C4: Arco 462, 5-80 pF, or equivalent
- L1: 3 Turns #18, 3/16" diameter aluminum slug L2: 8 Turns #20, 3/16" diameter aluminum slug


FIGURE 2 -- 45-MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

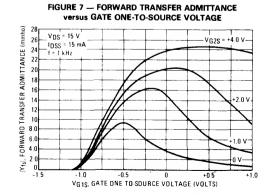
- C1: Leadless disc ceramic, 0.001 μF
- C2. Leadless disc ceramic, 0.01 µF
- L1: 8 Turns #28, 5/32" diameter form, type "J" slug L2: 9 Turns #28, 5/32" diameter form, type "J" slug


6


FIGURE 3 — 200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN

- L1: 7 Turns #34, 1/4" diameter aluminum slug
- L2: 5-1/2 Turns #20, 1/4" diameter aluminum slug
- L3: 7 Turns #24, 1/4" diameter air core
- . C1: Arco type 462, 5-80 pF C2: 0.001 µF leadless disc
- C3: 0.01 µF leadless disc
- T1: Pri: 25 Turns #30, close wound on 1/4" diameter form, type "J" slug
 Sec: 4 Turns #30, centered over primery

TYPICAL CHARACTERISTICS



SMALL-SIGNAL COMMON-SOURCE PARAMETER - GATE ONE

versus GATE TWO-TO-SOURCE VOLTAGE IYtsi, FORWARD TRANSFER ADMITTANCE (mmhos) _ Vns = 15 V 26 VG15 = 0 V IDSS = 15 mA 24 f = 1 kHz 22 20 18 VG1S 16 14 12 10 8 0 6.0 4.0 2 0 0 +1.0 +2.0 VG2S, GATE TWD-TD-SDURCE VDLTAGE (VDLTS)

FIGURE 6 - FORWARD TRANSFER ADMITTANCE

6

FIGURE 8 — FORWARD TRANSFER ADMITTANCE VERSUS DRAIN CURRENT

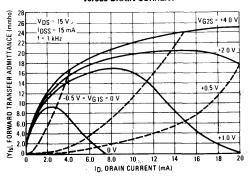


FIGURE 9 — INPUT AND OUTPUT CAPACITANCE versus GATE TWO-TO-SOURCE VOLTAGE

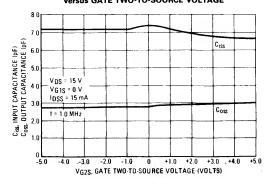


FIGURE 10 — SMALL-SIGNAL GATE ONE INPUT ADMITTANCE versus FREQUENCY

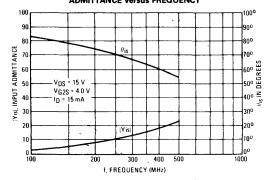


FIGURE 11 -- SMALL-SIGNAL FORWARD TRANSFER

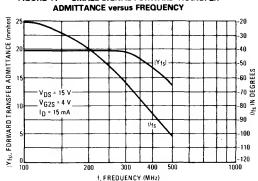


FIGURE 12 — SMALL-SIGNAL GATE ONE REVERSE TRANSFERS
ADMITTANCE VERSUS FREQUENCY

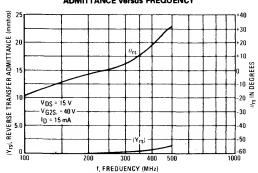
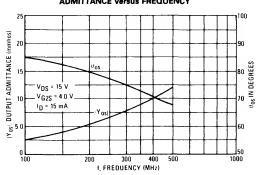



FIGURE 13 — SMALL-SIGNAL GATE ONE OUTPUT ADMITTANCE versus FREQUENCY

MPF211, MPF212, MPF213

FIGURE 14 — RELATIVE SMALL-SIGNAL POWER GAIN Versus GAIN CONTROL GATE SUPPLY VOLTAGE

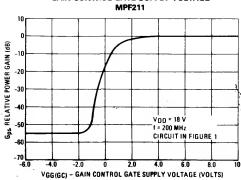
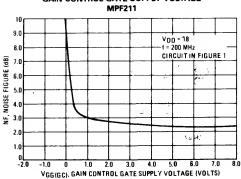
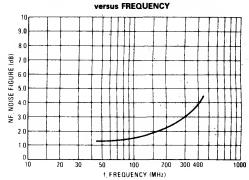
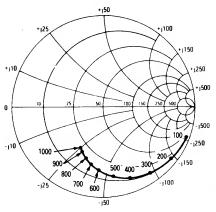


FIGURE 15 — COMMON SOURCE SPOT NOISE FIGURE Versus GAIN CONTROL GATE SUPPLY VOLTAGE


FIGURE 16 — SMALL-SIGNAL COMMON-SOURCE INSERTION POWER GAIN Versus GAIN CONTROL GATE SUPPLY VOLTAGE

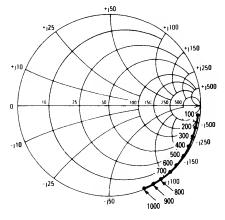

FIGURE 17 — OPTIMUM SPOT NOISE FIGURE

FIGURE 18 -- INPUT/OUTPUT IMPEDANCE

 $V_{DS} = 15 V$ $V_{G2S} = 4.0 V$ $I_{D} = 15 \text{ mA}$

S₁₁

S₂₂