MAXIMUM RATINGS | MAXIMUM RATINGS | | | | | | | |---|--------------------------------------|------------------|----------|---------------|--|--| | Rating | Symbol | MPF211
MPF212 | MPF213 | Unit | | | | Drain-Source Voltage | V _{DS} | 27 | 35 | Vdc | | | | Drain-Gate Voltage | V _{DG1}
V _{DG2} | 35
35 | 40
40 | Vdc | | | | Drain Current — Continuous | ΙD | 50 | | mAdc | | | | Gate Current | I _{G1} | ± 10
± 10 | | mAdc | | | | Total Device Dissipation (a T _A = 25°C Derate above 25°C | PD | 300
1.71 | | mW
mW/°C | | | | Total Device Dissipation @ T _C = 25°C
Derate above 25°C | PD | 1.2
8.0 | | Watt
mW.°C | | | | Lead Temperature, 1/16" From Seated
Surface for 10 Seconds | TL | 260 | | °C | | | | Junction Temperature Range | TJ | - 65 to + 150 | | °C | | | | Storage Channel Temperature Range | T _{stg} | -65 to +150 | | °C | | | # MPF211 MPF212 MPF213 **CASE 317-01, STYLE 1** DUAL-GATE MOSFET VHF AMPLIFIER N-CHANNEL — DEPLETION # **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted.) | Characteristic | | Symbol | Min | Max | Unit | |---|----------------------|-----------------------|----------------|----------------|--------------| | OFF CHARACTERISTICS | | | | | · | | Drain-Source Breakdown Voltage (VG1S = VG2S = -4.0 Vdc, ID = $10 \mu Adc$) | MPF211,212
MPF213 | V(BR)DSX | 25
30 | _ | Vdc | | Instantaneous Drain-Source Breakdown Voltage(1) $(V_{G1S} = V_{G2S} = -4.0 \text{ Vdc}, I_D = 10 \mu \text{Adc})$ | MPF211,212
MPF213 | V _{(BR)DSX} | 27
35 | _ | Vdc | | Gate 1-Source Breakdown Voltage(2)
$(V_{G2S} = V_{DS} = 0, I_{G1} = \pm 10 \text{ mAdc})$ | | V _{(BR)G1SO} | ± 6.0 | _ | Vdc | | Gate 2-Source Breakdown Voltage(2)
(VG1S = VDS = 0, IG2 = ±10 mAdc) | | V _{(BR)G2SO} | ± 6.0 | _ | Vdc | | Gate 1 Leakage Current ($V_{G1S} = \pm 5.0 \text{ Vdc}$, $V_{G2S} = V_{DS} = 0$) ($V_{G1S} = -5.0 \text{ Vdc}$, $V_{G2S} = V_{DS} = 0$, $T_A = 150^{\circ}\text{C}$) | | I _{G1SS} | ± 0.04(Typ) | ± 100
- 100 | nAdc
μAdc | | Gate 2 Leakage Current (VG2S = ± 5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150° C) | | ^I G2SS | ± 0.04(Typ) | ± 100
- 100 | nAdc
μAdc | | Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 2.0 μ Adc) | MPF211,213
MPF212 | VG1S(off) | - 0.5
- 0.5 | - 5.5
- 4.0 | Vdc | | Gate 2 to Source Cutoff Voltage (Vps = 15 Vdc, Vg1s = 0, Ip = 20 μ Adc) | MPF211
MPF212,213 | V _{G2S(off)} | - 0.2
- 0.2 | - 2.5
- 4.0 | Vdc | | ON CHARACTERISTICS | | | | | - | | Zero-Gate-Voltage Drain Current(3)
(VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc) | | IDSS | 6.0 | 4.0 | mAdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | 4 | | Forward Transfer Admittance(4) (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, V_{G1S} = 0, f = 1.0 kHz) | MPF211,212
MPF213 | Y _{fs} | 17
15 | 40
35 | mmhos | | Reverse Transfer Capacitance (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 10 mAdc, f = 1.0 MH | tz) | C _{rss} | 0.005 | 0.05 | pF | | FUNCTIONAL CHARACTERISTICS | | | | | 1 | | Noise Figure (VDD = 18 Vdc, V $_{GG}$ = 7.0 Vdc, f = 200 MHz) (Figure 1) (VDD = 24 Vdc, V $_{GG}$ = 6.0 Vdc, f = 45 MHz) (Figure 2) | MPF211
MPF211,213 | NF | _ | 4.0
4.5 | dB | ### MPF211, MPF212, MPF213 **ELECTRICAL CHARACTERISTICS** (continued) (T_A = 25°C unless otherwise noted.) | Characteristic | | Symbol | Min | Max | Unit | |---|------------|---------------------|-----|-------|------| | Common Source Power Gain | | Gps | | 3 | dB | | $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz}) \text{ (Figure 1)}$ | MPF211 | - | 24 | 35 | | | $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$ | MPF211 | | 29 | 37 | | | $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$ | MPF213 | | 27 | 35 | | | $(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$ | MPF212 | G _C (6) | 21 | 38 | | | Bandwidth | | BW | | | MHz | | (V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (Figure 1) | MPF211 | | 5.0 | 12 | | | $(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RE} = 200 \text{ MHz}) \text{ (Figure 3)}$ | MPF212 | | 4.0 | 7.0 | | | $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz}) \text{ (Figure 2)}$ | MPF211,213 | | 3.5 | 6.0 | | | Gain Control Gate-Supply Voltage(5) | | V _{GG(GC)} | | | Vdc | | $(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz}) \text{ (Figure 1)}$ | MPF211 | - 5,557 | | - 2.0 | | | $(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz}) \text{ (Figure 2)}$ | MPF211,213 | | | ± 1.0 | | - (1) Measured after five seconds of applied voltage. - (2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly. - (3) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. - (4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to Gate 1 with Gate 2 at ac ground. - (5) ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG} = 7.0$ Volts (MPF211) and $V_{GG} = 6.0$ Volts (MPF213). - (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum Gc. ## FIGURE 1 — 200 MHz POWER GAIN, GAIN CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT - C1, C2 & C3: Leadless disc ceramic, 0.001 μ F C4: Arco 462, 5-80 pF, or equivalent - L1: 3 Turns #18, 3/16" diameter aluminum slug L2: 8 Turns #20, 3/16" diameter aluminum slug FIGURE 2 -- 45-MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT - C1: Leadless disc ceramic, 0.001 μF - C2. Leadless disc ceramic, 0.01 µF - L1: 8 Turns #28, 5/32" diameter form, type "J" slug L2: 9 Turns #28, 5/32" diameter form, type "J" slug # 6 #### FIGURE 3 — 200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN - L1: 7 Turns #34, 1/4" diameter aluminum slug - L2: 5-1/2 Turns #20, 1/4" diameter aluminum slug - L3: 7 Turns #24, 1/4" diameter air core - . C1: Arco type 462, 5-80 pF C2: 0.001 µF leadless disc - C3: 0.01 µF leadless disc - T1: Pri: 25 Turns #30, close wound on 1/4" diameter form, type "J" slug Sec: 4 Turns #30, centered over primery #### TYPICAL CHARACTERISTICS #### SMALL-SIGNAL COMMON-SOURCE PARAMETER - GATE ONE versus GATE TWO-TO-SOURCE VOLTAGE IYtsi, FORWARD TRANSFER ADMITTANCE (mmhos) _ Vns = 15 V 26 VG15 = 0 V IDSS = 15 mA 24 f = 1 kHz 22 20 18 VG1S 16 14 12 10 8 0 6.0 4.0 2 0 0 +1.0 +2.0 VG2S, GATE TWD-TD-SDURCE VDLTAGE (VDLTS) FIGURE 6 - FORWARD TRANSFER ADMITTANCE # 6 FIGURE 8 — FORWARD TRANSFER ADMITTANCE VERSUS DRAIN CURRENT FIGURE 9 — INPUT AND OUTPUT CAPACITANCE versus GATE TWO-TO-SOURCE VOLTAGE FIGURE 10 — SMALL-SIGNAL GATE ONE INPUT ADMITTANCE versus FREQUENCY FIGURE 11 -- SMALL-SIGNAL FORWARD TRANSFER FIGURE 12 — SMALL-SIGNAL GATE ONE REVERSE TRANSFERS ADMITTANCE VERSUS FREQUENCY FIGURE 13 — SMALL-SIGNAL GATE ONE OUTPUT ADMITTANCE versus FREQUENCY ### MPF211, MPF212, MPF213 FIGURE 14 — RELATIVE SMALL-SIGNAL POWER GAIN Versus GAIN CONTROL GATE SUPPLY VOLTAGE FIGURE 15 — COMMON SOURCE SPOT NOISE FIGURE Versus GAIN CONTROL GATE SUPPLY VOLTAGE FIGURE 16 — SMALL-SIGNAL COMMON-SOURCE INSERTION POWER GAIN Versus GAIN CONTROL GATE SUPPLY VOLTAGE FIGURE 17 — OPTIMUM SPOT NOISE FIGURE ### FIGURE 18 -- INPUT/OUTPUT IMPEDANCE $V_{DS} = 15 V$ $V_{G2S} = 4.0 V$ $I_{D} = 15 \text{ mA}$ S₁₁ S₂₂