

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	VDS	30	Vdc	
Drain-Gate Voltage	V _{DG}	30	Vdc	
Gate-Source Voltage	VGS	30	Vdc	
Forward Gate Current	IG(f)	50	mAdc	
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	PD	625 5.0	mW mW/°C	
Operating and Storage Channel Temperature Range	T _{channel} , T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage ($I_G = 1.0 \ \mu Adc, V_{DS} = 0$)		V(BR)GSS	30	_	_	Vdc
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0) (V _{GS} = 15 Vdc, V _{DS} = 0, T _A = 100°C)		IGSS	_	_	1.0 0.2	nAdc μAdc
$ \begin{array}{l} \mbox{Drain-Cutoff Current} \\ \mbox{(V}_{DS} = 15 \mbox{ Vdc}, \mbox{V}_{GS} = 12 \mbox{ Vdc}) \\ \mbox{(V}_{DS} = 15 \mbox{ Vdc}, \mbox{V}_{GS} = 12 \mbox{ Vdc}, \mbox{T}_{A} = 100^{\circ}\mbox{C}) \end{array} $		D(off)	_	_	1.0 0.1	nAdc μAdc
Gate Source Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	MPF4391 MPF4392 MPF4393	V _{GS}	4.0 2.0 0.5	-	10 5.0 3.0	Vdc
ON CHARACTERISTICS	<u> </u>					
Zero-Gate-Voltage Drain Current(1) (VDS = 15 Vdc, $V_{GS} = 0$)	MPF4391 MPF4392 MPF4393	DSS	60 25 5.0		130 75 30	mAds
Drain-Source On-Voltage $(I_D = 12 \text{ mAdc}, V_{GS} = 0)$ $(I_D = 6.0 \text{ mAdc}, V_{GS} = 0)$ $(I_D = 3.0 \text{ mAdc}, V_{GS} = 0)$	MPF4391 MPF4392 MPF4393	V _{DS(on)}	_ _ _		0.4 0.4 0.4	Vdc
Static Drain-Source On Resistance (I _D = 1.0 mAdc, V _{GS} = 0)	MPF4391 MPF4392 MPF4393	^r DS(on)			30 60 100	Ohms
SMALL-SIGNAL CHARACTERISTICS						
$\label{eq:VDS} \begin{array}{l} \mbox{Forward Transfer Admittance} \\ (V_{DS} = 15 \mbox{Vdc}, \mbox{Ip} = 60 \mbox{ mAdc}, \mbox{f} = 1.0 \mbox{ kHz}) \\ (V_{DS} = 15 \mbox{Vdc}, \mbox{Ip} = 25 \mbox{ mAdc}, \mbox{f} = 1.0 \mbox{ kHz}) \\ (V_{DS} = 15 \mbox{Vdc}, \mbox{Ip} = 5.0 \mbox{ mAdc}, \mbox{f} = 1.0 \mbox{ kHz}) \end{array}$	MPF4391 MPF4392 MPF4393	Yfs		20 17 12		mmhos
Drain-Source "ON" Resistance (V _{GS} = 0, I_D = 0, f = 1.0 kHz)	MPF4391 MPF4392 MPF4393	rds(on)		_	30 60 100	Ohms
Input Capacitance (V _{GS} = 15 Vdc, V _{DS} = 0, f = 1.0 MHz)		Ciss	-	6.0	10	pF

MPF4391, MPF4392, MPF4393

Characteristic		Symbol	Min	Тур	Max	Unit
Reverse Transfer Capacitance		Cres				pF
$(V_{GS} = 12 \text{ Vdc}, V_{DS} = 0, f = 1.0 \text{ MHz})$				2.5	3.5	
(VDS = 15 Vdc, ID = 10 mAdc, f = 1.0 MHz)				3.2	-	
SWITCHING CHARACTERISTICS						•
Rise Time (See Figure 2)		tr				ns
$(I_{D(on)} = 12 \text{ mAdc})$	MPF4391		-	1.2	5.0	
$(I_{D(on)} = 6.0 \text{ mAdc})$	MPF4392		_	2.0	5.0	
$(I_{D(on)} = 3.0 \text{ mAdc})$	MPF4393		-	2.5	5.0	
Fall Time (See Figure 4)		tf				ns
$(V_{GS(off)} = 12 Vdc)$	MPF4391	1	_	7.0	15	
$(V_{GS(off)} = 7.0 Vdc)$	MPF4392		- 1	15	20	
$(V_{GS(off)} = 5.0 Vdc)$	MPF4393		_	29	35	1
Turn-On Time (See Figures 1 and 2)		ton				ns
$(I_{D(on)} = 12 \text{ mAdc})$	MPF4391	•	_	3.0	15	
$(I_D(on) = 6.0 \text{ mAdc})$	MPF4392		-	4.0	15	
$(I_{D(on)} = 3.0 \text{ mAdc})$	MPF4393		-	6.5	15	
Turn-Off Time (See Figures 3 and 4)		toff				ns
$(V_{GS(off)} = 12 V dc)$	MPF4391	, on	_	10	20	-
$(V_{GS(off)} = 7.0 Vdc)$	MPF4392			20	35	
$(V_{GS(off)} = 5.0 Vdc)$	MPF4393			37	55	

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted.)

(1) Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 1.0%.

TYPICAL SWITCHING CHARACTERISTICS

1000

500

20

tr, RISE TIME (ns)

100

50 20

10

5.0

2.0

1.0

0.5 0.7 1.0

5.0 7.0 10

2.0 3.0

FIGURE 2 - RISE TIME

20

TJ = 25°C

ŦŦ

MPF 4391

MPE4392

MPF4393

VGS(off)

....

20 30 50

= 12 V

= 7 0 V

5.0 V

6

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

NOTE 1

The switching characteristics shown above were measured using a test circuit similar to Figure 5. At the beginning of the switching interval, the gate voltage is at Gate Supply Voltage (V_{GG}). The Drain-Source Voltage (V_{DS}) is slightly lower than Drain Supply. Voltage (V_{DD}) due to the voltage divider. Thus Reverse Transfer Capacitance (C_{rgs}) or Gate-Drain Capacitance (C_{gd}) is charged to $V_{GG} + V_{DS}$. During the turn-on interval, Gate-Source Capacitance (C_{gg}) disc

During the turn-on interval, Gate-Source Capacitance (Cgs) discharges through the series combination of RGen and RK. Cgd must discharge to VDS(on) through RG and RK in series with the parallel combination of effective load impedance (R'D) and Drain-Source Resistance (rds). During the turn-off, this charge flow is reversed.

Predicting turn-on time is somewhat difficult as the channel resistance r_{ds} is a function of the gate-source voltage. While C_{gs} discharges, V_{GS} approaches zero and r_{ds} decreases. Since C_{gd} discharges through r_{ds} turn-on time is non-linear. During turn-off, the situation is reversed with r_{ds} increasing as C_{gd} charges.

The above switching curves show two impedance conditions; 1) R_K is equal to $R_{D'}$ which simulates the switching behavior of cascaded stages where the driving source impedance is normally the load impedance of the previous stage, and 2) R_K = 0 (low impedance) the driving source impedance is that of the generator.

FIGURE 6 - TYPICAL FORWARD TRANSFER ADMITTANCE

FIGURE 7 - TYPICAL CAPACITANCE

FIGURE 8 - EFFECT OF GATE-SOURCE VOLTAGE ON DRAIN-SOURCE RESISTANCE 200 100 mA 125 mA loss 25 mA 50 mA . 75 mA = 10 mΑ rds(on), ORAIN-SOURCE DN-STATE RESISTANCE (OHMS) 160 120 80 40 T_{channel} = 25^oC 0 7.0 8.0 0 1.0 2.0 3.0 4 N 5.0 6.0

VGS, GATE-SOURCE VOLTAGE (VOLTS)

FIGURE 9 - EFFECT OF TEMPERATURE ON DRAIN-SOURCE ON-STATE RESISTANCE

MPF4391, MPF4392, MPF4393

FIGURE 10 – EFFECT OF IDSS ON DRAIN-SOURCE RESISTANCE AND GATE-SOURCE VOLTAGE

NOTE 2

The Zero-Gate-Voltage Drain Current (IDSS), is the principle determinant of other J-FET characteristics. Figure 10 shows the relationship of Gate-Source Off Voltage (VGS(off)) and Drain-Source On Resistance (rds(on)) to IDSS. Most of the devices will be within $\pm 10\%$ of the velues shown in Figure 10. This data will be useful in predicting the characteristic varietions for a given part number.

For example:

Unknown

rds(on) and VGS range for an MPF4392

The electrical characteristics tabla indicates that an MPF4392 has an IDSS range of 25 to 75 mA. Figure 10, shows rds(on) = 52 Ohms for IDSS = 25 mA and 30 Ohms for IDSS = 75 mA. The corresponding VGS values are 2.2 volts and 4.8 volts.