New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

MPS-U05 (SILICON) MPS-U06

NPN SILICON ANNULAR AMPLIFIER TRANSISTORS

 \ldots . designed for general-purpose, high-voltage amplifier and driver applications.

- High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc -- MPS-U05
 80 Vdc (Min) @ IC = 1.0 mAdc -- MPS-U06
- High Power Dissipation PD = 10 W @ TC = 25°C
- Complements to PNP MPS-U55 and MPS-U56

NPN SILICON AMPLIFIER TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	MPS-U05	MPS-U06	Unit
Collector-Emitter Voltage	VCEO	60	80	Vdc
Collector-Base Voltage	VCB	60	80	Vdc
Emitter-Base Voltage	VEB	4.0		Vdc
Collector Current - Continuous	İc	2.0		Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 8.0		Watt mW/ ^O C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	10 80		Watts mW/OC
Operating and Storage Junction Temperature Range	T _J ,T _{Stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	₽øJC	12.5	PC/W	
Thermal Resistance, Junction to Ambient	Reja(1)	125	°C/W	

⁽¹⁾ R_{ØJA} is measured with the device soldered into a typical printed circuit board.

MPS-U05, MPS-U06 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, Ig = 0)	MPS-U05 MPS-U06	BVCEO	60 80	<u>-</u>	<u>-</u> -	Vdc
Emitter-Base Breakdown Voltage {IE = 100 µAdc, IC = 0}		BVEBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0)	MPS-U05 MPS-U06	СВО	-		100 100	nAdc
ON CHARACTERISTICS						
DC Current Gain (1) (IC = 50 mAdc, V_{CE} = 1.0 Vdc) (IC = 250 mAdc, V_{CE} = 1.0 Vdc) (IC = 500 mAdc, V_{CE} = 1.0 Vdc)		hFE	80 60 –	125 100 55	 	_
Collector-Emitter Saturation Voltage(1) (IC = 250 mAdc, IB = 10 mAdc) (IC = 250 mAdc, IB = 25 mAdc)		VCE(sat)	<u>-</u>	0.18 0.1	0.4 	Vdc
Base-Emitter On Voltage (1) (IC = 250 mAdc, VCE = 5.0 Vdc)		V _{BE(on)}		0.74	1.2	Vdc
MALL-SIGNAL CHARACTERISTICS						
Current-Gain-Bandwidth Product (1) (IC = 200 mAdc, VCE = 5.0 Vdc, f = 100 MHz)		fτ	50	170		MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)		C _{ob}	_	6.0	12	pF

(1)Pulse Test: Pulse Width ≤300 µs, Duty Cycle ≤2.0%.

There two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe operating area curves indicate $I_{\rm C} \sim {\rm VCg}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.