COMMODORE SEMICONDUCTOR GROUP a division of Commodore Business Machines, Inc. 950 Rittenhouse Road, Norristown, PA 19403 • 215/666-7950 • TWX 510-660-4168 # **NMOS** ## 6509 MICROPROCESSOR WITH MEMORY MANAGEMENT ### DESCRIPTION The 6509 is a low-cost microprocessor capable of solving a broad range of small-systems and memory management problems at minimum cost to the user. A memory management system allows for up to One Mega-Byte of memory for ease in down loading languages, operating systems or other data. The Three-State sixteen-bit Address Bus allows Direct Memory Accessing (DMA) and multi-processor systems sharing a common memory while the Four-bit Extended Address Register allows for up to one Mega-byte of data storage. The internal processor architecture is identical to the Commodore Semiconductor Group 6502 to provide software compatibility. ## **FEATURES OF THE 6509** - Memory management - On board clock logic - Addressable memory range of up to 1 M bytes - Single +5 volt supply - N channel, silicon gate, depletion load technology - Eight bit parallel processing - 56 Instructions - Decimal and binary arithmetic - Thirteen addressing modes - True indexing capability - Programmable stack pointer - Variable length stack - Interrupt capability - 8 Bit Bi-Directional Data Bus - Program Addressable memory range of up to 65K bytes - Direct memory access capability - Bus compatible with M6800 - Pipeline architecture - 1 MHz, 2 MHz, and 3 MHz operation - Use with any type or speed memory # PIN CONFIGURATION ## 6509 CHARACTERISTICS ## **MAXIMUM RATINGS** | RATING | SYMBOL | VALUE | UNIT | |-----------------------|-----------------|----------------|------| | SUPPLY VOLTAGE | V _{CC} | -0.3 to $+7.0$ | Vdc | | INPUT VOLTAGE | Vin | -0.3 to $+7.0$ | Vdc | | OPERATING TEMPERATURE | TA | 0 to + 70 | С | | STORAGE TEMPERATURE | TSTG | -55 to + 150 | С | This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating. ## ELECTRICAL CHARACTERISTICS (Vcc = 5.0V \pm 5%, Vss = 0, TA = 0° to + 70°C) | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNIT | |---|--|-------------|------|----------------------|------------| | Input High Voltage Ø ₁ , Ø _{2(in)} Input High Voltage | VIH | Vcc - 0.2 | _ | Vcc + 1.0V | Vdc | | RES, P ₀ -P ₇ IRQ, Data | | 2.0 | - | _ | Vdc | | Input Low Voltage | | | | | | | $Q_1, Q_2(in)$ RES, P_0 - P_7 IRQ, Data | VIL | _
_ | | 0.2
0.8 | Vdc
Vdc | | Input Leakage Current (Vin = 0 to 5.25V, Vcc = 5.25V) Logic \emptyset_1 , \emptyset_2 (in) | lin | | | 2.5
100 | Au,
Au, | | Three State (Off State) Input Current (V _{IN} = 0.4 to 2.4V, Vcc = 5.25V) Data Lines | ITSI | _ | - | . 10 | μA | | Output High Voltage
$(I_{OH} = -100\mu\text{Adc}, Vcc = 4.75V)$
Data, A0-A15, R/W, P ₀ -P ₇ | VOH | 2.4 | _ | _ | Vdc | | Out Low Voltage (IOL = 1.6mAdc, Vcc = 4.75V) Data, A0-A15, R/W, P ₀ -P ₇ | VOL | _ , | _ | +0.60 | Vdc | | Power Supply Current | ICC | _ | 125 | | mA | | Capacitance
$V_{in} = 0$, $T_A = 25$ C, $f = 1$ MHz)
Logic, P_0 - P_7 | С | | | 10 | pF | | Data A0-A15, R/W Ø: | C _{in}
C _{out}
C _{Ø1} | _
_
_ | | 10
15
12
50 | | | Ø ₂ | CØ2 | _ | 50 | 80 | | #### **AC CHARACTERISTICS** 1 MHz TIMING 2 MHz TIMING 3 MHz TIMING ELECTRICAL CHARACTERISTICS (VCC = 5V + 5%, VSS = OV, TA = 0° -70°C) ## **Clock Timing** | CHARACTERISTIC | | |--|--| | Cycle Time | | | Clock Pulse Width Ø1
(Measured at VCC - 0 2V) Ø2 | | | Fall Time, Rise Time
(Measured from 0.2V to VCC - 0.2V) | | | Delay Time between Clocks
(Measured at 0.2V) | | | SYMBOL | MIN. | MAX. | |---------------------------------|------|------| | TCYC | 1000 | _ | | PWHØ ₁ | 430 | _ | | PWHØ ₂ | 470 | | | T _F , T _R | - | 25 | | [™] D | 0 | | | MIN. | MAX. | MIN. | MAX | UNITS | |------|------|------|-----|-------| | 500 | | 333 | - | ns | | 215 | | 145 | - | ns | | 235 | | 165 | | ns | | _ | 15 | | 15 | ns | | 0 | | 0 | - | ns | ## Read/Write Timing (Load = 1 TTL) | CHARACTERISTIC | SYMBOL | MIN. | MAX. | MIN | MAX. | MIN. | MAX. | UNITS | |---|-------------------|------|------|-----|------|------|------|-------------| | Read, Write Setup Time from 6509 | TRWS | _ | 300 | | 150 | _ | 125 | ns | | Address Setup Time from 6509 | TADS | - | 300 | _ | 150 | | 125 | ns | | Memory Read Access Time | TACC | _ | 575 | _ | 300 | _ | 250 | ns | | Data Stability Time Period | T _{DSU} | 100 | _ | 50 | | 50 | _ | ns | | Data Hold Time-Read | THR | 10 | _ | 10 | | 10 | - | ns | | Data Hold Time-Write | T _{HW} | 10 | - | 10 | | 10 | - | ns | | Data Setup Time from 6509 | TMDS | _ | 200 | _ | 100 | | 100 | ns | | Address Hold Time | THA | 10 | _ | 10 | | 10 | _ | ns | | R/W Hold Time | THRW | 10 | - | 10 | | 10 | _ | ns | | Port Output Data Valid
(Memory Management) | T _{PDW} | _ | 300 | _ | 150 | _ | 125 | / us | | RDY Setup Time | T _{RDY} | 100 | _ | 50 | _ | 15 | _ | ns | | S.O. Setup Time | T _{S.O.} | 100 | _ | 50 | - | 50 | | ns | | SYNC Setup Time from 6509 | TSYNC | | 350 | - | 175 | - | 120 | ns | | Address Enable Setup Time | TAES | - | 75 | - | 75 | _ | 75 | ns | | Data Enable Setup Time | TDES | _ | 120 | _ | 120 | | 120 | ns | | Address Disable *See Note 1 | TAED | - | 120 | | 120 | - | 120 | ns | | Data Disable *See Note 1 | TDED | _ | 130 | _ | 130 | _ | 130 | ns | *Note 1 - 1TTL Load CL = 30pf ## SIGNAL DESCRIPTION Clocks (\$1, \$2) The 6509 requires a two phase non-overlapping clock that runs at the Vcc voltage level. Address Bus (A₀-A₁₅) The tri-state outputs are TTL compatible, capable of driving one standard TTL load and 130 pf. Data Bus (D₀-D₇) Eight pins are used for the data bus. This is a Bi-Directional bus. transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130 pf. #### Reset This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence. After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control. After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W signal will become valid. When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above. Interrupt Request (IRQ) This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. ## Address Enable Control (AEC) The Address Bus, Data Bus, and R/W signal are valid only when the Address Enable Control line is high. When low, the Address Bus is in a high-impedance state. This feature allows easy DMA and multiprocessor systems. ## Read/Write (R/W) This signal is generated by the microprocessor to control the direction of data transfers on the Data Bus. This line is high except when the microprocessor is writing to memory or a peripheral device. ## Ready (RDY) This input signal allows the user to single cycle the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one (\emptyset_1) and up to 100ns after phase two (\emptyset_2) will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two (\emptyset_2) in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready is low during a write cycle, it is ignored until the following read operation. ## Non-Maskable Interrupt (NMI) A negative going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor. NMI is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the interrupt mask flag status. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory. NMI also requires an external 3K resistor to V_{CC} for proper wire-OR operations. Inputs $\overline{\text{IRQ}}$ and $\overline{\text{NMI}}$ are hardware interrupt lines that are sampled during \emptyset_2 (phase 2) and will begin the appropriate interrupt routine on the \emptyset_1 (phase 1) following the completion of the current instruction. ## Set Overflow Flag (.S.O.) A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of \emptyset_1 . #### SYNC This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \emptyset_1 of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the \emptyset_1 clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution. ## Memory Management Control (Po-P3) The four extended address pins, P0-P3, enable the processor to align to one of sixteen banks of 64K memory space. The use of the instructions: Load A indirect Y (B1₁₆) and Store A indirect Y (91₁₆), transfers the processor from the normal execute mode to the indirect mode. In the execute mode, the processor is aligned to a particular memory bank. The indirect mode aligns the processor to a predetermined memory block. The contents of the extended address registers is controlled by software with the execute register at location 0000 and indirect register at 0001. During fetch and execution of the indirect mode instructions, the processor remains in execute mode until data transfer is to occur. At this time the processor switches to the indirect mode aligning itself to the new memory block. After one cycle the processor returns to the execute mode. The upper four bits of the data bus are logic "0"s during a read/write to the extended address registers. Also, these registers are set to logic "1"s during reset. The extended address pins are not under control of AEC and are not tri-statable. #### ADDRESSING MODES #### **Accumulator Addressing** This form of addressing is represented with a one byte instruction, implying an operation on the accumulator. #### **Immediate Addressing** In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required. #### **Absolute Addressing** In absolute addressing, the second byte of the instruction specified the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65K bytes of addressable memory. #### Zero Page Addressing The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency. #### Indexed Zero Page Addressing (X, Y indexing). This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X" or "Zero Page, Y." The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally, due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur. #### Indexed Absolute Addressing (X, Y indexing). This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X," and "Absolute, Y." The effective address is formed by adding the contents of X and Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time. #### Implied Addressing In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction. ## **Relative Addressing** Relative addressing is used only with branch instructions and establishes a destination for the conditional branch. The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction. #### Indexed Indirect Addressing In indexed indirect addressing (referred to as [Indirect, X]), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero. #### Indirect Indexed Addressing In indirect indexed addressing (referred to as [Indirect, Y]), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address. #### **Absolute Indirect** The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter. #### INSTRUCTION SET—ALPHABETIC SEQUENCE | ADC
AND
ASL | Add Memory to Accumulator with Carry "AND" Memory with Accumulator Shift Left One Bit (Memory or Accumulator) | LDA Load Accumulator with M
LDX Load Index X with Memor
LDY Load Index Y with Memor
LSR Shift One Bit Right (Memo | y
Y | |---------------------------------|--|--|--------------------| | BCC
BCS
BEQ | Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero | NOP No Operation | ry or Accumulator) | | BIT | Test Bits in Memory with Accumulator | ORA "OR" Memory with Accur | nulator | | BMI
BNE
BPL
BRK | Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break | PHA Push Accumulator on Sta
PHP Push Processor Status or
PLA Pull Accumulator from Sta
PLP Pull Processor Status from | n Stack
ack | | BVC
BVS | Branch on Overflow Clear
Branch on Overflow Set | ROL Rotate One Bit Left (Mem
ROR Rotate One Bit Right (Mer | | | CLC | Clear Carry Flag
Clear Decimal Mode | RTI Return from Interrupt
RTS Return from Subroutine | | | CLI
CLV
CMP
CPX
CPY | Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y | SBC Subtract Memory from Ac
SEC Set Carry Flag
SED Set Decimal Mode
SEI Set Interrupt Disable Stati
STA Store Accumulator in Mer | us | | DEC
DEX
DEY | Decrement Memory by One
Decrement Index X by One | STX Store Index X in Memory
STY Store Index Y in Memory | * | | EOR | Decrement Index Y by One "Exclusive-or" Memory with Accumulator | TAX Transfer Accumulator to I TAY Transfer Accumulator to I | | | INC | | TSX Transfer Stack Pointer to | | | INX | Increment Memory by One Increment Index X by One Increment Index Y by One | TXA Transfer Index X to Accur TXS Transfer Index X to Stack TYA Transfer Index Y to Accur | Register | | JMP
JSR | Jump to New Location Jump to New Location Saving Return Address | Tander meet y to need | | ## PROGRAMMING MODEL # INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements | | | | INSTRUCTIONS | | 1100 | EDIAT | E | 48 50L | ITE | ZER | O PM | E | ACI | CUM. | 1 | MPLE | T | [IN | 0. X) | T | 29K01 | . Y | 1 2 | PAGE | X | A | S. X | 1 | AB | Y. | Т | RELAT | IVE | T | N DIRE | ECT | 12 | PAGE | Y | C | OND | ITIOI | N CC | JOES | | |-----|-------|-----|---------------------------|-----|------|-----------|-------|---------------|-----|-----|------|-----|----------|--------|--------|------|--------|----------|-------|--------|-------|-----|-----|------|---|-----|--------|--------|-----|--------|-----|-------|-----|----|--------|--------|--------------|------|-----|-----|-----|-------|------|----------|-----| | | MEMOR | (IC | OPERATION | | OP | -11 | + 0 | N | 12 | OF | N | п | - | | OP | _ | | | | | | | | | | | | = 0 | | | | | | | | | | | | | | | | | | | A | D | 0 | $A + M + C \rightarrow A$ | | | | | 1 4 | | | | | 1 | + | 1 | | | | | | | 2 | | | | _ | | 3 : | _ | _ | - | + | + | 1 | + | + | + | + | 1 | - | | | | | | | 4 | N | 0 | A 4 M → 4 | | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | 3 3 | | | | 1 | - | | | 1 | 1 | 1 | ļ , | | | _ | - | _ | _ | | 1 | S | | C - 7 0 - 0 | | | | 1 | | 1 . | | - 1 | | BA | 2 1 | | | | | | | | 1 | 1 | | | | - 1 | 3 | | | | | 1 | İ | | | | 1 | 3 | | | | - | *** | _ | | 8 | C | C | BRANCH ON C = 0 | -2- | | | | | | | - 1 | | | | | H | -1 | | | Į | 1 | 1 | 1 | | | | | | | Į. | 000 | 2 | 12 | | | | 1 | | | - | _ | _ | - | _ | _ | | В | C | S | BRANCH ON C = 1 | :2- | | | | | | | | | - 1 | | | | | | - 1 | | | | | | | | | | | | | 2 | | | | | | - | | | _ | | _ | _ | _ | | 8 | E | 2 | BRANCH ON Z = 1 | 2. | П | \forall | + | + | | _ | 7 | 7 | \top | \top | \top | П | \top | \dashv | Ť | Ť | 1 | + | T | | | 7 | + | 1 | + | + | | 12 | | | t | 1 | † | + | | - | _ | _ | _ | = | _ | | 3 | 1 | T | AAM | | | | 20 | 1 | 3 | 24 | 3 | 2 | ì | ì | 1 | | | | 1 | | T | | 1 | | | | | | | 1 | | | | 1 | | | | 1 | L | .,, | , | _ | ~ | _ • | 11, | | 9 | 54 | | BRANCH ON N= 1 | 2 | | | | | | | | 1 | | | 1 | 1 | 1 | | - IÎ | | | | 1 | | | | | | Ì. | 1 | 36 | 1/2 | 2 | ŀ | | 1 | İ | | | 20. | _ | _ | - | _ | - | | 9 | 54 | Ε | SRANCH ON Z = Ø | -2 | i | 1 | ì | 1 | 1 | | 1 | 1 | | | | 1 1 | | | 1 | 1 | ì | | 1 | | | İ | - | 1 | | 1 | 1 | 1 2 | 1 | Ì | | 1 | | 1 | Ì | - | | _ | | - | _ | | 2 | D | - | BRANCH ON N = 9 | -2 | | | | | | | 1 | - 1 | - | | | | 1 | 1 | | - | ľ | 1 | | | | | | 1 | | | | 1/2 | | | 1 | 1 | 1 | | | - | 100 | - | | - | _ | | 133 | 72 | ¥ | | | | \neg | 1 | 1 | | | | 7 | \dashv | + | 00 | - | | 7 | 1 | i | 1 | + | | | | i | \top | \top | Ť | 1 | + | T | T | T | | + | | T | | - | - | - | 1 | - | _ | | Ð | \$21 | 0 | BRANCH ON V = 0 | -2 | 1 | | | | | | - 1 | - | | | | | 3 | | | | 8 | | | | | | | | | 1 | 56 | 12 | 2 | | | 1 | | | 1 | - | | _ | _ | - | _ | | 8 | | S | BRANCH ON V = 1 | 2: | | - 1 | - | 1 | | - 1 | - 1 | | | | 1 | 1 | 1 | 1 | 1 | 1 | Šý. | 1 | | | 1 | 1 | - | } | | 1 | 70 | | 12 | f | 1 | 1 | 1 | 1 | | - | - | 21 | - | - | _ | | Ĉ. | ¥ | 3 | 0 → 0 | | 1 | | | | | | | - | | | 18 | 2 | , | -1 | | 1 | 8 | | | | i | 1 | - 1 | | | | | | | | | | | | | | - | 0 | - | ω | 21 | | 3 | . 9 | 0 | 0 → ⊃ | | 1 | | | ļ | | | 1 | | 1 | 1 | D8 | 2 | | - | | 1 | 1 | 1 | | | | 1 | - | 1 | 1 | 4 | 1 | ļ. | | 1 | | 1 | 1 | 1 | | | _ | - | H | 0 | _ | | 1 | 4 | | ∂ → · | | | \top | 1 | T | | | | 7 | | | 58 | 2 | 1 | T | | \top | 1 | T | T- | | | 1 | T | Ť | Ť | \top | + | 1 | T | 1 | | \top | \top | | | - | - | | U | - | _ | | C | Ĺ. | 1 | 0 → √ | į | | | į. | | | - { | - 1 | - (| - [| 1 | 88 | 2 | ٠ إ | 1 | 1 | Ţ | 1 | 1 | | | | 1 | - { | 1 | 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | | | - | - | • | - | - | Ø | | Ü | •,• | C | A - W | | C3 | 2 | 2 C1 | 3 | 3 | C5 | 3 | 2 | | | 1 | 1 | (| | 6 2 | 0 | 1 5 | 2 | 05 | 4 | 2 | 00 | 4 | 3 1 | 9 . | 1 3 | | ľ | 1 | 1 | 1 | - | | | | | | | - | | _ | | 2 | | × | x = 1,1 | | EØ | 2 | 2 E | 1 | 3 | Ei | 3 | 0 | - | 1 | | | | -1 | į. | - [| t | Į | | | | | - [| | | 1 | 1 | 1 | | | 1 | Į. | 1 | 1 | | | | ç | | - | - | | Ü | 2 | × | Y - M | | ಾ | : | 2 01 | 1 | 3 | Ci | 2 | 2 | | | | | | 1 | | | | | 1 | | | | | 1 | 1 | ŀ | 1 | | 1 | | | | | | | | ٠ | ٠ | - | - | | | - | 6 | - | 9 - 1 → 9 | | | 1 | Ĉ. | é | 3 | C6 | 5 | 2 | | | | П | | T | | T | | 1 | 06 | 6 | 2 | DE | -1 | ? | 1 | 1 | 1 | T | T | 1 | | T | T | T | Г | | , | - | = | - | - | | D | Ε | | X = 1 → X | | 1 | - 1 | | | | | - 1 | 1 | | 1 | CA | 2 | | 1 | - 1 | | 1 | | Ì | | | - [| | 1 | 1 | | 1 | L | | İ | 1 | | ļ | | 1 | , | ٠ | - | - | - | - | | 2 | 5 | * | r - 1 → r | | | | Ĺ | Î | | | | | | ļ | 88 | 2 | 1 | - 1 | 1 | | | | | | П | - 1 | - 1 | | | | 1 | 1 | | Į. | | 1 | İ | 1 | | | ٠ | - | - | - | - | | 5 | 2 | 2 | 2 = M → A | 14 | 19 | 2 | 2 41 | 3 | 3 | 45 | 2 | 2 | | | Ĭ. | Ì | 1. | 11 | ê ; | 5 | 1 5 | 12 | 55 | 4 | 2 | 50 | 4 | 3 5 | 9 . | : 1 | | 1 | 1 | 1 | | 1 | | | | | ٠ | - | ~ | - | - | | 1 | Ŋ | 2 | $M + 1 \rightarrow M$ | | | | E | 6 | 3 | Eń | 5 | 2 | | 1 | | П | - 1 | | | 1 | | | rō | 6 | 2 | FF | - | 3 | | | 1 | | | | 1 | | 1 | | | | | - | - | | - | | | ٠, | Λ. | x - ' → ' | | | | | T | | | 1 | | | T | E8 | 2 | 1 | 1 | 1 | | T | T | i | | | T | Ì | T | 1 | | 1 | 1 | 1 | 1 | T | T | T | T | | | + | - | - | - | - | | | :4 | 1 | Y + * → < | | | - [| | 1 | | | | - 1 | 1 | | C8 | 2 | : | - 1 | | | 1 | i | F. | | | | - 1 | | | 1 | | 1 | | | | 1 | | | | | , | - | - | - | - | | 4 | 1.3 | P | JUMP TO NEW LOC | | | 1 | 40 | 2 | 3 | 1 | Ì | - | 1 | 1 | | 1 | - 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 60 | 5 | 3 | 1 | 1 | 1 | - | ~ | - | - | - | | | J | S | ū | JUMP SUB | | | - 1 | 26 | 0 0 | 3 | | | - | | | | | | | | | ľ | | | | | | | | | | | | 1 | | | 1 | | | 1 | - | ~ | | _ | - | - | | 1 | ~ | ۵ | 1.1 → A | 10 | :0 | 2 | 2 45 | : | 3 | ۵۶ | ; | 3 [| | | 1 | 1 1 | l: | 11/1 | 6 1 | . 6 | . . | 10 | 25 | 14 | 2 | 90 | :1 | 7 45 | 21. | : 1 : | 1 | 100 | ļ | 1 | 1 | 1 | ļ | - | 1 | 1. | · | _ | - | - | - | | | | | | | _ | | | | _ | | _ | | _ | | _ | | _ | - | | 2001 200 | | 750 | | - | _ | | - | | _ | | | | - | | _ | - | | | | _ | Tops or | -1 | ~ | | | | | | |-----|-------|-------|------------------------------|---------------|----------|--------|------|--------------|-----|-----|------|----|------|------|-----|-------|------|------|----------|----------|-----|-----|-------|---------------|-------|--------|------|------|-----|-----|-----|------|----|------|-----|------|------|---|-----|-------|---------|-----|-----|-----|-----|----|-----|------| | | | | · | _1 | IMN | EDIATI | 1 | U SOL | UTE | - | RO P | | - | CCUM | _ | - | PLIE | - | <u> </u> | 10. X | - | _ | NOT A | \rightarrow | _ | AGE | | _ | z z | i | AB | | _ | RELA | - | _ | MOR | | _ | | IGE Y | _ | - | MOI | | | | _ | | | ANEMO | INIC | OPERATION | | 12 | ٠. : | 1 25 | 11 | = | 02 | ١٠. | | i, b | 21 | n | P | ٠. | = (| PI | .1 | = 1 | ÇP | 1 | = | CFL | 11 | = | 1 | . 1 | 3 | D1. | : : | 17 | ٥. | . : | 0 | F 11 | = | 1 0 | Р. | 1 = | | | - | | 3 | 5 | | | | - | | | | | 2 . | { | 4 | 3 | AB | 3 | 2 | П | | | | | | 7 | Ī | | | | T | | T | | T | T | e | ē. | | | 1 | T | Ţ | | I | Bi | 6 . | 4 2 | 1. | | ٠ | - | ~ | - | 100 | | L | 2 | Y | $M \rightarrow A$ | ٠ | 10 | 2 . | 1 4 | 4 | 3 | 144 | 3 | 12 | | | | | | | | | - 1 | | | - 1 | 134 | 4 | 2 8 | 3C . | 4 | 3 | - } | 1 | 1 | 1 | 1 | 1 | | 1 | | 1 | | ١, | | ٠ | = | - | - | 100 | | _ | S | p | 0 - 7 0 - C | - 1 | | 1 | 48 | -5 | 13 | 46 | 5 | 2 | 44 | 2 | | | ı | - 1 | | - 1 | 1 | | | 1 | 56 | 6 | 2 1 | ŝΕ | 7 | 5 | 1 | | i | 1 | 1 | | | | | 1 | | | 0 | | ٠ | - | _ | - | | ٠. | 0 | 2 | NO OPERATION | - 1 | 1 | 1 | 1 | 1 | | | 1 | 1 | 1 | | | EA | 2 | , | - } | - 1 | | - 1 | | - 1 | 1 | 1 | 1 | | | 1 | | 1 | 1 | ì | 1 | | 1 | | | 1 | 1 | 1 | | _ | 4 | - | _ | ing. | | Ç | F | 3 | $A : M \rightarrow A$ | 1 | 10 | 2 | 100 | : | 3 | 05 | 3 | 2 | 1 | li | | | İ | 16 | 0. | e. | | | 5 | 2 | :5 | 4 | 2 . | 0 | | 5 . | 3 | | | 1 | | | | | | | | | | ٠ | - | • | | = | | 2 | - | - 1 | A → V S = 1 → | | 7 | | 1 | T | 1 | 1 | | Ť | | | | 48 | 3 | 1 | 1 | | 1 | | | 7 | 1 | \top | + | T | 1 | T | + | 1 | 1 | T | T | T | 1 | † | T | T | T | 1 | _ | _ | _ | = | = | - | | 2 | 14 | P | P → '.lc S - ! → | S | 1 | 1 | | 1 | | | Î | 1 | | | | 08 | 3 | 1 | - { | - 1 | | | | - 1 | | Į | | 1 | - 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | 1- | | _ | - | - | - | - | | D | 1 | ۵ | S-1-S Mg- | | - | | | | | t | | | | | 1 1 | | 4 | | - 1 | 1 | - | 1 | | 1 | - { | - [| - 1 | - { | -{ | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | 1. | | | _ | - | _ | | | D | L | 2 | 100 000 000 | | - | | | | | | i i | 1 | | | | 10000 | .1 | | - | ļ | | | | 1 | 1 | | | | - 1 | 1 | 1 | 1 | ļ | 1 | 1 | | J. | + | | 1 | la la | | | BE | ST | OR | ED: | | | A | 0 | 4 | 1 47 OHCH | | | | 25 | r | 1 | 26 | 5 | | 34 | | | | | | - (| į | i | į | | i | 36 | € | 2 1: | 3E | - [| | | | 1 | 1 | 1 | | 1 | 1 | 1 | | | ١, | | | ٠ | - | - | - | | n | - 3 | - | FC-7 0-1 | \rightarrow | 7 | + | n: | - | - | 1 | - | | F.A. | | | | - | + | + | + | - | | | - | 6 | - | : 1 | ·F | ~ | 3 1 | + | 1 | + | Ť | + | + | + | + | | Ť | 1 | 1, | | | _ | _ | - | - | | B | т | 2 | HTRN INT | - 1 | - | | 1 | 1 | | | | | | | | 40 | 6 | | - 1 | | | | | | 1 | | | | - | | 1 | 1 | 1 | 1 | 1 | | | 1 | | | - | U | | RE | ST | OR | ED | | | n | - | 9 | HTRN SUB | | İ | | 1 | 1 | 1 | |) | | | | | 50 | | .] | -] | 1 | | - 1 | | - 1 | 1 | -1 | | | 1 | i | 1 | 1 | 1 | | 1 | 1 | | | 1 | | | 1. | _ | - | _ | | _ | | | S | C | S | | 1. 6 | 9 | | Er. | | | FE | 1 | 2 | | | 1 | | | 1 | | ê | . | e • | 5 | 2 | F 5 | | 2 | e . | 1 | 2 | 3 | ٠. | H | î | | | 1 | | | | | ١. | | | .3. | _ | _ | | | S | = | C | 1 → C | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | | 1 | | 38 | 2 | . [| | 1 | | ì | | - | | 1 | | | | 1 | 1 | 1 | | 1 | 1 | 1 |) | 1 | 1 | 1 | 1 | 1 | - | _ | 1 | 4 | 240 | | | S | E | 0 | 1 → D | | | 1 | 1 | | | | 1 | | ļ | | | | 2 | | - 1 | - 1 | - 1 | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | 1. | | _ | - | - | 14 | | | 5 | | | 1.4. | - | + | + | + | +- | - | 1 | 1 | | + | | | 78 | - | | | + | - | - | | -+ | \pm | -+ | + | Ť | + | 1 | + | Ť | + | + | Ť | + | + | + | + | + | + | 1. | _ | - | _ | 1 | _ | - | | S | + | 4 | . → M | 1 | 1 | ĺ | 80 | | 7 | 99 | 3 | 2 | | | | | - | | | آءَ | 2 | | 2 | | 36 | . | 2 10 | 20 | | - 1 | 3 | : 1: | | 1 | | Ī | | 1 | | i | | 1. | _ | - | _ | - | - | | | S | | | 1 → M | - (| ļ | | SE | 1 | 1 | 1 | 3 | 1 | | | | - } | H | 1 | | 1 | . | | 1 | - | | | - | - | 1 | · | 1 | 1 | | 1 | 1 | + | | 1 | 194 | 6 | 4 10 | . 1 | | _ | -14 | - | - | | | S | - | | Y → M | - 1 | 1 | İ | 80 | | 1 | 1 | 3 | | į. | | | 1 | | | - | - 1 | | | | - 1 | +4 | 4 | | - 1 | -1 | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | 211 | | - | _ | - 12 | | т | 4 | | 7 - 15 | - 1 | - | | 100 | | ~ | 0 | , | | | U | | 44 | , | | - (| - { | | į | Į | | - | | - | - | ļ | ļ | 1 | 1 | | | | 1 | | 1 | 1 | Ţ | | 1. | | | 21 | - | _ | | | ÷ | | - | 13 | \rightarrow | + | + | +- | + | - | | - | - | - | Н | - | 48 | | 1 | + | -+ | T | - | - | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 1 | | _ | _ | | - | - | | | 3 | | 3-44 | | | | 1 | | | | | | | | | AS | | | | 1 | | į | | | j | İ | | į | | 1 | | | 1 | | | | 1 | | | 1 | | 1. | 6 T | , | 2 | | _ | - | | | , | ÷ | 3 - 4 | ĺ | 1 | | 1 | 1 | | | | | 1 | | | - 1 | - 1 | , | | 1 | 1 | - 1 | 1 | | 1 | 1 | | ļ | 1 | | 1 | | | | | 1 | | | | | | ľ. | | | - | | 9 | | | | | 5 | · → 3 | | - | 1 | | | | | 1 | | | | | | 2 | | | 1 | - 1 | | | i | | 1 | - 1 | 1 | 1 | | 1 | 1 | 1 | | 1 | 1 | 1 | | | 1 | | 1 | 50 | _ | _ | | - | | | - | | 2 | 11 | | | 1 | | | | 1 | | | | | - 1 | | 2 | | 1 | 1 | 1 | | | | 1 | 1 | - | 1 | 1 | 1 | 1 | | ì | 1 | | 1 | 1 | | 1 | 1 | 1 | 1. | | | - | | - | | | | - | _ | | 1_ | -1 | 1 | 1 | L | 1 | | 1 | | 1 | | _ ! | 20 [| 4 | . ! | | -! | لم | : | _! | | _! | | - : | · · | | _ | -!- | _ | 1 | - | | _1_ | | 1 | | | 4 | 1, | _ | - | _ | _ | _ | _ | | | | | C 1. IF FAGE BOUNDAY SIGRO | | | _ | | | • | | | EX | | | | | | | | | | | - | | -0 | | | | | | ٠ | Ċ | | | | E C | A | | | • | | | | CLE | | | | | | -2: | 3 | 100 : | TO THE BRANCH OCCURS TO S | PECCE. | AG
FY | EAC | F | | | | | E | | ATO | 0 | | | | | | | | | | SL. | ET. | | 50 | | | , | | | 0.11 | | IF.E | | | | 9 | | .(. | ~ | TES | 2 | | | | | 3, | | | NCT-3CRRCW | St. 188101 | | | | | 13 | | | | | | | FC.T | N.F. | ADD | pro | 55 | | | | | J.F | | | | | | | | | | | 8 T | | | | | | | | | | | | | | 4 | | 1,58 | DIMAL MODE Z FLAG IS INVALID | | | | _ | | | | | | | | | | | ITER | | | | | | | , | | | | | | | 16 | | | | BIT | | | | | | | | | | | | | | | - | 1261. | LILATOR MUST BE CHECKED FOR | LEHI |) H | =5UL | 8 | - | 40000 | | | | | | _ | _ | | Note: Commodore Semiconductor Group cannot assume liability for the use of undefined CP Codes ## 6509 MEMORY MAP COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any products herein to improve reliability. function or design. COMMODORE SEMICONDUCTOR GROUP does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.