Discrete POWER & Signal **Technologies** # **MPS6562** ## **PNP General Purpose Amplifier** This device is designed for use as general purpose amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 67. See TN4033A for characteristics. #### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 25 | V | | V _{CBO} | Collector-Base Voltage | 25 | V | | V_{EBO} | Emitter-Base Voltage | 5.0 | V | | Ic | Collector Current - Continuous | 1.0 | Α | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |------------------|--|------------|-------------| | | | MPS6562 | | | P _D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/°C | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # PNP General Purpose Amplifier (continued) | Electr | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | | |----------------------|---|--|----------|-----|-------|--|--|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | | | OFF CHA | RACTERISTICS | | | | | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_C = 10 \text{ mA}, I_B = 0$ | 25 | | V | | | | | | $V_{(BR)CBO}$ | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 25 | | V | | | | | | V _{(BR)EBO} | Emitter-Base Breakdown Voltage | $I_E = 100 \mu A, I_C = 0$ | 5.0 | | V | | | | | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 20 \text{ V}, I_{E} = 0$ | | 100 | nA | | | | | | I _{CEO} | Collector Cutoff Current | $V_{CE} = 25 \text{ V}, I_{E} = 0$ | | 100 | nA | | | | | | I _{EBO} | Emitter Cutoff Current | $V_{EB} = 4.0 \text{ V}, I_{C} = 0$ | | 100 | nA | | | | | | ON CHAP | RACTERISTICS* DC Current Gain | $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$ | 35 | | | | | | | | | | $V_{CE} = 1.0 \text{ V}, I_{C} = 100 \text{ mA}$
$V_{CE} = 1.0 \text{ V}, I_{C} = 500 \text{ mA}$ | 50
50 | 200 | | | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ | - 00 | 0.5 | V | | | | | | V _{BE(on)} | Base-Emitter On Voltage | $V_{CE} = 1.0 \text{ V}, I_{C} = 500 \text{ mA}$ | | 1.2 | V | | | | | | SMALL S | IGNAL CHARACTERISTICS | | • | | | | | | | | C _{ob} | Output Capacitance | $V_{CB} = 10 \text{ V}, f = 100 \text{ kHz}$ | | 30 | pF | | | | | | f _T | Current Gain - Bandwidth product | $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V},$
f = 20 MHz | 60 | | MHz | | | | | ^{*}Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$