

October 2014

MPSA42 / MMBTA42 / PZTA42 NPN High-Voltage Amplifier

Features

- This device is designed for application as a video output and other high-voltage applications.
- · Sourced from process 48.

Ordering Information

Part Number	Top Mark	Package	Packing Method
MPSA42	MPSA42	TO-92 3L	Bulk
MMBTA42	1D	SOT-23 3L	Tape and Reel
PZTA42	A42	SOT-223 4L	Tape and Reel

Absolute Maximum Ratings(1), (2)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	300	V
V_{CBO}	Collector-Base Voltage	300	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current - Continuous	500	mA
T _{J,} T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.

Thermal Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Max.			Unit
	Faiametei	MPSA42	MMBTA42 ⁽³⁾	PZTA42 ⁽⁴⁾	Oilit
P _D	Total Device Dissipation	625	240	1000	mW
	Derate Above 25°C	5.00	1.92	8.00	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	83.3			°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	200	515	125	°C/W

Notes:

- 3. Device is mounted on FR-4 PCB 1.6 inch x 1.6 inch x 0.06 inch.
- 4. Device is mounted on FR-4 PCB 36 mm x 18 mm x 1.5 mm, mounting pad for the collector lead minimum 6 cm².

Electrical Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit
Off Charact	eristics			•	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ⁽⁵⁾	$I_C = 1.0 \text{ mA}, I_B = 0$	300		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	300		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	6		V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 200 \text{ V}, I_{E} = 0$		0.1	μΑ
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 6 \text{ V}, I_{C} = 0$		0.1	μΑ
On Charact	eristics ⁽⁵⁾			•	
		$V_{CE} = 10 \text{ V}, I_{C} = 1.0 \text{ mA}$	25		
h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	40		
		$V_{CE} = 10 \text{ V}, I_{C} = 30 \text{ mA}$	40	40	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$		0.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 20 \text{ mA}, I_B = 2.0 \text{ mA}$	7	0.9	V
Small Signa	al Characteristics			•	7
f _T	Current Gain - Bandwidth Product	I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz	50		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 20 \text{ V}, I_{E} = 0,$ f = 1.0 MHz		3.0	pF

Notes:

5. Pulse test: pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$

Typical Performance Characteristics

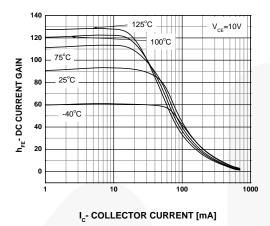
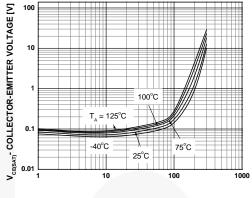



Figure 1. DC Current Gain vs. Collector Current

I_c- COLLECTOR CURRENT [mA]

Figure 2. Collector-Emitter Saturation Voltage vs. Collector Current

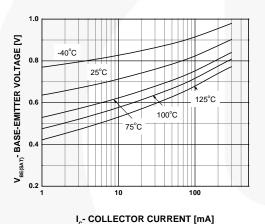
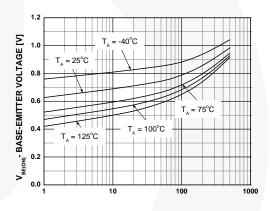



Figure 3. Base-Emitter Saturation Voltage vs. Collector Current

I_- COLLECTOR CURRENT [mA]

s. Figure 4. Base-Emitter On Voltage vs. Collector Current

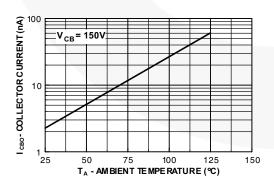
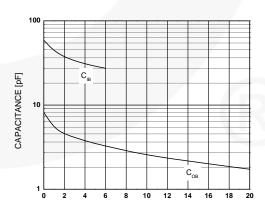



Figure 5. Collector Cut-Off Current vs. Ambient Temperature

REVERSE BIAS VOLTAGE [V]

Figure 6. Collector-Base and Emitter-Base Capacitance vs. Reverse-Bias Voltage

Typical Performance Characteristics (Continued)

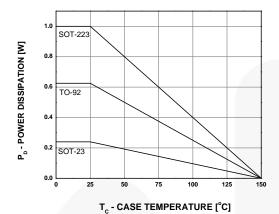
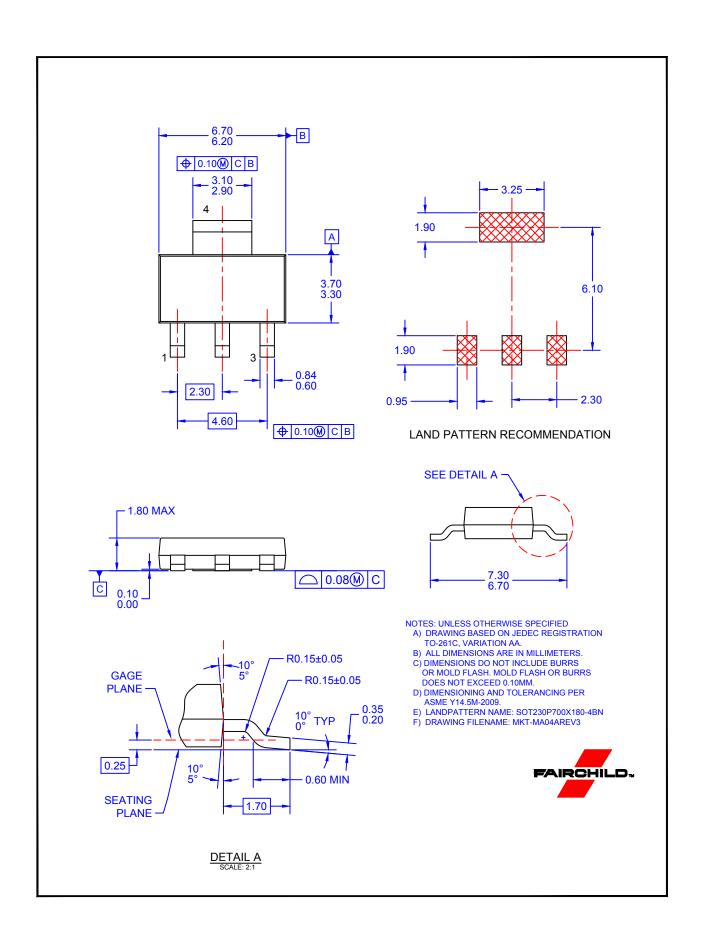
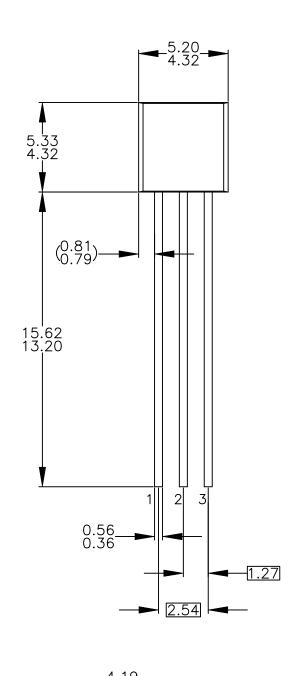
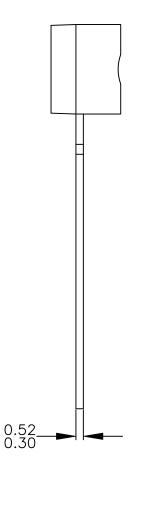
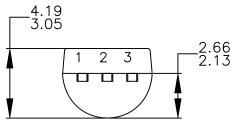
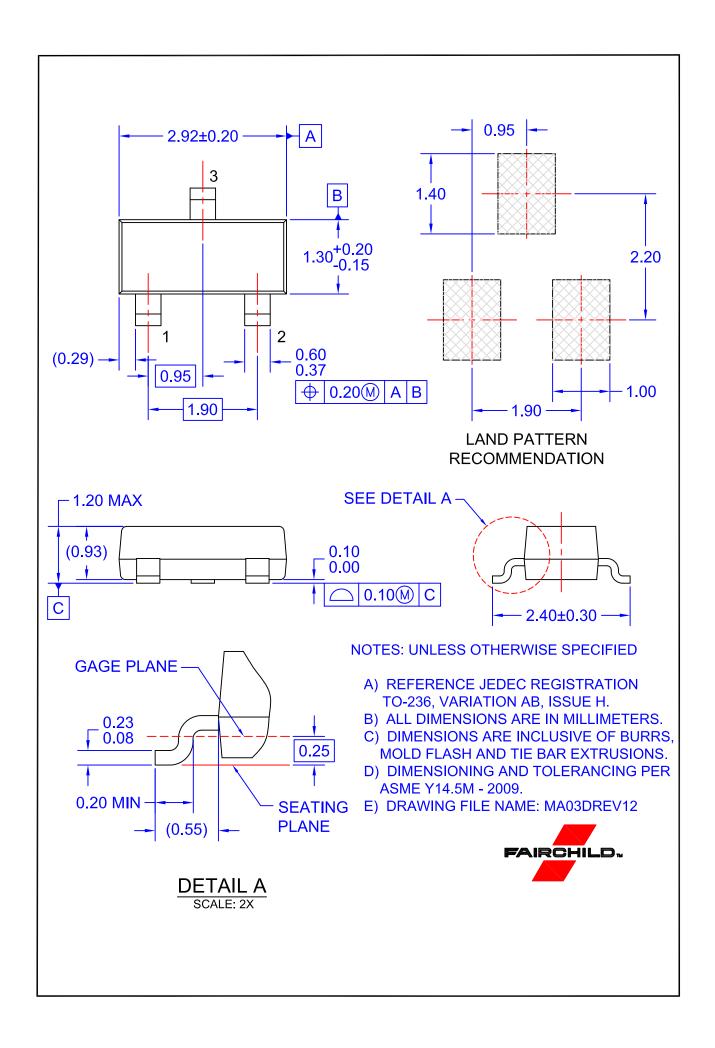





Figure 7. Power Dissipation vs. Ambient Temperature





NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3DREV4.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative