30W, 28V High Power RF LDMOS FETs

Description

The MR2003C is a 30-watt, unmatched LDMOS FETs, designed for Wide-band and Mobile radio applications with frequencies under 2000 MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

It can also operate at lower voltage down to 12V with decrease power capability.

• Typical Performance (On Innogration fixture with device soldered): $V_{DD} = 28 \text{ Volts}, I_{DQ} = 200 \text{ mA}, CW.$

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)	
1000 MHz	22	30	65	

MR2003C

Notice:

It is recommended to operate this device only below 24V like 14V,12.5V etc, if operation band is below 500MHz.

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	1.0	°C/W
T _C = 85°C, T _J =200°C, DC test	Kejc	1.0	-C/VV

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit	Characteristic	Symbol	Min	Тур	Max	Unit
--	----------------	--------	-----	-----	-----	------

MR2003C LDMOS TRANSISTOR

Document Number: MR2003C Preliminary Datasheet V1.1

DC Characteristics (per half section)

Drain-Source Voltage V _{GS} =0, I _{DS} =1.0mA	$V_{\text{(BR)DSS}}$	65	70		V
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 V, V _{GS} = 0 V)	I _{DSS}			1	μА
GateSource Leakage Current (V _{GS} = 9 V, V _{DS} = 0 V)	I _{GSS}			1	μА
Gate Threshold Voltage $(V_{DS} = 28V, I_D = 600 \mu A)$	$V_{\rm GS}({ m th})$		2.17		V
Common Source Input Capacitance (V _{GS} = 0V, V _{DS} =14 V, f = 1 MHz)	C _{ISS}		15.7		pF
Common Source Output Capacitance (V _{GS} = 0V, V _{DS} =14 V, f = 1 MHz)	C _{oss}		6.0		pF
Common Source Feedback Capacitance (V _{GS} = 0V, V _{DS} =14 V, f = 1 MHz)	C _{RSS}		0.42		pF
Common Source Input Capacitance (V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{ISS}		16.0		pF
Common Source Output Capacitance (V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{oss}		4.6		pF
Common Source Feedback Capacitance (V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{RSS}		0.38		pF

Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} = 200 mA, f = 1000 MHz, CW Signal Measurements.

Power Gain	Gp	22	dB
Drain Efficiency@P1dB	$\eta_{\scriptscriptstyle D}$	65	%
1 dB Compression Point	P _{-1dB}	30	W
Input Return Loss	IRL	-10	dB

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 100 \text{ mA}$, f = 1000 MHz

VSWR 10:1 at 30W pulse CW Output Power	No Device Degradation
--	-----------------------

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads

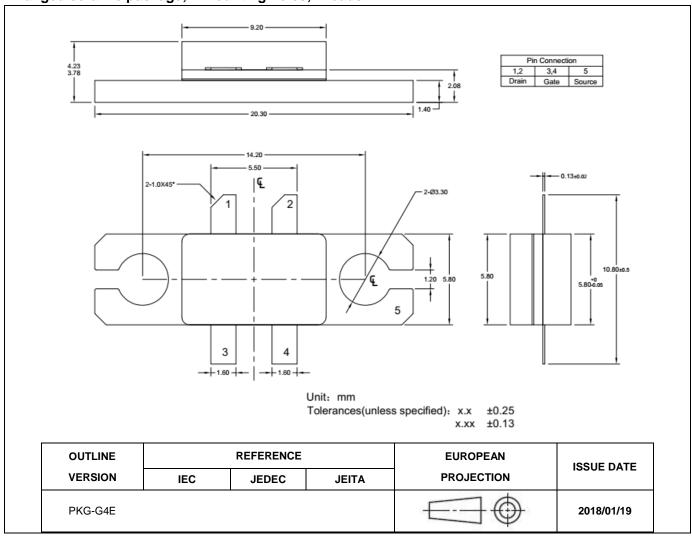


Figure 1. Package Outline PKG-G4E

MR2003C LDMOS TRANSISTOR

Document Number: MR2003C Preliminary Datasheet V1.1

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/6/14	Rev 1.0	Preliminary Datasheet
2018/8/2	Rev 1.1	Add notice of below 500MHz operation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.