

2M(262,144-Word × 8-Bit) FeRAM (Ferroelectric Random Access Memory) SPI

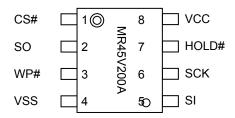
GENERAL DESCRIPTION

The MR45V200A is a nonvolatile 262,144-word x 8-bit ferroelectric random access memory (FeRAM) developed in the ferroelectric process and silicon-gate CMOS technology. The MR45V200A is accessed using Serial Peripheral Interface.Unlike SRAMs, this device, whose cells are nonvolatile, eliminates battery backup required to hold data. This device has no mechanisms of erasing and programming memory cells and blocks, such as those used for various EEPROMs. Therefore, the write cycle time can be equal to the read cycle time and the power consumption during a write can be reduced significantly.

The MR45V200A can be used in various applications, because the device is guaranteed for the write/read tolerance of 10^{12} cycles per bit and the rewrite count can be extended significantly.

FEATURES

- 262,144-word × 8-bit configuration (Serial Peripheral Interface : SPI)
- A single 2.7V to 3.6V power supply
- Operating frequency:
- Read/write tolerance
- Data retention
- Guaranteed operating temperature range
- Package options:
 - 8-pin plastic DIP


34MHz 10¹² cycles/bit 10 years -40 to 85°C (Extended temperature version)

1/17

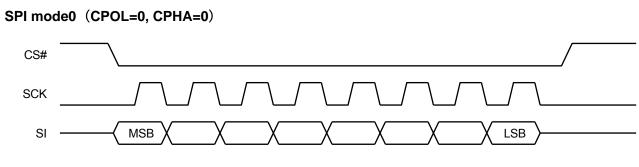
PIN CONFIGURATION

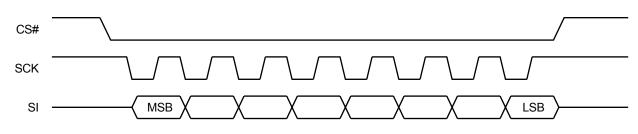
8-pin plastic DIP

Note:

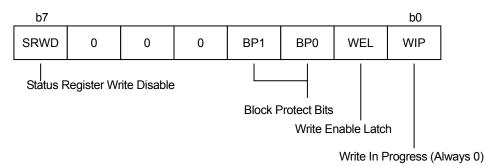
Signal names that end with # indicate that the signals are negative-true logic.

PIN DESCRIPTIONS


Pin Name	Description
CS#	Chip Select (input, negative logic) Latches an address by low input, activates the FeRAM, and enables a read or write operation.
WP#	Write Protect(input , negative logic)Write Protect pin controls write-operation to the status-register(BP0,BP1). This pin should be fixed low or high in write-operations.
HOLD#	HOLD(input , negative logic) Hold pin is used when the serial-communication suspended without disable the chip select. When HOLD# is low ,the serial-output is in High-Z status and serial-input/serial-clock are "Don't Care". CS# should be low in hold operation.
SCK	Serial Clock Serial Clock is the clock input pin for setting for serial data timing. Inputs are latched on the rising edge and output occur on the falling edge.
SI	Serial input SI pins are serial input pins for Operation-code , addresses ,and data-inputs .
SO	Serial output SO pins are serial output pins.
V _{CC} , V _{SS}	Power supply Apply the specified voltage to V_{CC} . Connect V_{SS} to ground.


FEDR45V200A-01

MR45V200A

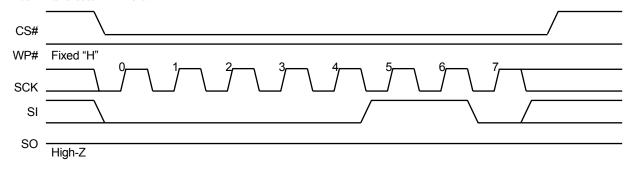

SPI

SPI mode3 (CPOL=1, CPHA=1)

Status Register

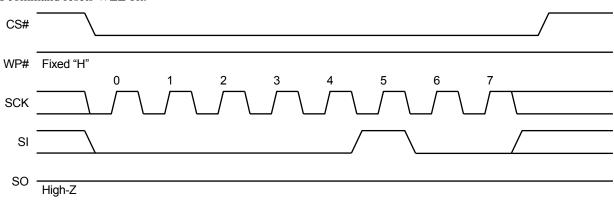
Name	Function
WIP	Fixed to 0.
WEL	Write Enable Latch. This indicates internal WEL condition.
BP0,BP1	Block Protect : These bits can be changed protect area .
	This is the software protect.
SRWD	Status Register Write Disable (SRWD): SRWD controls the effect of the hardware WP# pin. This device will be in hardware-protect by combination of SRWD and WP#.
0	Fixed to 0.

Operation-Code


Operation codes are listed in the table below. If the device receives invalid operation code, the device will be diselected.

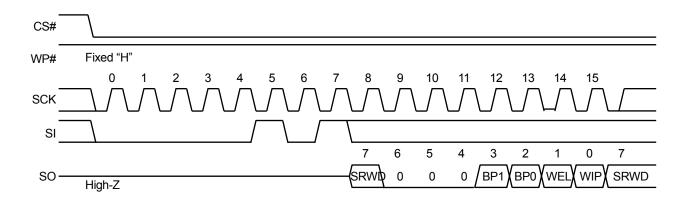
Instruction	Description	Instruction format
WREN	Write Enable	0000 0110
WRDI	Write Disable	0000 0100
RDSR	Read Status Register	0000 0101
WRSR	Write Status Register	0000 0001
READ	Read from Memory Array	0000 0011
WRITE	Write to Memory Array	0000 0010

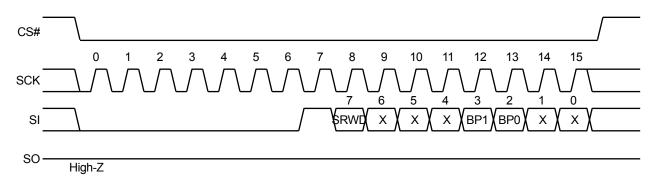
COMMANDS


WREN(Write Enable)

It is necessary to set Write Enable Latch (WEL) bit before write-operation (WRITE and WRSR). WREN command sets WEL bit.

WRDI(Write Disable)

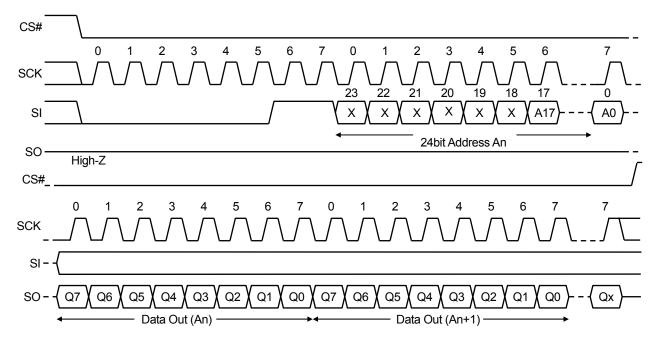

WRDI command resets WEL bit.


RDSR(READ Status Register)

The RDSR command allows to read data of status register.

WRSR(WRITE Status Register)

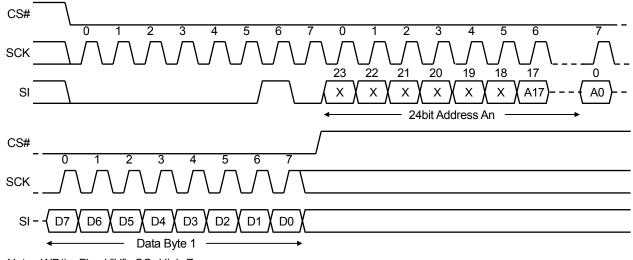
WRSR command allows to write data to status register(SRWD,BP0,BP1). It is necessary to set Write Enable Latch (WEL) bit by WREN command before executing WRSR.



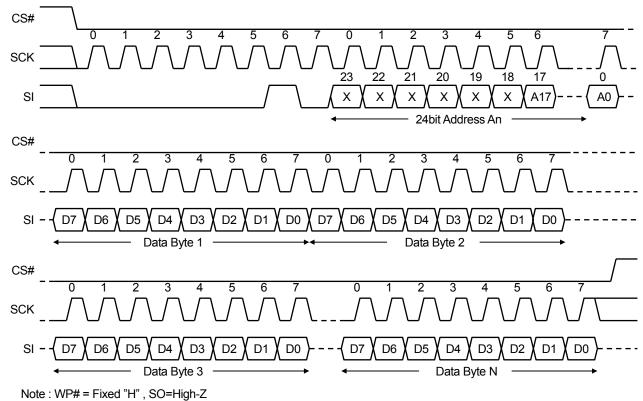
Note: WP#=Fix "H"

READ(Read from Memory Array)

READ command can be valid when CS# goes "L", then the op-code and 16bit-adresses are inputted to serial input"SI". The inputted adresses are loaded to internal register, then the data from corresponded address is output at serial-output "SO". If CS# will keep "L", the internal adress will be increased automatically after 8 clocks and will output the data from new-address. When it reaches the most significant adress, the adress counter rolls over tostarting adress, and reading cycle can be continued infinitely.


Note : WP# = fixed "H"

WRITE(Write to Memory Array)


Write command can be valid when CS# goes "L", then the op-code and 16bit-adresses are inputted to serial input"SI". Writing is terminated when CS# goes high after data-input. If CS# will keep "L", the internal adress will be increased automatically. When it reaches the most significant adress, the adress counter rolls over to starting adress 0000h, and writing cycle(overwriting) can be continued infinitely.

WRITE(1Byte)

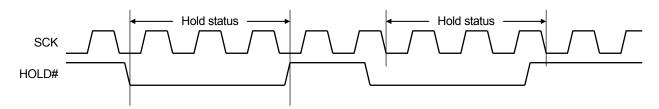
Note : WP# = Fixed "H" , SO=High-Z

WRITE(Page)

Write Protection

Writing protection block is shown as follows:

Protect Block size


Block Pr	otect BIT	Protected Block	Protected Address Area	
BP1	BP0	Protected block	Protected Address Area	
0	0	None	None	
0	1	Upper 1/4 block	30000h – 3FFFFh	
1	0	Upper 1/2 block	20000h – 3FFFFh	
1	1	All	00000h – 3FFFFh	

Writing Protect

			Writing protection status	Protection stat	tus in memory	
WP#	SRWD	mode	in status register	Protected blocks	Unprotected blocks	
1	0	Coffman	Status register is			
0	0	Software protection (SPM)	unprotected when WEL-bit is set by WREN command. BP0 and BP1	Protected	Unprotected	
1	1		are unprotected.			
0	1	Hardware protection (HPM)	Status register is protected. BP0 and BP1 are protected.	Protected	Unprotected	

HOLD

Hold status is used for suspending serial comunication without disable the chip. SO becomes "High-Z" and SI is "Don't care" during the hold status. It is necessary to keep CS#=L in hold status.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

The application of stress (voltage, current, or temperature) that exceeds the absolute maximum rating may damage the device. Therefore, do not allow actual characteristics to exceed any one parameter ratings

Pin voltages

Parameter	Symbol	Ra	Unit	
Falameter	Gymbol	Min.	Max.	Onit
Pin Voltage (Input Signal)	V _{IN}	-0.5	V _{CC} + 0.5	V
Pin Voltage (Input/Output Voltage)	V _{INQ} , V _{OUTQ}	-0.5	V _{CC} + 0.5	V
Power Supply Voltage	V _{CC}	-0.5	4.0	V

Temperature Range

Parameter	Symbol	Rating		Unit	Note	
Faranieter	Symbol	Min.	Max.	Onit	NULE	
Storage Temperature (Extended Temperature Version)	Tstg	-55	125	°C		
Operating Temperature (Extended Temperature Version)	Topr	-40	85	°C		

Others

Parameter	Symbol	Rating	Unit
Power Dissipation	P _D	1,000mW	
Allowable Input Current	I _{IN}	+/- 20mA	Ta=25°C
Allowable Output Current	Ι _{ΟυΤ}	+/- 20mA	Ta=25°C

Recommended Operating Conditions

Power Supply Voltage

					[V]
Parameter	Symbol	Min.	Тур.	Max.	Note
Power Supply Voltage	V _{CC}	2.7	3.3	3.6	
Ground Voltage	V _{SS}	0	0	0	

DC Input Voltage

				[V]
Parameter	Symbol	Min.	Max.	Note
Input High Voltage	V _{IH}	V _{CC} x 0.8	V _{CC} +0.3	
Input Low Voltage	V _{IL}	-0.3	V _{CC} x 0.15	

DC Characteristics

DC Input/Output Characteristics

Parameter	Symbol	Condition	Min.	Max.	Unit	Note
Output High Voltage	V _{OH}	I _{OH} =—2mA	$V_{CC} imes 0.85$		V	
Output Low Voltage	V _{OL}	I _{OL} =2mA	_	$V_{CC} imes 0.15$	V	
Input Leakage Current	Ι _{LI}	_	-10	10	μA	
Output Leakage Current	I _{LO}	_	-10	10	μA	

Power Supply Current

V_{CC}=Max.to Min, Ta=Topr

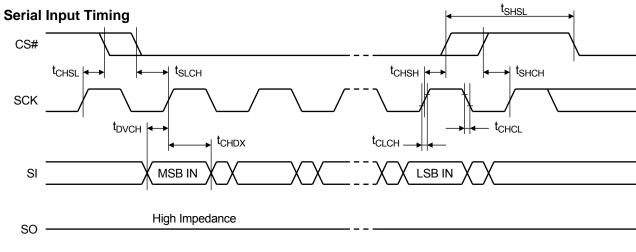
Parameter	Symbol	Condition	Min.	Max.	Unit	Note
Power Supply Current (Standby)	I _{CCS}	CS#= V_{CC} , V_{IN} =0V or V_{CC}	_	100	μA	
Power Supply Current (Operating)	I _{CCA}	V _{IN} =0.2V or V _{CC} -0.2V, SCK=Max., I _{OUT} =0mA		10	mA	1

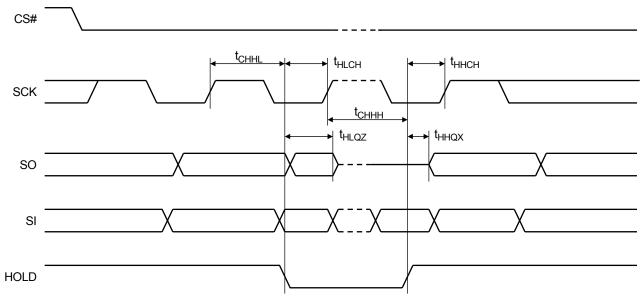
Note1: average current.

AC Characteristics (Read Cycle)

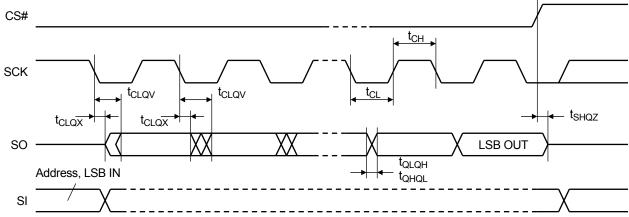
 V_{CC} =Max. to Min., Ta=Topr.

		MR45	MR45V200A		
Parameter	Symbol	Min.	Max.	Unit	Note
Clock frequency	f _C	D.C.	34	MHz	
CS# Active setup time	t _{SLCH}	10	_	ns	
CS# In-active setup-time	t _{SHCH}	10	_	ns	
CS# De-select time	t _{SHSL}	10		ns	
CS# Active hold time	t _{CHSH}	10	—	ns	
CS# In-active hold-time	t _{CHSL}	10	_	ns	
SCK High time	t _{CH}	13	—	ns	1
SCK Low time	t _{CL}	13	_	ns	1
SCK Rise time	t _{CLCH}	—	50	ns	2
SCK Fall time	t _{CHCL}	_	50	ns	2
Data Setup time	t _{DVCH}	5	_	ns	
Data Hold time	t _{CHDX}	5	_	ns	
SCK Low Hold time after HOLD# inactive	t _{HHCH}	10	—	ns	
SCK Low Hold time after HOLD# active	t _{HLCH}	10	_	ns	
SCK High Setup time before HOLD# active	t _{CHHL}	10	_	ns	
SCK High Setup time before HOLD# inactive	^t сннн	10	_	ns	
Output disable time	t _{SHQZ}	—	12	ns	2
SCK Low to Output Valid time	t _{CLQV}	_	12	ns	
Output Hold time	t _{CLQX}	0	_	ns	
HOLD# High to Output Low impedance time	t _{HHQX}		20	ns	2
HOLD# High to Output High impedance time	t _{HLQZ}	_	20	ns	2


Note: 1. $t_{CH} + t_{CL} \ge 1/f_C$ 2. sample value


FEDR45V200A-01

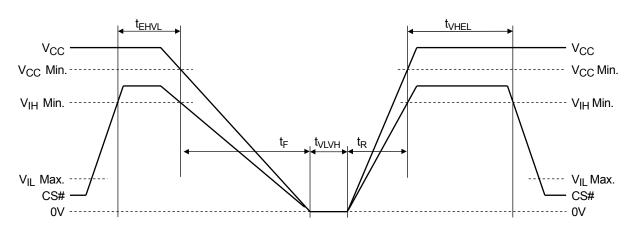
MR45V200A



Hold Timing

Output Timing

		(Under	r recommend	led operating	g conditions)
Parameter	Symbol	Min.	Max.	Unit	Note
Power-On CS# High Hold Time	t _{VHEL}	50		μS	1, 2
Power-Off CS# High Hold Time	t _{EHVL}	100	—	ns	1
Power-On Interval Time	t _{VLVH}	1	—	μS	2
Power-On Rise time	tR	50	100,000	μs/V	
Power-down Fall time	tF	100		μs/V	


•Power-On and Power-Off Characteristics

Notes:

1. To prevent an erroneous operation, be sure to maintain CS#="H", and set the FeRAM in an inactive state (standby mode) before and after power-on and power-off.

2. Powering on at the intermediate voltage level will cause an erroneous operation; thus, be sure to power up from 0 V.

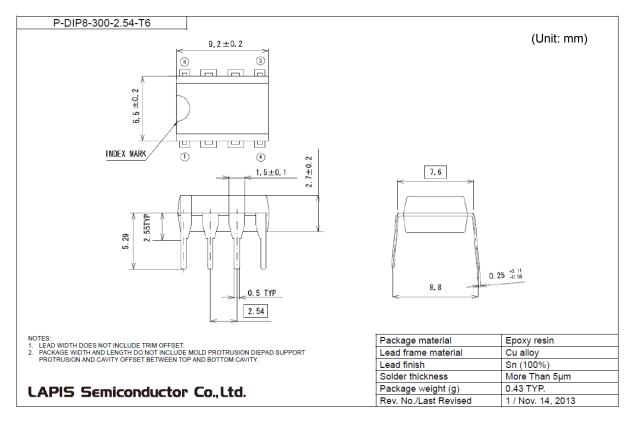
3. Enter all signals at the same time as power-on or enter all signals after power-on.

•Power-On and Power-Off Sequences

Read/Write Cycles and Data Retention

Keau, white Cycles and Data Ketchilon					
(Under recommended operating condition					
Parameter	Min.	Max.	Unit	Note	
Read/Write Cycle	10 ¹²		Cycle		
Data Retention	10		Year		

Capacitance


Signal	Symbol	Min.	Max.	Unit	Note
Input Capacitance	CIN		10	pF	1
Input/Output Capacitance	C _{OUT}	—	10	pF	1

Note:

Sampling value. Measurement conditions are $V_{\text{IN}} = V_{\text{OUT}} = GND$, Vcc=3.3V, f = 1MHz, and Ta = 25°C

PACKAGE DIMENSIONS

REVISION HISTORY

		Page			
Document No.	Date	Previous Edition	Current Edition	Description	
FEDR45V200A-01	Jan. 31, 2014	-	-	Final edition 1	

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2014 LAPIS Semiconductor Co., Ltd.