

Issue Date: Jan. 12, 2024

# MR7930/MR793200

UHF band RFID Sensor LSI

#### **OVERVIEW**

MR7930/MR793200 is a passive UHF band RFID Sensor LSI for the battery-less short-range IoT devices.

This LSI is equipped with sensor function to measure electrostatic capacitance.

It is possible to control sensor function by the mandatory command (*READ*, *WRITE*) from Reader/Writer (RW; interrogator) that is compliant with the international standard EPC global Generation2-Ver.2.0.1 (EPC standard or EPC Gen2). MR7930 is bump wafer product for inlay tag. MR793200 is package product that has SPI slave interface.

#### **FEATURES**

• RF communication

- Carrier frequency : 860 to 960 MHz (UHF band)

- Data transfer speed

RW => Tag : 26.7 to 128 kbps (when the values of data-0 and data-1 are the same)

Tag  $\Rightarrow$  RW : 40 to 640 kbps

- Modulation : DSB-ASK, SSB-ASK, PR-ASK

- Option command : ACCESS and BLOCK WRITE (data length is one or two words)

• RF communication characteristics

- Receiver sensitivity (passive)

 $\begin{array}{ccc} READ & : -9.5 \text{ dBm (LSI end)} \\ WRITE & : -8.5 \text{ dBm (LSI end)} \\ READ/WRITE (Sensor) & : -8.5 \text{ dBm (LSI end)} \\ - \text{Reflection coefficient} & : 0.7 \text{ (ASK transmission)} \end{array}$ 

Memory

EPC : 96 bits
USER : 144 bits
NVM rewrite time : 8ms (16 bits)
NVM write endurance : 10,000 cycles
NVM data retention : 10 years

Capacitive sensor

- Mesurement function : Range Max. 100pF

- Comparison function : Threshold Max. ±1.0pF (Low Range Mode only)

- Contorol command : Mandatory command (*READ*, *WRITE*)





Issue Date: Jan. 12, 2024

# MR7930/MR793200

UHF band RFID Sensor LSI

SPI interface (SPI Slave)

- Operating frequency : Max. 5 MHz - SPI type : 0 or 3

• Interrupt function : It is possible to receive the interrupt notification such as a read request and a write

completion from RW to host MCU.

Arbitration fuction : It is possible to avoid the collision of access from RW and MCU.

Shipment

| Product name   | Shipment           | MCU interface | Remark               |
|----------------|--------------------|---------------|----------------------|
| MR7930-11KDVWJ | Bump wafer         | <del></del>   | Passive              |
| MR793200GD     | 24pin plastic WQFN | SPI           | Passive/Semi-passive |

Guaranteed operation range

- Operating temperature (ambient) : Ta = -40 to 65  $^{\circ}$ C - Operating voltage :  $V_{DD} = 1.8$  to 3.6 V

Application

Short-range IoT sensor devices

- Battery-less sennsing system
- Periodic inspection system
- Logistics warehouse management system
- Maintenance and management systems for Infrastructure, Plants, and Buildings

## **BLOCK DIAGRAM**

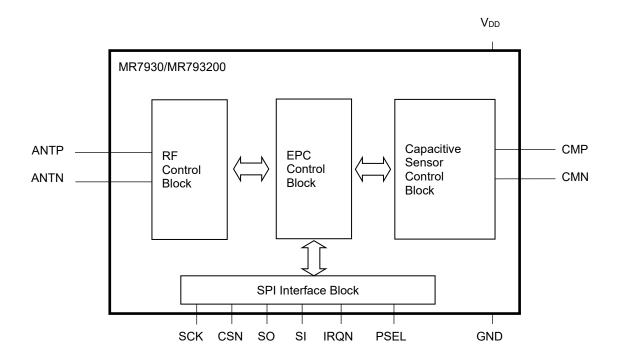



Figure 1 Block Diagram

# PIN DESCRIPTION (MR7930)

MR7930 has the 4pads with bumps.

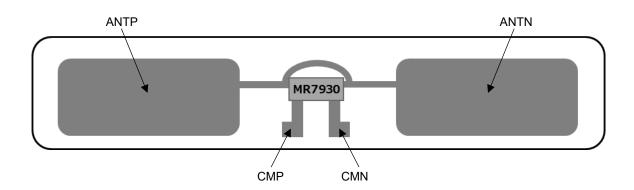



Figure 2 Inlay Image

Table 1 Pin List

| Pin name | Description                 |
|----------|-----------------------------|
| ANTP     | Antenna +pin                |
| ANTN     | Antenna -pin                |
| CMP      | Capacitive measurement +pin |
| CMN      | Capacitive measurement —pin |

# PIN ASSIGNMENT (MR793200)

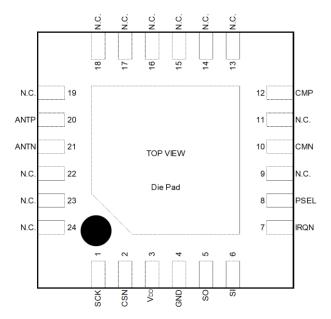



Figure 3 24pin WQFN

# PIN DESCRIPTION (MR793200)

Table 2 Pin List (MR793200)

| Pin |          |     |                                                                                                             | Terminal co            | onnection  | Initial state | e (V <sub>DD</sub> = on) |              |
|-----|----------|-----|-------------------------------------------------------------------------------------------------------------|------------------------|------------|---------------|--------------------------|--------------|
| No. | Pin name | I/O | Description                                                                                                 | SPI not used (Passive) | SPI used   | PSEL = L      | PSEL = H                 | Active level |
| 1   | SCK      | I   | Clock input                                                                                                 | Open                   | Host IF    | I-Disable     | I-Z                      | _            |
| 2   | CSN      | I   | Chip select input                                                                                           | Open                   | Host IF    | I-Disable     | I-Z                      | L            |
| 3   | $V_{DD}$ | PI  | External power supply                                                                                       | Open                   | $V_{DD}$   | _             | _                        | _            |
| 4   | GND      | PI  | Ground                                                                                                      | Open                   | GND        | _             | _                        | _            |
| 5   | SO       | Ю   | Data output                                                                                                 | Open                   | Host IF    | O-Z           | O-L                      | _            |
| 6   | SI       | I   | Data input                                                                                                  | Open                   | Host IF    | I-Disable     | I-Z                      | _            |
| 7   | IRQN     | 0   | Interrupt output                                                                                            | Open                   | Host IF    | O-H           | O-H                      | L            |
| 8   | PSEL     | I   | External power supply select input ("L" level: RF reception power supply, "H" level: External power supply) | Open                   | Host IF    | -             | I                        | н            |
| 9   | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 10  | CMN      | Α   | Capacitive measurement —pin                                                                                 | connection             | connection | O-L           | O-L                      | I-A          |
| 11  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 12  | CMP      | Α   | Capacitive measurement +pin                                                                                 | connection             | connection | O-L           | O-L                      | I-A          |
| 13  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 14  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 15  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 16  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 17  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 18  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 19  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 20  | ANTP     | Α   | Antenna +pin                                                                                                | Antenna +              | Antenna +  | I-A           | I-A                      | I-A          |
| 21  | ANTN     | Α   | Antenna -pin                                                                                                | Antenna -              | Antenna -  | I-A           | I-A                      | I-A          |
| 22  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 23  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| 24  | N.C.     | _   | Open                                                                                                        | Open                   | Open       | _             | _                        | _            |
| _   | Die Pad  | _   | Backside ground                                                                                             | Open                   | GND        | _             | _                        | _            |

Die Pad | - | Backside ground | Open | GND | I: Input pin, O: Output pin, IO: Input/output pin, A: Analog pin, PI: Power Input Open: Be sure to keep it open.

O-Z: High-impedance output, O-H: CMOS-H output, O-L: CMOS-L output, I-Disable: Input OFF

I-Z: High impedance input, I-A: Analog input

## **ELECTRILCAL CHARACTERISTICS**

## Absolute Maximum Ratings

| Item                   | Symbol           | Condition  | Rating      | Unit |
|------------------------|------------------|------------|-------------|------|
| Antenna Input Voltage  | $V_{max}$        | ANTP, ANTN | +2.0        | V    |
| Digital Input Current  | I <sub>DI</sub>  | _          | -1 to +1    | mA   |
| Digital Output Current | I <sub>DO</sub>  | _          | -1 to +1    | mA   |
| Antenna Input Power    | P <sub>AB</sub>  | _          | +10         | dBm  |
| Storage Temperature    | T <sub>stg</sub> | _          | -40 to +125 | °C   |

## ● Absolute Maximum Ratings (MR793200)

| Item           | Symbol           | Condition           | Rating                       | Unit |
|----------------|------------------|---------------------|------------------------------|------|
| Supply Voltage | $V_{DD}$         | V <sub>DD</sub> Pin | -0.3 to +4.6                 | V    |
| Input Voltage  | V <sub>DIN</sub> | _                   | -0.3 to V <sub>DD</sub> +0.3 | V    |
| Output Voltage | $V_{DO}$         | _                   | -0.3 to V <sub>DD</sub> +0.3 | V    |

## Recommended Operating Conditions

| Item                  |                              | Symbol          | Condition                                    | Min. | Тур. | Max.  | Unit |
|-----------------------|------------------------------|-----------------|----------------------------------------------|------|------|-------|------|
| Operating Temperature |                              | Та              | _                                            | -40  | +25  | +65   | °C   |
|                       | Operating Frequency          | F <sub>RF</sub> | According to the radio law of each country   | 860  | -    | 960   | MHz  |
|                       | Modulation Depth             | (A-B) / A       | _                                            | 80   | 90   | 100   | %    |
| RF                    | Reception Bit Rate           | F <sub>rx</sub> | When the value of data-0 and data-1 are same | 26.7 | _    | 128   | kbps |
|                       | Power-up Rise Time           | Tr              | _                                            | 1    | _    | 500   | μs   |
|                       | Power-up Stabilizing<br>Time | Ts              | _                                            | _    | _    | 1,500 | μs   |
|                       | Power-down Fall Time         | Tf              | _                                            | 1    | _    | 500   | μs   |

## Recommended Operating Conditions (MR793200)

|     | Item           | Symbol   | Condition | Min. | Тур. | Max. | Unit |
|-----|----------------|----------|-----------|------|------|------|------|
| SPI | Supply Voltage | $V_{DD}$ | _         | 1.8  | 3.0  | 3.6  | V    |

## NVM Characteristics

Ta = 25°C

|                 |                  |                 |      |        | 10   |      |
|-----------------|------------------|-----------------|------|--------|------|------|
| Item            | Symbol           | Condition       | Min. | Тур.   | Max. | Unit |
| Write Endurance | CYCew            | _               | _    | 10,000 | -    | Сус  |
| Data Retention  | T <sub>rtn</sub> | _               | _    | 10     | _    | Year |
| Write Time      | Tew              | 1 word = 16 bit | _    | 7.0    | 8.0  | ms   |

#### RF Communication Characteristics

Ta = 25°C

| Item                          |                   | Symbol             | Condition                                                                      | Min. | Тур. | Max. | Unit |
|-------------------------------|-------------------|--------------------|--------------------------------------------------------------------------------|------|------|------|------|
| Passive<br>Sensitivity        | READ<br>Command   | P <sub>R_R</sub>   | Tari = 25µs,<br>PW = 0.4Tari,<br>RTcal = 3Tari,                                | _    | -9.5 | _    | dBm  |
|                               | WRITE<br>Command  | P <sub>R_W</sub>   | TRcal = 2.6RTcal,<br>DR = 8, Miller4,<br>BLF = 41kbps,<br>DSB-ASK.             | -    | -8.5 | ı    | dBm  |
|                               | SENSOR<br>Command | P <sub>R_S</sub>   | Modulation depth = 90%,<br>PSEL = open or L<br>※at LSI end                     | 1    | -8.5 | ı    | dBm  |
|                               | READ<br>Command   | P <sub>RS_R</sub>  | Tari = 25µs,<br>PW = 0.4Tari,<br>RTcal = 3Tari,<br>TRcal = 2.6RTcal,           | I    | -20  | ı    | dBm  |
| Semi-passive<br>Sensitivity   | WRITE<br>Command  | P <sub>RS_W</sub>  | DR = 8, Miller4,<br>BLF = 41kbps,<br>DSB-ASK,                                  | ı    | -20  | -    | dBm  |
|                               | SENSOR<br>Command | P <sub>RS_</sub> s | Modulation depth = 90%,<br>PSEL = H,<br>V <sub>DD</sub> = 3.0V<br>**at LSI end | -    | -20  | -    | dBm  |
| Maximum Input Pow             | er Supply         | P <sub>MAX</sub>   | _                                                                              | -    | 5    | _    | dBm  |
| Antenna Input Impedance       |                   | Ср                 | Input power = -10dBm                                                           | _    | 2    | _    | pF   |
|                               |                   | Rp                 | Input frequency = 920MHz<br>Xat LSI end on wafer                               | _    | 1    | _    | kΩ   |
| Tag => RW<br>Link Frequency   |                   | LF                 | _                                                                              | 40   | _    | 640  | kHz  |
| Tag => RW Link Frequency Tole | rance             | FT                 | _                                                                              | 0    | _    | ±22  | %    |

## Capacitive Sensor Characteristics

Ta = 25°C

| Item                                                 |            | Symbol | Condition | Min. | Тур. | Max. | Unit |
|------------------------------------------------------|------------|--------|-----------|------|------|------|------|
|                                                      | Range      | _      | _         | 5    | _    | 25   | pF   |
| Low Range Mode                                       | Resolution | _      | _         | _    | 0.01 | _    | pF   |
|                                                      | Accuracy   | _      | _         | _    | 5    | _    | %    |
|                                                      | Range      | _      | _         | 15   | _    | 100  | pF   |
| High Range Mode                                      | Resolution | _      | _         | 0.02 | _    | 0.20 | pF   |
|                                                      | Accuracy   | _      | _         | _    | 5    | _    | %    |
| Comparison Function: Threshold (Low Range Mode Only) |            | _      | _         | _    | _    | ±1.0 | pF   |

## ● DC Characteristics (MR793200)

| Item                                          | Symbol          | Condition                              | Min.                  | Тур. | Max.                  | Unit |
|-----------------------------------------------|-----------------|----------------------------------------|-----------------------|------|-----------------------|------|
| High Level Input Voltage (CSN, SCK, SI, PSEL) | V <sub>IH</sub> | _                                      | V <sub>DD</sub> × 0.7 | ı    | $V_{DD}$              | V    |
| Low Level Low Voltage<br>(CSN, SCK, SI, PSEL) | VIL             | _                                      | 0                     | -    | V <sub>DD</sub> × 0.2 | V    |
| High Level Output<br>Voltage (SO, IRQN)       | Vон             | IOH = -1mA                             | V <sub>DD</sub> -0.6  | 1    | 1                     | V    |
| Low Level Output<br>Voltage (SO, IRQN)        | VoL             | IOL = 1mA                              | _                     | -    | 0.4                   | V    |
| High Level Leakage<br>(CSN, SCK, SI, SO)      | IIH<br>IOZH     | $V_{IH} = V_{DD}$ or $V_{OH} = V_{DD}$ | _                     | ı    | 1.0                   | μΑ   |
| Low Level Leakage<br>(CSN, SCK, SI, SO)       | IIL<br>IOZL     | $V_{IL} = GND$ or $V_{OL} = GND$       | -1.0                  | 1    | 1                     | μA   |
| Pin Capacitance                               | Cin             | Input pin                              | _                     | 5    |                       | pF   |
| ғіп Сараспапсе                                | Co              | Output pin                             | _                     | 5    | _                     | pF   |

# Current Consumption

Ta = 25°C

| Item                          | Symbol           | Condition                                                     | Min. | Тур. | Max. | Unit |
|-------------------------------|------------------|---------------------------------------------------------------|------|------|------|------|
| Stand-by 1 (V <sub>DD</sub> ) | I <sub>DS1</sub> | $PSEL = L, V_{DD} = 3.0V, RF off$                             | _    | 0.05 | _    | μΑ   |
| Stand-by 2 (V <sub>DD</sub> ) | I <sub>DS2</sub> | PSEL = H, V <sub>DD</sub> = 3.0V, RF off                      | _    | 14   | ı    | μΑ   |
| Operation (V <sub>DD</sub> )  | I <sub>DO</sub>  | PSEL = H, V <sub>DD</sub> = 3.0V, RF off,<br>SPI Slave 5.0MHz | _    | 52   | ı    | μΑ   |

## ● AC Characteristics (SPI Slave Interface, MR793200)

|                      |                  | V         | $I_{DD} = 1.8 \text{ tc}$ | 3.6V, Loa | d capacity = | = 10 pF |
|----------------------|------------------|-----------|---------------------------|-----------|--------------|---------|
| Item                 | Symbol           | Condition | Min.                      | Тур.      | Max.         | Unit    |
| SCK Frequency        | f <sub>SCK</sub> | ı         | 0.39                      | _         | 5.0          | MHz     |
| SCK High Time        | tsckwh           | 1         | 80                        | _         | -            | ns      |
| SCK Low Time         | tsckwl           | _         | 80                        | _         | _            | ns      |
| CSN High Time        | tcs              | _         | 600                       | _         | _            | ns      |
| CSN Setup Time       | t <sub>CSS</sub> | _         | 200                       | _         | _            | ns      |
| CSN Setup Time       | tсsн             |           | 200                       | _         | _            | ns      |
| SI Setup Time        | tois             |           | 50                        | -         | -            | ns      |
| SI Hold Time         | t <sub>DIH</sub> |           | 50                        | _         | _            | ns      |
| SO Output Delay Time | t <sub>PD1</sub> | _         | _                         | _         | 60           | ns      |
| SO Output Hold Time  | tон              | _         | 0                         | _         | _            | ns      |

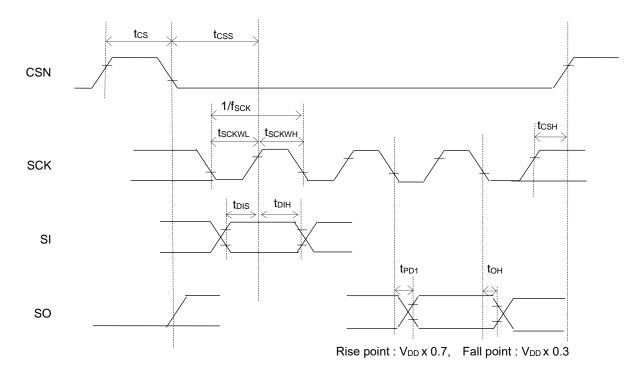



Figure 4 Input / Output and Setup / Hold timing

## • External Power Supply Control: When Power-on (SPI Slave Interface, MR793200)

| Item                              | Symbol           | Condition       | Min. | Тур. | Max. | Unit |
|-----------------------------------|------------------|-----------------|------|------|------|------|
| V <sub>DD</sub> Power Rise time ※ | T <sub>VS</sub>  | $V_{DD} = 1.8V$ | 0.05 | ı    | 200  | ms   |
| V <sub>DD</sub> -PSEL Setup Time  | T <sub>PVS</sub> | _               | 0    | ı    | ı    | ns   |
| V <sub>DD</sub> -PSEL Hold Time   | T <sub>PVH</sub> | _               | 0    | -    | -    | ns   |
| PSEL-CSN Setup Time               | Twlg             | _               | 2    | ı    | ı    | ms   |

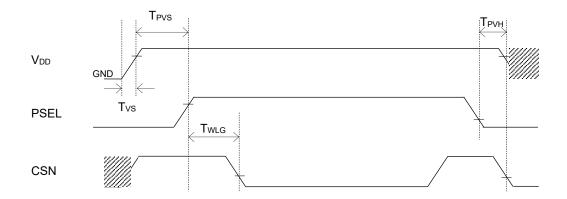



Figure 5 Power-on Sequence

&Set  $V_{DD}$  to 1.8V or higher starting from GND ( = 0V) level. For other provisions, refer to the user's manual.

#### **MEMOERY MAP**

In compliance with the EPC standard, MR7930/MR793200's Memory consists of four banks: Reserved, EPC, TID, and USER. The USER bank consists of a non-volatile memory "NVM" and a volatile memory "RAM". It is possible to control the capacitive sensor functions by accessing "Capacitor monitor1" and "Capacitor monitor2" with *READ* or *WRITE* command.

Also, MR793200 has the SPI slave interface. It is possible to communicate between the host MCU and RW. However, RF (EPC) and SPI have different addresses, so be careful.

The address of RF communication from RW assigns by the EPC column of Table 3.

The address of SPI communication from the host MCU assigns by the SPI column of Table 3.

In addition, MR793200 has a status register for access from the host MCU. For details, refer to the user's manual.

Table 3 Memory Map

|    |          |            |                |        | I     | able 3 Mem                             | ory iv        | тар                   |                        |          |      |     |
|----|----------|------------|----------------|--------|-------|----------------------------------------|---------------|-----------------------|------------------------|----------|------|-----|
|    | EPC      |            | SPI            | Access | Size  | Description                            |               | Description           |                        |          | Init | ial |
| N  | 1emBank  | Addr       | Addr *1        | *2     | (bit) |                                        | 2000 гр. пост |                       | Восоприон              |          |      |     |
|    |          | h00        | h4_00          | R/W    | 32    | Kill Password [31:16]                  |               | Kill Password [31:16] |                        |          |      |     |
| 00 | Reserved | h01        | h4_02          | R/W    | 32    | ŀ                                      | Kill Pa       | assword [15:0]        | h0000                  |          |      |     |
| 00 | Reserved | h02        | h4_04          | R/W    | 32    | Access Password [31:16]                |               | h00                   | 00                     |          |      |     |
|    |          | h03        | h4_06          | R/W    | 32    | Access Password [15:0]                 |               | h00                   | 00                     |          |      |     |
|    |          | h00        | h0_0E          | R      | 16    |                                        | Store         | edCRC [15:0]          | _                      |          |      |     |
|    |          | h01        | h4_08          | R/W    | 16    |                                        | Stor          | redPC [15:0]          | h340                   | 0 *3     |      |     |
|    |          | h02        | h4_0A          | R/W    |       |                                        |               |                       |                        |          |      |     |
| 04 | EDC.     | h03        | h4_0C          | R/W    |       |                                        |               |                       |                        |          |      |     |
| 01 | EPC      | h04        | h4_0E          | R/W    | 00    | EPC *4                                 |               |                       |                        |          |      |     |
|    |          | h05        | h4_10          | R/W    | 96    |                                        |               | EPC                   |                        | ŀ        |      |     |
|    |          | h06        | h4_12          | R/W    |       |                                        |               |                       |                        |          |      |     |
|    |          | h07        | h4_14          | R/W    |       |                                        |               |                       |                        |          |      |     |
|    |          | h00        | h4_16          | R      |       | Class ID [7:0] Mask designer ID [11:4] |               | hE2                   | 83                     |          |      |     |
|    | h01      |            |                |        |       | Mask                                   |               |                       | MR7930                 | h3805    |      |     |
|    |          |            | h4_18          | R      |       | designer<br>ID [3:0]                   | Ν             | Nodel Number [11:0]   | MR793200               | h3806    |      |     |
| 10 | TID      | h02        | h4_1A          | R      | 96    | XTID [15:0]                            |               | h20                   |                        |          |      |     |
|    |          | h03        | h4_1C          | R      |       |                                        |               | D [47:32]             |                        |          |      |     |
|    |          | h04        | h4_1E          | R      |       |                                        |               | D [31:16]             | *5                     | 5        |      |     |
|    |          | h05        | h4_20          | R      |       |                                        |               | ID [15:0]             |                        |          |      |     |
|    |          | h00        | h4_22          |        |       |                                        |               |                       |                        |          |      |     |
|    | USER     | :          | :              | R/W    | 144   |                                        | US            | ER memory             | h00                    | 00       |      |     |
|    | (NVM)    | h08        | h4_32          |        |       |                                        |               |                       |                        |          |      |     |
|    |          | h09<br>h0A | h4_34<br>h4_36 | R/W    | 32    | Sensor mode setting                    |               | h0000_                | _0000                  |          |      |     |
| 11 |          | h3C        | h6_22          | R/W    | 16    | RAM0 FLAG                              |               | h00                   | 00                     |          |      |     |
|    |          | h42        | h6_2E          | R/W    | 16    | RAM1 FLAG                              |               | h00                   | 00                     |          |      |     |
|    | USER     | h43        | h6_30          | R/W    | 16    |                                        | Сара          | citor monitor1        | h42 . h40              | S. 60000 |      |     |
|    | (RAM)    | h44        | h6_32          |        |       |                                        |               |                       | h43 ~ h46<br>h47 ~ h78 |          |      |     |
|    |          | :          | :              | R      | -     | Capacitor monitor2                     |               | h79 ~ h7E             |                        |          |      |     |
|    |          | h7B        | h6_A0          |        |       |                                        |               |                       |                        |          |      |     |

- \*1: In the case of read access from SPI to an undefined address, read value is not fixed.
- \*2: R (Read only), R/W (Read/Write) .
- \*3: The initial value of StoredPC [15:0] is "b0011\_0100\_0000\_0000".
  - UMI (StoredPC [10]) is fixed to "1". XI (StoredPC [9]) is fixed to "0".
- \*4: At shipping test, a value as same as TID data is written in EPC data area.
- \*5: ID [47:0] is Serial Number.

#### **FUNCTION DESCRIPTIONS**

MR7930/MR793200 is equipped with sensor function to measure electrostatic capacitance. Also, MR793200 has the SPI slave interface. It is possible to communicate between host MCU and RW. In this session, there are "Supported Command for RF communication", "Capacitive Sensor Functions (Measurement and Comparison)", "SPI Slave Interface", and "Arbitration Function".

#### Supported Commands for RF communication

MR7930/MR793200 supports all mandatory EPC standard commands and some of optional commands as shown in Table 4. It is possible to control sensor function by the mandatory command (*READ*, *WRITE*) from RW.

| Table 4 Command List |            |               |  |  |  |  |  |
|----------------------|------------|---------------|--|--|--|--|--|
| Classification       | Command    | Code (binary) |  |  |  |  |  |
|                      | QUERYREP   | b00           |  |  |  |  |  |
|                      | ACK        | b01           |  |  |  |  |  |
|                      | QUERY      | b1000         |  |  |  |  |  |
|                      | QUERYAJUST | b1001         |  |  |  |  |  |
|                      | SELECT     | b1010         |  |  |  |  |  |
| Mandatory            | NAK        | b1100_0000    |  |  |  |  |  |
|                      | REQ_RN     | b1100_0001    |  |  |  |  |  |
|                      | READ       | b1100_0010    |  |  |  |  |  |
|                      | WRITE      | b1100_0011    |  |  |  |  |  |
|                      | KILL       | b1100_0100    |  |  |  |  |  |
|                      | LOCK       | b1100_0101    |  |  |  |  |  |
| Ontional             | ACCESS     | b1100_0110    |  |  |  |  |  |
| Optional             | BLOCKWRITE | b1100 0111    |  |  |  |  |  |

Table 4 Command List

#### Capacitive Mesurement Function

MR7930/MR793200 can measure the electrostatic capacitance of the object connected to CMP pin and CMN pin. Capacitive measurement function has two modes. There are "Low Range" and "High Range" as shown in Table 5. It is possible to switch two modes by setting "Sensor mode setting" in the USER bank.

| Mode       | Resolution  | Upper limit | Measurement time (RF communication) | Comparison function |
|------------|-------------|-------------|-------------------------------------|---------------------|
| Low Range  | 10 fF       | 25 pF       | 90 ms                               | support             |
| High Range | 20 ~ 200 fF | 100 pF      | (BLF = 41kbps)                      | no support          |

Table 5 Capacitive Measurement Mode

Also, it is possible to control the Capacitive Measurement function by accessing "Capacitor monitor2" with *READ* command. The result of Capacitive Measurement is a 12bits binary data. The calculation formula is different for the two modes.

Measurement time is the reference value between *READ* command and sensor data response. (BLF = 41 kbps; Miller4) For details, refer to the user's manual.

#### Capacitive Comparison Function

MR7930/MR793200 can compare the current capacitance value with the reference value. And it can detect increases and decreases. This function is Low range mode only.

The reference value and Threshold value (increase or decrease) are stored in "Sensor mode setting".

Also, it is possible to control the Capacitive Comparison function by accessing "Capacitor monitor2" with *READ* command.

The result of Capacitive Comparison function is an 1bit binary data. For details, refer to the user's manual.

#### SPI Slave Interface

When PSEL is "H" (Semi-passive mode), MR793200 can use SPI Slave Interface to communicate with the host MCU. As shown in Figure 6, connect the SPI pin (SCK, CSN, SO, SI, IRQN, PSEL) of MR793200 to the host MCU pin (Host IF). It is possible to communicate between host MCU and RW by using USER bank (USER memory, RAM0 FLAG, RAM1 FLAG).

Also, the host MCU can read and write status register of MR793200. For details, refer to the user's manual.

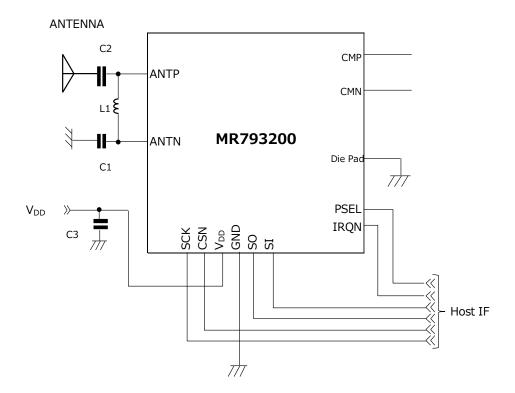



Figure 6 Connection Example with the Host MCU Interface

#### Communication Function Usage Conditions

As shown in Table 6, each setting (PSEL, VDD, MCU connection) determines which communication functions are available. For details on the sequence of each communication functions and interrupt factors, refer to the user's manual.

Table 6 Communication Function Usage Conditions

| Usage conditions |                         |           |                 |                                      |         | Communication function |           |                 |
|------------------|-------------------------|-----------|-----------------|--------------------------------------|---------|------------------------|-----------|-----------------|
| Mode             | PSEL                    | $V_{DD}$  | MCU connection  | Status                               |         | SPI                    | Interrupt | Product<br>name |
|                  | Open                    | None      | None No battery |                                      | Enabled | Disabled               | Disabled  | MR7930          |
| passive          | Open<br>or<br>"L" level | None      | None            | No battery<br>or<br>Low battery etc. | Enabled | Disabled               | Disabled  |                 |
|                  | "L" level               | Supported | Supported       | Waiting for<br>an interrupt          | Enabled | Disabled               | Enabled   | MR793200        |
| Semi-<br>passive | "H" level               | Supported | Supported       | SPI communication available          | Enabled | Enabled                | Enabled   |                 |

#### Arbitration Function

MR793200 has Arbitration function. It is possible to avoid the collision of access from RW and the host MCU. As shown in Table 7, SPI\_EXCL setting constrains MR793200 Memory Bank's access. SPI\_EXCL is a register bit in SPI\_STAT (SPI Status Register), and initial value is "0". Also, MR793200's Registers can be set only from the host MCU.

In passive mode, MR7930/MR793200 responds only to RF communication from RW. SPI EXCL is "0".

In semi-passive mode, MR793200 responds to RF communication from RW and SPI communication from the host MCU. When SPI\_EXCL is set to "0", it is possible to access memory except for writing to NVM area form the host MCU. If RW and the host MCU access MR793200 at the same time, RF communication will be executed first. When SPI\_EXCL is set to "1", it is possible to access memory by only SPI communication from the host MCU. Therefore, MR793200 does not accept access from RW. For details, refer to the user's manual.

Table 7 Arbitration Function

|                        |             | Command   | SDI EVCI            | Memory access |              |              |         |         |  |
|------------------------|-------------|-----------|---------------------|---------------|--------------|--------------|---------|---------|--|
| Mode                   | $V_{DD}$    | input     | SPI_EXCL (register) | NVM area      |              | RAM area     |         |         |  |
|                        |             | iliput    | (register)          | Read          | Write        | Read         | Write   |         |  |
| Passive                | None        | RW (EPC)  | 0                   | Enabled       | Enabled      | Enabled      | Enabled |         |  |
| Semi-passive Supported | RW (EPC)    | 0         | Enabled             | Enabled       | Enabled      | Enabled      |         |         |  |
|                        | TAVV (ET C) | 1         | Non-response        | Non-response  | Non-response | Non-response |         |         |  |
|                        | Supported   |           | MCIT(SDI)           | 0             | Enabled      | Disabled     | Enabled | Enabled |  |
|                        |             | MCU (SPI) | 1                   | Enabled       | Enabled      | Enabled      | Enabled |         |  |

#### PAKAGE DIMENSIONS

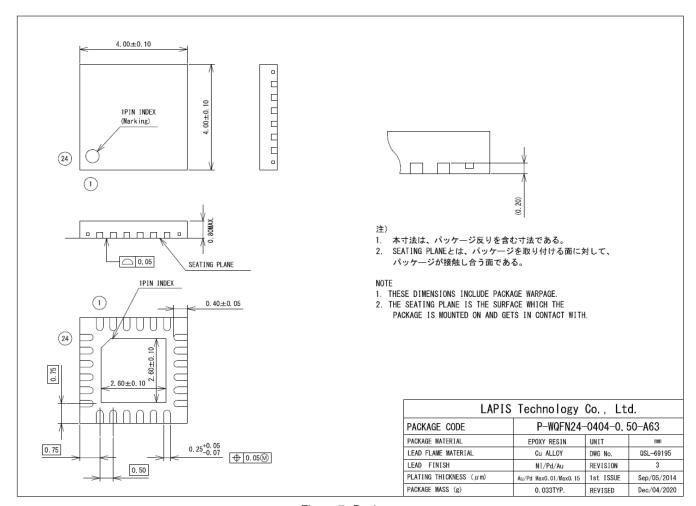



Figure 7 Package

## ABBREVIATED TERMS

| Item                      | Comment                                 |  |  |  |  |  |  |
|---------------------------|-----------------------------------------|--|--|--|--|--|--|
| BLF                       | Backscatter-Link Frequency              |  |  |  |  |  |  |
| DR                        | Divide Ratio                            |  |  |  |  |  |  |
| DSB-ASK                   | Double Side Band Amplitude Shift Keying |  |  |  |  |  |  |
| EPC                       | Electronic Product Code                 |  |  |  |  |  |  |
| EPC standard,<br>EPC Gen2 | EPCglobal Class1 Generation2(Ver.2.0.1) |  |  |  |  |  |  |
| loT                       | nternet of Things                       |  |  |  |  |  |  |
| MCU                       | Micro Controller Unit                   |  |  |  |  |  |  |
| N.C.                      | Non-Connect                             |  |  |  |  |  |  |
| NVM                       | Non-Volatile Memory                     |  |  |  |  |  |  |
| PR-ASK                    | Phase Reversal Amplitude Shift Keying   |  |  |  |  |  |  |
| RAM                       | Random Access Memory                    |  |  |  |  |  |  |
| RFID                      | Radio Frequency IDentification          |  |  |  |  |  |  |
| RW                        | Reader-Writer (interrogator)            |  |  |  |  |  |  |
| SPI                       | Serial Peripheral Interface             |  |  |  |  |  |  |
| SSB-ASK                   | Single Side Band Amplitude Shift Keying |  |  |  |  |  |  |
| Tari                      | Type A Reference Interval               |  |  |  |  |  |  |
| TID                       | Tag ID                                  |  |  |  |  |  |  |
| UHF                       | Ultra High Frequency                    |  |  |  |  |  |  |

# **REVISION HISTORY**

| Decument No. | Date          | Page |                     | Description                                |             |
|--------------|---------------|------|---------------------|--------------------------------------------|-------------|
| Document No. | Document No.  | Date | Previous<br>Edition | Current<br>Edition                         | Description |
| FEDM7930-01  | Jan. 16, 2023 | _    | _                   | 1st Edition                                |             |
| FEDM7930-02  | Jan. 12, 2024 | P.2  | P.2                 | Product name update     Added applications |             |
|              |               | P.18 | P.18                | •Updated Notes                             |             |

#### Notes

- 1) When using LAPIS Technology Products, refer to the latest product information and ensure that usage conditions (absolute maximum ratings\*1, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.
  - \*1: Absolute maximum ratings: a limit value that must not be exceeded even momentarily.
- 2) The Products specified in this document are not designed to be radiation tolerant.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore, LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) LAPIS Technology intends our Products to be used in a way indicated in this document. Please be sure to contact a ROHM sales office if you consider the use of our Products in different way from original use indicated in this document. For use of our Products in medical systems, please be sure to contact a LAPIS Technology representative and must obtain written agreement. Do not use our Products in applications which may directly cause injuries to human life, and which require extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us without our prior written consent.
- 6) All information contained in this document is subject to change for the purpose of improvement, etc. without any prior notice. Before purchasing or using LAPIS Technology Products, please confirm the latest information with a ROHM sales office. LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document, however, LAPIS Technology shall have no responsibility for any damages, expenses or losses arising from inaccuracy or errors of such information.
- 7) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 8) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 9) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 10) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2023 - 2024 LAPIS Technology Co., Ltd.

# LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan https://www.lapis-tech.com/en/