MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

The RF Line Microwave Power Transistor

... designed primarily for wideband, large-signal output and driver amplifier stages in the 1.4 to 1.7 GHz frequency range.

- Designed for Class C, Common Base Power Amplifiers
- Specified 28 Volt, 1.7 GHz Characteristics:
 Output Power 2.0 to 25 Watts
 Power Gain 7.0 to 8.0 dB Min
 Collector Efficiency 40 to 45% Min
- · Built-In Matching Network for Broadband Operation
- · Gold Metallization for Improved Reliability
- · Diffused Ballast Resistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	VCES	50	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Continuous	lc	1.0	Adc
Operating Junction Temperature	TJ	200	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MRA1417-6

7.0 to 8.0 dB 1.4 to 1.7 GHz 2.0 TO 25 WATTS BROADBAND MICROWAVE POWER TRANSISTOR

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, RF, Junction to Case	R ₀ JC	8.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 40 mA, V _{BE} = 0)	V(BR)CES	50	_	_	Vdc
Emitter-Base Breakdown Voltage (IE = 0.5 mA , IC = 0)	V _{(BR)EBO}	3.5		_	Vdc
Collector Cutoff Current (VCB = 28 V, IE = 0)	ІСВО		_	1.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 0.2 A, V _{CE} = 5.0 V)	hFE	10		100	
DYNAMIC CHARACTERISTICS					
Output Capacitance (VCB = 28 V, I _E = 0, f = 1.0 MHz)	C _{ob}	_	_	8.0	pF
FUNCTIONAL TESTS					
Common-Base Amplifier Power Gain (V _{CE} = 28 V, P _{out} = 6.0 W, f = 1.4 & 1.7 GHz)	G _{PB}	7.4	_	_	dB
Collector Efficiency (V _{CE} = 28 V, P _{out} = 6.0 W, f = 1.4 & 1.7 GHz)	ης	40		_	%

TYPICAL CHARACTERISTICS MRA1417-6 — 6.0 WATTS BROADBAND

58 Pin = 0.9 W 50 1.4 1.45 1.5 1.55 1.6 1.65 1.7 f, FREQUENCY (GHz)

Figure 1. Power Output versus Frequency

Figure 2. Efficiency versus Frequency

Figure 3. Series Equivalent Input/Output Impedance $V_{CC} = 28 \text{ V}$

The graph shown below displays MTTF in hours x ampere2 emitter current for each of the devices. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ to the theoretical prediction for metal failure. Sample MTTF calculations based on operating conditions are included below.

Figure 4. MTTF Factor (Normalized to 1.0 Ampere² Continuous Duty)

Board material: 18 mil dielectric thickness teflon fiberglass. *Ground through to backside ground plane.

- (1) Bypass 100 pF chip capacitor.
- (2) V_{CC} bypassed by 0.1 μF chip and 5.0 μF electrolytic.

Figure 5. Test Circuit Boards (Not to Scale)