16-bit 多输入内置基准模数转换器

产品简述

MS1112 是一款高精度 16bit 模数转换器,具有 2 组差分输入 或 3 组单端输入通道,高达 16bits 的分辨率。内部集成 2.048V 基准源,差分输入范围达到±2.048V。MS1112 使用了 I²C 兼容接口,并有 2 个地址管脚,可以让用户选择 8 个 I²C 从地址。电源电压范围为 2.7V 到 5.5V。

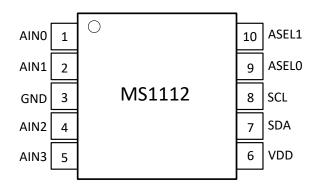
MS1112 转换速率为 15、30、60 或 240SPS,集成可编程增益放大器,其增益最高可到 8 倍。在单次转换模式中,MS1112 在转换结束后会自动进入省电状态,减小功耗。

MS1112 可用在高精度测量以及对空间、功耗有一定要求的应用场合中,如:手持仪器、工业控制和智能变送器。

MSOP10

主要特点

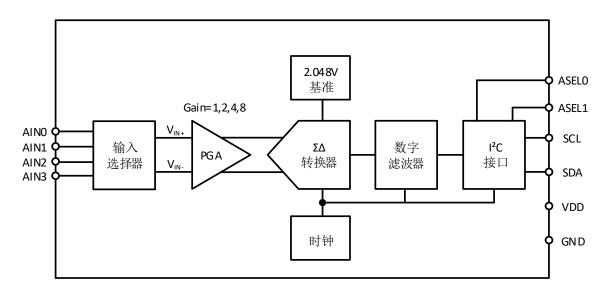
- 小尺寸封装
- 2 对差分输入,3 组单端输入通道
- I²C接口,8个可编程地址
- 片上基准: 2.048V±0.5%
- 温度漂移: 10ppm/°C
- 内置 PGA: 1 到 8 倍
- 内置振荡器
- 16 位无失码精度
- INL (积分非线性误差): 0.01%
- 单次转换功能
- 可编程输出速率: 15SPS 到 240SPS
- 工作电压范围: 2.7V 到 5.5V
- 低功耗: 290µA@5V


产品规格分类

产品	封装形式	丝印名称
MS1112	MSOP10	MS1112

应用

- 手持仪器
- 工业级控制
- 智能变送器
- 工业自动化
- 温度测量


管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	AIN0	I	差分输入通道1正输入端/单端输入通道1
2	AIN1	I	差分输入通道 1 负输入端/单端输入通道 2
3	GND	-	地
4	AIN2	l	差分输入通道 2 正输入端/单端输入通道 3
5	AIN3	l	差分输入通道 2 负输入端/单端输入公共端
6	VDD	-	电源
7	SDA	1/0	串行数据
8	SCL	I	串行时钟
9	ASEL0	I_	I ² C 从地址选择 1
10	ASEL1	l	I ² C 从地址选择 2

内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
供电电压	VDD	-0.3 ~ 6	V
输入电流	l _{IN}	100mA,瞬间电流 10mA,持续电流	mA
模拟输入(ASELO、ASEL1 到 GND)	V _{IN}	-0.3 ~ VDD+0.3	V
SDA、SCL 电压到地	V	-0.5 ~ 6	V
最大结温	T _{JMAX}	150	°C
存储温度	T _{STG}	-60 ∼ 1 50	°C
焊接温度(10s)	Т	260	°C

推荐工作条件

参数	符号	测试条件	最小值	典型值	最大值	单位
		VDD=2.7V到3.6V	-40		125	°C
工作温度	T _A	VDD=3.6V到5.5V	-30		125	°C

电气参数

若无特别说明,测试条件: VDD=5V。

参数	测试 条件	最小值	典型值	最大值	单位
	模拟输入	λ			
满幅输入电压范围	(V _{IN+})-(V _{IN-})		±2.048/PGA		V
模拟输入电压	V _{IN+} 到 GND, V _{IN-} 到 GND	GND-0.2		VDD+0.2	V
差分输入阻抗			2.8/PGA		МΩ
	PGA=1		3.5		МΩ
北拱於) 四长	PGA=2		3.5		ΜΩ
共模输入阻抗	PGA=4		1.8		ΜΩ
	PGA=8		0.9		ΜΩ
	系统参数	女			
	DR=00	12		12	Bits
八城家上工业和牲弃	DR=01	14		14	Bits
分辨率与无失码精度	DR=10	15		15	Bits
	DR=11	16		16	Bits
	DR=00	180	240	308	SPS
松山油玄	DR=01	45	60	77	SPS
输出速率	DR=10	22	30	39	SPS
	DR=11	11	15	20	SPS
积分非线性误差	DR=11,PGA=1,结束点 ¹		±0.004	±0.010	% of FSR ²
	PGA=1		8	15	mV
失调误差	PGA=2		8	15	mV
大 则	PGA=4		8	15	mV
	PGA=8		8	15	mV
	PGA=1		1.2		μV/°C
片 :国油油	PGA=2		0.6		μV/°C
失调温漂	PGA=4		0.3		μV/°C
	PGA=8		0.3		μV/°C
	PGA=1		800		μV/V
失调 VS. VDD	PGA=2		400		μV/V
八 炯 V3. VUU	PGA=4		200		μV/V
	PGA=8		150		μV/V

参数	测试 条件	最小值	典型值	最大值	单位			
系统参数								
增益误差			0.05	0.4	%			
PGA 增益匹配误差 3	任意两个增益匹配		0.02	0.1	%			
增益误差温漂			10		ppm/°C			
增益 VS. VDD			80		ppm/V			
II. let let de de la la	直流输入,PGA=8	95	105		dB			
共模抑制比	直流输入,PGA=1		100		dB			
	数字输入/输出							
输入高电平电压		0.7×VDD		VDD+0.5	V			
输入低电平电压		GND-0.5		0.3×VDD	V			
输出低电平电压	I _{OL} =3mA	GND		0.4	V			
输入高电平峰值电流				10	μΑ			
输入低电平峰值电流		-10			μΑ			
	电源参数							
工作电压	VDD	2.7		5.5	V			
J. M. J. V.	关断状态		0.05	2	μΑ			
电源电流	工作状态		290	350	μΑ			
	VDD=5.0V		1.45	1.75	mW			
功耗	VDD=3.0V		0.87		mW			

注:

- 1. 满幅度的 99%。
- 2. FSR=满幅度量程=2×2.048/PGA=4.096/PGA。
- 3. 包括 PGA 和基准的所有误差。

功能描述

MS1112 是一个 16 位、差分、Σ-Δ 型模数转换器,其设计简单、极易配置的特点使得用户很容易获得精确的测量值。

MS1112 由一个带有可调增益的 Σ-Δ 模数转换器、一个 2.048V 的电压基准、一个时钟振荡器、一个数字滤波器和一个 I2C 接口组成,后面将对各组成部分进行详细说明。

模数转换器

MS1112 的模数转换器核由一个差分开关电容 Σ-Δ 调制器和一个数字滤波器组成。调制器测量正、负模拟输入端的压差,并将其与基准电压相比较,在 MS1112 中基准电压为 2.048V。数字滤波器从调制器接收高速码流,并输出与输入电压成比例的数字信号。

输入选择器

MS1112 有一个多输入选择器,可以提供 2 组差分输入或 3 组单端输入通道。配置寄存器控制输入选择器的设置。

电压基准

MS1112 内置一个 2.048V 的片内电压基准, 无需外部基准。

输出码计算

MS1112 输出码的位数取决于更新速率,如表 1 所示。

表 1. 最小和最大码

更新速率	位数	最小码	最大码
15SPS	16	-32768	32767
30SPS	15	-16384	16383
60SPS	14	-8192	8191
240SPS	12	-2048	2047

MS1112 输出码的格式为二进制补码,右对齐且经过符号扩展。对不同输入电平的输出码见表 2。

表 2. 针对不同输入信号的输出码

五处生态	差分输入信号						
更新速率	-2.048V ¹	-1LSB	0 (理想)	+1LSB	+2.048V		
15SPS	8000 _H	FFFFH	0000 _H	0001 _H	7FFF _H		
30SPS	C000 _H	FFFFH	0000 _H	0001 _H	3FFF _H		
60SPS	E000 _H	FFFFH	0000 _H	0001 _H	1FFF _H		
240SPS	F800 _H	FFFFH	0000 _H	0001 _H	07FF _H		

注 1: 为差分输入,不要使 MS1112 的绝对输入电压低于-200mV。

输出码可由以下表达式计算出:

MS1112 最大码是 2ⁿ⁻¹-1, 而最小码是-1×2ⁿ⁻¹。

时钟振荡器

MS1112 内置时钟振荡器,该振荡器驱动调制器和数字滤波器。无需外部时钟。

输入阻抗

MS1112 输入级采用开关电容。等效电阻值取决于电容值和电容的开关频率。电容值取决于可编程增益放大器 (PGA)的设置,时钟由片内时钟振荡器产生。典型工作频率为 275kHz。

共模和差分输入阻抗不同,详情请见"电气参数"。

当外接高输出阻抗输入源,输入端需要外接 buffer。

混叠

当输入信号频率超过更新速率的一半,会产生混叠。为防止混叠的产生,必须限制输入信号的带宽。MS1112 的数字滤波器可在一定程度上衰减高频率的噪声,但其 sinc 滤波器不能完全替代抗混叠滤波器。对于少数应用,还是需要外部滤波。

在设计输入滤波器时, 应考虑到滤波器和 MS1112 输入之间的阻抗匹配。

工作模式

MS1112 有两种转换模式:连续转换和单次转换。

在连续转换模式中,每次转换完成,MS1112 都将结果存入结果寄存器,并立即开始下一次转换。

在单次转换模式中,MS1112 会等待配置寄存器中的 ST/DRDY位被置为 1。ST/DRDY位被置为 1 后,MS1112 开始转换。转换完成后,MS1112 将结果存入结果寄存器中,并复位 ST/DRDY位为 0,进入省电模式。

从连续转换模式切换到单次转换模式时,MS1112 将完成当前转换,并复位 ST/DRDY位为 0,进入省电模式。

复位和上电

在上电时,自动执行一次复位,配置寄存器中的所有位设置为默认值。

MS1112 会对 I^2C 的总呼叫复位命令做出响应,当 MS1112 接收到总呼叫复位命令时,立即执行一次复位。

I²C 接口

MS1112 通过 I²C 接口通信。图 1 为 I²C 时序图,表 3 列出了相关参数。

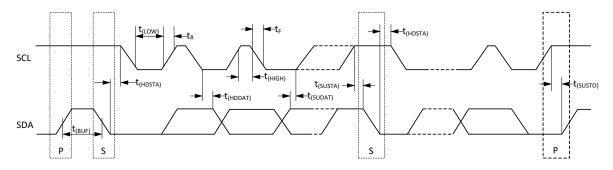


图 1. I2C 时序图

表 3. 时序图的相关定义

参数	符号	快速	模式	高速模式		34 ().
多奴	10 3	最小	最大	最小	最大	单位
SCLK 工作频率	^t (SCLK)		0.4		3.4	MHz
总线 START 到 STOP 的空闲时间	^t (BUF)	600		160		ns
START 信号保持时间	^t (HDSTA)	600		160		ns
重复 START 信号建立时间	^t (SUSTA)	600		160		ns
STOP 信号建立时间	^t (SUSTO)	600		160		ns
数据保持时间	^t (HDDAT)	0		0		ns
数据建立时间	^t (SUDAT)	100		10		ns
SCLK 时钟低电平周期	^t (LOW)	1300		160		ns
SCLK 时钟高电平周期	^t (HIGH)	600		60		ns
时钟/数据下降时间	t _F		300		160	ns
时钟/数据上升时间	t _R		300		160	ns

串行总线地址

对 MS1112 进行读写,主机必须通过地址位对从机寻址。从机地址位包括 7 个地址位、1 个操作位。

MS1112 有两个地址管脚,ASELO 和 ASEL1,可以设置 I^2C 的地址。这个管脚可以设置为逻辑低、逻辑高或悬空。通过两个管脚可以设置 8 个地址,如表 4 所示。在上电复位或 I^2C 总呼叫命令之后,器件将对 ASELO 和 ASEL1 管脚状态进行采样。

农····································						
ASEL0	ASEL1	7 位从机地址位				
0	0	1001000				
0	悬空	1001001				
0	1	1001010				
1	0	1001100				
1	悬空	1001101				
1	1	1001110				
悬空	0	1001011				
悬空	1	1001111				
悬空	悬空	无效				

表 4. 地址管脚与从机地址关系

I2C 总呼叫

如果地址位 8 位都为 0 时,MS1112 响应总呼叫。器件应答总呼叫并响应第二个字节的命令。如果该命令为 04h,MS1112 将只锁存地址管脚 ASEL0 和 ASEL1 的状态,并不复位配置寄存器。如果命令为 06h,MS1112 将锁存地址管脚的状态,并复位配置寄存器。

I2C 数据速率

I²C 总线有三种速度方式:标准方式,允许最高 100kHz 的时钟频率。快速方式,允许最高 400kHz 的时钟频率。高速方式,允许最高 3.4MHz 的时钟频率。

关于高速方式的更多信息,参考 I2C 规格说明。

结果寄存器

16 位的结果寄存器存储转换结果,采用二进制补码格式。在复位或上电之后,结果寄存器清 **0**,直到第一次转换完成。结果寄存器的格式如表 **5** 所示。

15 14 12 10 9 8 7 5 4 0 Bit 13 11 6 3 2 1 D15 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 Name D14 D2 D1 D0

表 5. 结果寄存器

配置寄存器

8 位配置寄存器控制 MS1112 的工作模式、更新速率和可编程增益放大器(PGA)。配置寄存器的格式如表 6 所示, 默认设置是 8C_H。

表 6. 配置寄存器

Bit	7	6	5	4	3	2	1	0
Name	ST/DRDY	INP1	INP0	SC	DR1	DR0	PGA1	PGA0
Default	1	0	0	0	1	1	0	0

位 7: ST/DRDY

ST/DRDY位的含意取决于它是写入还是读出。

在单次转换模式中,写 1 到 ST/DRDY位则表示转换的开始,写入 0 则无影响,在连续转换模式中,MS1112 忽略写入 ST/DRDY的值。

在连续转换模式中,ST/DRDY位确定新转换数据是否就绪。如果 ST/DRDY为 1,则表示结果寄存器中的数据已经被读取;如果 ST/DRDY为 0,则表示结果寄存器中的数据是未被读取的新数据。

在单次转换模式中,ST/DRDY位确定转换是否完成。如果 ST/DRDY为 1,则表示结果寄存器的数据为旧数据,而且转换正在进行。如果 ST/DRDY为 0,则表示结果寄存器的数据是新转换的结果。

MS1112 先输出结果寄存器的值,再输出配置寄存器值。ST/ DRDY位的状态适用于刚从结果寄存器中读取的数据,而不是下一次读操作读取的数据。

位 6-5: INP

输入信号选择位。如表 7 所示,通过控制这两位,MS1112 可以用来选择 2 个差分通道或 3 个以 AIN3 为参考的单端输入通道。

INP1	INPO	VIN+	VIN-
01	01	AINO	AIN1
0	1	AIN2	AIN3
1	0	AIN0	AIN3
1	1	AIN1	AIN3

表 7. INP 位

注1:默认设置。

位 4: SC

转换模式选择位。当 SC 为 1 时,选择单次转换模式;当 SC 为 0 时,选择连续转换模式。默认为 0。

位 3-2: DR

更新速率选择位,如表8所示。

表 8. DR 位

DR1	DR0	更新速率	精度
0	0	240SPS	12 位
0	1	60SPS	14 位
1	0	30SPS	15 位
1 ¹	1 ¹	15SPS	16 位

注1: 默认设置。

位 1-0: PGA

增益设置选择位,如表9所示。

# :	\sim	PGA	1
オマ	9.	PGA	11/

PGA1	PGA0	增益
01	01	1
0	1	2
1	0	4
1	1	8

注1: 默认设置。

读操作

读取结果寄存器和配置寄存器的值。先对 MS1112 寻址,再从中读出 3 个字节。前 2 个字节是结果寄存器的值,第 3 个字节是配置寄存器的值。

可不读出配置寄存器,在读操作中允许读出的字节个数少于 3 个。如果读取多于 3 个字节,那么从第 4 个字节开始将为 FF_H。

MS1112 的典型读操作的时序见图 2。

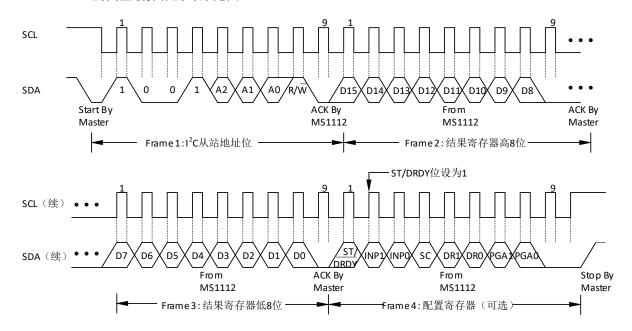


图 2. MS1112 的读操作时序图

写操作

对配置寄存器进行写操作。先对 MS1112 寻址,再写入一个字节,这个字节将被写入配置寄存器中。

写入多个字节无效,将忽略第一个字节之后的任何字节。MS1112 写操作的典型时序见图 3。

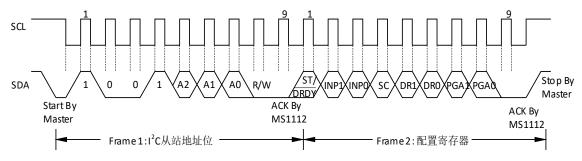


图 3. MS1112 的写操作时序

典型应用图

基本连接方法

对于多数应用而言, MS1112 的典型基本连接图如图 4 所示。

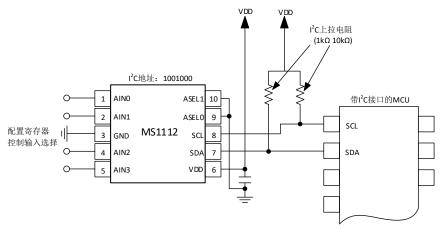


图 4. MS1112 的典型基本连接方法

连接多个器件

一条 I^2C 总线可连接多个 MS1112。使用 ASEL1 和 ASEL0 脚,MS1112 可以设置为 8 种不同 I^2C 地址。如图 5 所示,三个 MS1112 连接到同一条总线。一条 I^2C 总线上最多可以连接 8 个 MS1112(使用不同状态的 ASEL1 和 ASEL0 脚进行控制)。

注意, I2C 总线仅需一组上拉电阻。

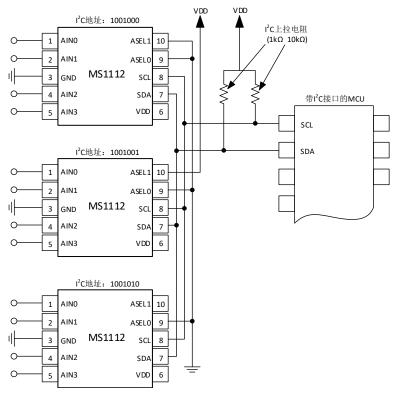


图 5. 连接多个 MS1112

低端电流监控器

图 6 是低端电流监控器的电路图。该电路通过一个检流电阻来读取电压。此电阻上的电压可用低漂移的运放 MS8552 放大,放大结果由 MS1112 读取。

建议 MS1112 工作在 8 倍增益下,可以降低 MS8552 的增益。对于 8 倍增益而言,运放应提供最高不高于 0.256V 的输出电压,所以在满刻度电流时,检流电阻提供最大 64mV 的电压降。

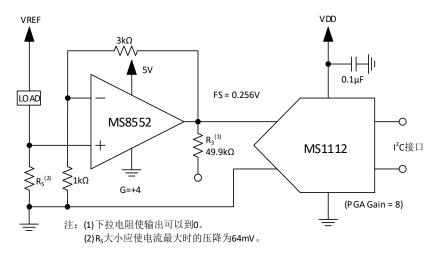
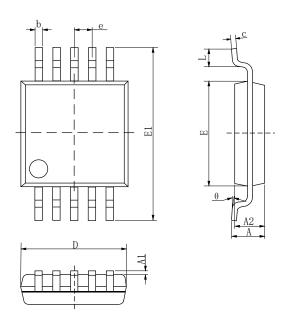



图 6. 低端电流测量

封装外形图

MSOP10

符号	尺寸(毫米)		尺寸 (英寸)		
	最小	最大	最小	最大	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.50BSC		0.020BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

印章与包装规范

1. 印章内容介绍

MS1112 xxxxxxx

产品型号: MS1112 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS1112	MSOP10	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com