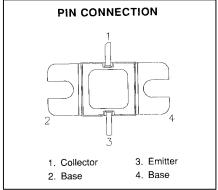


140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855


MS2176

RF AND MICROWAVE TRANSISTORS UHF PULSED APPLICATIONS

Features

- 350 WATTS @ 10µSEC PULSE WIDTH, 10% DUTY
- 300 WATTS @ 250μSEC PULSE WIDTH 10% DUTY CYCLE
- 9.5 DB MIN. GAIN
- REFRACTORY GOLD METALLIZATION
- EMITTER BALLASTING AND LOW THERMAL RESISTANCE FOR RELIABILITY AND RUGGEDNESS
- INFINITE VSWR CAPABILITY AT SPECIFIED OPERATING CONDITIONS

.400 x .400 2LFL (M106) hermetically sealed

DESCRIPTION:

The MS2176 is a gold metallized silicon NPN pulse power transistor designed for applications requiring high peak power and low duty cycles within the frequency range of 400 – 500 MHz.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	65	V
V _{CES}	Collector-Emitter Voltage	65	V
V _{EBO}	Emitter-Base Voltage	3.5	V
Ic	Device Current	21.6	Α
P _{DISS}	Power Dissipation	875	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

RTH(j-c) Junction-Case Thermal Resistance 0.2 °C/W
--

MS2176

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

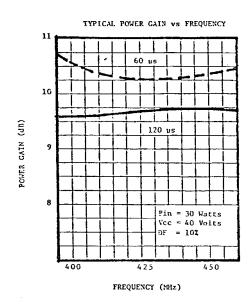
STATIC

Symbol	Test Conditions		Value			
		Min.	Тур.	Max.	Units	
BV _{CBO}	$I_C = 50 \text{ mA}$	$I_E = 0 \text{ mA}$	65			V
BV _{CES}	$I_C = 50 \text{ mA}$	$V_{BE} = 0 V$	65			V
aShee BV_{CEO}	$I_C = 50 \text{ mA}$	$I_B = 0 \text{ mA}$	28			V
BV _{EBO}	$I_E = 10 \text{ mA}$	$I_C = 0 \text{ mA}$	3.5			V
\mathbf{I}_{CES}	V _{CE} =30 V	I _E = 0 mA			7.5	mA
h _{FE}	$V_{CE} = 5 V$	I _C = 5 A	10		100	

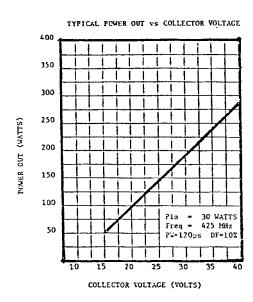
DYNAMIC

Symbol	Test Conditions		Value		
		Min.	Typ. Max.	Units	
P _{out}	$f = 425 \text{ MHz}$ $P_{IN} = 33.5 \text{ W}$ $V_{CE} = 40.0 \text{ MHz}$	0 V 300		W	
G _P	$f = 425 \text{ MHz}$ $P_{IN} = 300 \text{ W}$ $V_{CE} = 400 \text{ M}$	0 V 9.5		dB	
Çc	$f = 425 \text{ MHz}$ $P_{IN} = 25 \text{ W}$ $V_{CE} = 4$	0 V 55		%	

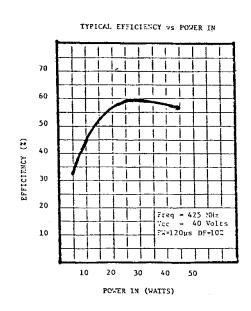
Note: Pulse Width = 250μ Sec, Duty Cycle = 10%



TYPICAL PERFORMANCE

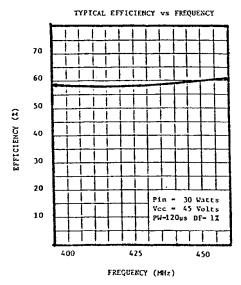

POWER OUTPUT vs POWER INPUT

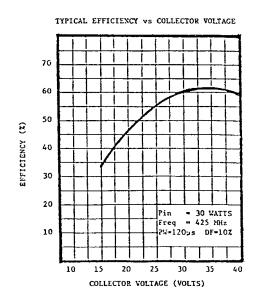
TYPICAL POWER OUT VS POWER IN 350 300 300 250 250 150 150 100 50 100 50 100 10 20 30 40 50 POWER IN (WAITS)


POWER GAIN vs FREQUENCY

POWER OUTPUT vs COLLECTOR VOLTAGE

EFFICIENCY vs POWER INPUT




TYPICAL PERFORMANCE (CONTINUED)

EFFICIENCY vs FREQUENCY

EFFICIENCY vs COLLECTOR VOLTAGE

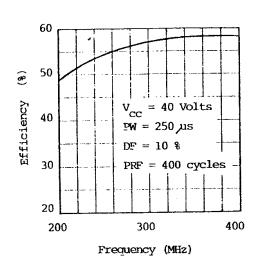
/w.DataSheet4U.com

TYPICAL PERFORMANCE (CONTINUED)

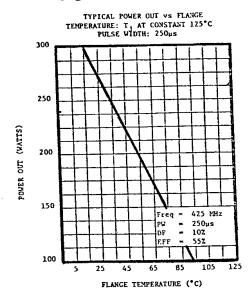
POWER GAIN vs FREQUENCY

TYPICAL POWER GAIN VS FREQUENCY

Frequency (MHz)


200

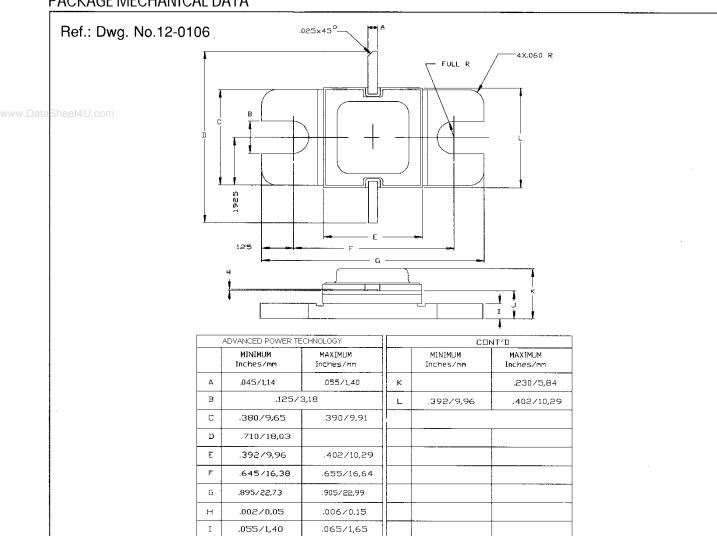
300


400

EFFICIENCY vs FREQUENCY

TYPICAL EFFICIENCY VS FREQUENCY

POWER OUTPUT vs FLANGE TJ @ CONSTANT 125°C


THERMAL RESISTANCE vs PULSE WIDTH

MS2176

PACKAGE MECHANICAL DATA

.105/2,67

J

.125/3,18