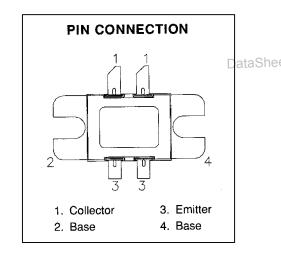

140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013 PHONE: (215) 631-9840 FAX: (215) 631-9855


MS2200

RF AND MICROWAVE TRANSISTORS UHF PULSED APPLICATIONS

Features

- 500 Watts @ 250 µSec Pulse Width, 10% Duty Cycle
- Refractory Gold Metallization
- Emitter Ballasting And Low Resistance For Reliability and Ruggedness
- Infinite VSWR Capability At Specified Operating Conditions
- Input Matched, Common Base Configuration
- Balanced Configuration

DESCRIPTION:

The MS2200 is a hermetically sealed, gold metallized silicon NPN pulse power transistor mounted in a common base balanced configuration. The MS2200 is designed for applications requiring high peak power and low duty cycles within the frequency range of 400 – 500 MHz.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	65	V
V _{CES}	Collector-Emitter Voltage	65	V
V _{EBO}	Emitter-Base Voltage	3.5	V
Ι _c	Device Current	43.2	Α
P _{DISS}	Power Dissipation	1167	W
ΤJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

R _{TH(j-c)}	Junction-Case Thermal Resistance	0.15	°C/W
----------------------	----------------------------------	------	------

DataSheet4U.com

www.DataSheet4U.com

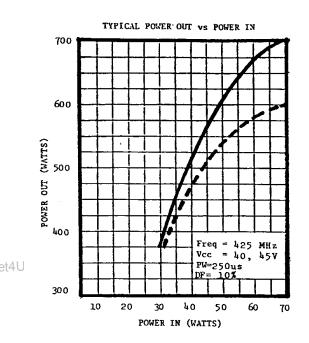
ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

STATIC

Symbol	Test Conditions		Value			Units
Symbol			Min.	Тур.	Max.	Units
BV _{CBO}	l _c = 50 mA	l _E = 0 mA	65			V
BV _{CES}	l _c = 50 mA	$V_{BE} = 0 V$	65			V
BV _{EBO}	l _E = 10 mA	l _c = 0 mA	3.5			V
I _{CES}	V _{CE} =30 V	I _E = 0 mA			15	mA
h _{FE}	V _{CE} = 5 V	I _C = 5 A	20		200	

DYNAMIC

				Value			
Symbol	Test Conditions			Min.	Typ.	Max.	Units
Ρουτ	f = 425 MHz	P _{IN} = 54 W	V _{CE} = 40 V	500			W
G _P	f = 425 MHz	P _{IN} = 54 W	V _{CE} = 40 V	9.7			Db
ηc	f = 425 MHz	P _{IN} = 54 W	V _{CE} = 40 V	50			%
	G _P	$\begin{array}{c c} P_{OUT} & f = 425 \text{ MHz} \\ \hline G_P & f = 425 \text{ MHz} \\ \hline \end{array}$	$\begin{array}{c c} P_{OUT} & f = 425 \text{ MHz} & P_{IN} = 54 \text{ W} \\ \hline G_{P} & f = 425 \text{ MHz} & P_{IN} = 54 \text{ W} \\ \hline \end{array}$	$\begin{array}{c c} P_{OUT} & f = 425 \text{ MHz} & P_{IN} = 54 \text{ W} & V_{CE} = 40 \text{ V} \\ \hline G_{P} & f = 425 \text{ MHz} & P_{IN} = 54 \text{ W} & V_{CE} = 40 \text{ V} \\ \end{array}$	$ \begin{array}{c c} Min. \\ \hline P_{OUT} & f = 425 \text{ MHz} P_{IN} = 54 \text{ W} V_{CE} = 40 \text{ V} \\ \hline G_P & f = 425 \text{ MHz} P_{IN} = 54 \text{ W} V_{CE} = 40 \text{ V} \\ \end{array} $	P_{OUT} f = 425 MHz $P_{IN} = 54 W$ $V_{CE} = 40 V$ 500 G_P f = 425 MHz $P_{IN} = 54 W$ $V_{CE} = 40 V$ 9.7	Symbol Test Conditions Min. Typ. Max. P_{OUT} f = 425 MHz $P_{IN} = 54$ W $V_{CE} = 40$ V 500 — … …


Note: Pulse Width = 250µSec, Duty Cycle = 10%

This device is suitable for use under other pulse width/duty cycle conditions. Please contact the factory for specific applications assistance. DataShe

www.DataSheet4U.com

TYPICAL PERFORMANCE POWER OUTPUT vs POWER INPUT

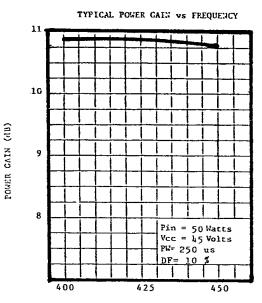
EFFICIENCY vs POWER INPUT

TYPICAL EFFICIENCY vs POWER IN

20

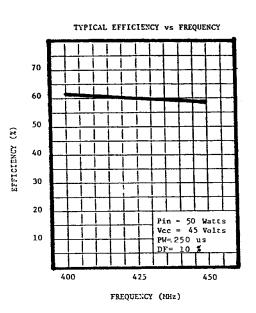
30

POWER IN (WATTS)


40

60

70


50

POWER GAIN vs FREQUENCY

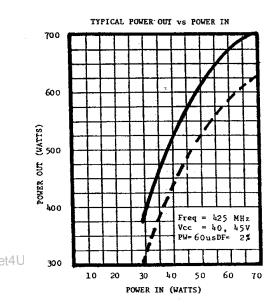
FREQUENCY (MHz)

EFFICIENCY vs FREQUENCY

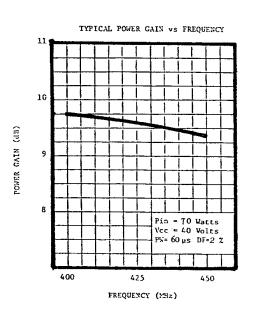
DataSheet4U.com

www.DataSheet4U.com

DataShe

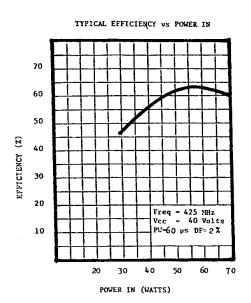

Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.

DataSheet4U.com

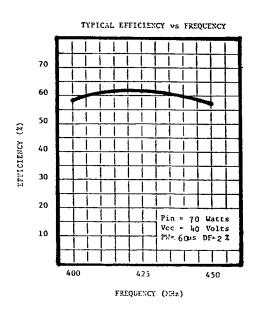


TYPICAL PERFORMANCE (CONTINUED)

POWER OUTPUT vs POWER INPUT



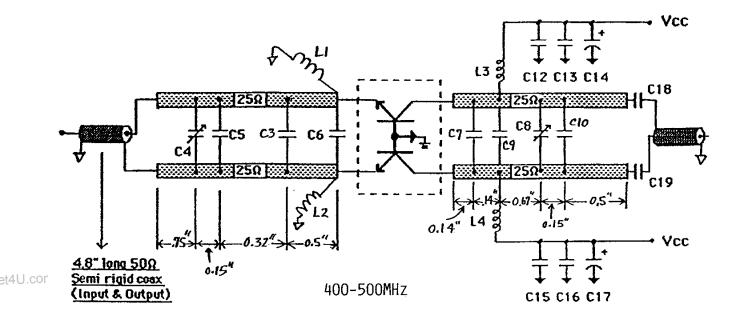
POWER GAIN vs FREQUENCY



DataShe

EFFICIENCY vs POWER INPUT

EFFICIENCY vs FREQUENCY

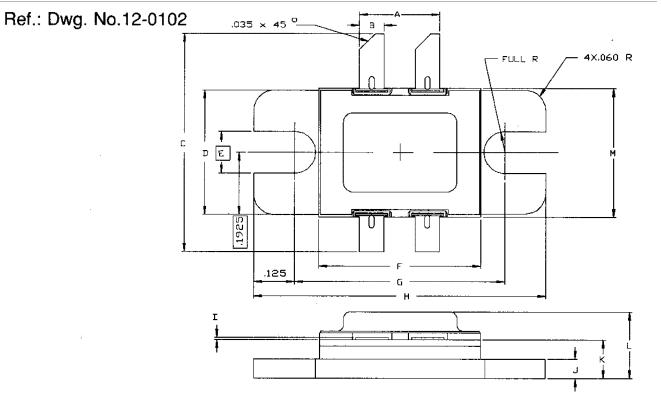


DataSheet4U.com

www.DataSheet4U.com

TEST CIRCUIT

DataSheet4U.com


www.DataSheet4U.com

DataShe

PACKAGE MECHANICAL DATA

.

et4U.cor

ADVA	ANCED POWER TECHNO	LOGY] [CONT'D		
	MINIMUM Inches/mm	MAXIMUM Inches/mm		M[NIMUM Inches/mm	MAXIMUM Inches/mm	
A	.240/6,10	.254/6,45	к	.11572,92	.130/3,30	
в	,070/1,78	.080/2,03	L		.230/5,84	
С	.780/19,81	.820/20,83	м	.395/10,03	.407/10,34	
D	,380/9,65	.390/9,91				
E	.130/3,	30				
F	.495/12,57	.507/12,88		-		
G	.640/16,26	.655/16,64				
н	.890/22,61	.910/23,11				
I	.002/0,05	.006/0,15			· . ·	
L	.058/1,47	.065/1,65				

DataSheet4U.com

www.DataSheet4U.com