16-Bit、四输入、内置基准模数转换器

产品简述

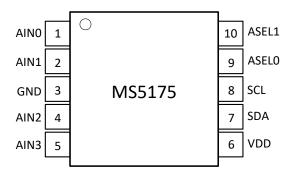
MS5175 是一款高精度、可连续转换的 16bit 模数转换器,具有 4 路单端输入通道和内部集成 2.048V 基准,且使用 I²C 兼容接口。MS5175 电源范围为 2.7V 到 5.5V,转换速率为 15、30、60或 240SPS,集成可编程增益放大器。在单次转换模式中,MS5175 在转换结束后会自动进入省电模式,减小功耗。

MS5175 可用在高精度测量以及对空间、功耗有一定要求的 应用场合中,如:手持仪器、工业控制和智能变送器。

MSOP10

主要特点

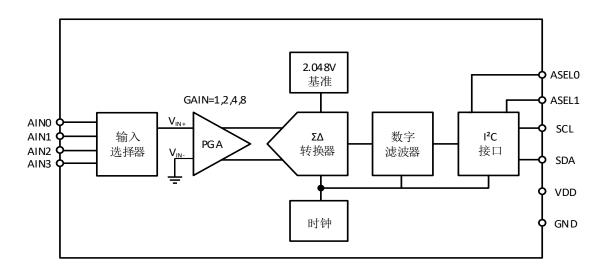
- 4路单端输入通道
- I²C接口,8个可编程地址
- 片上基准: 2.048V±0.1%
- 温度漂移: 20ppm/℃ (典型值)
- 内部集成 PGA: 1 到 8 倍
- 16 位无失码精度
- INL (积分非线性误差): 0.004%
- 工作电压范围: 2.7V 到 5.5V
- 低电源功耗: 270µA@VDD=3V


应用

- 手持仪器
- 工业级控制
- 智能变送器
- 工业自动化
- 温度测量

产品规格分类

产品	封装形式	丝印名称
MS5175	MSOP10	MS5175


管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	AIN0	I	单端输入1
2	AIN1	ı	单端输入 2
3	GND	-	地
4	AIN2	I	单端输入 3
5	AIN3	I	单端输入 4
6	VDD	-	电源
7	SDA	1/0	串行数据发送接收端口
8	SCL	1/0	串行时钟输入,时钟输出端口
9	ASEL0	I	I ² C 从地址选择 1
10	ASEL1	I	I ² C 从地址选择 2

内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

PB///NATTITE			
参数	符号	额定值	单位
供电电压	V _{DD}	-0.3 ~ 6	٧
		100mA,瞬间电流	mA
输入电流	I _{IN}	10mA,持续电流	mA
模拟输入(ASELO、ASEL1 到 GND)	V _{IN}	-0.3 ~ V _{DD} +0.3	٧
SDA、SCL 电压到地	V	-0.5 ~ 6	٧
最大结温	T _{JMAX}	150	°C
工作温度	T _A	-40 ~ 125	°C
存储温度	T _{STG}	-65 ~ 150	°C
焊接温度	Т	260	°C

电气参数

若无特别说明,测试条件: -40℃ 到 85℃, V_{DD}=5V。

参数	测试条件	最小值	典型值	最大值	单位
	模拟轴	俞入			
正满幅输入电压范围	V _{IN+}		+2.048/PGA		V
模拟输入电压	V _{IN+} 到 GND	GND-0.3		V _{DD} +0.2	V
	PGA=1		3.5		MΩ
*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PGA=2		3.5		ΜΩ
输入阻抗	PGA=4		1.8		MΩ
	PGA=8		0.9		ΜΩ
	系统参	参数			
	DR=00		11		Bits
八克萨克上工品加拉克	DR=01		13		Bits
分辨率与无失码精度	DR=10		14		Bits
	DR=11		16		Bits
	DR=00	216	240	264	SPS
*A 11.0 + = 25	DR=01	54	60	66	SPS
输出速率	DR=10	27	30	33	SPS
	DR=11	13.5	15	16.5	SPS
积分非线性误差	DR=11,PGA=1,结束点 ¹		±0.004		% of FSR ²
	PGA=1		1	3	mV
/L. NEL 24	PGA=2		1	3	mV
失调误差	PGA=4		1	3	mV
	PGA=8		1	3	mV
	PGA=1		1.2		μV/°C
4. YE /户 7.6x	PGA=2		0.6		μV/°C
失调偏移	PGA=4		0.3		μV/°C
	PGA=8		0.3		μV/°C
	PGA=1		800		μV/V
件 A用 NG NG N	PGA=2		400		μV/V
失调 VS. VDD	PGA=4		200		μV/V
	PGA=8		150		μV/V

参数	测试条件	最小值	典型值	最大值	单位		
	系统参数						
增益误差		-0.5	±0.1	+0.5	%		
PGA 增益匹配误差 3	任意两个增益匹配		0.02		%		
增益误差温漂			20		ppm/°C		
增益 VS. VDD			80		ppm/V		
	直流输入,PGA=8		105		dB		
共模抑制比	直流输入,PGA=1		100		dB		
	数字输入	/ 输出					
输入高电平		0.7×V _{DD}		V _{DD} +0.5	V		
输入低电平		GND-0.5		0.3×V _{DD}	V		
输出低电平	I _{OL} =3mA	GND		0.4	V		
输入高电平峰值电流				10	μΑ		
输入低电平峰值电流		-10			μΑ		
	电源参	数					
工作电压	VDD	2.7		5.5	V		
	美断状态		0.05	3	μΑ		
电源电流	工作状态 @V DD=3V		270	300	μΑ		
	V _{DD} =5.0V		1.5		mW		
功耗	V _{DD} =3.0V		0.81	0.9	mW		

注:

- 1.满幅度的 99%。
- 2. FSR=满幅度量程=2.048V/PGA。
- 3.包括 PGA 和基准的所有误差。

功能描述

MS5175 是一个 16 位、四通道输入、Σ-Δ 型模/数转换器,其设计简单、极易配置的特点使得用户很容易获得精确的测量值。

模/数转换器

MS5175 的模/数转换器核由一个开关电容 Σ-Δ 调制器和一个数字滤波器组成。

输入选择器

MS5175 可提供四组单端输入通道,由 2 位配置寄存器位控制输入选择器。

电压基准

MS5175 内置一个 2.048V 的片内电压基准, 无需外部基准。

输出码计算

MS5175 输出码的位数取决于更新速率,如表 1 所示。

更新速率	位数	最大码(最高位为符号位)			
15SPS	16	32767			
30SPS	15	16383			
60SPS	14	8191			
240SPS	12	2047			

表 1. 最大码

MS15175 输出码的格式为二进制补码,右对齐且经过符号扩展。对不同输入电平的输出码见表 2。

输入信号 更新速率 0 (理想) +1LSB +2.048V 0000H 0001_H 7FFF_H **15SPS** 30SPS 0000H 0001_{H} 3FFF_H H0000 0001_H 1FFF_H 60SPS 0000н 0001_H 07FF_H **240SPS**

表 2. 针对不同输入信号的输出码

注:不要使输入电压低于 GND。

输出码可由以下表达式计算出:

输出码 = 1×最大码×PGA×
$$\frac{(V_{\text{IN+}})-(V_{\text{IN-}})}{2.048V}$$
(V_{IN+} \geqslant V_{IN-})

MS5175 最大码是 2ⁿ⁻¹-1。

时钟振荡器

MS5175 内置时钟振荡器,该振荡器驱动调制器和数字滤波器。无需外部时钟。

输入阻抗

MS5175 输入级采用开关电容。等效电阻值取决于电容值和电容的开关频率。电容器的值取决于可编程增益放大器 (PGA)的设置,时钟由片内时钟振荡器产生。典型工作频率 275kHz。

高输出阻抗输入源,需要缓冲。

混叠

当输入信号频率超过更新速率的一半,会产生混叠。为防止混叠的产生,必须限制输入信号的带宽。MS5175 的数字滤波器可在一定程度上衰减高频率的噪声,但其 sinc 滤波器不能完全替代抗混叠滤波器。对于少数应用,还是需要外部滤波。

在设计输入滤波器时, 应考虑到滤波器和 MS5175 输入之间的阻抗匹配。

工作模式

MS5175 有两种转换模式:连续转换和单次转换。

在连续转换模式中,每次转换完成,结果都将存入结果寄存器,并立即开始下一次转换。

在单次转换模式中,MS5175 会等待配置寄存器中的 ST/DRDY 位被置为 1。ST/DRDY 位被置为 1后 开始转换,转换完成后结果存入结果寄存器中,并复位 ST/DRDY 位为 0,进入省电模式。

从连续转换模式切换到单次转换模式时,MS5175 将完成当前转换,并复位 ST/DRDY 位为 0,进入省电模式。

复位和上电

在上电时,自动执行一次复位,配置寄存器中的所有位设置为默认值。

MS5175 会对 I^2C 的总呼叫复位命令做出响应,当 MS5175 接收到总呼叫复位命令时,立即执行一次复位。

I2C 接口

MS5175 通过 I2C 接口通信。图 1 为 I²C 时序图,表 3 列出了相关参数。

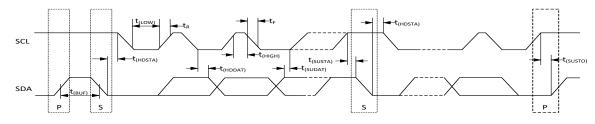


图 1. I2C 时序图

	参数			单位
t(SCLK)	SCLK 工作频率		0.4	MHz
t(BUF)	总线 START 到 STOP 的空闲时间	600		ns
^t (HDSTA)	START 信号保持时间	600		ns
^t (SUSTA)	重复 START 信号建立时间	600		ns
t(SUSTO)	STOP 信号建立时间	600		ns
^t (HDDAT)	数据保持时间	0		ns
^t (SUDAT)	数据建立时间	100		ns
t(LOW)	SCLK 时钟低电平周期	1300		ns
^t (HIGH)	SCLK 时钟高电平周期	600		ns
t _F	时钟/数据下降时间		300	ns
t _R	时钟/数据上升时间		300	ns

表 3. 时序图的相关定义

串行总线地址

对 MS5175 进行读写,主机须通过地址位对从机寻址。从机地址位包括 7 个地址位,1 个操作位。

MS5175 有两个地址管脚,ASELO 和 ASEL1,可以设置 I^2C 的地址。这个管脚可以设置为逻辑低、逻辑高或悬空。通过两个管脚可以设置 8 个地址,如表 4 所示。在上电复位或 I^2C 总呼叫命令之后,器件将对 ASELO 和 ASEL1 管脚状态进行采样。

衣 5. M35175 地址师与 然机地址 人家				
ASEL0	ASEL1	从机地址		
0	0	1001000		
0	悬空	1001001		
0	1	1001010		
1	0	1001100		
1	悬空	1001101		
1	1	1001110		
悬空	0	1001011		
悬空	1	1001111		
悬空	悬空	无效		

表 3. MS5175 地址脚与从机地址关系

I2C 总呼叫

如果地址位 8 位都为 0 时,MS5175 响应总呼叫。器件应答总呼叫并响应第二个字节的命令。如果该命令为 04h,MS5175 将只锁存地址管脚 ASEL0 和 ASEL1 的状态,并不复位配置寄存器。如果命令为 06h,MS5175 将锁存地址管脚的状态,并复位配置寄存器。

I²C 数据速率

I²C 总线有三种速度:标准方式,允许最高 100kHz 的时钟频率。快速方式,允许最高 400kHz 的时钟频率。高速方式,允许最高 3.4MHz 的时钟频率。

关于高速方式的更多信息,参考 I2C 规格说明。

结果寄存器

16 位的结果寄存器存储转换结果,采用二进制补码格式。在复位或上电之后,结果寄存器清 0, 直到第一次转换完成。结果寄存器的格式如表 5 所示。

Bit 15 14 12 11 10 9 8 7 6 5 4 3 0 13 2 1 D14 D12 D11 D10 D9 D8 D7 D6 D5 D3 Name D15 D13 D4 D2 D1 D0

表 5. 结果寄存器

配置寄存器

8 位配置寄存器控制 MS5175 的工作模式、更新速率和可编程增益放大器(PGA)。配置寄存器的格式如表 6 所示,默认设置是 8C_H。

Bit	7	6	5	4	3	2	1	0
Name	ST/DRDY	INP1	INP0	SC	DR1	DR0	PGA1	PGA0
Default	1	0	0	0	1	1	0	0

表 6. 配置寄存器

位 7: ST/DRDY

ST/DRDY 位的含意取决于它是写入还是读出。

在单次转换模式中,写 1 到 ST/DRDY 位则表示转换的开始,写入 0 则无影响,在连续方式中,MS5175 忽略写入 ST/DRDY 的值。

在连续转换模式中,ST/DRDY 位确定新转换数据是否就绪。如果 ST/DRDY 为 1,则表示结果寄存器中的数据已经被读取;如果 ST/DRDY 为 0,则表示结果寄存器中的数据是未被读取的新数据。

在单次转换模式中,ST/DRDY 位确定转换是否完成。如果 ST/DRDY 为 1,则表示结果寄存器的数据为旧数据,而且转换正在进行。如果 ST/DRDY 为 0,则表示结果寄存器的数据是新转换的结果。

MS5175 先输出结果寄存器的值,再输出配置寄存器值。ST/DRDY 位的状态适用于刚从结果寄存器中读取的数据,而不是下一次读操作读取的数据。

位 6-5: INP

输入信号选择位。如表7所示,通过控制这两位,可以用来选择4个单端输入通道。

表 7. INP 位

INP1	INP0	VIN
0 (默认值)	0 (默认值)	AIN0
0	1	AIN1
1	0	AIN2
1	1	AIN3

位 4: SC

转换模式选择位。当 SC 为 1 时,选择单次转换模式;当 SC 为 0 时,选择连续转换模式。默认为 0。

位 3-2: DR

更新速率选择位,如表8所示。

表 8. DR 位

DR1	DR0	更新速率	精度
0	0	240SPS	12 位
0	1	60SPS	14 位
1	0	30SPS	15 位
1 (默认值)	1 (默认值)	15SPS	16 位

位 1-0: PGA

增益设置选择位,如表9所示。

表 9. PGA 位

PGA1	PGA0	增益
0 (默认值)	0 (默认值)	1
0	1	2
1	0	4
1	1	8

读操作

读取结果寄存器和配置寄存器的值。先对 MS5175 寻址,再从器件中读出 3 个字节。前 2 个字节是结果寄存器的值,第 3 个字节是配置寄存器的值。

可不读出配置寄存器,在读操作中允许读出的字节个数少于 3 个。如果读取多于 3 个字节,从第 4 个字节开始将为 FF_H。

MS5175 的典型读操作的时序见图 2。



图 2. MS5175 的读操作时序图

写操作

对配置寄存器进行写操作。先对 MS5175 寻址,再写入一个字节,这个字节将被写入配置寄存器中。

写入多个字节无效,将忽略第一个字节之后的任何字节。MS5175 写操作的典型时序见图 3。

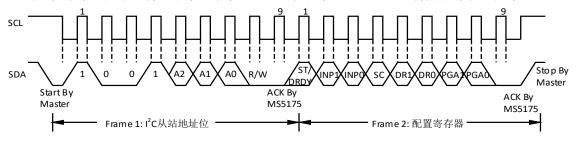


图 3. MS5175 的写时序

应用说明

基本连接方法

对于多数应用而言, MS5175 的典型基本连接图如图 4 所示。

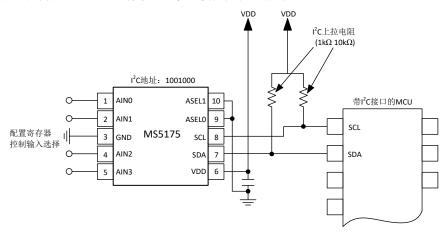


图 4. MS5175 的典型连接方法

连接多个器件

一条 I^2C 总线可连接多个 MS5175。使用 ASEL1 和 ASEL0 脚,MS5175 可以设置为 8 种不同 I^2C 地址。如图 5 所示,三个 MS5175 连接到同一条总线的接线图。一条 I^2C 总线上最多可以连接 8 个 MS5175(使用不同状态的 ASEL1 和 ASEL0 脚进行控制)。

注意, I2C 总线仅需一组上拉电阻。

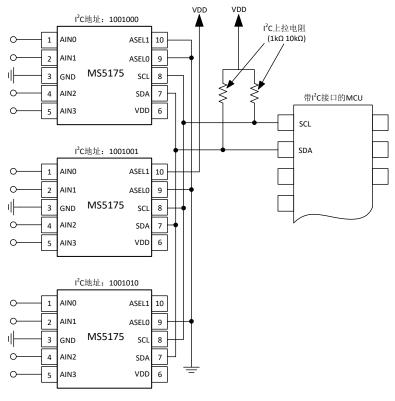
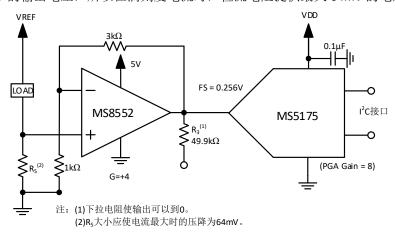
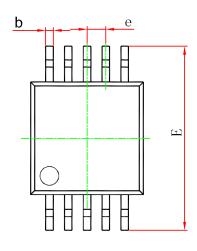
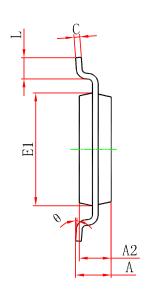


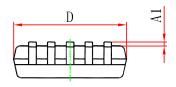
图 5. 连接多个 MS5175

低端电流监控器

图 6 是低端电流监控器的电路图。该电路通过一个检流电阻来读取电压。此电阻上电压可用低漂移的运放 MS8552 放大,放大结果由 MS5175 读取。

建议 MS5175 工作在 8 倍增益下,可以降低 MS8552 的增益。对于 8 倍增益而言,运放应提供最高不高于 0.256V 的输出电压,所以在满刻度电流时,检流电阻提供最大 64mV 的电压降。


图 6. 低端电流测量

封装外形图

MSOP10

ht. 5	尺寸 (毫米)		尺寸 (英寸)		
符号	最小	最大	最小	最大	
А	-	1.100	-	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.330	0.007	0.013	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
e	0.50BSC		0.020BSC		
E	4.750	5.050	0.187	0.199	
E1	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	
θ	Oō	6º	0 ō	6∘	

印章与包装规范

1. 印章内容介绍

MS5175 xxxxxxx

产品型号: MS5175 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS5175	MSOP10	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com