

OSD CIRCUIT

MS6464 is CMOS LSIs for on-screen character display that control various display systems (such as tape counters) including the program screens of deck-type VCRs and LD players. These LSIs are used in combination with a microcomputer.

FEATURE

- * Video signal input/output: Composite video signal
- * Number of display characters: 12 lines, 24 columns (288 characters)
- * Number of character types: 128
- * Character size: 1 dot/1 line. 2 lines (field) can be displayed in line units.
- * Character color: White (single color)
- * Background: No background, black framing, black-on-white, and black filling .
- * Dot matrix: 12 (horizontal) $\times\,$ 18 (vertical) dots without gap between adjacent charactes .
- * Blinking: Blinking can be turned ON/OFF in character units. Blinking ratio is 1:1. Blinking frequency is selectable from about 0.5 Hz, 1 Hz, and 2 Hz in screen units.
- * Character signal output: Can support VCRs with S pins if external mixer is connected because character signal and blanking signal output pins are provided.
- * Video RAM data clear: Video RAM data are cleared by video RAM clear command and power-ON clear function.
- * Supported video signal method: NTSC/PAL/PAL-M/SECAM/PAL-N
- * Internal circuit: Synchronization separation circuit for composite synchronizing signal and ×4 multiplier.
- * Interface with microcomputer: Serial input type of 8-bit variable word length.
- * Supply voltage: +5 V, single power supply.

APPLICATIONS

* on-screen character display systems

PIN CONFIGURATIONS

SOP-24-375-1.27

ORDERING INFORMATION

Device	Package
MS6464	SOP-24-375-1.27

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	SOP24	UNIT
Supply voltage	VDD	7	V
Input pin voltage	VIN	-0.3-VDD+0.3	V
Output pin voltage	VOUT	-0.3-VDD+0.3	V
Permissible package power	PD	320	mV
dissipation (TA = 75 °C)			
Operating ambient	TA	-20 to +75	°C
temperature			
Storage temperature	Tstg	-40 to +125	°C
Output current	Ic	±5	mA

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, Tamb=25°C)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply voltage	VDD		4.5	5.0	5.5	V
LC oscillation frequency	Fosc		4	7	8	MHz
Control input high level voltage	VOH	DATA, CLK, CS, PCL	3.5			V
Control input low level voltage	VOL	DATA, CLK, \overline{CS} , \overline{PCL}			1.5	V
Internal signal level setting voltage	VVL	VCNT	2.5		VDD	V
External video signal input voltage	VI	VBSI	0		VDD	V
Current consumption	IDD	Fosc=8M			20	mA
Signal output high level voltage	VSOH	VDD=5.0V, ISOH=-1mA	4.5			V
Signal output low level voltage	VSOL	VDD=5. OV, ISOL=1mA			0.5	V
Crystal oscillation frequency 1	FXON1	NTSC		14. 31818		
Crystal oscillation frequency 2	FXON2	PAL, SECAM		17.734475		
Crystal oscillation frequency 3	FXON3	PAL-M		14.302446		MHz
Crystal oscillation frequency 4	FXON4	PAL-N		14.328225		

PIN DESCRIPTIONS

No.	Symbol	Function
1	CLK	Inputs clock for data read. Data input to the DATA pin is read at the rising edge of the
		clock input to this pin.
2	cs	Serial transfer can be acknowledged by making this $\overline{\text{CS}}$ pin low
3	DATA	nputs control data. Data is read in synchronization with the clock input to the CLK pin.
4	VDD	Power supply

5	OSCOUT	These are input and output pins of an oscillator that generates dot clocks. Connect a
6	OSCIN	coil and a capacitor to these pins for oscillation.
7	PCL	Power-ON clear pin. Make this pin high on power application. It initializes the internal
		circuitry of the IC.
8	GND	Ground
9	FSCI	In case of the ×4 multiplier, the color sub-carrier (fsc) is input to
		this pin. In case of the 4fsc Crystal oscillation, connect this pin to
		GND or VDD.
10	FSCO	The frequency error signal of the \times 4 multiplier is output to this pin. In case of the 4f _{sc} Crystal oscillation, this pin should be open.
11	XOSO	A quadruple oscillation LC for internal video signal generation is connected to these
12	XOSI	pins. A crystal oscillator can also be connected.
13	VC	Character signal output pin. Positive signal output.
14	VBLK	This pin outputs a blanking signal that cuts the video signal. It corresponds to the output of Vc. Positive signal output.
15	HSYO	Outputs a horizontal synchronization signal separated from a composite synchronization signal.
16	VSYO	Outputs a vertical synchronization signal separated from a composite synchronization signal.
17	CSYIN	A composite synchronization signal is input to this pin for synchronization signal separation. In case of the external signal mode, input the signal certainly. Input a positive synchronization signal.
18	NC	Non connection. Leave this pin open.
19	TEST	Test mode select pin. Connect this pin to GND.
20	NRE	Constant append pin for noise reduction.
21	VBSO	Outputs a composite video signal mixing a character signal.
22	SECAM	SECAM sub-carrier signal mixing pin. In cases of any system except for SECAM, this pin should be open.
23	VCNT	Adjusts the output level of the composite video signal and luminance signal.
24	VBSI	Inputs a composite video signal. Inputs a signal with the leading edge clamped, consisting of a negative synchronization signal
		and a positive video signal.

FUNCTION DESCRIPTION

1. Command Format

Control commands are of variable length in 8-bit units and are input in serial.

Three types of commands are available: 1-byte commands consisting of 8 bits of instruction and data in combination, 2-byte commands of 16 bits of instruction and data in combination, and a 2-byte contiguous command that can be abbreviated for input. Input command data from the MSB first.

2. Command List

1-byte commands								
Function	D7	D6	D5	D4	D3	D2	D1	DO

Video RAM batch clear	0	0	0	0	0	0	0	0
Display control	0	0	0	1	DO	LC	BL1	BLO
Internal video signal color control	0	0	1	0	R	G	В	0
Background control	0	0	1	1	0	BS1	BSO	0
Internal/external mode control, crystal	0	1	0	0	0	E/I	0	XOSC
oscillation control								
Video signal method control	0	1	0	0	1	N/P2	N/P1	N/P0
Oscillation method control	0	1	0	1	0	0	XFC	0

2-byte commands

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
L1	1	0	0	0	0	0	V4	V3	V2	V1	VO	H4	H3	H2	H1	HO
L2	1	0	0	0	1	0	0	AR3	AR2	AR1	ARO	AC4	AC3	AC2	AC1	ACO
L3	1	0	0	1	0	0	0	VPD	0	0	0	0	0	1	VC1	VCO
L4	1	0	0	1	1	0	0	0	0	S0	0	0	AR3	AR2	AR1	ARO
L5	1	0	1	1	0	0	0	0	T7	T6	T5	T4	T3	T2	T1	TO

L1: Display position control;

L2: Write address control;

L3: Output level control;

L4: Character size control;

L5: Test mode Note;

Note Must not be used.

2-byte contiguous command

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
L8	1	1	0	0	0	0	BL	0	0	C6	C5	C4	C3	C2	C1	CO
-	-						-			-	-	-	-	-	-	-

L8: Display character control;

3. Power-ON Clear Function

Because the internal status of the IC is unstable on power application, initialize the IC by making the \overline{PCL} pin high and executing a clear operation. When the clear operation has been performed, the following setting is made:

- · Test mode is cleared.
- All the character data of the video RAM (12 lines, 24 columns) are set to display OFF data (7EH) and the blinking data are set to OFF.
- Video RAM write address (line 0, column 0) is set.
- Character size is set to $\times 1$ (minimum) on all lines.
- · Display is turned OFF and LC oscillation is turned ON.

The time required for the power-ON clear operation can be calculated by the following expression:

t = tPCLL^{Note} + {video RAM clear time} = 10 (μ s) + {10 (μ s) + 12/fOSC (MHz) × 288 [μ s]}

Note Refer to 7. ELECTRICAL SPECIFICATIONS Power-ON Clear Specification.

Remark fOSC: LC oscillation frequency (dot clock frequency)

4. COMMAND DETAILS

4.1 Video RAM Batch Clear Command

D7	D6	D5	D4	D3	D2	D1	DO
0	0	0	0	0	0	0	0

The video RAM batch clear command performs the following setting:

- Sets all the character data of the video RAM (12 lines, 24 columns) to display OFF data (7EH) and blinking data to OFF.
- Sets a video RAM write address (line 0, column 0).
- Sets the character size to $\times 1$ (minimum) on all lines.
- Turns display OFF and LC oscillation ON.

The time required for clearing the video RAM can be calculated by the following expression:

t = video RAM clear time = 10 (μ s) + 12/fOSC (MHz) × 288 [μ s]

Remark fOSC: LC oscillation frequency (dot clock frequency)

4.2 Display Control Command

D7	D6	D5	D4	D3	D2	D1	DO
0	0	0	1	DO	LC	BL1	BLO

Blinking control bits								
BL1	BLO	Function						
0	0	Blinking OFF						
0	1	Blinking frequency: about 2 Hz						
1	0	Blinking frequency: about 1 Hz						
1	1	Blinking frequency: about 0.5 Hz						

Blinking control bits

These bits blink the character that is specified by the display character control command.

The blinking ratio is 1:1, and three blinking frequencies can be selected.

Blinking in character units can be specified by the display character control command.

	LC oscillation control bit
LC	Function
0	LC oscillation OFF
1	LC oscillation ON

LC oscillation control bit

This bit controls LC oscillation and can turn ON/OFF the oscillation circuit. While no character is displayed, oscillation can be stopped to reduce the power dissipation.

Data cannot be written to the video RAM with oscillation stopped. To write data to the video RAM, be sure to turn ON oscillation.

	Display ON/OFF control bit							
DO	Function							
0	Display OFF							
1	Display ON							

4.3 Internal Video Signal Color Control Command

This command sets the color of an internal video signal.

D7	D6	D5	D4	D3	D2	D1	DO
0	0	1	0	R	G	В	0

	Internal video signal color control bits						
R	G	В	Black				
0	0	0	Blue				
0	0	1	Green				
0	1	0	Setting prohibited				
0	1	1	Setting prohibited				
1	0	0	Setting prohibited				
1	0	1	Setting prohibited				
1	1	0	White				
1	1	1	Black				

Internal video signal color control bits

These bits can select four colors as the color of the internal video signal.

4.4 Background Control Command

This command selects the background of the displayed character.

D7	D6	D5	D4	D3	D2	D1	DO
0	0	1	1	0	BS1	BSO	0

Background control bits						
BS1	BSO	Function				
0	0	No background				
0	1	Black framing				
1	0	Black-on-white				
1	1	Black filling				

· Background control bits

These bits select the type of background in screen units from none, black-framed, black-on-white, or black-filled background

4.5 Internal/external Mode Control, Crystal Oscillation Control Command

This command selects the video signal with which a character signal overlaps (internal mode/external mode) and controls ON/OFF of crystal oscillation.

D7 D6 D5 D4 D3 D2 D1 D0	D7	D6	D5	D4	D3	D2	D1	DO
-------------------------	----	----	----	----	----	----	----	----

0	1	0	0	0	E/I	0	Xosc

Crystal oscillation control bi							
Xosc	Function						
0	Oscillation OFF						
1	Oscillation ON						

Crystal oscillation control bit

This bit controls oscillation of the crystal for internal video signal generation. When crystal oscillation is turned ON and the mode is changed from the external video signal mode to the internal video signal mode, the internal video signal is selected without the screen disturbed.

When crystal oscillation is turned OFF, the synchronization separation circuit does not operate. Be sure to turn ON crystal oscillation

Internal/external mode control bit						
E/I	Function					
0	External video signal mode					
1	Internal video signal mode					
L. K	esterne el ne este en tre l l 2t					

Internal/external mode control bit

External video signal mode

In this mode, character signals are output to the MS6464 overlapping the external video signal that is input from external. The overlapped signal is output to the VBSO pin. If character signals should not be overlapped, set the display ON/OFF control bit to 0 (Display OFF) with the display control command. Moreover, a composite synchronization signal (Csync), which synchronizes with the video signal input from external, is required to be input from the CSYIN pin. If no Csync exists, input the composite synchronization signal generated from the input video signal via the composite synchronization circuit. In the timing generator block built in the MS6464, a horizontal synchronization signal and a vertical synchronization signal are

In the timing generator block built in the MS6464, a horizontal synchronization signal and a vertical synchronization signal are generated by separating from a composite synchronization signal synchronously. A reference signal is generated from these synchronous signals. The reference signal is used to reset and count the horizontal control block, vertical control block, and output control block. If Csync is not input, characters may not be displayed because the reference signal is not generated in the timing generator block.

Internal video signal mode

In this mode, characters are output overlapping the video signal that is created in the MS6464(e.g., blue back signal) to the VBSO pin. In the internal video signal mode, characters can be displayed on the screen because horizontal and vertical synchronization signals are generated in a device, even if no

composite synchronization signal is input.

4.6 Video Signal Method Control Command

The MS6464 can select the NTSC, PAL, PAL-N and PAL-M methods for the internal video signal. When the SECAM method is selected, the internal video signal is output by the PAL method.

D7	D6	D5	D4	D3	D2	D1	DO
0	1	0	0	1	N/P2	N/P1	N/P0

	Video signal method control bits						
N/P2	N/P1	N/PO	Function				
0	0	0	NTSC				
0	0	1	PAL				
0	1	0	PAL-M				
0	1	1	SECAM				
1	0	0	PAL-N				
		•	Setting prohibited				

4.7 Oscillation Method Control Command

D7	D6	D5	D4	D3	D2	D1	DO
0	1	0	1	0	0	Xfc	0

	Oscillation method control bi
Xfc	Function
0	Quadruple oscillation
1	4fsc crystal oscillation

· Oscillation method control bit

*

In the MS6464, the oscillation method can be selected from ×4 multiplication oscillation and 4fSC crystal oscillation with the oscillation method control command.

When \times 4 multiplication oscillation is selected, the fSC signal must be input from the FSCI pin. The 4fSC signal isgenerated from an external LC resonator and an internal circuit of the MS6464. The phase of four- divided 4fSC signal generated via LC oscillation is compared with that of the fSC signal that is input to the FSCI pin. The obtained phase error is converted to a voltage value, and then output from the FSCO pin. In the circuit shown in **8. APPLICATION CIRCUIT DIAGRAM (1) In** \times 4 multiplication oscillation, the 4fSC signal synchronizing with the external fSC signal is generated by changing the capacitance of varactor diodes with this voltage that is based on a phase error.

 When 4fSC crystal oscillation is selected, the FSCI and FSCO pins are not used. These pins should be connected as follows.

 FSCI pin (pin 9)
 : Connect to GND or

VDD. FSCO pin (pin 10) : Leave open.

Remark The scanning method in the internal video signal mode is non-interlacing. With the NTSC and PAL-M methods, the number of scanning lines is 263. With the PAL and PAL-N method, it is 312.

4.8 Display Position Control Command

This command can set the display start position; Because this command is a 2-byte command, it must be input in 16-bit units even when the command is successively input

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	0	0	0	V4	V3	V2	V1	VO	H4	H3	H2	H1	HO

	Horizontal display start position control bit												
H4	H4 H3 H2 H1 H0 Function												
0 0 0 0 Form rising of HS (12*1)/fosc+4/fosc(us)													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
				•••••									
1	1 1 1 1 Form rising of HS (12*32)/fosc+4/fosc(us)												

	Vertical display start position control bit												
V4	V4 V3 V2 V1 V0 Function												
0	0	Form rising of VS 9H*0											
0	0	0	0	1	Form rising of VS 9H*1								
1	1	1	1	1	Form rising of VS 9H*31								

Horizontal display start position control bits

The horizontal display start position can be set in 12-dot units and 32 steps, 16 clocks after the rising of the horiz ontal synchronization signal (Hsync) (16/fOSC (MHz)).

Vertical display start position control bits

The vertical display start position can be set in 9-line units and 32 steps, from the rising of the vertical synchronization signal (Vsync).

∙ Vertical synchronization signal (Vsync)

- A: 9H (line) × $(2^4V_4 + 2^3V_3 + 2^2V_2 + 2^1V_1 + 2^0V_0)$
- $\mathsf{B}: \ \frac{12}{\mathsf{fosc}\ (\mathsf{MHz})} \ \times \ (2^4\mathsf{H}_4 \ + \ 2^3\mathsf{H}_3 \ + \ 2^2\mathsf{H}_2 \ + \ 2^1\mathsf{H}_1 \ + \ 2^0\mathsf{H}_0) \ + \ \frac{16}{\mathsf{fosc}\ (\mathsf{MHz})}$

4.9 Write Address Control Command

This command specifies a write address when a character is written to the display area (video RAM) of 12 lines by 24 columns. Because this command is a 2-byte command, it must be input in 16-bit units even when input successively.

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	0	1	0	0	AR3	AR2	AR1	ARO	AC4	AC3	AC2	AC1	AC0

					Write column address control bits
AC4	AC3	AC2	AC1	ACO	Function
0	0	0	0	0	Sets column 0
0	0	0	0	1	Sets column 1
1	0	1	1	1	Sets column 23

				Write line address control bits
AR3	AR2	AR1	ARO	Function
0	0	0	0	Sets line O
0	0	0	1	Sets line 1
1	0	1	1	Sets line 11

4.10 Output Level Control Command

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	1	0	0	0	VPD	0	0	0	0	0	1	VC1	VCO

	Character level control bits										
VC1 VC0 Function											
0	0	Setting Prohibited									
0	1	75 I.R.E									
1	0	Setting Prohibited									
1	1	90 I.R.E									

Internal video signal amplitud	de control bit
VPD	Function
0	1 Vp_p amplitude
1	2 Vp_p amplitude
Character level control bits	

These bits can select two character luminance levels: 75 or 90 I.R.E.

If these bits are not set, the character level is set to 75 I.R.E.

Remark The background (frame) level is fixed to 0 I.R.E.

· Internal video signal amplitude control bit

This bit sets the amplitude of the internal video signal to 1 or 2 Vp-p (this amplitude must match the amplitude of the signal input in the external video signal mode). When the amplitude is set to 1 Vp-p, the voltage applied to the VCNT pin must be 2.5 V. When the amplitude is set to 2 Vp-p, apply 5 V to the VCNT pin.

4.11 Character Size Control Command

This command can set the character size in line units (in both the horizontal and vertical directions). it must ha in

De	because this is a 2-byte command, it must be input in to-bit drifts even when successively input														
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	1	1	0	0	0	0	S0	0	0	AR3	AR2	AR1	ARO

Line specification control bits								
AR3	AR2	AR1	ARO	Function				
0	0	0	0	Sets line 0				
0	0	0	1	Sets line 1				
1	0	1	1	Sets line 11				

Character size control bit					
SO	Function				
0	Vertical 1 dot:1H, horizontal 1 dot: 1t dot				
1	Vertical 1 dot:2H, horizontal 1 dot: 2t dot				

1 dot = 1us/fosc(MHZ)

fOSC: LC oscillation frequency

Display with two character size specified

4.12 Test Mode Command

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	0	1	1	0	0	0	0	T7	T6	T5	T4	T3	T2	T1	TO

This command is for testing the IC. Do not set this command.

4.13 Display Character Control Command (2-byte contiguous command)

This command	is a 2-by	te contiguous	command
ring communu	15 U Z Dy	ic contiguous	oommana

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
1	1	0	0	0	0	BL	0	0	C6	C5	C4	C3	C2	C1	CO

	Blink control bi					
BL	Function					
0	Does not blink character					
1	blink character					

Character specification bits									
C6	C5	C4	C3	C2	C1	CO	Function		
0	0	0	0	0	0	0	Output data of OOH		
0	0	0	0	0	0	1	Output data of O1H		
			•••••	• • • • • • • • • • • •	•••••	•••••			
1	1	1	1	1	1	0	Output data of 7EH (DISPLAY OFF)		
1	1	1	1	1	1	1	End code of 2-byte contiguous command		

5. TRANSFERRING COMMANDS

5.1 1-Byte Command

5.2 2-Byte Command

When transferring a 2-byte command, keep $\overline{\text{CS}}$ low between the first byte and second byte

5.3 2-Byte Contiguous Command

The 2-byte contiguous command writes a character to the video RAM. To write characters in succession without changing the blink data, first transfer the first byte and then transfer the second bytes (character addresses) in succession.

5.4 Successive Command Input

Transfer each of the 1-byte, 2-byte, and 2-byte contiguous commands from a microcomputer to the MS6464 as described below.

When transferring a 1-byte command, 2-byte command, or a 2-byte contiguous command with the blink data changed after a 2-byte contiguous command has been transferred, either make \overline{CS} high once, or transfer end code of the 2-byte contiguous command at the end of the 2-byte contiguous command. In the latter case, \overline{CS} needs not to be made high.

5.4.1 When 2-byte contiguous command end code is not used

5.5 BUSY Period for Command Input

The BUSY period for command input is distinguished depending on whether a 1-byte, 2-byte, or 2-byte contiguous command

5.5.2 When inputting 2-byte contiguous command

(1) Not transferring 2-byte contiguous command in Vsync period with detecting Vsync (command continuous input enable time 2 = TB2)

S1 : character size

T_{HWL1} : Hsync width TB1' \geq 2.0 us

(2) Transferring 2-byte contiguous command in Vsync period without detecting Vsync (command continuous input enable time 2' = TB2')

Symbol	Condition	MIN	TYP	MAX	Unit
TB2'	2-byte contiguous command (= video RAM write command), Display	(21/fosc)×S2+Thw12			us
	ON				

Remark fosc : clock frequency of LC oscillation

S1 : character size of the first line

T_{HWL2} : Hsync period

MS6464

TYPICAL APPLICATION CIRCUIT

Physical Dimensions

24 PIN PLASTIC SOP (375 mil)

detail of lead end

NOTE

- 1. Controlling dimention millimeter.
- 2. Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	15.3 ^{+0.41}	$0.602^{+0.017}_{-0.008}$
В	0.87 MAX.	0.035 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.42+0.08	0.017+0.003
E	0.125±0.075	0.005±0.003
F	2.9 MAX.	0.115 MAX.
G	2.50±0.2	0.098+0.009
н	10.3±0.2	0.406+0.008
I	7.2±0.2	0.283+0.009
J	1.6±0.2	0.063±0.008
ĸ	0.17+0.08	0.007+0.003
L	0.8±0.2	0.031+0.009 -0.008
М	0.12	0.005
Ν	0.10	0.004
Р	3°+7° -3°	3°+7° -3°

P24GT-50-375B-2