
双通道、 低失调运算放大器

产品简述

MS8228 是一款双通道、低失调电压的运算放大器,它采用晶圆级的修调来消除失调,同时具有极低的偏置电流(只有4nA)以及很高的开环增益(最小 200V/mV, 106dB)。这些特点使得 MS8228 适合用作高增益的仪表放大器。

- 低失调电压漂移: 1.3μV/°C (Max)
- 失调电压时间稳定性: 1.5μV/月 (最大)
- 低噪声: 0.6µVp-p (Max)
- 宽输入电压范围: ±14V (Typ)
- 宽电源电压范围: ±3V 到±18V

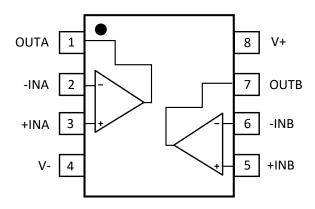
应用

- 无线基站控制电路
- 光纤网络控制电路
- 仪表放大器
- 传感器与控制、热偶 热阻监测 应亦标

应变桥

并联电流监测

■ 精准滤波器


产品规格分类

产品	封装形式	丝印名称
MS8228	SOP8	MS8228

SOP8

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	OUTA	0	A 通道输出
2	-INA	I	A 通道反向端输入
3	+INA	1	A 通道同向端输入
4	V-	1	负电源
5	+INB	1	B 通道同向端输入
6	-INB	1	B 通道反向端输入
7	OUTB	0	B 通道输出
8	V+	-	正电源

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
电源电压	V _S =(V+)-(V-)	40	V
输入管脚电压		V- ~ V+	V
差分输入电压		±30	V
结温范围		-65 ~ 150	°C
工作温度	T _A	-40 ~ 125	°C
存储温度	T _{STG}	-65 ~ 150	°C
引脚温度范围		260	°C

电气参数

V+=+15V, V-=-15V, 其他除非另有说明。

V+=+15V,V-=-15V,身				曲刑店	旦 上店		
参数	符号	测试条件	最小值	典型值	最大值	单位	
输入特性							
		T _A =25°C,A 档			25		
输入失调电压	V_{OS}	T _A =25°C,B 档			75	μV	
		T _A =25°C,C档			150		
失调电压长期稳定性	V _{os} /Time			0.3	1.5	μV / 月	
输入失调电压漂移	$\Delta V_{OS}/\Delta T_A$	-0°C ≤ T _A ≤ +70°C		0.3	1.3	μV/°C	
输入偏置电流	I_{B}			22		nA	
输入失调电流	los			7		nA	
输入差模电阻	R _{IN}		15	50		ΜΩ	
输入共模电阻	R _{INCM}			160		GΩ	
	V _{CMR}		±13	±14			
输入电压范围		-0°C ≤ T _A ≤ +70°C	±13	±13.5		V	
	CMRR	V _{CM} = ±13V	106	123		dB	
共模抑制比		-0°C ≤ T _A ≤ +70°C	103	123			
	Avo	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	106	114			
		R _L ≥500Ω, V _O = ±10V	103	112			
大信号增益		-0°C ≤ T _A ≤ +70°C,		113		dB	
		$R_L \ge 2k\Omega$, $V_O = \pm 10V$	105				
		输出特性					
	Vo	R _L ≥10kΩ	±12.5	±13.0			
输出电压摆幅		R∟≥2kΩ	±12.0	±12.8			
		R _L ≥1kΩ	±10.5	±12.0		V	
		-0°C ≤ T _A ≤ +70°C, R _L ≥2kΩ	±12.0	±12.6]	
输出短路电流	I _{SC}			21		mA	

参数	符号	测试条件	最小值	典型值	最大值	单位	
2 33	1,4,4	电源功耗	1944	7 (12)	1000	, ,	
		V _S =±3V 到 ±18V	94	106			
电源抑制比	PSRR	-0°C ≤ T _A ≤ +70°C	90	103		dB	
V A V I BB ## 1 1 ##		Vs = ±15V,无负载		80	120		
单个放大器静态功耗	PQ	Vs = ± 3 V,无负载		5.5	8	mW	
		动态特性		_	1		
增益带宽积	GBP	A _V = 1	1	1.3		MHz	
压摆率	SR	R _L ≥2kΩ	0.1	0.3		V/µs	
失调电压调节范围		$R_p=20k\Omega$		±3.6		mV	
		噪声特性					
电压噪声	e _{nP-P}	0.1Hz 到 10Hz		0.35	0.6	μV_{P-P}	
		f _O = 10Hz		10.3	18.0		
电压噪声密度	e _n	f _O = 100Hz		10.0	13.0 nV/√F		
		f _O = 1kHz		9.6	11.0		
电流噪声	I _{nP-P}			14	30	рА _{Р-Р}	
		fo = 10Hz		0.32	0.80		
电流噪声密度	In	f _O = 100Hz		0.14	0.23	pA/√Hz	
		f _O = 1kHz		0.12	0.17		

典型参数曲线

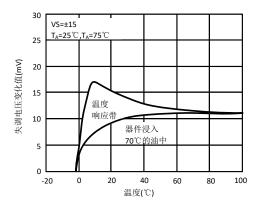


图 1. 温度突变对失调电压的影响

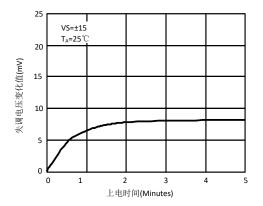


图 3. 器件发热对失调电压的影响

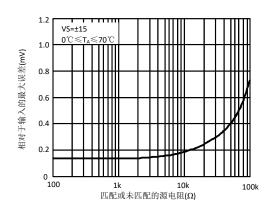


图 2. 最大误差 VS. 源电阻

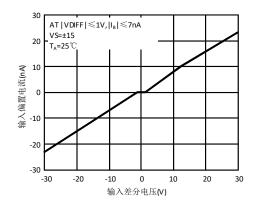


图 4. 输入偏置电流 VS. 差分电压

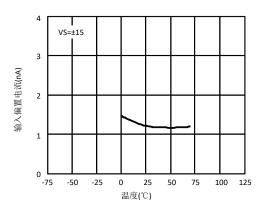


图 5. 输入偏置电流 VS. 温度

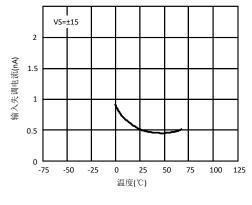


图 6. 输入失调电流 VS. 温度

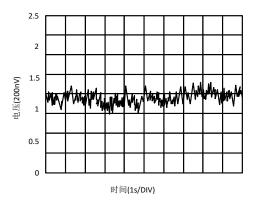


图 7. 低频噪声

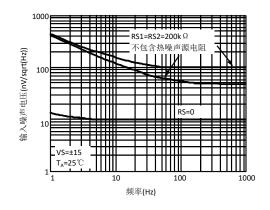


图 8. 总输入噪声电压 VS. 频率

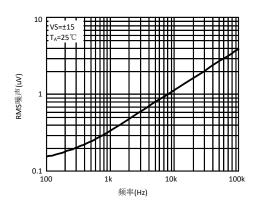


图 9. 输入频带噪声 VS.频率

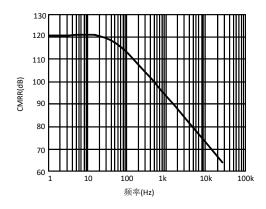


图 10. CMRR VS. 频率

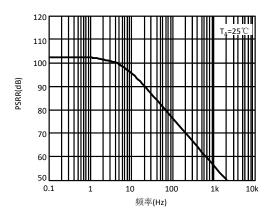


图 11. PSRR VS. 频率

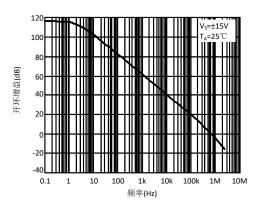


图 13. 开环增益频率响应

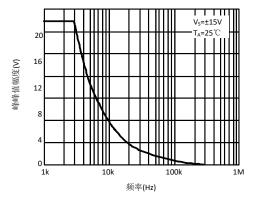


图 15. 不同频率的输出电压摆幅

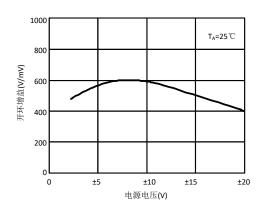


图 12. 开环增益 VS.电源电压

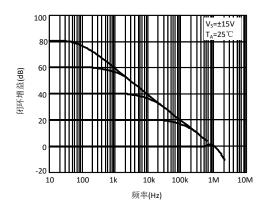


图 14. 不同增益配置下的闭环响应

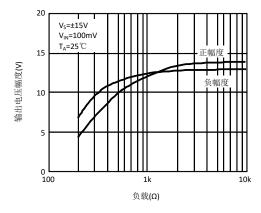


图 16. 输出电压摆幅 VS. 负载

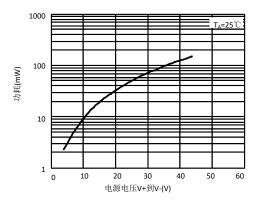


图 17. 功耗 VS. 电源电压

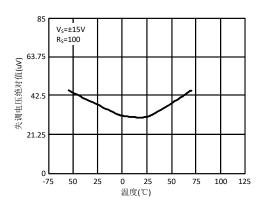


图 19. 未修调失调电压 VS. 温度

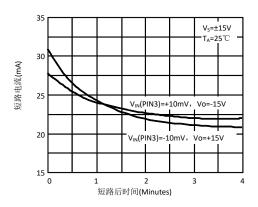


图 18. 短路电流 VS. 时间

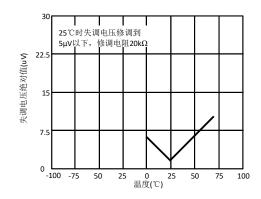


图 20. 修调后失调电压 VS. 温度

典型应用

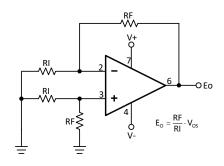


图 21. 典型失调电压测量电路

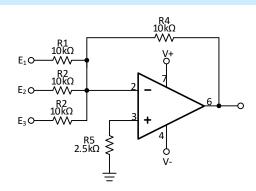


图 22. 精准的求和电路

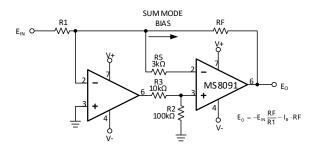


图 23. 高速、低失调的复合放大器

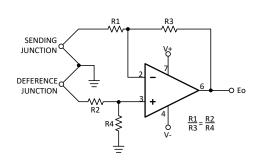


图 24. 高稳定的热偶放大器

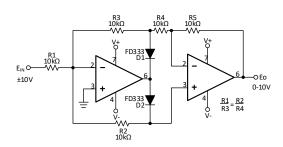
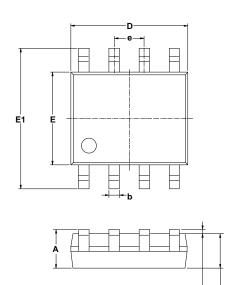
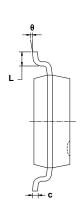
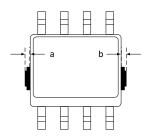




图 25. 精确的绝对值电路

封装外形图


SOP8

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

印章与包装规范

1. 印章内容介绍

产品型号: MS8228 生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS8228	SOP8	4000	1	4000	8	32000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com