精密、低噪、CMOS、轨到轨输入输出运算放大器

产品简述

MS8608/MS8608T 是四通道、轨到轨输入输出、单电源供电运放。它具有低失调电压、低输入电压电流噪声和宽信号带宽的特性。

MS8608/MS8608T 的低失调、低噪、低输入偏置电流和宽带宽的特性使其适用于各种应用。其优异的性能能够运用于滤波器、积分器、光电放大器和高阻抗传感器应用,音频和一些 AC 应用得益于其宽带宽和低失真的特性。

MS8608/MS8608T的工作温度范围在-40°C到125°C。

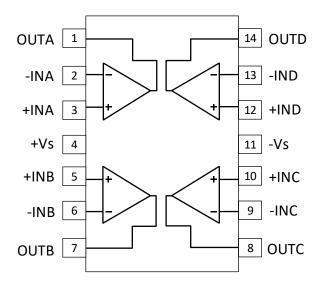
- 低失调电压: 65µV
- 低输入偏置电流
- 单电源: 2.7V 到 5.5V
- 低噪: 9nV/VHz
- 高开环增益: 100dB
- 宽带宽: 9MHz
- 单位增益稳定

应用

- 光电放大
- 多阶滤波器
- 传感器
- 音频
- 条形扫描器

产品规格分类

产品	封装形式	丝印名称
MS8608	SOP14	MS8608
MS8608T	TSSOP14	MS8608T



SOP14

TSSOP14

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	OUTA	0	A 通道输出
2	-INA	I	A 通道反向端输入
3	+INA	I	A 通道同向端输入
4	+Vs	-	正电源
5	+INB	1	B 通道同向端输入
6	-INB	I	B 通道反向端输入
7	OUTB	0	B 通道输出
8	OUTC	0	C通道输出
9	-INC	I	C通道反向端输入
10	+INC	I	C通道同向端输入
11	-Vs	-	负电源
12	+IND	I	D通道同向端输入
13	-IND	ı	D通道反向端输入
14	OUTD	0	D通道输出

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
电源电压	Vs	6	V
输入管脚电压		$V_{SS} \sim V_{DD}$	V
差分输入电压		±6	V
结温范围	Tı	-65 ~ 150	°C
工作温度	T _A	-40 ~ 125	°C
存储温度	T _{STG}	-65 ~ 1 50	°C
引脚温度(焊接,10秒)		260	°C

电气参数 (5V)

V_S = 5V, V_{CM} = 2.5V。注意:没有特别规定,环境温度为T_A = 25℃ ±2℃。

输入特性

参数	符号	测试条件	最小值	典型值	最大值	单位
		V _S = 3.5V, V _{CM} = 3V		20	65	
输入失调电压	Vos	V _S = 5V, V _{CM} = 0V~5V		80	300	μV
		-40°C ≤ T _A ≤ 125°C			750	
输入偏置电流	Ι _Β			0.2		рА
输入失调电流	los			0.1		рА
44-44-40-4-11.		V _{CM} = 0V~5V	85	100		10
共模抑制比	CMRR	-40°C ≤ T _A ≤ 125°C	75	90		dB
输入电压范围			0		5	V
大信号增益	Avo	$R_L = 2k\Omega$, $V_O = 0.5V \sim 4.5V$		100		dB
输入失调电压漂移	$\Delta V_{OS}/\Delta T_A$	-40°C ≤ T _A ≤ 125°C		1.5	10	μV/°C
松)中京	CDIFF			2.6		рF
输入电容	Ссм			8.8		pF

输出特性

参数	符号	测试条件	最小值	典型值	最大值	单位
		I _L = 1mA	4.96	4.99		
输出高电平	Vон	I _L = 10mA	4.7	4.79		V
		-40°C ≤ T _A ≤ 125°C	4.7			
		I _L = 1mA		20	40	
输出低电平	Vol	I _L = 10mA		170	210	mV
		-40°C ≤ T _A ≤ 125°C			290	
		短路到 VCC	_	83		
输出短路电流	Isc	短路到 GND		80		mA

电源

参数	符号	测试条件	最小值	典型值	最大值	单位
. I. Mr. Mardall I.		2.7V < V _{CM} < 5.5V	85	95		dB
电源抑制比	PSRR	-40°C ≤ T _A ≤ 125°C	70	90		dB
静态电流/放大器		Iout = 0mA		1		
	Isy	-40°C ≤ T _A ≤ 125°C			1.4	mA

动态性能

74 : D: 100						
参数	符号	测试条件	最小值	典型值	最大值	单位
单位增益带宽	GBP			9		MHz
压摆率	SR	$R_L = 2k\Omega$, $C_L = 16pF$		8		V/µs
建立时间 0.01%	ts	0V~2V step, A _V = 1		<1		μs
相位裕度	Фо			65		Deg

噪声特性

-						
参数	符号	测试条件	最小值	典型值	最大值	单位
1/f 噪声	e _{np-p}	f = 0.1Hz ~10Hz		2	3	μV
		f = 1kHz		9		_
电压噪声密度	e _n	f = 10kHz		7		nV/VHz
电流噪声密度	in	f = 1kHz		0.01		fA/√Hz

电气参数 (2.7V)

V_S = 2.7V, V_{CM} = 1.35V。注意: 没有特别规定,环境温度为T_A = 25℃ ±2℃。

输入特性

参数	符号	测试条件	最小值	典型值	最大值	单位
		V _S =3.5V, V _{CM} = 3V		20	65	
输入失调电压	Vos	V _S = 2.7V, V _{CM} = 0V~2.7V		80	300	μV
		-40°C ≤ T _A ≤ 125°C			750	
输入偏置电流	lΒ			0.2		рА
输入失调电流	I _{OS}			0.1		рА
+++++++++++++++++++++++++++++++++++++++		V _{CM} = 0V~2.7V		100		16
共模抑制比	CMRR	-40°C ≤ T _A ≤ 125°C	70	85		dB
输入电压范围			0		2.7	V
大信号增益	Avo	$R_L = 2k\Omega$, $V_0 = 0.5V \sim 2.2V$		100		dB
输入失调电压漂移	ΔVos/ΔT _A	-40°C ≤ T _A ≤ 125°C		1.5	10	μV/°C
th) 1 th	C _{DIFF}			2.6		pF
输入电容	Ссм			8.8		pF

输出特性

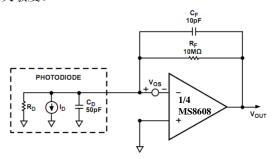
参数	符号	测试条件	最小值	典型值	最大值	单位
	Vон	I _L = 1mA		2.69		
输出高电平		-40°C ≤ T _A ≤ 125°C		2.66		V
10 J. 10 J. II		I _L = 1mA		25	40	
输出低电平	Vol	-40°C ≤ T _A ≤ 125°C			50	mV
		短路到 VCC		28		
短路电流	I _{sc}	短路到 GND		1		mA

电源

参数	符号	测试条件	最小值	典型值	最大值	单位
de Mee dee do l I e		2.7V < V _{CM} < 5V	85	95		dB
电源抑制比	PSRR	-40°C ≤ T _A ≤ 125°C	70	90		dB
静态电流/放大器		I _{OUT} = 0mA		0.8		
	lsy	-40°C ≤ T _A ≤ 125°C			1.2	mA

动态性能

参数	符号	测试条件	最小值	典型值	最大值	单位
单位增益带宽	GBP			8.8		MHz
压摆率	SR	$R_L = 2k\Omega$, $C_L = 16pF$		8		V/µs
建立时间 0.01%	ts	0V~1V step, A _V = 1		<0.5		μs
相位裕度	Фо			50		Deg


噪声特性

参数	符号	测试条件	最小值	典型值	最大值	单位	
1/f 噪声	e _{np-p}	f= 0.1Hz~10Hz		2	3	μV	
电压噪声密度	e _n	f = 1kHz		9		nV/VHz	
		f = 10kHz		7			
电流噪声密度	in	f = 1kHz		0.01		fA/√Hz	

典型应用图

光电二极管前置放大器

MS8608 有低失调电压和低输入电流的优势,可以很好地应用在光电二极管领域。低噪声的特性 使其在应用线路中有较高的灵敏度。

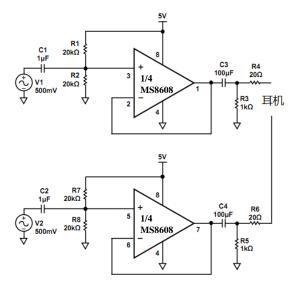
放大器的输入偏置电流会产生一个与 R_F 成比例的误差项,失调电压由于分流电阻 R_D 的关系会引起暗电流,这些误差项将在放大器的输出端体现,误差电压的公式如下:

$$E_{O} = V_{OS} \left(1 + \frac{R_{F}}{R_{D}} \right) + R_{F} I_{B}$$

其中, R_F/R_D可以忽略。

在室温下,MS8608 的输入偏置电流为 0.2pA,失调电压为 20μV。 R_D 的典型值为 $1G\Omega$ 。

室温时误差项在 100μV 左右, 85℃ 时增长到 1mV。

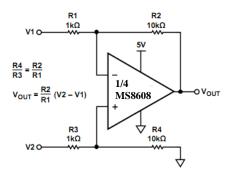

最大可实现的信号带宽公式:

$$f_{\text{MAX}} = \sqrt{\frac{f_t}{2\pi R_F C_F}}$$

其中 ft 为放大器的 unity 增益频率。

音频与 PDA 应用

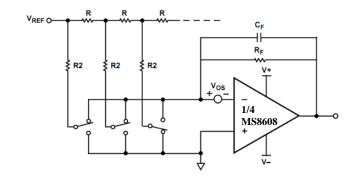
MS8608 有低失真和宽动态范围特性,使其在音频和 PDA 应用上占有优势,包括麦克风放大器和 线路输出缓冲。


图中,R1 和 R2 将输入电压偏置为电源电压的一半,使信号的带宽范围最大化。C1 和 C2 用来 AC 耦合输入信号。C1,R1,R2 组成一个高通滤波器,他的拐点频率为 $1/[2\pi(R1||R2)C1]$ 。MS8608 的高输出可以驱动大电阻负载。

如图电路结构可以驱动 16Ω 的耳机, THD+N 整个音频范围保持在-60dB 左右。

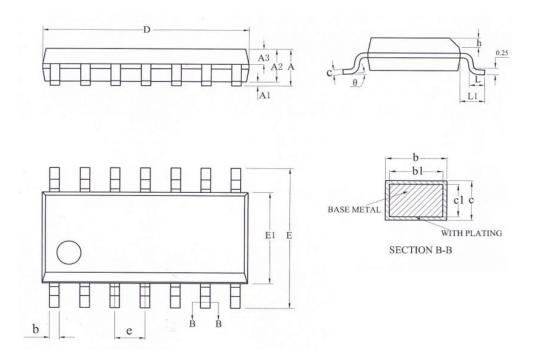
乐器放大器

MS8608 具有低失调电压和低噪声的优点,很适合应用于乐器放大器。

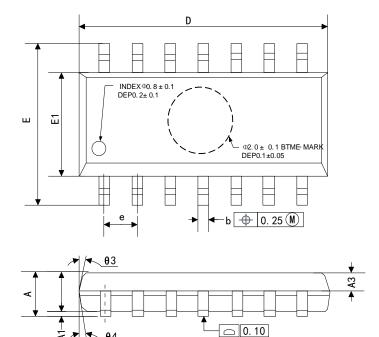

差分放大器广泛应用于高精度电路中,以提高共模抑制比,此结构共模抑制比能达到85-95dB。

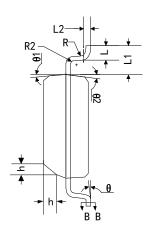
DAC 转换

MS8608 具有低偏置电流和低失调电压的特点,是电流输出 DAC 的输出缓冲的绝佳选择。


下图为 MS8608 应用在 12-bit DAC 输出端的典型结构。

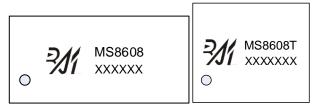
封装外形图


SOP14



符号	尺寸 (毫米)				
	最小	典型	最大		
А			1.75		
A1	0.05		0.25		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.39		0.47		
b1	0.38	0.41	0.44		
С	0.20		0.24		
c1	0.19	0.20	0.21		
D	8.55	8.65	8.75		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е	1.27 BSC				
h	0.25	25			
L	0.50	0.80			
L1	1.05REF				
θ	O ō		8 ō		

TSSOP14



符号	尺寸(毫米)				
	最小	典型	最大		
А			1.20		
A1	0.05		0.15		
A2	0.90	1.00	1.05		
A3	0.39	0.44	0.49		
b	0.20		0.30		
b1	0.19	0.22	0.25		
С	0.13		0.19		
c1	0.12	0.13	0.14		
D	4.86	4.96	5.06		
E1	4.30	4.40	4.50		
E	6.20	6.40	6.60		
e	0.65BSC				
L	0.45		0.75		
L1	1.00BSC				
θ	0		8°		

印章与包装规范

1. 印章内容介绍

产品型号: MS8608、MS8608T 生产批号: XXXXXX、XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS8608	SOP14	2500	1	2500	8	20000
MS8608T	TSSOP14	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1号 高新软件园 9号楼 701室

http://www.relmon.com