

Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

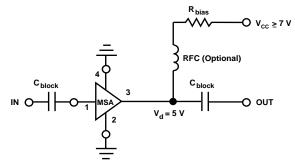
ww.DataSheet4U.com

Features

- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 0.8 GHz
- High Gain: 17.0 dB Typical at 0.5 GHz
- Unconditionally Stable (k>1)
- Low Cost Plastic Package

Description

The MSA-0104 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and wide bandwidth IF and RF amplifiers in commercial and industrial applications.


The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

MSA-0104

04A Plastic Package

Typical Biasing Configuration

MSA-0104 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	40 mA				
Power Dissipation ^[2,3]	200 mW				
RF Input Power	+13dBm				
Junction Temperature	150°C				
Storage Temperature	-65 to 150°C				

.DataSheet4U.com

Thermal Resistance^[2,4]: $\theta_{ic} = 100^{\circ}C/W$

Notes:

- Permanent damage may occur if any of these limits are exceeded.
 The second second
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 10 mW/°C for $T_{\rm C}$ > 130°C.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

MSA-0104 Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz f = 0.5 GHz	dB	17.0	18.5 17.0	
ΔG_P	Gain Flatness	$\rm f=0.1to0.6GHz$	dB		± 1.0	
f _{3 dB}	3 dB Bandwidth		GHz		0.8	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.4:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.3:1	
NF	50Ω Noise Figure	f = 0.5 GHz	dB		5.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	$f = 0.5 \mathrm{GHz}$	dBm		1.5	
IP ₃	Third Order Intercept Point	$f = 0.5 \mathrm{GHz}$	dBm		14.0	
$t_{\rm D}$	Group Delay	$f = 0.5 \mathrm{GHz}$	psec		180	
Vd	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-9.0	

Notes:

1. The recommended operating current range for this device is 13 to 25 mA. Typical performance as a function of current is on the following page.

MSA-0104 Typical Scattering Parameters (Z $_{\rm o}$ = 50 $\Omega,$ T $_{\rm A}$ = 25°C, I $_{\rm d}$ = 17 mA)

Freq.	S ₁₁		S ₂₁		S ₁₂			S_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.06	141	18.4	8.31	170	-22.3	.077	5	.07	-9
0.2	.08	112	18.1	8.07	160	-22.3	.077	9	.07	-15
0.3	.10	94	17.8	7.75	151	-22.0	.079	15	.07	-22
0.4	.12	77	17.4	7.38	142	-21.6	.083	16	.07	-32
0.5	.13	70	16.9	7.01	134	-21.0	.089	19	.07	-37
0.6	.14	56	16.4	6.60	127	-20.7	.092	21	.08	-44
0.8	.16	41	15.4	5.87	114	-19.5	.106	27	.08	-53
1.0	.17	28	14.3	5.21	102	-18.9	.114	29	.08	-61
1.5	.17	5	12.1	4.02	78	-16.6	.148	30	.08	-73
2.0	.13	-12	10.2	3.25	59	-14.9	.179	25	.07	-90
2.5	.08	-20	8.9	2.77	46	-13.6	.209	25	.05	-112
3.0	.02	-37	7.7	2.42	31	-12.7	.232	18	.05	-134
3.5	.05	128	6.7	2.15	15	-11.9	.253	10	.06	-160
4.0	.12	113	5.7	1.92	-1	-11.3	.272	2	.06	-175
4.5	.19	97	4.8	1.73	-15	-10.8	.289	-7	.07	173
5.0	.27	80	3.9	1.56	-30	-10.6	.294	-15	.07	150

A model for this device is available in the DEVICE MODELS section.

MSA-0104 Typical Performance, $T_A = 25^{\circ}C$

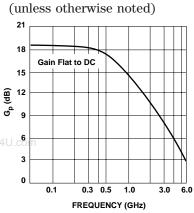
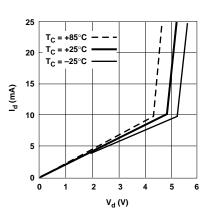



Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 17 mA.

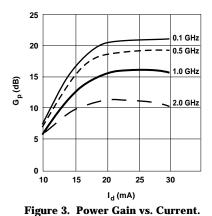


Figure 2. Device Current vs. Voltage.

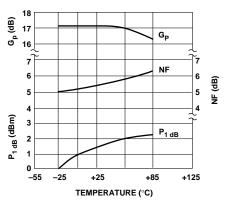
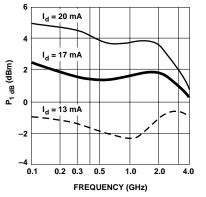
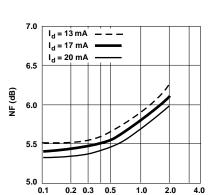
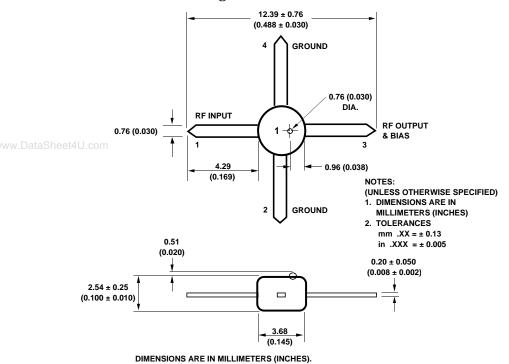


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. CaseTemperature, f = 0.5 GHz, $I_d = 17$ mA.


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

FREQUENCY (GHz)

Figure 6. Noise Figure vs. Frequency.

04A Plastic Package Dimensions

