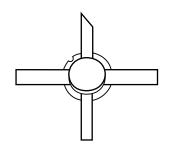


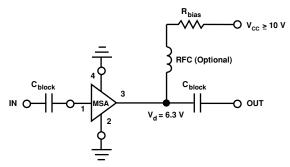
Agilent MSA-0420 Cascadable Silicon Bipolar MMIC Amplifier


Data Sheet

Description

The MSA-0420 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Agilent's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


200 mil BeO Package

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 4.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- 16.0 dBm Typical $P_{1 dB}$ at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Metal/Beryllia Microstrip Package

Typical Biasing Configuration

MSA-0420 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	120 mA
Power Dissipation ^[2,3]	850 mW
RF Input Power	+13 dBm
Junction Temperature	200°C
Storage Temperature	−65 to 200°C

Thermal Resistance $[2,4]$:					
$\theta_{jc} = 40^{\circ} \text{C/W}$					

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.

- T_{CASE} = 25°C.
 Derate at 25 mW/°C for T_C > 166°C.
 The small spot size of this technique results in a higher, though more accurate determination of $q_{jc}\, than \ do \ alternate \ methods.$

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB	7.5	8.5	9.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 2.5 GHz	dB		±0.6	±1.0
f _{3 dB}	3 dB Bandwidth		GHz		4.3	
VSWR	Input VSWR	f = 0.1 to 2.5 GHz			1.7:1	
VSWIL	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	14.0	16.0	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		30.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
V_{d}	Device Voltage		V	5.7	6.3	6.9
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

1. The recommended operating current range for this device is 40 to 110 mA. Typical performance as a function of current is on the following page.

MSA-0420 Typical Scattering Parameters	$(\mathbf{Z}_0 = 5)$	$0 \Omega, \mathbf{T}_{A}$	$_{\rm a} = 25^{\circ}{\rm C}, {\rm I}_{\rm d} = 90 {\rm m}$	A)
--	----------------------	----------------------------	--	----

Freq.	\mathbf{S}_{11}			\mathbf{S}_{21} \mathbf{S}_{12}		\mathbf{S}_{21}			\mathbf{S}_2	22
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.25	177	8.6	2.70	175	-16.4	.151	1	.03	-30
0.2	.25	173	8.6	2.69	170	-16.5	.150	1	.04	-59
0.4	.24	167	8.6	2.69	159	-16.5	.150	-1	.07	-79
0.6	.22	160	8.5	2.67	149	-16.4	.152	-2	.10	-92
0.8	.21	154	8.5	2.66	139	-16.3	.154	-2	.13	-99
1.0	.20	148	8.3	2.60	129	-16.1	.156	-3	.16	-109
1.5	.14	136	8.1	2.54	104	-15.6	.166	-4	.22	-124
2.0	.10	136	7.9	2.48	80	-14.8	.181	-6	.25	-139
2.5	.08	161	7.4	2.34	62	-14.3	.193	-5	.28	-147
3.0	.10	178	7.0	2.24	39	-13.7	.206	-11	.31	-157
3.5	.13	176	6.6	2.13	18	-12.6	.233	-18	.34	-167
4.0	.14	163	5.9	1.97	-3	-11.9	.253	-25	.36	-176
4.5	.14	133	5.3	1.83	-23	-11.3	.273	-33	.37	174
5.0	.16	91	4.5	1.69	-343	-10.5	.299	-43	.37	162

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

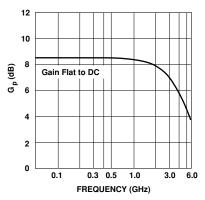


Figure 1. Typical Power Gain vs. Frequency, T_A = 25°C, I_d = 90 mA.

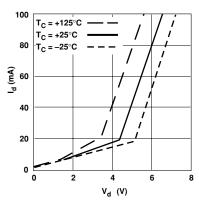


Figure 2. Device Current vs. Voltage.

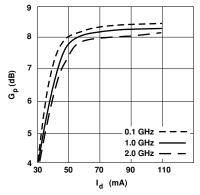


Figure 3. Power Gain vs. Current.

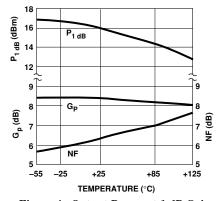


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, I_d = 90 mA.

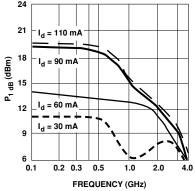


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

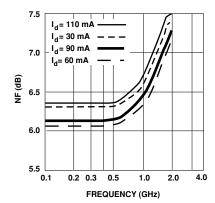
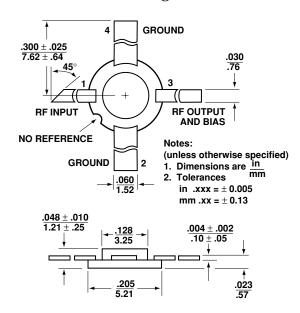



Figure 6. Noise Figure vs. Frequency.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0420	10	Bulk		

200 mil BeO Package Dimensions

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394

India, Australia, New Zealand: (65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or

0120-61-1280(Domestic Only)

Korea: (65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044

Taiwan: (65) 6755 1843

Copyright © 2005 Agilent Technologies, Inc.

Obsoletes 5965-9574E

Data subject to change.

April 4, 2005 5989-2752EN

