

Cascadable Silicon Bipolar MMIC Amplifier

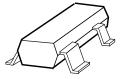
Technical Data

MSA-0711

Features

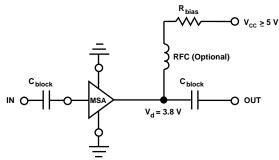
- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 1.9 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available^[1]

Note:


1. Refer to PACKAGING section "Tapeand-Reel Packaging for Surface Mount Semiconductors".

Description

The MSA-0711 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in the surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.


The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metalli-

SOT-143 Package

zation to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

MSA-0711 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	50 mA				
Power Dissipation ^[2,3]	175 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature	–65 to 150°C				

Thermal Resistance^[2,4]: $\theta_{jc} = 505^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 2.0 mW/°C for $T_C > 62\,^\circ C.$

4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB		13.0	
		f = 1.0 GHz		10.0	12.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB		±0.8	
f _{3 dB}	3 dB Bandwidth		GHz		3.2	
VSWR	Input VSWR	f = 0.1 to 2.0 GHz			1.5:1	
VSVIL	Output VSWR	f = 0.1 to 2.0 GHz			1.5:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		5.0	
P1 dB	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		18.0	
tD	Group Delay	f = 1.0 GHz	psec		145	
Vd	Device Voltage	$T_C = 25^{\circ}C$	V	3.0	3.8	4.6
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

Note:

1. The recommended operating current range for this device is 15 to 30 mA. Typical performance as a function of current is on the following page.

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-0711-TR1	3000	7" Reel		
MSA-0711-BLK	100	Antistatic Bag		

For more information, see "Tape and Reel Packaging for Semiconductor Devices".

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.03	1	13.0	4.47	174	-18.6	.118	1	.19	-8
0.2	.04	1	12.9	4.42	168	-18.5	.119	2	.19	-18
0.4	.04	-4	12.8	4.38	157	-18.4	.120	4	.19	-36
0.6	.05	-19	12.6	4.28	146	-18.1	.125	9	.19	-52
0.8	.07	-32	12.3	4.14	135	-17.7	.130	10	.20	-68
1.0	.08	-44	12.0	3.99	123	-17.4	.135	12	.19	-82
1.5	.13	-88	10.9	3.52	98	-16.1	.157	13	.19	-113
2.0	.18	-130	9.8	3.08	75	-15.2	.173	8	.18	-138
2.5	.25	-155	8.6	2.68	61	-14.7	.184	9	.18	-151
3.0	.32	-178	7.2	2.30	42	-14.7	.185	5	.17	-158
3.5	.38	165	5.8	1.96	26	-14.8	.181	3	.17	-150
4.0	.42	152	4.5	1.68	12	-14.7	.184	1	.20	-142

MSA-0711 Typical Scattering Parameters (Z₀ = 50 Ω , T_A = 25°C, I_d = 22 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

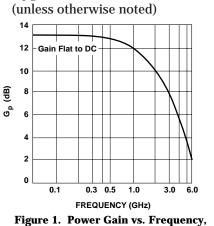


Figure 1. Power Gain vs. Frequence $I_d = 22 \text{ mA}.$

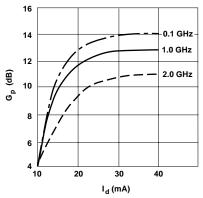


Figure 2. Power Gain vs. Current.

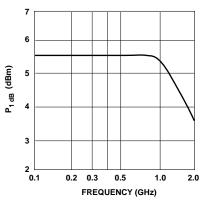


Figure 3. Output Power at 1 dB Gain Compression vs. Frequency, $I_d = 22$ mA.

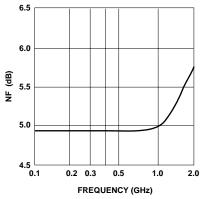
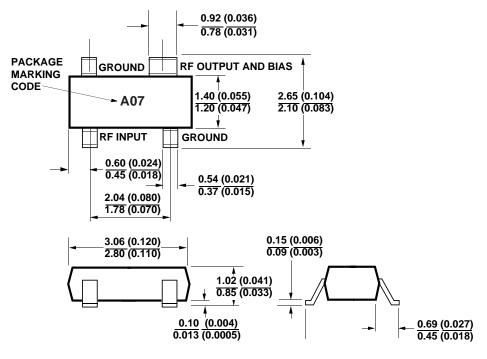



Figure 4. Noise Figure vs. Frequency, $I_d = 22 \text{ mA}$.

SOT-143 Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-9590E (11/99)