

Agilent MSA-0870 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Features

- Usable Gain to 6.0 GHz
- High Gain: 32.5 dB Typical at 0.1 GHz 23.5 dB Typical at 1.0 GHz
- Low Noise Figure: 3.0 dB Typical at 1.0 GHz
- Hermetic Gold-ceramic Microstrip Package

Description

The MSA-0870 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50 Ω gain block above 0.5 GHz and can be used as a high gain transistor below this frequency. Typical applications include narrow and moderate band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

70 mil Package

Typical Biasing Configuration

MSA-0870 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	80 mA
Power Dissipation ^[2,3]	750 mW
RF Input Power	+13 dBm
Junction Temperature	200°C
Storage Temperature	-65°C to 200°C

Thermal Resistance^[2,4]: $\theta_{jc} = 150^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 6.7 mW/°C for $T_{\rm C} > 88^{\circ}{\rm C}.$

4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		32.5	
		f = 1.0 GHz		22.0	23.5	25.0
		f = 4.0 GHz			11.0	12.0
VCWD	Input VSWR	f = 1.0 to 3.0 GHz			2.0:1	
VSWR	Output VSWR	f = 1.0 to 3.0 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		3.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		27.0	
tD	Group Delay	f = 1.0 GHz	psec		125	
Vd	Device Voltage		V	7.0	7.8	8.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-17.0	

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 20 to 40 mA. Typical performance as a function of current is on the following page.

Freq.	S	11		\mathbf{S}_{21}		S ₁₂			S ₁₂ S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.1	.65	-19	32.5	42.04	161	-36.3	.015	40	.64	-22	0.78
0.2	.60	-35	31.5	37.54	145	-33.7	.021	47	.58	-43	0.66
0.4	.48	-60	29.1	28.49	122	-30.5	.030	51	.47	-74	0.64
0.6	.40	-76	26.8	21.90	108	-28.0	.040	50	.38	-97	0.72
0.8	.35	-88	24.9	17.48	97	-26.2	.049	50	.33	-113	0.78
1.0	.32	-102	23.4	14.85	87	-24.9	.057	51	.28	-128	0.83
1.5	.29	-118	20.1	10.14	70	-23.0	.071	47	.22	-151	0.91
2.0	.30	-133	17.6	7.55	56	-21.9	.081	45	.16	-167	0.98
2.5	.31	-139	15.6	6.01	49	-20.0	.100	46	.12	-172	1.02
3.0	.32	-149	13.8	4.87	39	-19.5	.106	41	.07	-170	1.11
3.5	.34	-159	12.2	4.09	28	-18.4	.121	35	.07	-143	1.12
4.0	.34	-168	10.8	3.48	17	-17.7	.131	31	.12	-112	1.16
5.0	.33	161	8.4	2.63	-3	-16.6	.147	21	.19	-103	1.26
6.0	.39	128	6.2	2.04	-22	-16.2	.155	10	.21	-115	1.36

MSA-0870 Typical Scattering Parameters^[1] ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 36 mA$)

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d = 36$ mA.

Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

Figure 6. Noise Figure vs. Frequency.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0870	10	Bulk		

70 mil Package Dimensions

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright © 2005 Agilent Technologies, Inc. Obsoletes 5968-0528E April 4, 2005 5989-2768EN

Agilent Technologies