

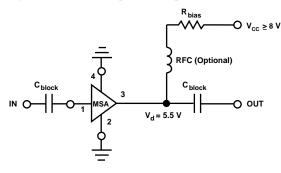
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

MSA-1120

Features

- High Dynamic Range Cascadable 50 Ω or 75 Ω Gain Block
- **3 dB Bandwidth:** 50 MHz to 1.6 GHz
- 17.5 dBm Typical P_{1 dB} at 0.5 GHz
- 12 dB Typical 50 Ω Gain at 0.5 GHz
- 3.5 dB Typical Noise Figure at 0.5 GHz
- Hermetic Metal/Beryllia Microstrip Package


Description

The MSA-1120 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic BeO disk package for good thermal characteristics. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP₃. Typical applications include narrow and broadband linear amplifiers in industrial and military systems.

The MSA-series is fabricated using Agilent's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

200 mil BeO Package

Typical Biasing Configuration

MSA-1120 Absolute	Maximum Ra	tings
--------------------------	------------	-------

Parameter	Absolute Maximum ^[1]
Device Current	100 mA
Power Dissipation ^[2,3]	650 mW
RF Input Power	+13 dBm
Junction Temperature	200°C
Storage Temperature	–65 to 200°C

Thermal Resistance^[2,4]:

 $\theta_{jc} = 60^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 16.7 mW/°C for $T_C > 161^{\circ}C$.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±0.7	±1.0
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		1.6	
VCUUD	Input VSWR	f = 0.1 to 1.5 GHz			1.7:1	
VSWR	Output VSWR	f = 0.1 to 1.5 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.5	4.5
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm	16.0	17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30.0	
tD	Group Delay	f = 0.5 GHz	psec		200	
Vd	Device Voltage		V	4.5	5.5	6.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

1. The recommended operating current range for this device is 40 to 75 mA. Typical performance as a function of current is on the following page.

2. Referenced from 50 MHz gain (G_P).

Freq.	S ₁₁		S ₂₁		S ₁₂			S ₂₂			
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
.0005	.78	-21	19.6	9.53	168	-25.1	.057	50	.79	-21	0.51
.005	.19	-72	13.8	4.91	165	-16.8	.144	11	.19	-72	0.98
.025	.05	-56	12.9	4.44	174	-16.5	.149	3	.06	-75	1.08
.050	.04	-52	12.5	4.23	174	-16.1	.156	2	.04	-79	1.08
.100	.04	-56	12.5	4.22	172	-16.2	.155	1	.04	-78	1.09
.200	.05	-72	12.4	4.19	165	-16.1	.157	1	.06	-91	1.08
.300	.07	-84	12.4	4.15	158	-16.0	.159	2	.09	-101	1.07
.400	.09	-96	12.3	4.10	151	-15.9	.161	2	.11	-109	1.06
.500	.10	-105	12.1	4.04	144	-15.8	.163	3	.13	-117	1.05
.600	.12	-113	12.0	3.98	137	-15.6	.166	3	.16	-124	1.04
.700	.14	-120	11.8	3.89	131	-15.4	.169	2	.18	-130	1.03
.800	.15	-127	11.6	3.80	124	-15.2	.173	2	.20	-136	1.01
.900	.17	-134	11.4	3.71	118	-15.0	.178	1	.22	-142	1.00
1.000	.19	-140	11.1	3.60	112	-14.8	.181	2	.24	-148	0.99
1.500	.25	-167	9.8	3.10	83	-14.0	.200	-3	.31	-174	0.95
2.000	.31	171	8.4	2.64	58	-13.3	.216	-10	.35	163	0.95
2.500	.35	157	7.3	2.31	39	-12.8	.228	-16	.36	148	0.96
3.000	.40	140	6.1	2.02	19	-12.5	.236	-23	.36	134	0.99

MSA-1120 Typical Scattering Parameters (Z_0 = 50 $\Omega,\,T_A$ = 25°C, I_d = 60 mA)

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$, $Z_0 = 50 \Omega$

(unless otherwise noted)

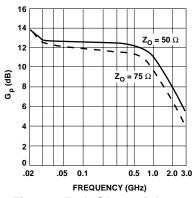


Figure 1. Typical Power Gain vs. Frequency, $I_d = 60$ mA.

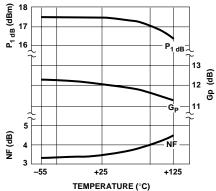


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, f = 0.5 GHz, $I_d = 60$ mA.

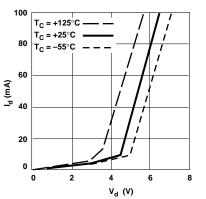


Figure 2. Device Current vs. Voltage.

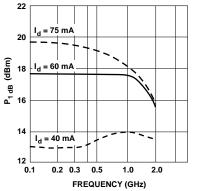


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

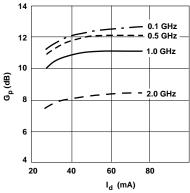
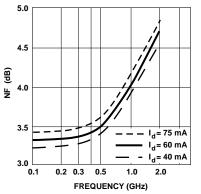
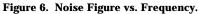




Figure 3. Power Gain vs. Current.

4 GROUND $\frac{.300\pm.025}{7.62\pm.64}$.<u>030</u> .76 **45**° 3 1 RF OUTPUT AND BIAS **RF INPUT** Notes: NO REFERENCE (unless otherwise specified) Dimensions are in mm Tolerances GROUND 2 .060 1.52 in $.xxx = \pm 0.005$ mm .xx = \pm 0.13 3. Base of package is electrically isolated. .<u>048 ± .010</u> 1.21 ± .25 $\frac{.004 \pm .002}{.10 \pm .05}$.<u>128</u> 3.25 -ŧ <u>.205</u> 5.21 .023 .57

200 mil BeO Package Dimensions

Package marking code is "A11"

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-9559E (11/99)