{'f TEXAS
INSTRUMENTS

MSC1210

Precision Analog-to-Digital
Converter with 8051
Microcontroller and Flash Memory

User’'s Guide

November 2002

SBAUO77

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

Contents

1 Introduction to the MSCL210ttt e e e 1-1
1.1 MSCL1210 DeSsCription . ..ottt e e e e 1-2
1.2 MSCIL210 Pin-OUt ..ottt e e e e 1-3

1.2.1 1/OPorts (PO, P1,P2,and P3)ot 1-5
1.2.2 Oscillator Inputs (XTALL and XTAL2)t 1-8
1.2.3 ReSetLine (RST) ..ot e e e e e 1-8
1.2.4 Address Latch Enable (ALE) i i 1-9
1.2.5 Program Store Enable (PSEN)c i 1-9
1.2.6 External ACCESS (EA) ...t e 1-9
1.3 ENhanced 8051 COrettt e 1-10
1.4 Family Device Compatibility 1-11
1.5 Flash Memory e e 1-11
1.6 High Performance Analog i et 1-11
1.7 High-Performance Peripherals i, 1-12

2 MSCI1210 Memory Organizzationuuueiet it ettt 2-1
2.1 DESCIIPHON .ttt 2-2
2.2 Program MemMOIY . . .v ittt e e 2-2
2.3 Data MemMOrY . 2-4

2.3.1 On-Chip Extended Static RAM (SRAM) i 2-4
2.3.2 On-Chip FlashData Memoryt 2-4
2.3.3 External Data MEmMOIY i 2-5
2.4 Internal RAM ... 2-5
241 The Stack 2-6
24.2 RegisterBanks e 2-7
243 Bt MEMOIY .. 2-7
2.4.4 Special Function Register (SFR)Memory 2-9

3 Special Function Registers (SFRS) e 3-1
3.l DESCHPIION .ot 3-2
3.2 Referencing SFRS ... i 3-3

3.21 Referencing Bits Of SFRS i i 3-3
3.3 Bit-Addressable SFRS 3-4
B4 SR TYPES . ottt 3-4
3.5 SFR DEfiNItioNS . . .o 3-4

4 BaSiC REQISIEIS . i e 4-1
4.1 DESCHIPUON o e 4-2
4.2 ACCUMUIALON .ottt e e e e e e e e 4-2
4.3 R REOISIEIS . . 4-2
A4 BT REOIS O . .ot 4-3
45 Program Counter (PC) ... i 4-3
4.6 Data Pointer (DPTRO/DPTRL) ...ttt e e e 4-4
4.7 Stack Pointer (SP) 4-4

Running Title—Attribute Reference

5

Addressing MOOESt 5-1
5.1 DESCHIPON .ttt e 5-2
5.2 Immediate AdAreSSiNgttt 5-2
5.3 DireCt AdAresSSingottt e 5-2
5.4 Indirect AddreSSiNgottt 5-3
5.5 EXternal DireCt 5-4
5.6 External INdireCt e 5-4
5.7 Code INdireCtt 5-5
Program FlOW e 6-1
6.1 DESCIIPLION .ttt e 6-2
6.2 Conditional BranChingii 6-2
6.3 DIrECT JUMIPS . .ottt e e e e e e 6-2
6.4 DireCt Calls i e 6-4
6.5 Returns From ROULINESot e e e e e e 6-4
6.6 INEEITUPES ...t e 6-4
SYSIEM TIMING .o e e 7-1
7.1 DESCIIPION .ttt 7-2
7.2 SYSIEM TIMEIS . oottt e et e e e e e 7-3
7.2.1 Microseconds TimMert 7-3
7.2.2 MillisSeconds TimMert 7-4
7.3 Startup TIMING . ..o e e 7-6
7.3.1 Normal-Mode Power-On Reset Timingooiiiiiiiiiniinnan. 7-6
7.3.2 Flash Programming Mode Power-On Reset Timing 7-7
I = 8-1
8.1 DESCIIPION .ttt 8-2
8.2 How Does aTimer COUNE?ttt ettt 8-2
8.3 Using Timers to Measure TiIMe it 8-2
8.3.1 HowLongDoesaTimerTaketo Count?ccviiiiiennninnann. 8-2
8.3.2 TIMer SFRS . .. 8-4
8.3.3 TMOD SFR .. 8-5
8.3.4 TCON SFR ... 8-8
8.3.5 Initializing a Timer 8-9
8.3.6 Readingthe Timer i e e 8-9
8.3.7 Timingthe Lengthof Events i, 8-11
8.4 Using Timers as Event COUNTEISttt e e 8-12
8.5 USING TIMEI 2 . 8-13
8.5.1 T2CON SFR ...t 8-13
8.5.2 Timer2inAuto-Reload Mode i 8-14
8.5.3 Timer2inCapture Modeot e 8-15
8.5.4 Timer2asaBaudRate Generator........... i, 8-15
Serial CommUNICAtION e e 9-1
0.1 DESCHPON .ottt e 9-2
9.2 Setting the Serial Port Mode 9-3
9.2.1 Serial Mode 0: Synchronous Half-Duplex, 9-5
9.2.2 Serial Mode 1: Asynchronous Full-Duplex o .. 9-6
9.2.3 Serial Mode 2: Asynchronous Full-Duplex i, 9-9
9.2.4 Serial Mode 3: Asynchronous Full-Duplex oot 9-10
9.3 Setting the Serial Port Baud Ratecc i 9-13
9.4 Writingtothe Serial Port e 9-16
9.5 Readingthe Serial Port 9-16

Running Title—Attribute Reference

10 I I UPES .ottt e e e 10-1
10.1 DeSCHPLON ...ttt e e e e e e e e e 10-2
10.2 Events That Can Trigger INterruptsot e e 10-3
10.3 Enabling INterrupts oo 10-4
10.4 Polling SEQUENCEttt 10-6
10.5 INteImUPt PriOrtieS . . oot 10-6
10.6 INterrupt TrgOEIING . .ottt e e e et e e e e 10-7
10.7 EXItiNg INteITUPLS . ..ottt e 10-7
10.8 Types Of INTEITUPLS . ..ot e e e e e 10-8

10.8.1 Serial INterrupts . ..ot 10-8
10.8.2 EXxternal INterruptst 10-8
10.8.3 TIMer INtEITUPLS . oot e e e e 10-9
10.8.4 Watchdog Interrupt e 10-10
10.8.5 Auxiliary INterrupts 10-10
10.9 WakingUp fromidle Mode 10-13
10.10 Register ProteCtiont e 10-14
10.11 Common Problems with Interrupts i e 10-16

11 Pulse Width Modulator/Tone Generatoriiuieiniin e, 111
11,1 DESCIIPION oottt e e e e 11-2
11,2 TONE GENEIAION . .ottt ettt e ettt e e e e e e e e e e 11-3

11.2.1 Tone Generator Waveformst 11-4
11.3 PWM GENEIAIOL . .ottt et e et e e e e e e e e e e 11-5
11.3.1 Example of PWM Tone Generationccouiiiiiinininnannnnn 11-7
11.3.2 Example of PWM Tone GenerationIdling 11-8
11.3.3 Example of Updating PWM e 11-9

12 Analog-to-Digital CoONVErter i e 12-1
12,0 DESCHPtON ottt 12-2
12.2 Input MURIpIEXEr . . oo e 12-3
12.3 TeMPErature SENSOIttt et e e et e e e e e 12-4
12.4 Burnout CUITENt SOUICESttt ittt e et 12-7
12.5 INpUt BURfEr . 12-8
12.6 ANnalog INPUL ..o 12-8
12.7 Programmable Gain Amplifier (PGA) 12-8
12.8 PGA DAC . 12-9
12.9 MOdUIAtOr ... 12-10
12.10 Calibration 12-10
12.11 Digital Filtero 12-11

12.11.1 Multiplexing Channels i e e e 12-13
12.12 Voltage Reference e e e 12-14
12.13 Summation/Shifter Registero 12-14
12.13.1 Manual Summation Modet 12-16
12.13.2 ADC Summation Modet 12-16
12.13.3 Manual Shift (Divide) Modet e 12-17
12.13.4 ADC Summation with Shift (Divide) Mode 12-17
12.14 Interrupt-Driven ADC Sampling cvvi e e 12-18
12.15 Syncronizing Multiple MSC1210 DEVICESottt 12-19
12.16 Ratiometric MeasUremeNntSttt et e 12-20
12.16.1 Differential Vref 12-21

Chapter Title—Attribute Reference iii

Running Title—Attribute Reference

13 Serial Peripheral Interface (SPI) e e e 13-1
13.1 DESCHIPLON .ttt e e e e e e 13-2
13.2 Functional DesCriptionot e 13-2
13.3 Clock Phase and Polarity CoNtrols 13-3
13,4 SPISIgNals . ..ot 13-4

13.4.1 MasterIn Slave OUL i e e e 13-4
13.4.2 Master Out Slave IN o 13-4
13.4.3 Serial CloCK . .. oottt 13-4
13.4.4 Slave SeleCt 13-4
13.5 SPI SYSteM EITOrS . .o e e 13-5
13.6 Data Transfers 13-5
13.7 FIFO Operationttt e e e e e e e 13-7

14 Additional MSCI1210 Hardwarettt 14-1
141 DESCHPION .ttt e e e e e 14-2
14.2 Low Voltage Detect ot e 14-2

14.2.1 Power SUPPLY . .o e 14-3
14.3 Watchdog TIMer . ..o e e et e e 14-4
14.3.1 Watchdog Timer Hardware Configuration 14-4
14.3.2 Enabling Watchdog Timer i 14-5
14.3.3 Resetting the Watchdog Timer i 14-5
14.3.4 Disabling Watchdog Timer i i 14-6
14.3.5 Watchdog Timeout/Activation, 14-6

15 AdVANCEd TOPICS . ot ittt et e e e e e e e e e 15-1

15.1 Hardware Configurationiiu it 15-2
15.1.1 Hardware Configuration Registersciiiiiiiiiinnnnnnn 15-2
15.1.2 Hardware Configuration MEmMOryc..co i, 154
15.1.3 Accessing Configuration Memory in a User Program 154

15.2 Advanced Flash Memory 15-5
15.2.1 Write Protecting Flash Program Memory, 15-5
15.2.2 Updating Interrupts with Reset Sector Lock 15-6

15.3 Breakpoint GENEratorttt 15-6
15.3.1 Configuring Breakpoints i e 15-6
15.3.2 Breakpoint Auxiliary Interrupt o 15-7
15.3.3 Disabling a Breakpointc i 15-8

15.4 Power-Up TiIMINg . ..ot e e e e e 15-8
15.4.1 Normal Mode Power-On Reset Timingcciviiiiiiennnnn... 15-8
15.4.2 Flash Programming Mode Power-On Reset Timing 15-9

15.5 Power Optimizationttt e 15-10

15.6 Flash Memory as Data MEMOIYt 15-10

15.7 Advanced Topics and Other Information 15-12
15.7.1 Serial and Parallel Programming of the MSC1210 15-12
15.7.2 Debugging Using the MSC1210 Boot ROM Routines 15-12
15.7.3 Using MSC1210 with Raisonance DevelopmentTools 15-12
15.7.4 Using the MSC1210 Evaluation Module (EVM)t 15-12

16 8052 Assembly Languageottt 16-1
16.1 DESCII PN ..ottt e 16-2
L16.2 SYNtAX ottt 16-2
16.3 NUMDEI BaSeS e e e e 16-3

17

Running Title—Attribute Reference

16,4 EXPIESSIONS . .ottt ettt e e 16-4
16.5 Operator PreCeOBNCEttt e e et e 16-4
16.6 Characters and Character Stringst e 16-5
16.7 Changing Program Flow (LIMP, SIMP, AJMP) i 16-5
16.8 Subroutines (LCALL, ACALL, RET) ...ttt e 16-6
16.9 Register Assignment (MOV) 16-7
16.10 Incrementing and Decrementing Registers (INC,DEC)couvn... 16-9
16.11 Program Loops (DINZ)ot e e 16-10
16.12 Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV) 16-11
16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC,IJNC) 16-13
16.14 Value Comparison (CINE)oiii it et et e s 16-13
16.15 Less Than and Greater Than Comparison (CINE)ccoou... 16-15
16.16 Zero and Non-Zero Decisions (JZ/INZ) e 16-15
16.17 Performing Additions (ADD, ADDC)ottt 16-16
16.18 Performing Subtractions (SUBB) e 16-17
16.19 Performing Multiplication (MUL)o e 16-18
16.20 Performing Division (DIV) oo 16-18
16.21 Shifting Bits (RR, RRC, RL, RLC)\ttt ittt e 16-19
16.22 Bit-Wise Logical Instructions (ANL, ORL, XRL), 16-20
16.23 Exchanging Register Values (XCH) 16-21
16.24 Swapping Accumulator Nibbles (SWAP) i i 16-21
16.25 Exchanging Nibbles Between Accumulator and Internal RAM (XCHD) 16-22
16.26 Adjusting Accumulator for BCD Addition (DA) 16-22
16.27 Using the Stack (PUSH/POP) e 16-23
16.28 Setting the Data Pointer DPTR (MOV DPTR)ottt 16-25
16.29 Reading and Writing External RAM/Data Memory (MOVX) 16-25
16.30 Reading Code Memory/Tables (MOVC)t 16-26
16.31 Using Jump Tables (JIMP @A+DPTR)ot e 16-27
Keil SImUIAtOr .o 17-1
17,1 DESCIIPION .ttt e et e 17-2
17.2 TS ittt e e e e 17-4

17.2.1 TimerO & LEXampleo 17-5
17.3 TIMEI 2 oo e 17-11
17.4 Watchdog Timer . .. e e e 17-12

17.4.1 Watchdog Reset Facility Example 17-13
17.5 SYStemM TiMer .o e e e 17-15
17.6 CloCK CONtrol ... e e 17-15
17.7 Analog-to-Digital Convertero it e 17-16
17.8 Accumulator/Shifter 17-19

17.8.1 ADC/Accumulator/Shifter Example i, 17-20
17.9 INteITUPLS . . e e e e 17-28
17,00 POS .ttt e e e 17-29
17.11 Serial Peripheral Interface (SPI) 17-30

17.11.1 SPISample CoUe 17-32
17.12 mVision 2 Debug Program Example i 17-35
17.13 Serial Port 11O . ..o 17-37

17.13.1 Serial Port 0 Operation Mode 1 Example, 17-38

17.13.2 Transmit Block Baud Rate Computation, 17-39

17.13.3 Receive Block Baud Rate Computation, 17-40
17.14 Additional RESOUICE e e e e e 17-42

Chapter Title—Attribute Reference Y,

Additional Features in the MSC1210 compared tothe 8052 A-1

A.1 Additional Features in the MSC1210 Comparedto 8052cc.o... A-2
Clock TIimMiNg Diagramttt e e ettt et et ettt et B-1
B.1 MSC1210 Timing Chain and Clock Control Diagramccvviieuinun... B-2
BOOt ROM ROULINES .ot e e e C-1
C.l DESCHIPON .ttt e e e e C-2

C.1.1 Note Regarding put_string Function oo, C-3
8052 Instruction-Set Quick-Reference Guide i i i i D-1
D.1 8052 Instruction-Set Quick-Reference Guide D-2
8052 INSTIUCTION Sl e e e e e E-1
E.l DeSCIiPtON ..t E-2
E.2 8052 INStrUCHION Set E-2
Bit-Addressable SFRs (alphabetical) i . F-1
F.1 Bit Addressable SFRs (alphabetical) i i F-2
SFRs/Address Cross-Reference Guide (alphabetical) G-1
G.1 SFR/Address Cross-Reference i G-2

Figures

1-1. Block Diagram of the MSCI1210.ottt e e et i 1-2
1-2. Pin Configuration of the MSC1210.ttt e e i e 1-3
1-3. Timing Comparison of the MSC1210to a Standard 8051. 1-10
2-1. MSCI1210 MEMOIY Map . oo o ettt et e e e e e e 2-2
2-2. MSC1210 Memory Map Register Bank. i 2-5
7-1. Standard 8051 TIMING.ttt e e 7-2
72 7-3
7 TR 7-4
7 7-6
7-5. Serial Flash Programming Power-On Timing (EAisignored) 7-7
7-6. Parallel Flash Programming Power-On Timing (EAisignored) 7-7
8-1 Timer 0/1 Block Diagram for Modes Oand 1t 8-6
9-1. Serial Port 0 Mode 0 Transmit Timing—High Speed Operation. 9-5
9-2. Serial Port Mode 0 Receive Timing—High Speed Operation. 9-6
9-3. Serial Port 0 Mode 1 Transmit TIMINg.t 9-6
9-4. Serial Port 0 Mode 1 Receive TImMiNg. .. .covttit ittt 9-7
9-5. Serial Port 0 Mode 2 Transmit TIMiNg.ttt et inaas 9-9
9-6. Serial Port 0 Mode 2 Receive TImiNg.ttt et 9-9
9-7. Serial Port 0 Mode 3 Transmit TiIMiNg.oouuuit i 9-11
9-8. Serial Port 0 Mode 3 Receive Timing.t 9-11
11-1. BIOCK DIagramottt et et e e e e e e 11-2
Lo, 11-3
11-3. Timing Diagram of Tone Generator in Staircase Mode 11-4

vi

11-4.
11-5.
11-6.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
13-1.
13-2.
13-3.
13-4.
14-1.
14-2.
14-3.
15-1.
15-2.
15-3.
16-1.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.
18-11.
18-12.
18-13.
18-14.
18-15.
18-16.
18-17.
18-18.
18-19.
18-20.
18-21.
18-22.
18-23.
B-1.

Running Title—Attribute Reference

Timing Diagram of Tone Generator in Square Wave Mode 11-4
Timing Diagram of a PWM Waveform i, 11-5
.. 11-9
MSC1210 Architectureo e 12-2
Input Multiplexer Configuration e 12-3
Basic Input Structure of the MSC1210 i e 12-8
Filter Step RESPONSES . ..\ttt e et e et e e 12-11
Filter FrequenCy RESPONSESttt ittt et ettt et et 12-12
... 12-21
SPIblock diagram 13-2
SPIClock/Data timingt 13-3
SPI RESEl State 13-6
SPIFIFO OPerationttt e et 13-7
.. 14-2
.. 14-3
.. 14-4
.. 15-9
Serial Flash Programming Power-On Timing (EAisignored) 15-9
Parallel Flash Programming Power-On Timing (EAisignored) 15-9
... 16-19
.. 17-4
.. 17-6
.. 17-6
.. 17-6
.. 17-7
... 17-11
Status of Watchdog Peripheral 17-12
... 17-17
... 17-17
... 17-18
... 17-19
Accumulator/Shifter Peripheral 17-26
The ADC Peripheral Mid-Stride a Typical 8-Sample Averaging Block 17-26
List Box for the Interrupt Peripheral 17-28
Parallel Port 0 Contents Display Windowt 17-29
ErrOr MBSS a0 . . oot 17-29
SPI Peripheral WINdoOW e 17-30
... 17-36
Serial Channel 0 Communication Peripheral 17-38
... 17-40
... 17-41
... 17-41
... 17-41
MSC1210 Timing Chain and Clock Control i, B-2

Chapter Title—Attribute Reference vii

Tables

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

10-10.
10-11.
10-12.
10-13.

11-1.
12-1.
12-2.
12-3.
12-4.
12-5.
14-1.
14-2.
14-3.
15-1.
16-1.
16-2.
18-1.

viii

Pin Descriptions of the MSCL1210ttt e 1-4
Program and Data Memory Size.t 2-3
Program and Data Memory AddresSSesS.ttt 2-3
SFR Names and AdAresSeS. . ..ottt 3-2
MSC1210 Addressing MOOES.t 5-2

... 7-7
Timer Conrol SERS. e 8-4
Timer Modes and USAgettt 8-6

... 8-7
TCON (88h) SFR .o e 8-8
SMO and SM1 Function Definitions. 9-4

... 9-8

... 9-8

.. 9-12

.. 9-13
Mode 0 Commonly Used Baud Rates. 9-13
Baud Rate Settings for Timer 1. e 9-15
Baud Rate Settings for TImer 2. e e 9-15
INEITUPE SOUICES . ..ot e e 10-3
IE (ABR) SR . i 104
EICON (D8h) SFR ... e 10-5
EIE (E8N) SFR . ..ottt ittt e e e 10-5
IP (B8h) SR . 10-6
EIP (F8h) SFR . .. e 10-6
EXIF (91N) SR . .. e 10-9
Clearing Auxiliary INterrupts oo 10-10
ALE (ABN) SFR . .o 10-11
AISTAT (A7N) SER . e 10-11
PAL (ASN) SR . . 10-12
PPI Bits Of PAI SFR ... o 10-12
EWU (CBh) SFR . .. 10-14

.. 11-5
PG A SettiNgS . oot 12-9
Calibration Mode Control BitSt 12-11

... 12-13

... 12-13

... 12-14
Typical Sub-Circuit Current CoONSUMPLIONottt e 14-3
Comparator Specification e 14-3
Band Gap Parameterst e 14-3

.. 15-8
Order of Precedence for Mathematical Operators, 16-4
Results of ANL, ORL, and XRL it e e et 16-20

... 17-11

... C-2

Chapter 1

Introduction to the MSC1210

Chapter 1 describes the basic function of the MSC1210.

Topic Page
1.1 MSC1210 DeSCriptiont e 1-2
1.2 MSCIL1210 Pin-OUt 1-3
1.3 Enhanced 8051 COrec.uuiiiiriin e, 1-10
1.4 Family Device Compatibility o .. 1-10
1.5 Flash Memory ... e 1-10
1.6 High-Performance Analogoiiiiiiiiiiinennnn.. 1-10
1.7 High-Performance Peripherals 1-11

1-1

MSC1210 Description

1.1 MSC1210 Description

The MicroSystem family of devices is designed for high-resolution measure-
ment applications in smart transmitters, industrial process control, weigh
scales, chromatography, and portable instrumentation. They provide high-
performance mixed signal solutions. The MicroSystem family not only in-
cludes high-end analog features and digital processing capability, but also in-
tegrates high-performance peripherals to offer a unique system solution.

The main components of a MicroSystem product include:
m Enhanced 8051 Microcontroller Core
® FLASH Memory
m High-Performance Analog

m High-Performance Peripherals

Figure 1-1 shows a block diagram of the MSC1210.

AVpp AGND vouT VREF+ VREF- DVp, DGND
+AVpp
‘ Timers/ o
Vrer LVD Counters EA
ALE/PROGA
PSEN/PROGB
e BOR]
8-Bit
AINO | | Temp PGA Offset . WDT
AINT Sensor Alternate
AIN2 Functions
AIN3 | $—| PORTO |=—t—= 8 { {78
Digital
AIN4 MUX Modulator Filter
AIN5 1
AING Up to 32K
AIN7 FLASH
AINCOM 12K
SRAM
Clock sE
L Generator FIFO
AGND i i
XIN XOUT

Figure 1-1.Block Diagram of the MSC1210.

The enhanced 8052 microcontroller core includes dual data pointers and exe-
cutes instructions three times faster than the standard 8052 core. This greater
MIPS capability allows the designer to optimize speed, power, and noise
tradeoffs based on their specific requirements.

The on-chip FLASH memory is programmable in a variety of modes over a
wide temperature and operating voltage range. This greatly simplifies pro-
gramming at both manufacturing and in the field.

1-2

MSC1210 Pin-Out

The on-chip high-performance analog features are state-of-the-art. The per-
formance and features of the analog functions rival the best of the industry. The
low-noise Analog-to-Digital Converter (ADC) and the precision voltage refer-
ence along with the integration of other analog features greatly simplify achiev-
ing high-end analog performance.

The on-chip high-performance peripherals not only reduce the cost, design
time, and board space required for external circuitry, but also blend analog and
digital functionality—this simplifies the system design. The high-performance
peripherals were designed from a system perspective, thereby decreasing the
processing requirements on the CPU and providing greater system through-
put.

1.2 MSC1210 Pin-Out

P3.4/T0 | 7

10
DVpp | 11
DGND | 12

RST | 13

DVpp | 14
DVyp | 15

NC |16

P1.7/INT5/SCK

=3
b

E‘ P1.6/INT4/MISO
B

o

2]

The names and functions of these pins are similar to those found on a
traditional 8052, although the MSC1210 includes additional pin assignments
to support the additional functions specific to the part.

P1.5/INT3/MOSI
P1.4/INT2/SS

@
<
a
8 z k)
> O o
o a a

— — >
o ~— [al) <
9 2 4 « 8 8 a o
£ o E £ £ < < <
@ o - @ @ = d <
-— -— ~— - o o o o
Y L & & &8 8 &
60 || 59| 58|[57|/56| 55|54 |[53]| 52| 51]|50]||49

(@)

48 (EA

47 |P0.6/AD6
46 |P0.7/AD7
45 |ALE
44 | PSEN/OSCCLK/MODCLK
43 |P2.7/A15
42 |DVpp
41 [DGND
MSC1210
40 |P2.6/A14
39 |P2.5/A13
38 |P2.4/A12
37 |P2.3/A11
36 |P2.2/A10
35 |P2.1/A09
34 |P2.0/A08

33 [NC

o
S 2
g <
<

TR EEEEEE R

— 0 < v [=] | +

z 2 z 2 g 2 8 2
< < < < o O <

z <

<

REF IN
REF IN
REF OUT

e £
5 &
s =
Z Z
< <

Figure 1-2. Pin Configuration of the MSC1210.

Introduction to the MSC1210 1-3

MSC1210 Pin-Out

Table 1-1.Pin Descriptions of the MSC1210

Port 2—Alternate Functions:

PIN # NAME DESCRIPTION
1 XOouT The crystal oscillator pin XOUT supports parallel resonant AT cut crystals and ceramic resonators.
XOUT serves as the output of the crystal amplifier.
2 XIN The crystal oscillator pin XIN supports parallel resonant AT cut crystals and ceramic resonators. XIN
can also be an input if there is an external clock source instead of a crystal.
3-10 P3.0-P3.7 Port 3 is a bidirectional I/0 port. The alternate functions for Port3 are listed below.
Port 3—Alternate Functions:
PORT ALTERNATE MODE
P3.0 RxDO Serial Port 0 Input
P3.1 TxDO Serial Port 0 Output
P3.2 INTO External Interrupt O
P3.3 INTL/TONE/PWM External Interrupt 1/TONE/PWM Output
P3.4 TO Timer 0 External Input
P3.5 T1 Timer 1 External Input
P3.6 WR External Data Memory Write Strobe
P3.7 RD External Data Memory Read Strobe
11, 14, 15, 42, 58 DVoo Digital Power Supply
12,41, 57 DGND Digital Ground
13 RST A HIGH on the reset input for two instruction clock cycles will reset the device.
16, 32, 33 NC No Connection
17,27 AGND Analog Ground
28 AVpp Analog Power Supply
18 AINO Analog Input Channel 0
19 AIN1 Analog Input Channel 1
20 AIN2 Analog Input Channel 2
21 AIN3 Analog Input Channel 3
22 AIN4 Analog Input Channel 4
23 AIN5S Analog Input Channel 5
24 AIN6, EXTD Analog Input Channel 6, Digital Low Voltage Detect Input
25 AIN7, EXTA Analog Input Channel 7, Analog Low Voltage Detect Input
26 AINCOM Analog Common for Single-Ended Inputs
29 REF IN— Voltage Reference Negative Input
30 REF IN+ Voltage Reference Positive Input
31 REF OUT Voltage Reference Output
34-40, 43 P2.0-P2.7 Port 2 is a bidirectional 1/0 port. The alternate functions for Port 2 are listed below.

PORT ALTERNATE MODE
P2.0 A8 Address Bit 8
P2.1 A9 Address Bit 9
P2.2 A10 Address Bit 10
P2.3 All Address Bit 11
P2.4 Al12 Address Bit 12
P2.5 Al13 Address Bit 13
P2.6 Al4 Address Bit 14
pP2.7 Al5 Address Bit 15

MSC1210 Pin-Out

44 PSEN, OSCCLK, MODCLK | Program Store Enable: Connected to optional external memory as a chip enable. PSEN will provide
an active low pulse. In programming mode, PSEN is used as an input along with ALE to define serial
or parallel programming mode. PSEN is held HIGH for parallel programming and tied LOW for serial
programming. This pin can also be selected (when not using external program memory) to output
the Oscillator clock, Modulator clock, HIGH, or LOW.

ALE PSEN PROGRAM MODE SELECTION
NC NC Normal Operation

0 1 Parallel Programming

1 0 Serial Programming

0 0 Reserved

45 ALE Address Latch Enable: Used for latching the low byte of the address during an access to external
memory. ALE is emitted at a constant rate of 1/2 the oscillator frequency, and can be used for exter-
nal timing or clocking. One ALE pulse is skipped during each access to external data memory. In
programming mode, ALE is used as an input along with PSEN to define serial or parallel program-
ming mode. ALE is held HIGH for serial programming and tied LOW for parallel programming.

48 EA External Access Enable: EA must be externally held LOW to enable the device to fetch code from
external program memory locations starting with 0000,,.

46, 47, 49-54 P0.0-P0.7 Port 0 is a bidirectional I/0 port. The alternate functions for Port O are listed below.
Port 0—Alternate Functions:
PORT ALTERNATE MODE
P0.0 ADO Address/Data Bit 0
PO.1 AD1 Address/Data Bit 1
P0.2 AD2 Address/Data Bit 2
P0.3 AD3 Address/Data Bit 3
P0.4 AD4 Address/Data Bit 4
P0.5 AD5 Address/Data Bit 5
P0.6 ADG6 Address/Data Bit 6
PO0.7 AD7 Address/Data Bit 7
55, 56, 59-64 P1.0-P1.7 Port 1 is a bidirectional I/O port. The alternate functions for Port 1 are listed below.

Port 1—Alternate Functions:

PORT ALTERNATE MODE

P1.0 T2 T2 Input

P11 T2EX T2 External Input

P1.2 RxD1 Serial Port Input

P1.3 TxD1 Serial Port Output

P14 INT2/SS External Interrupt/Slave Select

P15 INT3/MOSI External Interrupt/Master Out-Slave In
P1.6 INT4/MISO External Interrupt/Master In-Slave Out
P1.7 INT5/SCK External Interrupt/Serial Clock

121

I/O Ports (PO, P1, P2, and P3)

Of the 64 pins on the MSC1210, 32 of them are dedicated to I/O lines that have
a one-to-one relation with SFRs PO, P1, P2, and P3. The developer may raise
and lower these lines by writing 1's or O's to the corresponding bits in the SFRs.
Likewise, the current state of these lines may be found by reading the corre-
sponding bits of the SFRs.

All of the ports have optional pull-up resistors that are enabled when the port
is in “8051 Mode” as configured by the PxDDRL/H SFRs. The pull-up resistors
are disabled when the port is configured in any other mode, or when accessing
external memory.

Introduction to the MSC1210 1-5

MSC1210 Pin-Out

1.2.1.1 PortO0

1212 Portl

1-6

Port 0 is dual-function: in some designs port O's I/O lines are available to the
developer to access external devices, while in other designs it is used to ac-
cess external memory. If the circuit requires external RAM, the microcontroller
will use port 0 to latch in/out the 8-bit data word, as well as the low eight bits
of the address in response to a MOVX instruction, as long as the hardware
configuration registers are set up correctly. Port 0’s I/O lines may be used for
other functions as long as external Data memory is not being accessed at the
same time and the hardware configuration registers are set up correctly. If the
circuit requires external code memory, the microcontroller will use port Qs I/O
lines to access each instruction to be executed. In this case, port O cannot be
used for other purposes, because the state of the I/O lines are constantly being
modified to access external code memory.

Port 1 consists of eight I/O lines that may be used to interface to external parts.
Port 1 is commonly used to interface to external hardware such as LCDs, key-
pads, and other devices. As opposed to a standard 8052, all I/0O lines of the
MSC1210 serve optional alternate functions, as described below. These lines
can still be used for the developer’s purposes, if the functions described below
are not needed.

P1.0 (T2): If T2CON.1 is set (C/T2), then timer 2 will be incremented whenever
there is a 1-0 transition on this line. With C/T2 set, P1.0 is the clock source for
timer 2.

P1.1 (T2EX): If timer 2 is in auto-reload mode and T2CON.3 (EXEN2) is set,
a 1-0 transition on this line will cause timer 2 to be reloaded with the
auto-reload value. This will also cause the T2CON.6 (EXF2) external flag to
be set, which may cause an interrupt, if so enabled.

P1.2 (RxD1): If the secondary USART is being used, P1.2 (RxD1) is the pin that
receives serial data. Data received via this pin will be read using the SBUF1 SFR.

P1.3 (TxD1): If the secondary USART is being used, P1.3 (TxD1) is the pin that
transmits serial data. Data written to the SBUF1 SFR will be sent via this pin.

P1.4 (INT2/SS): This pin has two dual functions. It may be used to trigger an
External 2 interrupt when a 0-1 transition is detected on this line. It is also used
as “Slave Select” in SPI applications.

P1.5 (INT3/MOSI): This pin may be used to trigger an External 3 interrupt when
a 1-0 transition is detected. It is also used as “Master Out/Slave In” in SPI ap-
plications.

P1.6 (INT4/MISO): This pin may be used to trigger an External 4 interrupt when
a 0-1 transition is detected. It is also used as “Master In/Slave Out” in SPI ap-
plications.

P1.7 (INT5/SCK): This pin may be used to trigger an External 5 interrupt when
a 1-0 transition is detected. It is also used as “Serial Clock” in SPI applications.

1.2.1.3 Port2

1.2.1.4 Port3

MSC1210 Pin-Out

Like port O, port 2 is dual-function. In some circuit designs, it is available for access-
ing external devices, while in others it is used to address external RAM or external
code memory. When more than 256 bytes of external RAM are used, port 2 is used
to output the high byte of the address that is to be accessed in a MOVX operation.
Whether port 2 is used to address external memory or as general I/O lines is de-
fined by the EGP23 hit in Hardware Configuration Register 1.

NOTE: When the EGP23 bit of Hardware Configuration Register 1 is set, Port 2 as-
sumes the value of the high byte of DPTR when using the MOVX @DPTR instruc-
tion. When using the MOVX @RXx instructions, port 2 will assume the value of the
MPAGE SFR.

If the circuit requires external code memory, the microcontroller will automatically
use port 2's I/O lines to access each instruction to be executed, but only if bit
EGP23 of HCR1 equals one. In this case, port 2 cannot be used for other purposes
because the state of the I/O lines are constantly being modified to access external
code memory.

Port 3 consists entirely of dual-function 1/O lines. While the developer may ac-
cess all these lines from their software by reading/writing to the P3 SFR, each
pin has a pre-defined function that the microcontroller handles automatically
when configured to do so and/or when necessary.

P3.0 (RxDO0): The primary USART/serial port uses P3.0 as the “receive line.”
For in-circuit designs that will be using the microcontroller’s internal serial port,
this is the line into which serial data will be clocked. Note that when interfacing
an 8052 to an RS-232 port, you may not connect this line directly to the RS-232
pin; rather, you must pass it through a part such as the MAX233 to obtain the
correct voltage levels. This pin is available for any use the developer may as-
sign it, if the circuit has no need to receive data via the integrated serial port.

P3.1 (TxDO0): The primary USART/serial port uses P3.1 as the “transmit line.”
For in-circuit designs that will be using the microcontroller’s internal serial port,
this is the line that the microcontroller will clock out all data which is written to
the SBUF SFR. Note that when interfacing an 8052 to an RS-232 port, you may
not connect this line directly to the RS-232 pin; rather, you must pass it through
a part such as the MAX233 to obtain the correct voltage levels. This pin is avail-
able for any use the developer may assign it, if the circuit has no need to trans-
mit data via the integrated serial port.

P3.2 (INT0): When so configured, this line is used to trigger an “External O In-
terrupt.” This may either be low-level triggered or may be triggered on a 1-0
transition. Please see the chapter on interrupts for details. This pin is available
for any use the developer may assign it, if the circuit does not need to trigger
an external O interrupt.

Introduction to the MSC1210 1-7

MSC1210 Pin-Out

P3.3 (INTL/TONE/PWM): When so configured, this line is used to trigger an
“External 1 Interrupt.” This may either be low-level triggered or may be trig-
gered on a 1-0 transition. Please see the chapter on interrupts for details. This
pin is also used for outputting PWM, if so configured.

P3.4 (TO): When so configured, this line is used as the clock source for timer O.
Timer O will be incremented either every instruction cycle that TO is high, or every
time there is a 1-0 transition on this line, depending on how the timer is configured.
Please see the chapter on timers for details. This pin is available for any use the
developer may assign it, if the circuit does not need to control timer O externally.

P3.5 (T1): When so configured, this line is used as the clock source for timer 1.
Timer 1 will be incremented either every instruction cycle that T1 is high, or every
time there is a 1-0 transition on this line, depending on how the timer is configured.
Please see the chapter on timers for details. This pin is available for any use the
developer may assign it if the circuit does not need to control timer 1 externally.

P3.6 (WR): This is external memory write strobe line when bit EGP23 is set
in Hardware Configuration Register 1. This line will be asserted low by the mi-
crocontroller whenever a MOVX instruction writes to external RAM. This line
should be connected to the RAM’s write (W) line. This pin is available for any
use the developer may assign it if the circuit does not write to external RAM
using MOVX.

P3.7 (RD): This is external memory read strobe line when bit EGP23 is set in
Hardware Configuration Register 1. This line will be asserted low by the micro-
controller whenever a MOVX instruction read from external RAM. This line
should be connected to the RAM’s read (R) line. This pin is available for any
use the developer may assign it if the circuit does not read from external RAM
using MOVX.

1.2.2 Oscillator Inputs (XTAL1 and XTAL2)

The MSC1210 is typically driven by a crystal connected to pins 1 (XOUT) and
2 (XIN). Common crystal frequencies are 11.0592MHz as well as 12MHz, al-
though the MSC1210 is capable of accepting frequencies as high as 33MHz.

While a crystal is the normal clock source, this is not always the case. A digital
clock source may also be attached to XIN and XOUT to provide the microcon-
troller’s clock.

1.2.3 Reset Line (RST)

1-8

Pin 13 is the master reset line for the microcontroller. When this pin is brought
high for two instruction cycles, the microcontroller is effectively reset. SFRs,
including the 1/O ports, are restored to their default conditions and the program
counter will be reset to 00004. Keep in mind that Internal RAM is not affected
by a reset. The microcontroller will begin executing code at 0000 when pin
13 returns to a low state.

The reset line is often connected to a reset button/switch that the user may
press to reset the circuit. It is also common to connect the reset line to a watch-
dog IC or a supervisor IC (such as MAX707). The traditional resistor-capacitor
networks attached to the reset line will also work well, because the RST input
is a Schmitt trigger input.

MSC1210 Pin-Out

1.2.4 Address Latch Enable (ALE)

The ALE at pin 45 is an output-only pin that is controlled entirely by the micro-
controller and allows the microcontroller to multiplex the low-byte of a memory
address and the 8-bit data itself on port 0. This is because, while the high byte
of the memory address is sent on port 2, port 0 is used both to send the low
byte of the memory address and the data itself. This is accomplished by plac-
ing the low byte of the address on port 0, exerting an ALE high-to-low transition
to latch the low byte of the address into a latch IC (such as the 74HC573), and
then placing the 8 data bits on port 0. In this way, the MSC1210 is able to output
a 16-bit address and an 8-bit data word with 16 1/O lines instead of 24.

The ALE line is used in this fashion both for accessing external RAM with MOVX
@DPTR, as well as for accessing instructions in external code memory. When the
program is executed from external code memory, ALE will pulse at a rate of ¥4 that
of the oscillator frequency. Thus, if the oscillator is operating at 11.0592MHz, ALE
will pulse at a rate of 2,764,800 times per second. When the MOVX instruction is
executed, one PSEN pulse is missed in lieu of a pulse on WR or RD.

This pin is also used when programming the part, along with PSEN, as an input
during reset to indicate whether programming will occur in serial or parallel mode.
If this line is held high when in programming mode, programming will occur in seri-
al mode.

1.2.5 Program Store Enable (PSEN)

The Program Store Enable (PSEN) line at pin 44 is exerted low automatically
by the microcontroller whenever it accesses external code memory. This line
should be attached to the Output Enable (OE) pin of the device that contains
your code memory. The PSEN signal will be applied for both internal and exter-
nal memory access.

This pin is also used when programming the part, along with ALE, as an input to
indicate whether programming will occur in serial or parallel mode. If this line is
held high when in programming mode, programming will occur in parallel mode.

1.2.6 External Access (EA)

The External Access (EA) line at pin 48 is used to determine whether the
MSC1210 will execute your program from external code memory or from internal
code memory. If EA is tied high (connected to supply), the microcontroller will exe-
cute the program it finds in internal/on-chip code memory. If EA is tied low (to
ground), it will attempt to execute the program it finds in the attached external pro-
gram memory. Of course, the external program memory must be properly con-
nected for the microcontroller to be able to access the program in external pro-
gram memory.

The EA pin is ignored during serial or parallel Flash programming modes.

Introduction to the MSC1210 1-9

Enhanced 8051 Core

NOTE: Even when EA is tied high (indicating that the microcontroller should execute from internal
code memory), the microcontroller will attempt to execute from external code memory if the program
counter references an address not available for the chip you are using, or if you are accessing pro-
gram memory in excess of the amount of flash memory that you have partitioned for program
memory. For example, if you have partitioned 4k of flash memory to be program memory and you
tie EA high, the derivative will start executing the program it finds on-chip. However, if your on-chip
program attempts to execute code above OFFF (i.e. exceeding 4k) then the MSC1210 will attempt
to execute that code at that address from external code memory. Thus, it is possible to have a “split”
design, where some of your code is found on-chip and the rest is found off-chip.

1.3 Enhanced 8051 Core

The MSC1210 is an 8052-based family of high-performance, mixed-signal
controllers. All instructions in the MSC1210 family perform exactly the same
functions as they would in a standard 8052. The effect on bits, flags, and regis-
ters is the same, however, the timing is different.

The MSC1210 family uses an efficient 8052 core which results in an improved
instruction execution speed of three times faster than the original core for the
same external clock speed (4 clock cycles per instruction versus 12 clock
cycles per instruction, as shown in Figure 1-3). This allows the user to run the
device at slower external clock speeds, which reduces system noise and pow-
er consumption, but provides greater throughput.

Single-Byte, Single-Cycle

Instruction
aE [[
PSEN | | [1 [1
MSC1210
Timing ADO-AD7 XX XX XX XX
PORT 2 X X X X
4 Cycles
o U U U UL U UL
12 Cycles
AE 1 1
Standard PSEN —
8051 Timing L S
ADO-AD7 — X X N4 X X
PORT2 __ X X

Single-Byte, Single-Cycle
Instruction

Figure 1-3. Timing Comparison of the MSC1210 to a Standard 8051.

The timing of software loops will be faster with the MSC1210 than with the stan-
dard 8052. However, the timer/counter operation of the MSC1210 may be main-
tained at 12 clocks per increment or optionally run at 4 clocks per increment.

1-10

Family Device Compatibility

Due to the MSC1210 being fully compatible with the standard 8052 instruction
set, the user can develop software for the MSC1210 with their existing 8052
development tools. Additionally, a complete integrated development environ-
ment is provided with each demo board.

1.4 Family Device Compatibility

The hardware functionality and pin outs across the MSC1210 family are fully
compatible. To the user, the only difference between family members is the
memory configuration. This makes migration between family members sim-
ple. Code written for the 4K bytes Program Memory version of the MSC1210
can be executed directly on the 8K, 16K, or 32K versions. This allows the user
the ability to add or delete software functions and to freely migrate between
family members.

Thus, the MSC1210 can become a standard device used across several ap-
plication platforms.

1.5 Flash Memory

The MSC1210 features flexible Flash memory that allows the user to uniquely
configure the program and non-volatile data memory maps to meet the needs
of their application. The Flash is programmable over the entire operating volt-
age range and temperature range using both serial and parallel programming
methods.

1.6 High Performance Analog

The analog functionality is state-of-the-art. The ADC is extremely low noise,
which gives the user the ability to meet even the most stringent analog require-
ments. The integrated Programmable Gain Amplifier (PGA) further improves
the performance of the ADC. This effectively provides for resolution into the
nanovolt range.

The on-chip voltage reference provides for low drift and high accuracy, thus
eliminating the need for an external voltage reference.

These features are integrated with other analog functions, such as a program-
mable filter, multiplexer, temperature sensor, burnout current sources, analog
input buffer, and an offset correction DAC (Digital-to-Analog Converter).

Introduction to the MSC1210 1-11

High-Performance Peripherals

1.7 High-Performance Peripherals

1-12

High-performance peripherals are included on-chip, which offload CPU processing
and control functions from the core to further improve the overall device efficiency
and throughput. On-chip peripherals include additional SRAM, a 32-bit accumula-
tor, an SPI-compatible serial port with a FIFO buffer, dual USARTSs, on-chip power-
on reset, brownout reset, low-voltage detect, multiple digital ports with configurable
I/O, a 16-bit Pulse Width Modulator (PWM), a watchdog timer, and three timer/
counters.

For instance, the SPI interface uses a FIFO buffer, which allows for the serial
transmission and reception of data with virtually no CPU overhead. The FIFO
buffer function allows for the transfer of large amounts of data at faster transfer
rates than more conventional methods.

Additionally, the 32-bit accumulator significantly reduces the processing over-
head for the multiple byte data from the ADC or other sources. This allows for
24-bit addition, subtraction, and shifting to be accomplished without using
CPU resources. This can reduce both the code size and code execution time.

Chapter 2

MSC1210 Memory Organization

This chapter defines the MSC1210’s Memory Organization.

Topic Page
2.1 DeSCHIPLION ...t 2-2
2.2 Program MemoOryt 2-2
2.3 Data MemoOry 2-4
2.4 Internal RAM . 2-5

2-1

Description

2.1 Description

The MCS1210 has three very general types of memory. To program the
MCS1210 effectively, it is necessary to have a basic understanding of these
memory types.

Special Function Registers refer to 128 bytes that control the operation of
the MSC1210.

Program Memory is memory that is used to store the actual program that may
reside on-chip, off-chip, or both.

Data Memory is Static Random Access Memory (SRAM) that can reside on-
chip, off-chip, or both. The MSC1210 has four types of Data memory: on-chip
extended SRAM, off-chip external SRAM, on-chip Flash Data memory, and in-
ternal RAM.

2.2 Program Memory

Program memory is the memory that holds the actual program that is to be run.
This memory includes the on-chip Flash memory designated as program
memory and/or external memory.

The MSC1210 family offers a maximum of 32k of on-chip Flash Program
memory, although the exact amount of on-chip Program memory depends on
the specific MSC1210 version selected and how that chip’s Flash memory has
been partitioned between Program and Data memory. Figure 2-1 illustrates
how the Flash memory may be distributed between the two types of memory.

Figure 2-1. MSC1210 Memory Map

2-2

Program Data
Memory Memory
S0 FFFF, FFFF,,
8 &= 2k Internal Boot ROM
g ¥ |- - - - - - 7 F800,
External External
Mapped into
Prog ram Both Memory Spaces Data
Memory MCON.O = 1 Memory
~ 1KRAM o External] 2388H 33.(Y5) 1k RAM or External | giggH 33 (v5)
T ExtemalMemory | 8400, 33k(¥5) = === b
— 2xtemalMemory 1 go00,, 32k (Y5)
- O- - - - 7 4400,,, 17k (Y4
- -O/z — — = - 4000,, 16k (Y4) O/z H (v4)
C}}/. Q§/)
- - - - — - 2400, 9k (Y3
- - - iOA} — - 20004, 8k (Y3) 'oA; e Ok (Y3)
))
725 N %- - 1400,, 5k (Y2)
——————— 1000,,, 4k (Y2)
——————— 0400, 1k
MCON.0=0 W
0000,,, Ok —+1 1k RAM or External

Program Memory

For example, in the Y5 model there is 32k Flash memory available. This 32k
may be configured as either Program memory, Data memory, or both. This
configuration is set at the moment the firmware is loaded onto the MSC1210
by setting hardware configuration register HCRO as per Table 2-1, which indi-
cates the total amount of Program and Data memory available for each part
revision given a specific HCRO setting.

Table 2-1.Program and Data Memory Size.

HCRO MSC1210Y2 MSC1210Y3 MSC1210Y4 MSC1210Y5
DFSEL PM DM PM DM PM DM PM DM
000 0kB 4kB 0kB 8kB 0kB 16kB 0kB 32kB
001 0kB 4kB 0kB 8kB 0kB 16kB 0kB 32kB
010 0kB 4kB 0OkB 8kB 0kB 16kB 16kB 16kB
011 0kB 4kB 0kB 8kB 8kB 8kB 24kB 8kB
100 0kB 4kB 4kB 4kB 12kB 4kB 28kB 4kB
101 2kB 2kB 6kB 2kB 14kB 2kB 30kB 2kB
110 3kB 1kB 7kB 1kB 15kB 1kB 31kB 1kB
111 (default) 4kB 0kB 8kB 0kB 16kB 0kB 32kB 0kB
NOTE: When a 0kB program memory configuration is selected, program execution is external.

For example, setting the DFSEL bits to 110 with a MSC1210Y5 would cause
31kb of on-chip Flash memory to be partitioned as Program memory and 1kb
of Flash memory to be partitioned as Data memory.

Table 2-2 indicates where the assigned memory will be located in address
space. This chart provides essentially the same information as the chart
above, but also indicates where the memory will be located. For example, the
DFSEL =110 example in the previous paragraph (31kb of on-chip Flash Pro-
gram memory, 1k of on-chip Flash Data memory) appears in Table 2-2 as
Flash Program memory from 0000y to 7BFFy (which is 31k) and Flash Data
memory from 04004 to 07FF4 (which is 1k).

Note that the Data memory address starts at 04004 because the first 1k
(0000H-03FFy) is, by default, used to address the on-chip Extended SRAM.
The location of on-chip Extended SRAM may be changed by using the
Memory Control (MCON) SFR. By setting bit 0 of MCON, the on-chip Extended
SRAM may be moved from 0000y-03FFy to 84004-87FF. However, on-chip
Extended Flash Data memory always begins at 0400y regardless of whether
or not SRAM is located at 0000y or 8400.

Table 2-2.Program and Data Memory Addresses.

HCRO MSC1210Y2 MSC1210Y3 MSC1210Y4 MSC1210Y5
DFSEL PM DM PM DM PM DM PM DM
000 (reserved) — — — — — — — —

001 — — — — — — 0000 0400-83FF
010 — — — — 0000 0400-43FF | 0000-3FFF | 0400-43FF
011 — — 0000 0400-23FF | 0000-1FFF | 0400-23FF | 0000-5FFF | 0400-23FF
100 0000 0400-13FF | 0000-OFFF | 0400-13FF | 0000-2FFF | 0400-13FF | 0000-6FFF | 0400-13FF
101 0000-07FF 0400-00BF 0000-17FF 0400-0BFF 0000-37FF 0400-0BFF 0000-77FF 0400-0BFF
110 0000-00BF 0400-07FF 0000-1BFF 0400-07FF 0000-3BFF 0400-07FF 0000-7BFF 0400-07FF
111 (default) 0000-0FFF 0000 0000-1FFF 0000 0000-3FFF 0000 0000-7FFF 0000

NOTE: Program accesses above the highest listed address will access external Program memory.

MSC1210 Memory Organization 2.3

Data Memory

Program memory addressing beyond the on-chip address range is accessed
externally via ports 0 and 2. The total amount of code memory, on-chip and off,
is limited to 64k due to limitations of the 8052 architecture.

NOTE: MSC1210 programs are limited to 64k because code memory is restricted to 64k.
Some compilers offer ways to get around this limit when used with specially wired hard-
ware. However, without such special compilers and hardware, programs are limited to 64Kk.

The MSC1210 includes 2k of Boot ROM code that controls operation during
serial or parallel programming. In program mode, the Boot ROM is located in
the first 2kB of Program memory.

The Boot ROM is available to user programs as long as EBR (Hardware Con-
figuration Register 0, bit 4) is set, which is the default. When enabled, the Boot
ROM routines will be located at program memory addresses F8004-FFFF.
The Boot ROM includes a number of functions such as Flash memory access,
and serial routines including data transmission, reception, and auto-baud.

2.3 Data Memory

Data memory is divided into four types of memory, depending on its location
and volatility: internal RAM, on-chip extended SRAM, off-chip external SRAM,
and on-chip Flash Data memory. However, Data memory (regardless of its
location or volatility) is accessed using the MOVX instruction, except for Inter-
nal RAM, which is accessed using the MOV instruction.

2.3.1 On-Chip Extended Static RAM (SRAM)

The MSC1210 includes 1024 bytes of on-chip extended Static RAM (SRAM).
Even though this memory resides on-chip, it is accessed using the MOV X instruc-
tion as if it were external Data memory. Whenever a program accesses Data
memory addresses 0000y through 03FF4, the on-chip external SRAM is used.

On-chip extended Static RAM provides 1k of Data memory that requires no
external circuitry and is available regardless of how the MSC1210’s Flash
memory is designated. This makes it a convenient memory area for purposes
such as temporary buffers, calculation scratchpads, or any other purpose that
requires 1k or less of memory but does not require it survive a power failure.

2.3.2 On-Chip Flash Data Memory

2-4

In addition to the on-chip extended SRAM described in the previous section,
the MSC1210 also has the capability of offering on-chip Flash Data memory.
Flash memory is slower than SRAM, but has the advantage of being nonvola-
tile: its contents will not be lost when the power source is removed.

All of the parts in the MSC1210 family come with some amount of on-chip
Flash memory, ranging from 4k for the MSC1210Y2 all the way up to 32k for
the MSC1210Y5. This flash memory may be configured such that it can be
used as either Program memory, Data memory, or both.

When configured as Data memory, on-chip Flash Data memory is accessed
starting at address 0400y—immediately after on-chip SRAM.

Internal RAM

For example, if the MSC1210Y5 was configured to use 2k as on-chip Flash Data
memory, addresses 0000y through 03FF would access on-chip extended
SRAM while addresses 0400y through OBFF would access on-chip Flash Data
memory. Any attempts to read Data memory with addresses 0C004 and higher
would result in the part attempting to fetch that data off-chip from external Data
memory (see the next section), except when the internal 1kB SRAM is configured
as Von Neumann type, which occupies from 84004~87FF4.

2.3.3 External Data Memory

The MSC1210 is capable of addressing up to 64k of Data memory, however,
a maximum of 33k of that may be on-chip: 1k of SRAM and up to 32k of Flash
Data memory. If additional Data memory is necessary, it must be added to the
circuit as external Data memory.

External Data memory is any off-chip Data memory which is connected to the
MSC1210 via ports 0 and 2 and using the control pins ALE, RD, and WR.
These two ports combined with these three control lines allow the MSC1210
to address external RAM.

External Data memory can also be used to access “memory mapped devices”
which are devices that appear to the MSC1210 to be external Data memory,
but in reality are external components such as LCDs, buttons, keypads, etc.

NOTE: The MSC1210 may only address 64kB of RAM. To expand RAM beyond this limit requires pro-
gramming and hardware tricks. It may be necessary to do this “by hand” because many compilers and
assemblers, while providing support for programmers in excess of 64kB, do not support more than 64kB
of RAM. If more than 64kB of RAM is necessary, the compiler must be checked to verify that the excess
RAM is supported. If not, it will be necessary to do it “by hand.”

2.4 Internal RAM

Direct

or

Indirect
Addressing

As shown in Figure 2-2, the MSC1210 has a bank of 256 bytes of internal RAM.
This internal RAM is found on-chip within the IC, so it is the fastest RAM avail-
able and it is also the most flexible in terms of reading, writing, and modifying
its contents. Internal RAM is volatile, so when the MSC1210 is powered up,
the contents of this memory is random.

Description Addr
FF
Special Functi
Indirect Extended User RAM Rggics'; rsfgf:;’; Direct
Addressing (128 bytes, 80,-FF)) Addressing
(80,-FF,)
80
7F

General User RAM
and Stack Space
(80 bytes, 30,-7F)
30

Bits 40-7F
Bits 00-3F
Register Bank 3
Register Bank 2
Register Bank 1
Register Bank 0

40

48

50

58

60

68

70

78

28

00

08

10

18

20

28

30

38

20

RO

R1

R2

R3

R4

R5

R6

R7

RO

R1

R2

R3

R4

R5

R6

R7

RO

R1

R2

R3

R4

R5

R6

R7

RO

R1

R2

R3

R4

R5

R6

R7

18
10
08

00

Figure 2-2. MSC1210 Memory Map Register Bank.

MSC1210 Memory Organization

2-5

Internal RAM

2.4.1 The Stack

The 256 bytes of internal RAM are subdivided as shown in the memory map,
as shown in Figure 2-2. The first eight bytes (004-074) are register bank 0. By
manipulating certain SFRs, a program may choose to use register banks 0, 1,
2, or 3. These alternative register banks are located in internal RAM in ad-
dresses 08y through 1Fp. Register banks will be described more in a later
chapter. For now it is sufficient to know that they reside in and are part of Inter-
nal RAM.

Bit memory also resides in and is part of internal RAM. Bit memory will be de-
scribed more very shortly, but for now just keep in mind that bit memory actual-
ly resides in internal RAM, from addresses 20y through 2F.

The 208 bytes remaining of Internal RAM, from addresses 30y through FFy,
may be used by user variables that need to be accessed frequently or at high-
speed. This area is also used by the microcontroller as a storage area for the
operating stack. This fact limits the MSC1210’s stack because, as illustrated
in the memory map of Figure 2-2, the area reserved for the stack is only 208
bytes—and usually it is less because these 208 bytes have to be shared be-
tween the stack and user variables.

Note that Internal RAM addresses 00y through 7F may be accessed either
via direct addressing or indirect addressing while Internal RAM addresses 80y
through FFy may only be accessed via indirect addressing. This will be dis-
cussed completely in Chapter 5 “Addressing Modes.”

The stack is a “Last In, First Out” (LIFO) storage area that exists in Internal
RAM. It is used by the MSC1210 to store values that the user program manual-
ly pushes onto the stack as well as to store the return addresses for CALLs and
interrupt service routines (more on these topics later).

The stack is defined and controlled by a Special Function Register called SP.
SP, as a standard 8-bit SFR, holds a value between 0 and 255 that represents
the Internal RAM address of the end of the current stack. If a value is removed
from the stack, it will be taken from the Internal RAM address pointed to by SP
and SP will subsequently be decremented by 1. If a value is pushed onto the
stack, SP will first be incremented and then the value will be inserted in Internal
RAM at the address now pointed to by SP.

SP is initialized to 07 when the MSC1210 is first powered up. This means the
first value to be pushed onto the stack will be placed at Internal RAM address
08y (074 + 1), the second will be placed at 09, etc.

NOTE: By default, the MSC1210 initializes the Stack Pointer (SP) to 07 when the
microcontroller is reset. This means that the stack will start at address 08y and ex-
pand upwards. If using the alternate register banks (banks 1, 2, or 3) the stack point-
er must be initialized to an address above the highest register bank being used.
Otherwise, the stack will overwrite the alternate register banks. Similarly, if using bit
variables, it is usually a good idea to initialize the stack pointer to some value greater
than 2Fy to ensure that the bit variables are protected from the stack. More informa-
tion about the register banks and bit memory will be presented later.

2-6

Internal RAM

2.4.2 Register Banks

The MSC1210 uses eight “R” registers, which are used in many of its instructions.
These R registers are numbered from 0 through 7 (RO, R1, R2, R3, R4, R5, R6,
and R7) and are generally used to assist in manipulating values and moving data
from one memory location to another. For example, to add the value of R4 to the
Accumulator, the following assembly language instruction would be executed:

ADD A,R4

Thus, if the Accumulator (A) contained the value 6 and R4 contained the value
3, the Accumulator would contain the value 9 after this instruction was executed.

However, as the memory map of Figure 2-2 illustrates, R Register R4 is really
part of Internal RAM. Specifically, R4 is address 044 of Internal RAM. This can
be seen in the bright green section of the memory map. Thus, the above instruc-
tion accomplishes the same thing as the following operation:

ADD A, 04h

This instruction adds the value found in Internal RAM address 044 to the value
of the Accumulator, leaving the result in the Accumulator. The above instruction
effectively accomplishes the same thing as the previous ADD instruction be-
cause R4 is really Internal RAM address 04.

But watch out! As the memory map shows, the MSC1210 has four distinct regis-
ter banks. When the MSC1210 is first reset, register bank O (addresses 00y
through 07y) is used by default. However, the MSC1210 may be instructed to
use one of the alternate register banks (i.e., register banks 1, 2, or 3). In this
case, R4 will no longer be the same as Internal RAM address 04,. For example,
if the program instructs the 8052 to use register bank 1, register R4 will now be
synonymous with Internal RAM address 0Cy. If register bank 2 is selected, R4
is synonymous with 14y, and if register bank 3 is selected, it is synonymous with
address 1Cp.

The concept of register banks adds a great level of flexibility to the 8052, especially
when dealing with interrupts (interrupts will be discussed later). However, always
remember that the register banks really reside in the first 32 bytes of Internal RAM.

NOTE: If only the first register bank (i.e. bank 0) is used, Internal RAM locations 08
through 1Fy may be used by the program for its own use. If register banks 1, 2, or
3 are to be used, be very careful about using addresses below 20H to avoid overwrit-
ing the value of “R” registers from other register banks.

2.4.3 Bit Memory

The MSC1210, being a communications and control-oriented microcontroller
that often has to deal with “on” and “off” situations, gives the user the ability
to access a number of bit variables directly with simple instructions to set,
clear, and compare these bits. These variables may be either 1 or 0.

There are 128 bit variables available to the user, numbered 004 through 7F.
The user may make use of these variables with commands such as SETB and

MSC1210 Memory Organization 2.7

Internal RAM

2-8

CLR. For example, to set bit number 24y (hex) to 1, the user would execute
the instruction:

SETB 24h

It is important to note that Bit memory, like the register banks in section 2.4.2,
is really a part of Internal RAM. In fact, the 128-bit variables occupy the 16 by-
tes of Internal RAM from 20y through 2F. Thus, if the value FFy is written to
Internal RAM address 20y bits 00y through 07y have been effectively set.
That is to say that the instruction:

MOV 20h, #0FFh

is equivalent to the instructions:

SETB 00h
SETB 01h
SETB 02h
SETB 03h
SETB 04h
SETB 05h
SETB 06h
SETB 07h

As illustrated above, Bit memory isn't really a new type of memory—it’s just a
subset of Internal RAM. However, because the MSC1210 provides special in-
structions to access these 16 bytes of memory on a bit-by-bit basis, it is useful
to think of it as a separate type of memory. Always keep in mind that it is just
a subset of Internal RAM, and that operations performed on Internal RAM can
change the values of the bit variables.

NOTE: If your program does not use bit variables, you may use Internal RAM locations
20y through 2F for your own use. When using bit variables, be very careful about using
addresses from 20y through 2Fy, as you may end up overwriting the value of your bits.

NOTE: By default, the MSC1210 initializes the Stack Pointer (SP) to 07 when the mi-
crocontroller is booted. This means that the stack will start at address 08 and expand
upwards. If using the alternate register banks (banks 1, 2 or 3), the stack pointer must
be initialized to an address above the highest register bank being used. Otherwise the
stack will overwrite the alternate register banks. Similarly, if using bit variables, it is usu-
ally a good idea to initialize the stack pointer to some value greater than 2F to ensure
that the bit variables are protected from the stack.

Bit Memory 00y through 7F are for user-defined functions in their programs.
Bit Memory 80y and above are used to access certain SFRs (see below) on
a bit-by-bit basis. For example, if output lines P0.0 through P0.7 are all clear
(0), to turn on the P0.0 output line, either execute:

MOV PO, #01h

or execute:
SETB 80h

Internal RAM

Both these instructions accomplish the same thing. However, using the SETB
command will turn on the P0.0 line without affecting the status of any of the
other PO output lines. The MOV command effectively turns off all the other out-
put lines that, in some cases, may not be acceptable.

When dealing with bit addresses of 80y and above, remember that the bits re-
fer to the bits of corresponding SFRs that are divisible by eight. This is a com-
plicated way of saying that bits 80 through 87 refer to bits O through 7 of SFR
80y. Bits 88y through 8F refer to bits 0 through 7 of SFR 884. Bits 90y
through 97 refer to bits 0 through 7 of 90y, etc.

2.4.4 Special Function Register (SFR) Memory

Special Function Registers (SFRs) are areas of memory that control specific
functionality of the MSC1210. For example, four SFRs permit access to the
MSC1210’s 32 input/output lines (eight lines per SFR). Another SFR allows a
program to read or write to the MSC1210’s serial port. Other SFRs allow the
user to set the serial baud rate, control and access timers, and configure the
MSC1210’s interrupt system.

When programming, SFRs have the illusion of being Internal memory. For ex-
ample, if writing the value “1” to Internal RAM location 50y, execute the instruc-
tion:

MOV 50h, #01h

Similarly, if writing the value “1” to the MSC1210'’s serial port, write this value
to the SBUF SFR, which has an SFR address of 994. Thus, to write the value
“1” to the serial port, execute the instruction;

MOV 99h, #01h

As is shown, it appears as if the SFR is part of Internal memory. This is not
the case. When using this method of memory access (it's called “direct ad-
dress"—more on that soon), any instruction that has an address of 00y
through 7F refers to an Internal RAM memory address; any instruction with
an address of 80y through FFy refers to an SFR control register.

NOTE: SFRs are used to control the way the MSC1210 functions. Each SFR has
a specific purpose and format that will be discussed later. Not all addresses above
80y are assigned to SFRs. However, this area may NOT be used as additional RAM
memory, even if a given address has not been assigned to an SFR.

NOTE: Direct access cannot be used to access internal RAM addresses 80y
through FF because direct access to addresses 804 through FFy refers to SFRs.
The upper 128 bytes of Internal RAM must be accessed using “Indirect Addressing”,
which will be explained in a subsequent chapter.

MSC1210 Memory Organization 2.9

Chapter 3

Special Function Registers (SFRs)

Chapter 3 defines the MSC1210 Special Function Registers (SFRs).

Topic Page
3.1 DeSCHIPLION ...t 3-2
3.2 Referencing SFRS 3-3
3.3 Bit-Addressable SFRS 3-4
3.4 SFR TYPES .ot 3-4
3.3 SFRDEfiNItioNS ...ttt 3-4

3-1

Description

3.1 Description

The MSC1210 is a flexible microcontroller with a relatively large number of
modes of operation. The user’s program may inspect and/or change the oper-
ating mode of the MSC1210 by manipulating the values of its Special Function
Registers (SFRs).

SFRs are accessed as if they were normal Internal RAM. The only difference
is that Internal RAM is addressed in “direct mode” with addresses 00y through
7Fn, whereas SFR registers are accessed in the range of 80y through FFy.

Each SFR has an address (804 through FF) and a name. Table 3-1 provides
a graphical presentation of the 8052's SFRs, their names, and their address.

Table 3-1.SFR Names and Addresses.

80 PO SP DPLO DPHO DPL1 DPH1 DPS PCON
88 TCON TMOD TLO TL1 THO TH1 CKCON MWS
90 P1 EXIF MPAGE CADDR CDATA MCON

98 SCONO SBUFO SPICON SPIDATA SPIRCON SPITCON | SPISTART SPIEND
AO P2 PWMCON | PWMLOW PWMHI PAI AIE AISTAT
A8 IE BPCON BPL BPH PODDRL PODDRH P1DDRL P1DDRH
BO P3 P2DDRL P2DDRH P3DDRL P3DDRH

B8 P

Cco SCON1 SBUF1 EWU

C8 T2CON RCAP2L RCAP2H TL2 TH2

DO PSW OCL OCM OCH GCL GCM GCH ADMUX
D8 EICON ADRESL ADRESM ADRESH ADCONO ADCON1 ADCON2 ADCONS3
EO ACC SSCON SUMRO SUMR1 SUMR2 SUMR3 ODAC LVDCON
E8 EIE HWPCO HWPC1 HDWVER Reserved Reserved FMCON FTCON
FO B PDCON PASEL ACLK SRST
F8 EIP SECINT MSINT USEC MSECL MSECH HMSEC WDTCON

87
8F
97
9F
A7
AF
B7
BF
c7
CF
D7
DF
E7
EF
F7
FF

Although the address range of 80y through FF offers 128 possible address-
es, there are 24 addresses that aren't assigned to an SFR, as shown in Table

3-1.

NOTE: Reading an unassigned SFR will get 00y, and writing to an unassigned SFR
is ignored.

Referencing SFRs

3.2 Referencing SFRs

When writing code in assembly language, SFRs may be referenced either by
their name or their address.

For example, the SBUFO SFR is at address 99 (see Table 3-1). In order to
write the value 24y to the SBUF SFR in assembly language, it would be written
in code as:

MOV 99h, #24h

This instruction moves the value 24 into address 994. The value 99y is in the
range of 80y to FFy, and, therefore, refers to an SFR. Further, because 994
refers to the SBUFO SFR, this instruction will accomplish the goal of writing the
value 24y to the SBUFO SFR.

While the above instruction certainly works, it is not necessarily easy to re-
member the address of each SFR when writing software. Thus, all 8052 as-
semblers allow the name of the SFR to be used in code rather than its numeric
address. The above instruction would more commonly be written as:

MOV SBUFO, #24h

The instruction is much easier to read because it is obvious the SBUFO SFR
is being accessed. The assembler will automatically convert this to its numeric
address at assemble-time.

NOTE: Many of the SFRs that the MSC1210 uses are MSC1210-specific; only 26
are recognized by the original 8052. It is usually necessary to include a header file
or an “include file” in your program to define the additional SFRs supported by the
MSC1210. Failing to do so may result in the assembler or compiler reporting compile
errors. Please refer to the documentation for the compiler or assembler to discover
how the MSC1210's new SFRs must be defined in the development platform that
will be used.

3.2.1 Referencing Bits of SFRs

Individual bits of SFRs are referenced in one of two ways. The general conven-
tion is to name the SFR followed by a period and the bit number. For example,
SCONO.0 refers to hit O (the least significant bit) of the SCONO SFR. SCONO.7
refers to bit 7 (the most significant bit) of SCONO.

These bits also have names: SCONO.0 is Rl and SCONO.7 is SMO_O. It is also
acceptable to refer to the bits by their name, although in this document they
will usually be referred to in the SCONO.0 format, because that defines which
bit is in which SFR.

Special Function Registers (SFRs) 3.3

Bit-Addressable SFRs

3.3 Bit-Addressable SFRs

All SFRs that have addresses divisible by eight, such as 80y, 88y, 904, 984,
etc. are bit-addressable. This means that individual bits of these SFRs can be
set or cleared using the SETB and CLR instruction.

NOTE: The SFRs whose names appear BOLD in Table 3-1 are SFRs that may be
accessed via bit operations; these also happen to be the first column of SFRs on the
left side of the chart. The other SFRs cannot be accessed using bit operations such
as SETB or CLR.

3.4 SFR Types

Four of the SFRs are related to the 1/0 ports. The MSC1210 has four 1/O ports
of eight bits, for a total of 32 I/O lines. Whether a given I/O line is high or low,
and the value read from the line, is controlled by these SFRs. Refer to the
Hardware Configuration section for the detailed control of the port usages.

Other SFRs in some way control the operation or the configuration of some
aspect of the MSC1210. For example, TCON controls the timers and SCON
controls the serial port.

The remaining SFRs are “other SFRs.” These SFRs can be thought of as auxil-
iary SFRs in the sense that they do not directly configure the MSC1210, but
obviously the MSC1210 cannot operate without them. For example, once the
serial port has been configured using SCONO, the program may read or write
to the serial port using the SBUFO register.

3.5 SFR Definitions

This section will endeavor to quickly overview each of the SFRs found in the
SFR chart map of Table 3-1. It is not the intention of this section to fully explain
the functionality of each SFR—this information will be covered in separate
chapters of the tutorial. This section is to just give a general idea of what each
SFR does.

PO (Port 0, Address 80y, Bit-Addressable): This is input/output port 0. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 0 is pin P0.0, bit 7 is pin P0.7. Writing a value of 1 to a bit of
this SFR will set a high level on the corresponding I/O pin, whereas a value of
0 will bring it to a low level.

NOTE: Even though the MSC1210 has four I/O ports (PO, P1, P2, and P3), if the
hardware uses external RAM or external code memory (i.e., if the program is stored
in an external ROM or EPROM chip or if external RAM chips are being used), PO or
P2 may not be used. This is because the MSC1210 uses ports PO and P2 to address
the external memory (refer to the Hardware Configuration section for the port usage
control). Thus, if external RAM or code memory is being used, only ports P1 and P3
(except P3.6 and P3.7) may be used by the application.

3-4

SFR Definitions

SP (Stack Pointer, Address 814): This is the stack pointer of the microcontrol-
ler. This SFR indicates where the next value to be taken from the stack will be
read from Internal RAM. If a value is pushed onto the stack, the value will be
written to the address of SP + 1. That is to say, if SP holds the value 07, a PUSH
instruction will push the value onto the stack at address 08y. This SFR is modi-
fied by all instructions that modify the stack, such as PUSH, POP, LCALL, RET,
RETI, and whenever interrupts are triggered by the microcontroller.

NOTE: The SP SFR, on startup, is initialized to 07y. This means the stack will start at
08y and will grow to larger addresses of internal RAM. It is necessary to initialize SP
in the program to some other value if alternate register banks and/or bit memorywill be
used because alternate register banks 1, 2, and 3, as well as the user bit variables,
occupy internal RAM from addresses 08y through 2F. It is not a bad idea to initialize
SP to 2Fy as the first instruction of every one of the programs, unless there is complete
confidence that the program will not be using register banks and bit variables.

DPLO/DPHO (Data Pointer 0 Low/High, Addresses 82,/83): The SFRs DPLO
and DPHO work together to represent a 16- bit value called Data Pointer 0. The
data pointer is used in operations regarding external RAM and some instructions
involving code memory. It can represent values from 00004 to FFFFy (0 through
65,535 decimal) because it is an unsigned 2-byte integer value,

NOTE: DPTR is really DPHO and DPLO taken together as a 16-bit value. In reality,
DPTR must almost always be dealt with one byte at a time. For example, to push
DPTR onto the stack, first push DPLO and then DPHO. It is not possible to simply
push DPTR onto the stack as a single value. Additionally, there is an instruction to
“increment DPTR.” When this instruction is executed, the two bytes are operated
upon as a 16-bit value. However, there is no instruction which decrements DPTR.
If it is necessary to decrement the value of DPTR, special code must be written to
do so. DPTR is a useful storage location for occasional 16-bit values that are being
manipulated by the user program—especially if those values need to be increm-
ented frequently.

DPL1/DPH1 (Data Pointer 1 Low/High, Addresses 84/854): These two SFRs
work together to form a 16- it value called Data Pointer 1. Its purpose and function
is the same as DPLO/DPHO just described. The existence of two distinct data point-
ers allows a program to quickly copy data from one area of memory to another.

DPS (Data Pointer Select, Address 86y): Bit 0 of this SFR determines whether
instructions that refer to DPTR will use Data Pointer O or Data Pointer 1.
If bit O is clear, Data Pointer O will be used (DPHO/DPLO). If bit 1 is set, Data Pointer
1 will be used (DPH1/DPL1).

PCON (Power Control, Address 87y): The Power Control SFR is used to control
the MSC1210's CPU power control modes. Certain operation modes allow the
MSC1210 to go into a type of “sleep” mode that requires much less power. These
modes of operation are controlled through PCON. Additionally, one of the bits in
PCON is used to double the effective baud rate of the MSC1210’s primary serial
port. Do not confuse with PDCON, which controls peripheral power-down.

Special Function Registers (SFRs) 3.5

SFR Definitions

3-6

TCON (Timer Control, Address 88, Bit-Addressable): The Timer Control
SFR is used to configure and modify the way in which the 8052’s two timers
operate. This SFR controls whether each of the two timers is running or
stopped and contains a flag to indicate that each timer has overflowed. Addi-
tionally, some non-timer related bits are located in the TCON SFR. These bits
are used to configure the way in which the external interrupts are activated and
also contain the external interrupt flags that are set when an external interrupt
has occurred.

T2CON (Timer Control 2, Address C8, Bit-Addressable): The Timer Con-
trol 2 SFR is used to configure and control the way in which timer 2 operates.
This SFR is only available on 8052s, not on 8051s.

TMOD (Timer Mode, Address 89y): The Timer Mode SFR is used to config-
ure the mode of operation of each of the two timers. Using this SFR, the pro-
gram may configure each timer to be a 16-bit timer, an 8-bit auto-reload timer,
a 13-bit timer, or two separate timers. Additionally, the timers may be config-
ured to only count when an external pin is activated or to count “events” that
are indicated on an external pin.

TLO/THO (Timer 0 Low/High, Addresses 8A4/8By): These two SFRs, taken
together, represent timer 0. Their exact behavior depends on how the timer is
configured in the TMOD SFR, however, these timers always count up. What
is configurable is how and when they increment in value.

TL1/TH1 (Timer 1 Low/High, Addresses 8Ch/8Dy): These two SFRs, taken
together, represent timer 1. Their exact behavior depends on how the timer is
configured in the TMOD SFR, however, these timers always count up. What
is configurable is how and when they increment in value.

CKCON (Clock Control, Address 8Ey): This SFR is used by the MSC1210
to provide the developer with a number of timing controls that allow the
MSC1210 to mimic standard 8052 timing, or to fully exploit the high-speed na-
ture of the MSC1210. This SFR allows timers 0, 1, and 2 to be clocked at a rate
of 1/12th the crystal frequency (just like an 8052), or to be clocked at the rate
of 1/4th the crystal frequency such that the clocks will be incremented once
every instruction cycle. Additionally, the CKCON SFR allows the developer to
modify how long the MSC1210 takes to access External Data memory.

MWS (Memory Write Select, Address 8Fp): This SFR contains a single bit
(bit 0) that enables writing to Program Flash memaory. If this bit is clear, MOVX
@DPTR or MOVX @Ri write to Data Flash memory or Data SRAM memory.
If this bit is set, MOVX @DPTR or MOVX @Ri write to Program Flash memory.

TL2/TH2 (Timer 2 Low/High, Addresses CCH/CDy): These two SFRs, taken
together, represent timer 2. Their exact behavior depends on how the timer is
configured in the T2CON SFR.

RCAP2L/RCAP2H (Timer 2 Capture Low/High, Addresses CAQ/CBp):
These two SFRs, taken together, represent the timer 2 “capture” register. It
may be used as a reload value for timer 2, or to capture the value of timer 2
under certain circumstances. The exact purpose and function of these two
SFRs depends on the configuration of T2CON.

SFR Definitions

P1 (Port 1, Address 90y, Bit-Addressable): This is input/output port 1. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of
this SFR will send a high level on the corresponding I/O pin, whereas a value
of 0 will bring it to a low level.

EXIF (External Interrupt Flag, Address 91y): This SFR contains the inter-
rupt trigger flags for external interrupts 2 through 5. When these bits are set,
the corresponding interrupt will be triggered, as long as that interrupt is en-
abled.

MPAGE (Memory Page, Address 92): This SFR contains the high-byte of
the address to access when using the MOVX @RI instructions. A normal 8052
requires the high-byte of the address be written to P2; the MSC1210, however,
requires that the byte be written to the MPAGE SFR.

CADDR (Configuration Address Register, Address 934): This SFR is used
to read the 128 bytes of Flash hardware configuration data. The contents of
the Flash configuration data at the address pointed to by this SFR will be
loaded into CDATA (see below).

CDATA (Configuration Data Register, Address 94y): The contents of the
Flash hardware configuration data pointed to by CADDR will be readable in
this SFR. This SFR is read-only. Also note that attempting to read the Flash
configuration data while executing the program from Flash memory will return
invalid data. Internal Boot ROM routine or external program memory user rou-
tine may access this memory correctly.

MCON (Memory Configuration, Address 95): The MCON SFR is used to
control the memory configuration. It determines breakpoints, as well as where
the internal static RAM will be mapped to in memory.

SCONO (Serial Control 0, Address 984, Bit-Addressable): The Serial Con-
trol SFR is used to configure the behavior of the MSC1210’s primary onboard
serial port. This SFR controls the baud rate of the serial port, whether the serial
port is activated to receive data, and also contains flags that are set when a
byte is successfully sent or received.

NOTE: To use the MSC1210’s onboard serial port, it is generally necessary to initial-
ize the following SFRs: SCONO, TCON, and TMOD. This is because SCONO con-
trols the serial port, but in most cases the program will wish to use one of the timers
to establish the serial port’'s baud rate. In this case, it is necessary to configure timer
1 or timer 2 by initializing TCON and TMOD, or T2CON.

SBUFO (Serial Buffer 0, Address 99y): The Serial Buffer 0 SFR is used to
send and receive data via the primary serial port. Any value written to SBUFO
will be sent out the serial port's TXD pin. Likewise, any value which the
MSC1210 receives via the serial port's RXD pin will be delivered to the user
program via SBUFO. In other words, SBUFO serves as the output port when
written to and as an input port when read from.

Special Function Registers (SFRs) 3.7

SFR Definitions

3-8

SPICON (SPI Control, Address 9Ap): The SPICON SFR controls the basic
configuration of the SPI interface, including clocking rate, master/slave, and
polarity. Note that writing to or updating this SFR will reset the SPI interface.

SPIDATA (SPI Data, Address 9By): This SFR acts in a fashion similar to
SBUFO in that data written to this SFR will be sent out the SPI port and incom-
ing data received by the SPI port will be readable at this SFR address.

SPIRCON (SPI Receive Control, Address 9Cp): The SPIRCON is dual-pur-
pose: when read, it will return the number of bytes currently in the SPI receive
buffer; when written, it can be used to clear the receive buffer and/or to indicate
how many characters should accumulate in the receive buffer before trigger-
ing an SPI interrupt.

SPITCON (SPI Transmit Control, Address 9Dy): The SPITCON SFR, like
the SPIRCON SFR, is dual-purpose: when read, it will return the number of
bytes currently in the SPI transmit buffer; when written, it can be used to clear
the transmit buffer and/or to configure whether the SCLK driver is enabled
(when in Master mode).

SPISTART (SPI Buffer Start Address, Address 9Ep): The SPISTART SFR indi-
cates where the SPI buffer begins. A value of between 128 and 255 must be written
to this SFR, and the buffer is situated in Internal RAM in the upper 128 bytes.

SPIEND (SPI Buffer End Address, Address 9Fy): The SPIEND SFR indi-
cates where the SPI buffer ends. It must be a value between 128 and 255, and
must be larger than SPISTART.

P2 (Port 2, Address A0y, Bit-Addressable): This is input/output port 2. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of
this SFR will send a high level on the corresponding I/O pin whereas a value
of O will bring it to a low level.

NOTE: Even though the MSC1210 has four I/O ports (PO, P1, P2, and P3), if the
hardware uses external RAM or external code memory (i.e., the program is stored
in an external ROM or EPROM chip, or if external RAM chips are being used), PO,
P2, P3.6, or P3.7 may not used. This is because the MSC1210 uses ports PO and
P2 to address the external memory. Thus, if external RAM or code memory is being
used, only P1 and P3 (except P3.6 and P3.7) are available to the application for I/O.

PWMCON (PWM Control, Address Aly): This SFR controls the PWM that
can be generated automatically by the MSC1210.

PWMLOW/PWMHIGH (PWM Low/High-Byte, Addresses A2y/A3y): This
SFR works together with the PWMCON SFR to determine the length and
shape of the PWM. This SFR contains the low byte.

PAI (Pending Auxiliary Interrupt, Address A5y): This SFR contains infor-
mation regarding which of the various possible conditions triggered an auxilia-
ry interrupt. This SFR is normally used by the ISR to determine the highest
priority pending auxiliary interrupt.

SFR Definitions

AIE (Auxiliary Interrupt Enable, Address A6y): The AIE SFR enables and
disables the various interrupts that were described in the previous paragraph
regarding PAl. The interrupts mentioned in PAI will only be triggered if they are
enabled in this SFR and if EAI (in EICON) is enabled. When read, the AIE SFR
provides the status of the interrupt, regardless of the state of the EAI bit.

AISTAT (Auxiliary Interrupt Status, Address A7y): The AISTAT SFR is a
read-only SFR that will provide you with the current status of all the enabled
(not masked by AIE) auxiliary interrupts. Those interrupts that have been dis-
abled (masked) by AIE will not be available in AISTAT.

IE (Interrupt Enable, Addresses A8y): The Interrupt Enable SFR is used to en-
able and disable specific interrupts. The low seven bits of the SFR are used to
enable or disable the specific interrupts, whereas the highest bit is used to enable
or disable ALL interrupts. Thus, if the high bit of IE is 0, all interrupts are disabled
regardless of whether an individual interrupt is enabled by setting a lower bit.

BPCON (Breakpoint Control, Address A9y): The BPCON SFR controls
whether or not breakpoints are enabled and, if they are, what the source of the
breakpoint is.

BPL/BPH (Breakpoint Address Low/High Byte, Addresses AAL/ABY):
These two SFRs hold a 16-bit address at which a breakpoint will be triggered.
Which breakpoint (0 or 1) the SFRs reference depends on the configuration
of the MCON SFR.

PODDRL/PODDRH (Port 0 Data Direction Low/High Byte, Addresses
ACH/ADY): These two SFRs, together, configure the state of each port O
pin—standard 8051 (pull-up), CMOS output, Open-Drain output, or input.

P1DDRL/P1DDRH (Port 1 Data Direction Low/High Byte, Addresses
AEH/AFL): These two SFRs, together, configure the state of each port 1 pin—
standard 8051 (pull-up), CMOS output, Open-Drain output, or input.

P3 (Port 3, Address B0y, Bit-Addressable): This is input/output port 3. Each
bit of this SFR corresponds to one of the pins on the microcontroller. For exam-
ple, bit 0 of port 3 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of
this SFR will send a high level on the corresponding I/O pin, whereas a value
of O will bring it to a low level.

P2DDRL/P2DDRH (Port 2 Data Direction Low/High Byte, Addresses
B14/B2y): These two SFRs, together, configure the state of each port 2
pin—standard 8051 (pull-up), CMOS output, Open-Drain output, or input.

P3DDRL/P3DDRH (Port 3 Data Direction Low/High Byte, Addresses
B3u/B4y): These two SFRs, together, configure the state of each port 3 pin—
standard 8051 (pull-up), CMOS output, Open-Drain output, or input.

IP (Interrupt Priority, Addresses B8y, Bit-Addressable): The Interrupt
Priority SFR is used to specify the relative priority of each interrupt. An interrupt
may either be of low (0) priority or high (1) priority. An interrupt may only inter-
rupt interrupts of lower priority. For example, if we configure the MSC1210 so
that all interrupts are of low priority except the serial interrupt, the serial inter-

Special Function Registers (SFRs) 3.9

SFR Definitions

3-10

rupt will always be able to interrupt the system, even if another interrupt is cur-
rently executing. However, if a serial interrupt is executing no other interrupt
will be able to interrupt the serial interrupt routine, because the serial interrupt
routine has the highest priority.

SCONL1 (Serial Control 1, Address COy, Bit-Addressable): The Serial Con-
trol SFR is used to configure the behavior of the MSC1210’s secondary on-
board serial port. This SFR controls the baud rate of the serial port, whether
the serial port is activated to receive data, and also contains flags that are set
when a byte is successfully sent or received.

SBUF1 (Serial Buffer 1, Address C1lp): The Serial Buffer 1 SFR is used to
send and receive data via the secondary onboard serial port. Any value written
to SBUF1 will be sent out the serial port's TXD1 pin. Likewise, any value which
the MSC1210 receives via the serial port's RXD1 pin will be delivered to the
user program via SBUFL1. In other words, SBUF1 serves as the output port
when written to, and as an input port when read from.

EWU (Enable Wake-up, Address C6y): The EWU SFR controls under what
conditions the MSC1210 will wake up from idle mode: external 1 interrupt, ex-
ternal O interrupt, and watchdog interrupt. Idle wakeup from Auxint is con-
trolled via EAI bit of EICON SFR.

PSW (Program Status Word, Address DOy, Bit-Addressable): The Pro-
gram Status Word is used to store a number of important bits that are set and
cleared by instructions. The PSW SFR contains the carry flag, the auxiliary
carry flag, the overflow flag, and the parity flag. Additionally, the PSW register
contains the register bank select flags that are used to select which of the “R”
register banks are currently selected.

NOTE: When writing an interrupt handler routine, it is a very good idea to always
save the PSW SFR on the stack and restore it when the interrupt is complete. Many
instructions modify the bits of PSW. If the interrupt routine does not ensure that PSW
is the same upon exit as it was upon entry, the program is bound to behave rather
erratically and unpredictably, and it will be tricky to debug, because the behavior will
tend not to make any sense.

OCL/OCM/OCH (Offset Calibration Low/Middle/High Byte, Addresses
D1/D2y/D3y): These three SFRs make up a 24-bit value that sets the ADC
offset calibration.

GCL/GCM/GCH (Gain Low/Middle/High Byte, Addresses D4y/D5y/D64):
These three SFRs make up a 24-bit value that sets ADC gain calibration.

ADMUX (ADC Multiplexer Register, Address D7y): The ADMUX SFR selects
the positive input for the ADC and/or selects the temperature sensor option.

EICON (Enable Interrupt Control, Address D8y, Bit-Addressable): This
SFR controls whether or not the additional interrupts provided by the MSC1210
will cause an interrupt to occur when their corresponding conditions are en-
abled.

SFR Definitions

ADRESL/ADRESM/ADRESH (ADC Conversion Results, Addresses
D9/DAH/DBR): These three SFRs make up a 24- bit value which holds the re-
sults of an ADC conversion.

ADCONO/ADCONL1 (ADC Control 0 and 1, Addresses DCH/DDy): These
two SFRs allow the user program to configure various aspects of the ADC.

ADCON2/ADCON3 (ADC Controls 2 and 3, Addresses DEy/DFy): These
two SFRs control the decimation rate of the ADC; in other words, they control
the frequency at which sampled data will be provided to the user program via
the ADRES SFRs.

ACC (Accumulator, Addresses EOy, Bit-Addressable): The Accumulator
is one of the most-used SFRs, because it is involved in so many instructions.
The Accumulator resides as an SFR at EOy, which means the instruction
“MOV A#20h" is the same as “MOV EOh,#20h". However, it is a good idea to
use the first method because it only requires two bytes, whereas the second
option requires three bytes.

SSCON (Summation/Shift Control, Address E1y): The SSCON SFR con-
trols what action is taken in regards to the summation registers
SUMRO/SUMR1/SUMR2/SUMRS.

SUMRO/SUMR1/SUMR2/SUMR3 (Summation Registers 0/1/2/3, Address-
es E2y/E34/E4R/ESY): These four registers, together, make up a 32-bit
summation value for the ADC. Writing a value to the least significant byte
(SUMRO) will cause the values in the other three summation registers to be
added to the summation result.

ODAC (Offset DAC Register, Address E6y): This SFR allows the MSC1210
to shift the input by up to half of the ADC input range.

LVDCON (Low-Voltage Detection Control, Address E7y): The LVDCON
SFR configures the low-voltage detection on both the analog and digital sup-
plies. In both cases, the LVDCON allows the user program to specify the “trip”
voltage below which the low-voltage detection will be triggered.

EIE (Extended Interrupt Enable, Address E8y, Bit-Addressable): This
SFR configures whether or not the extended interrupts are enabled or not, in-
cluding the watchdog and external interrupts 2 through 5.

HWPCO/HWPC1 (Hardware Product Code, Addresses E9/EAR): These
two SFRs are read-only and can provide the user program with information re-
garding the part number version and how much Flash memory is available on
the part.

FMCON (Flash Memory Control, Address EEy): The FMCON SFR controls
certain aspects of the Flash memory, including page erase and byte write op-
eration. FRCM controls power saving for Flash memory read operations when
the MSC1210 is running at a low clock frequency. It also includes a bit that indi-
cates whether or not Flash memory is currently idle or busy with a prior
memory access operation.

Special Function Registers (SFRs) 311

SFR Definitions

3-12

FTCON (Flash Memory Timing Control, Address EFy): The FTCON SFR
controls the timing and period of Flash memory, specifically for writing and
erasing Flash memory. The period of writing to Flash is determined by USEC
and the low four bits of FTCON, and should produce a write period of 30us to
40us. Meanwhile, the period of erasing Flash is determined by MSECH/
MSECL and the high four bits of FTCON, and should produce an erase period
of 4ms to 11ms.

B (B Register, Address FOy, Bit-Addressable): The “B” register is used in
two instructions: the multiply and divide operations. The B register is also com-
monly used by programmers as an auxiliary register to store temporary values.

PDCON (Power-Down Control, Address F1y): This SFR allows the user
program to power-down specific on-chip peripherals that the program may not
need at a given moment, thus contributing to a more energy-efficient design.
This SFR allows the user to power-down (or power-up) the PWM generator,
ADC, watchdog, SPI system, and the system timer.

PASEL (PSEN/ALE select, Address F2y): The PASEL SFR allows for a user
program that runs entirely in internal Flash memory to control the ALE and
PSEN lines. The PASEL allows the user to configure both ALE and PSEN such
that they either behave normally or may be forced high or low. In this manner,
PSEN and ALE may be used as two additional output lines if they are not need-
ed for their normal functions. NOTE: When these two lines are used as output
lines, they should only drive light capacitive loads to avoid triggering serial or
parallel Flash programming modes.

ACLK (Analog Clock, Address F6y): This SFR is used to determine the ana-
log clock for the ADC. The value of ACLK, plus 1, multiplied by 64 represents
the number of instruction cycles between each analog sample. For example,
if an instruction cycle lasts 100ns and ACLK is 9, then ACLK + 1 = 10, so
10« 100ns = 1us, multiplied by 64 would result in a sample being made every
64us. A sample every 64us is equivalent to 1,000,000/64 = 15,625 samples
per second.

SRST (System Reset Register, Address F7): Setting this SFR to 1 and then
0 will cause a system reset to occur. This provides an easy way to reset the
system via software without the need for external circuitry.

EIP (Extended Interrupt Priority, Address F8y): This is the Interrupt Priority
register for the extended interrupts that are enabled/disabled using the EIE
SFR (E8).

SECINT (Seconds Timer Interrupt, Address F9y): This SFR can be set to
cause an interrupt to occur after the specified number of fractions of a second.
Specifically, this SFR can cause an interrupt every 100 milliseconds to every
12.8 seconds, assuming the HMSEC is set to a value that represents 100ms.
The precise frequency at which SECINT will cause an interrupt depends on
the system clock and the values of the MSECH, MSECL, HMSEC, and
SECINT SFRs.

SFR Definitions

MSINT (Milliseconds Interrupt, Address FApQ): This SFR can be set to
cause an interrupt to occur after the specified number of milliseconds. This as-
sumes that the millisecond registers FC and FDy are set to generate a cycle
every millisecond. The precise frequency at which MSINT will cause an inter-
rupt depends on the system clock and the value of the MSECH, MSECL, and
MSINT SFRs.

USEC (Microsecond Register, Address FBy): This SFR is divided into the
clock speed to determine the timing of 1ms. This value is used for program-
ming Flash memory. The value in USEC, taken together with the low four bits
of FTCON, should produce a timing of 30us to 40us, which is used for Flash
write operations.

MSECL/MSECH (Millisecond Low/High Registers, Addresses FCy/FDy):
These two SFRs, together, are used by the system to determine how long a milli-
second is. This value is used for erasing Flash memory, millisecond interrupt, sec-
ond interrupt, and watchdog time. Although it is named “Millisecond Low/High”,
the clock speed and the value placed in these registers will determine the exact
length of time measured.

HMSEC (Hundred Millisecond Clock, Address FER): This SFR is used to
create a 100ms clock based on the MSECL/MSECH SFRs. However, the ex-
act frequency generated by this SFR will depend on the system clock, the val-
ue of MSECL/MSECH, and the value placed in this register.

WDTCON (Watchdog Control, Address FFy): The WDTCON SFR is used
to enable, disable, and reset the watchdog timer. Once enabled, this SFR must
be periodically reset in order to prevent the system from resetting.

Special Function Registers (SFRs) 3-13

Chapter 4

Basic Registers

Chapter 4 describes the MSC1210’s basic register functions.

Topic Page
4.1 DeSCIIPLION . .ot e 4-2
4.2 ACCUMUIALON . ..ottt e e 4-2
4.3 YR REQISIEIS ..o 4-2
44 B REQISIEr .o 4-3
45 Program Counter (PC)t 4-3
4.6 Data Pointer (DPTRO/DPTRL)ttt i 4-4
4.7 Stack Pointer (SP)t 4-4

4-1

Description

4.1 Description

A number of MSC1210 registers can be considered “basic.” Very little can be
done without them and a detailed explanation of each one is warranted to
make sure the reader understands these registers before getting into more
complicated areas of development.

4.2 Accumulator

The Accumulator is a familiar concept when working with any assembly lan-
guage.

The Accumulator, as its name suggests, is used as a general register to accu-
mulate the results of a large number of instructions. It can hold an 8-bit (1-byte)
value and is the most versatile register the MSC1210 has due to the shear
number of instructions that make use of the Accumulator. More than half of the
MSC1210'’s 255 opcodes manipulate or use the Accumulator in some way.

For example, if adding the numbers 10 and 20, the resulting 30 will be stored
in the Accumulator. Once a value is in the Accumulator, it may continue to be
processed, or may be stored it in another register or in memory.

4.3 "“R” Registers
The “R” registers are sets of eight registers that are named RO through R7.

These registers are used as auxiliary registers in many operations. To contin-
ue with the above example of adding 10 and 20, the original number 10 may
be stored in the Accumulator, whereas the value 20 may be stored in, say, reg-
ister R4. To process the addition, the following command would be executed:

ADD A,R4

After executing this instruction, the Accumulator will contain the value 30.

The “R” registers are considered as very important auxiliary, or “helper”, regis-
ters. The Accumulator alone would not be very useful if it were not for these
“R” registers.

The “R” registers are also used to store values temporarily. For example, add
the values in R1 and R2 together and then subtract the values of R3 and R4.
One way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4

MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of R1 into the accumulator
ADD A,R2 ;Add the value of R2

SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As shown, R5 was used to temporarily hold the sum of R3 and R4. Of course,
this is not the most efficient way to calculate (R1 + R2) - (R3 + R4), but it does
illustrate the use of the “R” registers as a way to store values temporarily.

4-2

4.4

“B” Register

“B” Register

As mentioned earlier, there are four sets of “R” registers—register bank 0, 1,
2, and 3. When the MSC1210 is first powered up, register bank 0 (addresses
00y through 07y) is used by default. In this case, for example, R4 is the same
as Internal RAM address 04. However, the user’s program may instruct the
MSC1210 to use one of the alternate register banks; i.e., register banks 1, 2,
or 3. In this case, R4 will no longer be the same as Internal RAM address 04n.
For example, if the user’s program instructs the MSC1210 to use register bank
1, register R4 will now be synonymous with Internal RAM address 0Cy. If se-
lecting register bank 2, R4 is synonymous with 144, and if selecting register
bank 3, it is synonymous with address 1Ch.

The concept of register banks adds a great level of flexibility to the MSC1210,
especially when dealing with interrupts (interrupts will be discussed later).
However, always remember that the register banks really reside in the first 32
bytes of Internal RAM.

The “B” register is very similar to the Accumulator in the sense that it may hold
an 8-bit (1-byte) value.

The “B” register is only used by two MSC1210 instructions: MUL AB and DIV
AB. Thus, to quickly and easily multiply or divide A by another number, the oth-
er number may be stored in “B”.

Aside from the MUL and DIV instructions, the “B” register is often used as yet
another temporary storage register much like a 9th “R” register.

4.5 Program Counter (PC)

The Program Counter (PC) is a 2-byte address that tells the MSC1210 where
the next instruction to execute is found in memory. When the MSC1210 is ini-
tialized, the PC always starts at 0000y and is incremented each time an in-
struction is executed. It is important to note that the PC is not always increm-
ented by one. The PC will be incremented by two or three in these cases be-
cause some instructions require two or three bytes.

The Program Counter is special in that there is no way to directly modify its
value. That is to say, something like PC = 24304 cannot be done. On the other
hand, by executing LIMP 2430y, the same thing is effectively accomplished.

It is also interesting to note that while the value of the PC may be changed (by
executing a jump instruction, etc.), there is no way to read the value of the PC.
That is to say, there is no way to ask the 8052 “What address are you about
to execute?”

Basic Registers 4-3

Data Pointer (OPTRO/DPTR1)

4.6 Data Pointer (DPTRO/DPTR1)

The Data Pointer (DPTRO/DPTR1) is the MSC1210’s user-accessible 16-bit
(2-byte) register. The Accumulator, “R” registers, and “B” register are all 1-byte
values. The PC just described is a 16-bit value, but is not directly user-accessi-
ble as a working register.

DPTRO/DPTR1, as the name suggests, are used to point to data. They are
used by a number of commands that allow the MSC1210 to access data and
code memory. When the MSC1210 accesses external memory, it accesses
the memory at the address indicated by DPTRO/DPTR1.

While DPTRO/DPTRL1 is most often used to point to data in external memory
or code memory, many developers take advantage of the fact that it's the only
true 16-bit register available. It is often used to store 2-byte values that have
nothing to do with memory locations. DPTRO or DPTR1 is selected by SFR
DPS.

4.7 Stack Pointer (SP)

4-4

The Stack Pointer (SP), like all registers except DPTR and PC, may hold an
8-bit (1-byte) value. The Stack Pointer is used to indicate where the next value
to be removed from the stack should be taken from.

When a value is pushed onto the stack, the MSC1210 first increments the val-
ue of SP and then stores the value at the resulting memory location.

When a value is popped off the stack, the MSC1210 returns the value from the
memory location indicated by SP, and then decrements the value of SP.

This order of operation is important. When the MSC1210 is initialized, SP will
be initialized to 07y. If a value is immediately pushed onto the stack, the value
will be stored in Internal RAM address 08y. This makes sense, taking into ac-
count what was mentioned two paragraphs above. First the MSC1210 will in-
crement the value of SP (from 074 to 08) and then will store the pushed value
at that memory address (08y).

SP is modified directly by the MSC1210 by six instructions: PUSH, POP,
ACALL, LCALL, RET, and RETI. Itis also used intrinsically whenever an inter-
rupt is triggered (more on interrupts later—don’t worry about them for now).

Chapter 5

Addressing Modes

Chapter 5 describes the various addressing modes of the MSC1210.

Topic Page
5.1 DeSCHPLION ...ttt e 5-2
5.2 Immediate AddressSing ...t 5-2
5.3 DireCt AddressSingt 5-2
5.4 Indirect Addressingt 5-3
55 External DIr€Ctt 5-4
5.6 External IndireCto 5-4
5.7 CodelIndireCt 5-5

5-1

Description

5.1 Description

As is the case with all microcomputers from the PDP-8 onwards, the MSC1210
uses several memory addressing modes. An “addressing mode” refers to how
you are accessing (“addressing”) a given memory location or data value. In
summary, the addressing modes are listed in Table 5-1 with an example of
each.

Table 5-1.MSC1210 Addressing Modes.

MODE EXAMPLE
Immediate Addressing MOV A, #20h
Direct Addressing MOV A, 30h
Indirect Addressing MOV A, @RO
External Direct MOVX A, @DPTR
External Indirect MOVX A, @RO
Code Indirect MOVC A, @A+DPTR

Each of these addressing modes provides important flexibility to the programmer.

5.2 Immediate Addressing

Immediate addressing is so named because the value to be stored in memory
immediately follows the opcode in memory. That is to say, the instruction itself
dictates what value will be stored in memory. For example:

MOV A, #20h

This instruction uses immediate addressing because the Accumulator (A) will
be loaded with the value that immediately follows; in this case 20y (hex).

Immediate addressing is very fast because the value to be loaded is included
in the instruction. However, because the value to be loaded is fixed at compile
time, it is not very flexible. It is used to load the same, known value every time
the instruction executes.

5.3 Direct Addressing

5-2

Direct addressing is so named because the value to be stored in memory is
obtained by directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of internal RAM address 30y (hex) and
store it in the Accumulator (A).

Direct addressing is generally fast because, although the value to be loaded
is not included in the instruction, it is quickly accessible due to it being stored
in the MSC1210'’s Internal RAM. It is also much more flexible than immediate
addressing because the value to be loaded is whatever is found at the given
address—which may change.

Additionally, it is important to note that when using direct addressing, any in-
struction that refers to an address between 00y and 7Fy is referring to internal

Indirect Addressing

RAM. Any instruction that refers to an address between 804 and FF is refer-
ring to the SFR control registers that control the MSC1210 itself.

The obvious question that may arise is “if direct addressing an address from
80y through FFy refers to SFRs, how can the upper 128 bytes of Internal RAM
that are available with the MSC1210 be accessed?” The answer is: it cannot
be accessed using direct addressing. As stated, if an address of 80y through
FFy is directly referred to, it refers to an SFR.

However, the upper 128 bytes of RAM of the MSC1210 can be accessed by
using the next addressing mode, indirect addressing.

5.4 Indirect Addressing

Indirect addressing is a very powerful addressing mode that in many cases
provides an exceptional level of flexibility. Indirect addressing is also the only
way to access the upper 128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A, @RO

This instruction causes the MSC1210 to analyze the value of the RO register.
The MSC1210 then loads the Accumulator (A) with the value from Internal
RAM that is found at the address indicated by RO.

For example, suppose RO holds the value 404 and internal RAM address 40y
holds the value 674. When the above instruction is executed, the 8052 checks
the value of RO. The MSC1210 gets the value out of internal RAM address 40y
(which holds 674) and stores it in the Accumulator because RO holds 40y.
Thus, the Accumulator ends up holding 674.

Indirect addressing always refers to internal RAM; it never refers to an SFR.
In a prior example, it was mentioned that SFR 99y can be used to write a value
to the serial port. Thus, one can think that the following would be a valid solu-
tion to write the value of 1 to the serial port:

MOV RO,#99h ;Load the address of the serial port

MOV @RO,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. These two instructions write the value 01y to internal RAM
address 99 on the MSC1210 because indirect addressing always refers to
internal RAM.

Addressing Modes 5.3

External Direct Addressing

5.5 External Direct Addressing

External memory is accessed using a suite of instructions that use external
direct addressing. It is referred to as external direct because it appears to be
direct addressing, but it is used to access external memory rather than internal
memory.

There are only two commands that use external direct addressing mode:

MOVX A,@DPTR

MOVX @DPTR,A

As you can see, both commands use DPTR. In these instructions, DPTR must
first be loaded with the address of external memory that you wish to read or
write. Once DPTR holds the correct external memory address, the first com-
mand moves the contents of that external memory address into the Accumula-
tor. For example, to read the contents of external RAM address 1516, exe-
cute the instructions:

MOV DPTR, #1516h ;Select the external address to read

MOVX A, @DPTR ;Move the contents of external RAM into
;accumulator

The second command does the opposite: it allows you to write the value of the
Accumulator to the external memory address pointed to by DPTR. For exam-
ple, to write the contents of the Accumulator to external RAM address 1516,
execute the instructions:

MOV DPTR, #1516h ;Select the external address to read

MOVX @DPTR,A ;Move the contents of external RAM into
;accumulator

MOVX to Data Flash memory writes to the Data Flash memory location. To
clear the Flash content, page erase is needed.

5.6 External Indirect Addressing

5-4

External memory can also be accessed using a form of indirect addressing
called external indirect. This form of addressing is usually only used in relative-
ly small projects that have a very small amount of external RAM. An example
of this addressing mode is:

MOVX @RO,A

Once again, the value of RO is first read and the value of the Accumulator is
written to that address in external RAM, internal extended SRAM, and internal
Flash Data memory. High address A8~A15 is provided by the MPAGE SFR be-
cause the value of @RO0 can only be 00y through FF__that is AO~A7 of the
above memories.

Code Indirect Adressing

5.7 Code Indirect Adressing

The last addressing mode is called code indirect and offers two additional 8052
instructions that allow the developer to access the program code itself. This
is useful for accessing data tables, strings, etc. The two instructions are:

MOVC A, @A+DPTR
MOVC A, @A+PC

For example, to access the data stored in code memory at address 2021,
execute the instructions:

MOV DPTR, #2021h ;Set DPTR to 2021h
CLRA ;Clear the accumulator (set to 00h)

MOVC A,@A+DPTR ;Read code memory address 2021h into
the accumulator

The MOVC A,@A+DPTR instruction moves the value contained in the code
memory address that is pointed to by adding DPTR to the Accumulator.

To write to Flash code memory, set the MXWS bit and MOVX will write to Flash
code memory (if the memory is not write protected by harware configuration
bits). The same operation can be used to perform Flash page erase. See the
Flash section for more details.

Addressing Modes 5.5

Chapter 6

Program Flow

Chapter 6 describes the program flow of the MSC1210.

Topic Page
6.1 DeSCHPLION . ..t 6-2
6.2 Conditional Branching i 6-2
6.3 DIreCt JUMPS ottt ettt e e e e 6-2
6.4 Direct Calls o 6-4
6.5 Returns From ROULINES e 6-4
6.6 INtErmUPES 6-4

6-1

Description

6.1 Description

When the MSC1210 is first initialized the PC SFR is cleared to 0000y. The part
then begins to execute instructions sequentially in memory unless a program
instruction causes the PC to be otherwise altered. There are various instruc-
tions that can modify the value of the PC; specifically, conditional branching
instructions, direct jumps and calls, and “returns” from subroutines. Additional-
ly, interrupts (when enabled) can cause the program flow to deviate from its
otherwise sequential scheme.

6.2 Conditional Branching

6.3 Direct Jumps

6-2

The MSC1210 contains a suite of instructions which, as a group, are referred
to as “conditional branching” instructions. These instructions cause the pro-
gram execution to follow a non-sequential path if a certain condition is true.

Take, for example, the JB instruction. This instruction means "Jump If Bit Set.”
An example of the JB instruction might be:

JB 45h,HELLO

NOP

In this case, the MSC1210 will analyze the contents of bit 45y. If the bit is set,
program execution will jump immediately to the label HELLO, skipping the
NOP instruction. If the bit is not set, the conditional branch fails and program
execution continues as usual with the NOP instruction that follows.

Conditional branching is really the fundamental building block of program logic
because all “decisions” are accomplished by using conditional branching.
Conditional branching can be thought of as the “IF ... THEN" structure of as-
sembly language.

An important note worth mentioning about conditional branching is that the
program may only branch to instructions located within 128 bytes prior to, or
127 bytes after the address that follows the conditional branch instruction. This
means that in the above example the label HELLO must be within -128 bytes
to +127 bytes of the memory address that contains the conditional branching
instruction.

While conditional branching is extremely important, it is often necessary to
make a direct branch to a given memory location without basing it on a given
logical decision. This is equivalent to saying “GOTO"” in Basic. In this case, the
program flow will continue at a given memory address without considering any
conditions.

This is accomplished with the MSC1210 using “Direct Jump and Call” instruc-
tions. As illustrated in the last paragraph, this suite of instructions causes pro-
gram flow to change unconditionally.

Direct Jumps

Consider the example:

LJMP NEW_ ADDRESS

NEW_ADDRESS:

The LJIMP instruction in this example means “Long Jump.” When the
MSC1210 executes this instruction, the PC is loaded with the address of
NEW_ADDRESS and program execution continues sequentially from there.

The obvious difference between the Direct Jump and Call instructions and
conditional branching is that with Direct Jumps and Calls program flow always
changes; with conditional branching, program flow only changes if a certain
condition is true.

It is worth mentioning that, aside from LIMP, there are two other instructions
that cause a direct jump to occur: the SIMP and AJMP commands. Functional-
ly, these two commands perform the exact same function as the LIMP com-
mand—that is to say, they always cause program flow to continue at the ad-
dress indicated by the command. However, these instructions differ from
LIMP in that they are not capable of jumping to any address. They both have
limitations as to the “range” of the jumps.

The SIMP command, like the conditional branching instructions, can only
jump to an address within -128/+127 bytes of the address following the SIMP
command.

The AJMP command can only jump to an address that is in the same 2k block
of memory as the byte following the AJMP command. That is to say, if the
AJMP command is at code memory location 650y, it can only do a jump to ad-
dresses 0000y through 07FFy (0 through 2047, decimal).

The question may be asked: “Why use the SIMP or AJMP commands, which
have restrictions as to how far they can jump if they do the same thing as the
LIMP command that can jump anywhere in memory?” The answer is simple:
The LIMP command requires three bytes of code memory, whereas both the
SIJMP and AJMP commands require only two. When developing applications
that have memory restrictions, quite a bit of memory can be saved using the
2-byte AJMP/SJIMP instructions instead of the 3-byte instruction.

NOTE: Some assemblers will do the above conversion automatically. That is, they’'ll
automatically change LIMPs to SIMPs whenever possible. This is a nifty and very
powerful capability that may be a necessity in an assembler, if planning to develop
many projects that have relatively tight memory restrictions.

Program Flow 6-3

Direct Calls

6.4 Direct Calls

Another operation that will be familiar to seasoned programmers is the LCALL
instruction. This is similar to a “GOSUB” command in Basic.

When the MSC1210 executes an LCALL instruction, it immediately pushes the
current Program Counter onto the stack and then continues executing code
at the address indicated by the LCALL instruction.

6.5 Returns From Routines

6.6

6-4

Interrupts

Another structure that can cause program flow to change is the “Return from
Subroutine” instruction, known as RET in Assembly Language. The RET in-
struction, when executed, returns to the address following the instruction that
called the given subroutine. More accurately, it returns to the address that is
stored on the stack.

The RET command is direct in the sense that it always changes program flow
without basing it on a condition, but is variable in the sense that where program
flow continues can be different each time the RET instruction is executed, de-
pending on where the subroutine was originally called from.

An interrupt is a special feature that allows the MSC1210 to break from its nor-
mal program flow to execute an immediate task, providing the illusion of “multi-
tasking.” The word “interrupt” can often be substituted with the word “event.”

An interrupt is triggered whenever a corresponding event occurs. When the
event occurs, the MSC1210 temporarily puts “on hold” the normal execution
of the program and executes a special section of code referred to as an inter-
rupt handler. The interrupt handler performs whatever special functions are re-
quired to handle the event and then returns control to the MSC1210, at which
point program execution continues as if it had never been interrupted.

The topic of interrupts is somewhat tricky and very important. For that reason,
an entire chapter will be dedicated to the topic.

Chapter 7

System Timing

Chapter 7 describes the System Timing of the MSC1210.

Topic Page
7.1 DeSCHPLION ...t 7-2
7.2 SYStemM TiMerS ...ttt 7-3
7.3 Startup TiMING . ..ot e 7-6

7-1

Description

7.1 Description

In order to understand—and better make use of—the MSC1210, it is neces-
sary to understand some underlying information concerning timing.

The MSC1210 operates with timing derived from an external crystal or a clock
signal generated by some other system. A crystal is a mechanical oscillator
that allows an electronic oscillator to run at a very precisely known frequency.
One can find crystals of virtually any frequency depending on the application
requirements. When using an MSC1210, a common crystal frequency is
11.0592MHz due to baud rate accuracy considerations.

Microcontrollers (and many other electrical systems) use their oscillators to
synchronize operations. The MSC1210 uses its crystal or clock for precisely
that: to synchronize its internal operation. The MSC1210 operates using what
are called “instruction cycles.” A single instruction cycle is the minimum
amount of time in which a single MSC1210 instruction can be executed, al-
though many instructions take multiple cycles.

NOTE: A standard 8052 executes an instruction in 12 clock cycles rather than 4, as
shown in Figure 7-1. This means that, with no program changes, an MSC1210 will
execute code approximately 3 times faster than the same program run under a tradi-
tional 8052. It also means that programs written for a standard 8052 may have to be
modified if they depend on certain instructions executing in a certain amount of time.
The fact that the MSC1210 executes an instruction in 4 cycles is not configurable.

7-2

Single-Byte
Single-Cycle
Instruction

ALE™] 1 [1 1 1 1 [
PSEN | I L I 1 [°LrI
Apo0-AD7 XX XX XX XX XX XX XX X
porT2 X X X X X X X X
4 Cycles
12 Cycles

ALE [1 1 1 [1 [
PSEN ‘ I I I I [1 —
ADO0-AD7 X X X X X X X X
PORT?2 X X X_

Single-Byte Single-Cycle
Instruction

Figure 7-1. Standard 8051 Timing.

System Timers

An instruction cycle is, in reality, four clock cycles. That is to say, if an instruc-
tion takes one instruction cycle to execute, it will take four clocks from a crystal
or oscillator to execute. Using the maximum crystal frequency of 33MHz, the
crystal oscillates 33,000,000 times per second. Due to one instruction cycle
being four clock cycles, the MSC1210 can execute the following number of in-
struction cycles per second:

33,000,000/ 4 = 8,250,000

This means that the MSC1210 can execute 8,250,000 single-cycle instruc-
tions per second.

It is important to emphasize that not all instructions execute in the same amount
of time. The fastest instructions require one instruction cycle (four clock cycles),
many others require two instruction cycles (eight clock cycles), and the two slow
math operations require four instruction cycles (16 clock cycles).

Due to all the instructions requiring different amounts of time to execute, a very
obvious question comes to mind: how can one keep track of time in a time-criti-
cal application if we have no reference to time in the outside world?

Luckily, the MSC1210 includes timers that allow us to time events with high
precision, which is the topic of the next chapter.

7.2 System Timers

In addition to the standard 8052 timers to be described in chapter 8, the
MSC1210 includes the following system timers, both of which are capable of
triggering an Auxiliary interrupt (for more on interrupts, see chapter 10):

[d Microseconds Timer: The microsecond timer, set via the USEC (FBy) SFR,
is used to configure the flash writing timing and also used by the PWM module.

[Miliseconds Timer: The milliseconds timer, set via the MSECH (FDy) and
MSECL (FCR) SFRs, is used as a base to configure the flash erase timing,
as well as the milliseconds interrupt, and also as a base for the seconds inter-
rupt and the watchdog timer.

The MSC1210's timers are illustrated in Figure 7-2. The “SYS Clock” is the sig-
nal that comes from the oscillator or other timing input. This signal is used as
the input for all of the part’s timing logic, including the following timing circuits:

[SPI /O (chapter 13)

PWM/Tone generation (chapter 11).

Flash Erase/Write (chapter 15).
Milliseconds/Seconds/Watchdog interrupts (chapter 7, 14).

A/D conversion timing (chapter 12)

I T IR S

Standard 8052 timers 0, 1, and 2 (chapter 8).

System Timing 7.3

System Timers

SCK
SYS Clock ﬂ} SPICON
Oscillator | STOP.
PDCON.0
o PWMHI PWMLOW | PWM Clock
A3 A2
PDCON.4
o | USEC us FTCON Flash Write
FB [3:0] eF| Timing (30us to 40us)
s——{ MSECH__[MSECL ms FTCON Flash Erase (4ms to 11ms)
FD FC [7:4] EF| Timing
milliseconds
MSINT interrupt
FA
seconds
PDCON.1 SECINT interrupt
L_|HMSEC 100ms WDTCON watchdog
FE FF
PDCON.2
divide ADC Output Rate
] ADCONS3 ADCON2
ACLK™ £5 1 by 64
ADC Power Down Decimation Ratio
Modulator Clock
PDCON.3
FX> Timers 0/1/2 | - — - | UARTO0/1
IDLE
CPU Clock

Figure 7-2. MSC1210 Timing Chain and Clock Control

7.2.1 Microseconds Timer

The microseconds timer is used by the MSC1210 in order to establish a 1us
clock. This clock, in turn, is used by flash memory to establish timing for flash
writes, as well as by the PWM module.

SYS Clock
STOP SCLK
SPICON 9A
PDCON.0
—O PWM Clock
— PWMHI A3 PWMLOWA2 —
PDCON.4
uSec FTCON Flash Write
USEC pg—* [3:0] EF| Timing (30us to 40us)
Figure 7-3.

7-4

7.2.1.1 PWM Clock

System Timers

The USEC (FBR) SFR should be set to a value such that the system clock divid-
ed by the value of this SFR, plus one, generates a 1us clock. For example, given
a system clock of 12.000MHz, USEC should be set to 12,000,000/1,000,000 =
12 — 1 =11. Thus, for a 12.000MHz system clock, USEC should be set to 11 to
generate a 1us clock.

In reality, the USEC SFR may be set to a value that produces a clock that is
something other than 1us. This will work fine as long as the other two timers
that depend on the USEC SFR are adjusted accordingly.

The PWM module may use the microseconds timer as its input clock. By clear-
ing SPDSEL (PWMCON.3), the input clock for the PWM module will be the mi-
crosecond timer. This creates a 1MHz input clock for the PWM module, as-
suming the microseconds timer is correctly configured to produce a 1us clock.
In this case, the microseconds clock is further divided by the value contained
in the PWMHI/PWMLOW SFRs.

7.2.1.2 Flash Write Timing

The microseconds clock is further used to establish the flash memory write timing.
The flash write timing uses the microsecond clock as an input clock and then fur-
ther divides it by the value of FTCONJ[3:0] to generate a flash write clock. The flash
write clock must be between 30us and 40us for flash writing to operate properly.

Specifically, FTCON[3:0] + 1, multiplied by five, multiplied by the frequency of the
microsecond clock, should produce an appropriate flash write timer (30us to 40us).

Assuming USEC is set to generate a correct 1us clock, FTCONJ[3:0] should be
setto 5, 6, or 7. If FTCON[3:0] is 6, then (6 + 1) « 5 = 35us, which is right in the
middle of the expected range.

7.2.2 Milliseconds Timer

SYS Clock

The milliseconds timer is used by the MSC1210 in order to establish a millisec-
ond clock. This clock, in turn, is used as a base for establishing flash erase tim-
ing, the milliseconds interrupt, the seconds interrupt, and to establish timing
for the watchdog timer.

STOP

mSec [FTCON Flash Erase
- 4ms to 11ms
MSECH FD‘ MSECL }7 (7:4) gr| Tming ¢)

Figure 7-4.

milliseconds

interrupt
MSINT FA

seconds
interrupt

PDCON.1
SECINT Fo

WDTCON FF

watchdog

PDCON.2

System Timing 7.5

System Timers

The MSECH (FDR) and MSECL (FCp) SFRs should be set to a value such that
the system clock divided by the value of these SFRs, plus one, generates a 1ms
clock. For example, given a system clock of 12.000MHz, MSECH/MSECL should
be set to 12,000,000/1,000 = 12,000 — 1 = 11,999. Thus, for a 12.000MHz system
clock, MSECH/MSECL should be set to 11,999 to generate a 1ms clock.

In reality, the MSECH/MSECL SFRs may be set to a value that produces a
clock that is something other than 1ms. This will work fine, as long as the other
timers that depend on the MSECH/MSECL SFR are adjusted accordingly.

7.2.2.1 Milliseconds Auxiliary Interrupt

The milliseconds interrupt is one of the auxiliary interrupts that may be used
by the user program. The milliseconds auxiliary interrupt is enabled by setting
EMSEC (AIE.4) and enabling auxiliary interrupts via the EAI (EICON.5) bit.
The frequency at which the milliseconds interrupt will be triggered is controlled
by the value written to the MSINT (FAR) SFR.

When enabled, a millisecond auxiliary interrupt will be triggered after MSINT + 1ms,
assuming that MSECH/MSECL have been configured to produce a correct milli-
seconds clock. The value written to the MSINT SFR is a value between 0 and 127,
meaning that the milliseconds interrupt may be triggered every 1ms to 128ms (as-
suming a correct milliseconds clock).

For example, given an accurate milliseconds clock, setting MSINT to five
would produce a milliseconds auxiliary interrupt every 6ms.

Bit 7 of MSINT, when written, indicates whether the MSINT value being written
should be written immediately, or if it should be written after the current MSINT
count has expired. If bit 7 is set, MSINT will immediately be updated with the
new value; if it is clear, MSINT will be updated with the new value as soon as
the current milliseconds count has expired.

7.2.2.2 One Hundred Millisecond Clock

The one hundred millisecond clock is used by the MSC1210 in order to estab-
lish a 10Hz clock. This clock is not directly outputted by the MSC1210, but rath-
er is used as the input into the seconds auxiliary interrupt and also is used by
the watchdog timer. The 100ms clock uses the output of the millisecond clock
(MSECH/MSECL) as an input, so its correct operation assumes that the milli-
second clock has been set to a value that in fact generates a millisecond clock.

The HMSEC (FEQ) SFR is used to indicate how many millisecond clocks
amount to 100ms (1/10th of a second), less 1. So, assuming the millisecond
clock is correctly configured to generate a 1kHz clock, HMSEC would be set
to 99 (decimal) in order to generate an accurate, 100ms clock.

7.2.2.3 Seconds Auxiliary Interrupt

7-6

The Seconds Auxiliary Interrupt is one of the auxiliary interrupts that may be
used by the user program. The seconds auxiliary interrupt is enabled by set-
ting ESEC (AIE.7) and enabling auxiliary interrupts via the EAIl (EICON.5) bit.
The frequency at which the seconds interrupt will be triggered is controlled by
the value written to the SECINT (F94) SFR.

Startup Timing

When enabled, a seconds auxiliary interrupt will be triggered after
SECINT + 100ms, assuming the MSECH/MSECL and HMSEC SFRs have
been configured to produce a correct 100ms clock. The value written to the
SECINT SFR is a value between 0 and 127, meaning that the milliseconds
interrupt may be triggered every 100ms to 12.8 seconds (assuming a correct
100ms clock).

For example, given an accurate 100ms clock, setting SECINT to 15 would
produce a seconds auxiliary interrupt every 1.6 seconds.

Bit 7 of SECINT, when written, indicates whether the SECINT value being
written should be written immediately, or if it should be written after the current
SECINT count has expired. If bit 7 is set, SECINT will immediately be updated
with the new value; if it is clear, SECINT will be updated with the new value as
soon as the current seconds count has expired.

7.2.2.4 Watchdog Timer

The functioning of the watchdog timer is fully described in section 14.2. How-
ever, it is important to keep in mind that the watchdog timer is dependent on
the 100ms timer. The length of the watchdog timer is directly dependent on the
100ms timer being configured to a reasonable value because the watchdog
timer frequency is configured in WDTCON (FFy) using units of HMSEC.

7.3 Startup Timing

7.3.1 Normal-Mode Power-On Reset Timing

EA is sampled during power-on reset for code security purposes. PSEN and
ALE are internally pulled up during reset for serial and parallel flash program-
ming mode detection.

After the reset sequence, PSEN and ALE signals are driven by the CPU, and
the internal pull up resistors are removed for saving power.

~ y
RST / \

‘_ tog _>‘ tig I
PSEN | / \
L trg —] tig |
ALE | / \
}“ ts tn }

EA X

NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.

System Timing 7.7

Startup Timing

Figure 7-5.

7.3.2 Flash Programming Mode Power-On Reset Timing

EA is ignored for serial and parallel flash programming operations.

}‘7 tw
RST /
‘— tra —>| Yt I
PSEN | / \
trrd _>| }4_ trs. Ll t,-h I
ALE| / \ AR

NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.

Figure 7-6. Serial Flash Programming Power-On Timing (EA is ignored)

\ t
“ ™w =
RST / \
— _>’ |<_ te th I
PSEN | 7 \ AN
trg —] tig |
ALE | / \
NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.
Figure 7-7.Parallel Flash Programming Power-On Timing (EA is ignored)
Table 7-1.

Symbol | Parameter Min Max Unit
trw RST Width 10 te k@ — ns
trrd RST rise to PSEN ALE internal pull high — 5 us
trfq RST falling to PSEN and ALE start — (217+512) to k@ ns
trs Input signal to RST falling setup time te k@ — ns
th RST falling to input signal hold time (217+512) to k@ — ns

1) tck is the Xtal clock period.

7-8

Chapter 8

Timers

Chapter 8 describes the MSC1210 timers.

Topic Page
8.1 DeSCHIPLION . ..t 8-2
8.2 How Does aTimer CoOUNt?oiiiiiiiiiiiiiiiiinnnn. 8-2
8.3 Using Timersto Measure Timeouiiiiiiininnnnnnn. 8-2
8.4 Using Timers as Event Counters oo, 8-12
8.5 UsSiNg TIMer 2 ... e e e 8-13

8-1

Description

8.1 Description

The MSC1210 comes equipped with three standard timer/counters, all of
which may be controlled, set, read, and configured individually. The timer/
counters have three general functions:

1) Keeping time and/or calculating the amount of time between events,
2) Counting the events themselves, or
3) Generating baud rates for the serial port.

The three timer/counters’ uses are distinct so we will talk about each of them
separately. The first two uses will be discussed in this chapter while the use
of timers for baud rate generation will be discussed in the chapter relating to
serial ports.

8.2 How Does a Timer Count?

The answer to this question is very simple: A timer always counts up. It does
not matter whether the timer is being used as a timer, a counter, or a baud rate
generator. A timer is always incremented by the microcontroller.

8.3 Using Timers to Measure Time

Obviously, one of the primary uses of timers is to measure time. We will discuss
this use of timers first and will subsequently discuss the use of timers to count
events. When a timer is used to measure time, it is also called an “interval tim-
er’, because it is measuring the time of the interval between two events.

8.3.1 How Long Does a Timer Take to Count?

8-2

First, it is worth mentioning that when a timer is in interval timer mode (as op-
posed to event counter mode) and correctly configured, the timer will incre-
ment by one on each instruction cycle. Thus, a running timer in the MSC1210
will be incremented:

33,000,000 / 4 = 8,250,000 times per second

However, to maintain compatibility with existing 8052 code, the default mode
for the MSC1210 timers is to increment by one every three instruction cycles
(i.e., operate as if the timer increments every 12 clocks). Thus, a running timer
can be configured to be incremented:

33,000,000/ 12 = 2,750,000 times per second
Using the first option, which increments the timer every four clocks, allows the
user program to obtain three times higher precision than would be available

by the default mode just explained. Whether the timers are incremented every
four or 12 clocks is controlled by the CKCON SFR.

The individual bits of TMOD have the following functions:

Using Timers to Measure Time

6 5 4 3 2 1 0 Reset Value

SFR 8E

T2M TiM TOM MD2 MD1 MDO 01y

T2M (bit 5)—Timer 2 Clock Select. This bit controls the division of the system
clock that drives Timer 2. This bit has no effect when the timer is in baud rate
generator or clock output modes. Clearing this bit to O maintains 80C32 com-
patibility. This bit has no effect on instruction cycle timing.

0: Timer 2 uses a divide by 12 of the crystal frequency.

1: Timer 2 uses a divide by 4 of the crystal frequency.

T1M (bit 4)—Timer 1 Clock Select. This bit controls the division of the system
clock that drives Timer 1. Clearing this bit to 0 maintains 8051 compatibility.
This bit has no effect on instruction cycle timing.

0: Timer 1 uses a divide by 12 of the crystal frequency.
1: Timer 1 uses a divide by 4 of the crystal frequency.

TOM (bit 3)}—Timer 0 Clock Select. This bit controls the division of the system
clock that drives Timer 0. Clearing this bit to 0 maintains 8051 compatibility.
This bit has no effect on instruction cycle timing.

0: Timer 0 uses a divide by 12 of the crystal frequency.
1: Timer O uses a divide by 4 of the crystal frequency.

MD2, MD1, MDO (bits 2-0)—Stretch MOVX Select 2-0. These bits select the
time by which external MOVX cycles are to be stretched. This allows slower
memory or peripherals to be accessed without using ports or manual software
intervention. The RD or WR strobe will be stretched by the specified interval,
which will be transparent to the software except for the increased time to exe-
cute the MOVX instruction. All internal MOVX instructions on devices contain-
ing MOVX SRAM are performed at the 2 instruction cycle rate.

RD or WR RD or WR
Strobe Strobe

Stretch Width Width (us)

MD2 | MD1 | MDO Value MOVX Duration (SYS CLKs) at 12MHz
0 0 0 0 2 Instruction Cycles 2 0.167
0 0 1 1 3 Instruction Cycles 4 0.333

(default)

0 1 0 2 4 Instruction Cycles 8 0.667
0 1 1 3 5 Instruction Cycles 12 1.000
1 0 0 4 6 Instruction Cycles 16 1.333
1 0 1 5 7 Instruction Cycles 20 1.667
1 1 0 6 8 Instruction Cycles 24 2.000
1 1 1 7 9 Instruction Cycles 28 2.333

Unlike instructions—some of which require one instruction cycle, others 2, and
others 4—the timers are consistent. They will always be incremented once ev-
ery 12 (or four) clocks. Thus, if a timer has counted from 0 to 55,000 you may
calculate:

55,000 / 2,750,000 = 0.020 seconds (fosc/12) or
55,000 / 8,250,000 = 0.007 seconds (fysc/4)

Timers 8-3

Using Timers to Measure Time

8.3.2 Timer SFRs

So, the trade off in using f,sc/12 or fo5c/4 as the clock source is 1) code compatibility
and 2) resolution. With a 33MHz external clock, the resolution of fy5c/12 = 364nS
per increment, and the resolution of fogo/4 is 121nS per increment.

Thus, we now have a system with which to measure time. All we need to review
is how to control the timers and initialize them to provide us with the information
we need.

As mentioned before, the MSC1210 has three standard timers. Two of these
timers work in essentially the same way. One timer is TIMERO and the other
is TIMERL1. The two timers share two SFRs (TMOD and TCON) which control
the timers, and each timer also has two SFRs dedicated solely to maintaining
the value of the timer itself (THO/TLO and TH1/TL1). The third timer (Timer 2)
functions somewhat differently and will be explained separately.

The SFRs used to control and manipulate the first two timers are presented
in the Table 8-1.

Table 8-1.Timer Conrol SFRs.

SFR SFR Bit
Name Description Address Addressable?
THO Timer 0 High Byte 8CH No
TLO Timer O Low Byte 8Ay No
TH1 Timer 1 High Byte 8Dy No
TL1 Timer 1 Low Byte 8By No
TCON Timer Control 88H Yes
TMOD Timer Mode 89y No

8-4

Timer 0 has two SFRs dedicated exclusively to itself: THO and TLO. TLO is the
low byte of the value of the timer, while THO is the high byte of the value of the
timer. That is to say, when Timer 0 has a value of 0, both THO and TLO will con-
tain 0. When Timer 0 has the value 1000, THO will hold the high byte of the val-
ue (3 decimal) and TLO will contain the low byte of the value (232 decimal).
Reviewing low/high byte notation, recall that you must multiply the high byte
by 256 and add the low byte to calculate the final value. In this case:

(THO » 256) + TLO = 1000
(3 + 256) + 232 = 1000

Timer 1 works the exact same way, but its SFRs are TH1 and TL1.

It is apparent that the maximum value a timer may have is 65,535 because
there are only two bytes devoted to the value of each timer. If a timer contains
the value 65,535 and is subsequently incremented, it will reset—or overflow—
back to 0.

8.3.3 TMOD SFR

Using Timers to Measure Time

The TMOD SFR is used to control the mode of operation of both timers. Each
bit of the SFR gives the microcontroller specific information concerning how
to run a timer. The high four bits (bits 4 through 7) relate to Timer 1, whereas
the low four bits (bits 0 through 3) perform the exact same functions, but for
timer O.

The individual bits of TMOD have the following functions:

6|5|4 3|2|1|o

TIMER 1 TIMER O Reset Value

SFR 894 GATE | cT [M1 [Mo GATE | cm | m1 | Mo 00y

GATE (bit 7)—Timer 1 Gate Control. This bit enables/disables the ability of
Timer 1 to increment.

0: Timer 1 will clock when TR1 = 1, regardless of the state of pin INT1.
1: Timer 1 will clock only when TR1 =1 and pin INT1 = 1.

CIT (bit 6)—Timer 1 Counter/Timer Select.
0: Timer is incremented by internal clocks.
1: Timer is incremented by pulses on pin T1 when TR1 (TCON.6, SFR 88) is 1.

M1, MO (bits 5-4)—Timer 1 Mode Select. These bits select the operating
mode of Timer 1.

M1 MO MODE

0 0 Mode 0: 8-bit counter with 5-bit prescale.

0 1 Mode 1: 16 bits.

1 0 Mode 2: 8-bit counter with auto reload.

1 1 Mode 3: Timer 1 is halted, but hOlds its count.

GATE (bit 3)—Timer 0 Gate Control. This bit enables/disables the ability of
Timer O to increment.

0: Timer O will clock when TRO = 1, regardless of the state of pin INTO (software
control).

1: Timer O will clock only when TRO =1 and pin INTO = 1 (hardware control).

CIT (bit 2)—Timer 0 Counter/Timer Select.
0: Timer is incremented by internal clocks.
1: Timer is incremented by pulses on pin TO when TRO (TCON.4, SFR 88H) is 1.

M1, MO (bits 1-0) Timer O Mode Select. These bits select the operating mode
of Timer 0.

M1 MO MODE

0 0 Mode 0: 8-bit counter with 5-bit prescale.

0 1 Mode 1: 16 bits.

1 0 Mode 2: 8-bit counter with auto reload.

1 1 Mode 3: Timer 1 is halted, but hOlds its count.

As is shown in the chart above, four bits (two for each timer) are used to specify
a mode of operation. The modes of operation are shown in Table 8-2.

Timers 8.5

Using Timers to Measure Time

Table 8-2.Timer Modes and Usage

Timer
TxM1 TXMO Mode | Description of Timer Mode Timer 1 Timer O
0 0 0 13-Bit Timer/Counter Y
0 1 1 16-Bit Timer/Counter Y Y
1 0 2 8-Bit Timer/Counter with Auto-Reload Y Y
1 1 3 Two 8-Bit Counters (Split Timer mode) N Y

The TMOD.GATE bit controls gating of the timer/counter. If TMOD.GATE is
cleared, the timer/counter increments only if TCON.TRXx is set. If TMOD.GATE
is set, the timer/counter increments only if TCON.TRx is set AND the corre-
sponding INTx pin is held high. This feature can be used for pulse width mea-
surements.

The TMOD.CT bit selects counter or timer operation. If TMOD.CT is cleared,
the timer/counter register is incremented on either fogc/4 or fosc/12 (based on
the state of CKCON.TxM). If TMOD.CT is set, the timer/counter register is in-
cremented by the Tx pin.

8.3.3.1 13-Bit Time Mode (mode 0)

TRO (or TR1)

clk

Timer mode “0” is a 13-bit timer. This is a relic that was kept around in the 8052
(and subsequently MSC1210) to maintain compatibility with its predecessor,
the 8048. The 13-bit timer mode is not normally used in new development.

Divide by 12
v 0
ol cT TLO (or TL1)
1 ?

Divide by 4

Mode 0

t0 (or t1)

Mode 1 t

o THO (or TH1) 7

intO_n

(orint1_n)

=| TFO (or TF1) —= INT

3 __, To Serial Port
(Timer 1 only)

Figure 8-1. Timer 0/1 Block Diagram for Modes 0 and 1

8-6

In this mode, the timer/counter uses five bits of the TLx register and all eight
bits of the THXx register for the 13-bit register. Therefore, the upper three bits
of TLx must be masked if they are used by software. When the timer/counter
rolls over on a transition from 01FFFy, the timer/counter interrupt flag is set
(TCON.TFx).

Using Timers to Measure Time

When the timer is in 13-bit mode, TLx will count from 0 to 31. When TLx is in-
cremented from 31, it will “roll over” to 0 and overflow into THx, thus increment-
ing it. Therfore, only 13 bits of the two timer bytes are being used: bits 0 to 4
of TLx, and bits 0 to 7 of THx. This also means the timer can only contain 8192
values. If you set a 13-bit timer to 0, it will overflow back to zero 8192 instruction
cycles later.

There really is very little reason to use this mode and it is only mentioned so
there will be no surprise if ever analyzing archaic code that has been passed
down through the generations.

8.3.3.2 16-Bit Time Mode (mode 1)

Mode 1 operates in the same manner as Mode 0, except Timer O or Timer 1
is configured as a 16-bit timer/counter. The timer/counter uses all 8 bits of both
the TLx register and THXx register for the 16-bit register.

When the timer/counter rolls over on a transition from OFFFFy, the timer/counter
interrupt flag is set (TCON.TFX).

Timer mode “1” is a 16-bit timer. This is a very commonly used mode. It func-
tions just like 13-bit mode, except that all 16 bits are used.

TLx is incremented from 0 to 255. When TLx is incremented from 255, it resets
to 0 and causes THXx to be incremented by one. The timer may contain up to
65,536 distinct values because this is a full 16-bit timer. If a 16-bit timer is set
to 0, it will overflow back to 0 after 65,536 machine cycles.

8.3.3.3 8-Bit Auto-Reload Time Mode (mode 2)

Timer mode 2 is an 8-bit auto-reload mode. When a timer is in mode 2, THx
holds the “reload value” and TLx is the timer itself.

TLx starts counting up. When TLx reaches 255 and is subsequently increm-
ented instead of resetting to 0 (as in the case of modes 0 and 1) it will be reset
to the value stored in THx.

For example, THO holds the value FDy and TLO holds the value FER. Table
8-3 shows what would occur if the values of THO and TLO are viewed for a few
machine cycles.

Table 8-3.Example of 8-Bit Auto Reload

Instruction THO TLO
Cycle Value Value
1 FDn FEn
2 FDy FFy
3 FDy FDy
4 FDy FEn
5 FDy FFy
6 FDy FDy
7 FDy FEn

As shown, the value of THO never changed. In fact, when mode 2 is used, THx
is almost always set to a known value and TLx is the SFR that is constantly
incremented. THx is initialized once, and then left unchanged.

Timers 8-7

Using Timers to Measure Time

The benefit of auto-reload mode is that, perhaps, the timer may need to always
have a value from 200 to 255. When using mode 0 or 1, the code would have
to be checked to see if the timer had overflowed and, if so, the timer reset to
200. This takes precious instructions of execution time to check the value and/
or to reload it.

When mode 2 is used, the microcontroller takes care of this. Once a timer has
been configured in mode 2, it does not have to be checked to see if the timer
has overflowed, nor does the value need to be reset—the microcontroller
hardware will do it all.

The auto-reload mode is very commonly used for establishing a baud rate,
which will be discussed further in the Serial Communications chapter.

8.3.3.4 Split-Timer Mode (mode 3)

8.3.4 TCON SFR

Timer mode 3 is a split-timer mode. When Timer O is placed in mode 3, it essen-
tially becomes two separate 8-bit timers. That is to say, Timer 0 is TLO and Tim-
er 1 is THO. Both timers count from 0 to 255 and overflow back to 0. All the bits
that are related to Timer 1 will now be tied to THO, and all the bits related to
Timer O will be tied to TLO.

While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be put
into modes 0, 1, or 2 normally. However, the real Timer 1 may not be started
or stopped, because the bits that do that are now linked to THO. The real Timer
1, in this case, will be incremented every machine cycle no matter what. The
real Timer 1 may be stopped by setting it to mode 3.

The only real use of note in using split-timer mode is if two separate timers are
needed along with a baud rate generator. In such a case, use the real Timer
1 as a baud rate generator, and use THO/TLO as two separate timers.

Finally, there is one more SFR that controls the two timers and provides valu-
able information about them. The TCON SFR has the structure described in
Table 8-4.

Table 8-4.TCON (884) SFR

Bit Name Bit Address | Explanation of Function Timer
Timer 1 Overflow. This bit is set by the microcontroller

7 TF1 8FH when Timer 1 overflows. 1
Timer 1 Run. When this bit is set, Timer 1 is turned on.

6 TR1 8EH When this bit is clear, Timer 1 is off. 1
Timer 0 Overflow. This bit is set by the microcontroller

5 TFO 8Dy when Timer 0 overflows. 0
Timer 0 Run. When this bit is set, Timer 0 is turned on.

4 TRO 8CH When this bit is clear, Timer 0 is off. 0

8-8

Using Timers to Measure Time

So far, only four of the eight bits have been defined. That is because the other
four bits of the SFR do not have anything to do with timers—they have to do
with interrupts and they will be discussed in the chapter that addresses inter-
rupts.

A new piece of information in this chart is the column “bit address.” This is be-
cause this SFR is “bit-addressable.” That means to set bit TF1—which is the
highest bit of TCON—execute the command:

MOV TCON, #80h

Due to the SFR being bit-addressable, just execute the command:

SETB TF1

This has the benefit of setting the high bit of TCON without changing the value
of any of the other bits of the SFR. Usually, when starting or stopping a timer,
the other values in TCON should not be modified, so take advantage of the fact
that the SFR is bit-addressable.

8.3.5 Initializing a Timer

After discussing the timer-related SFRs, it is time-write code that will initialize
the timer and start it running. As shown previously, the timer mode should be
decided upon. In this case, a 16-bit timer that runs continuously will be used;
that is to say, it is not dependent on any external pins.

We must first initialize the TMOD SFR. When working with timer 0, the low four
bits of TMOD will be used. The first two bits, GATEO and CTO are both 0, be-
cause the timer needs to be independent of the external pins. 16-bit mode is
timer mode 1, so TOM1 must be cleared and TOMO must be set. Effectively, bit
0 of TMOD is the only bit that should be turned on. Thus, to initialize the timer,
execute the instruction:

MOV TMOD, #01h

Timer 0 is now in 16-bit timer mode. However, the timer is not running. To start
the timer running, set the TRO bit. To do that, execute the instruction:

SETB TRO

Upon executing these two instructions, timer 0 will immediately begin count-
ing, being incremented once every instruction cycle (every 12 crystal pulses).

8.3.6 Reading the Timer

There are two common ways of reading the value of a 16-bit timer; which one
is used depends on the specific application. The actual value of the timer may
be read as a 16-bit number, or the timer may be detected when overflowed.

Timers 8-9

Using Timers to Measure Time

8.3.6.1 Reading the Value of a Timer

If the timer is in an 8-bit mode—that is, either 8-bit auto-reload mode, or in split-
timer mode—then reading the value of the timer is simple. Just read the 1-byte
value of the timer and that is it.

However, when dealing with a 13-bit or 16-bit timer, the chore is a little more
complicated. Consider what would happen when the low byte of the timer is
read as 255, then the high byte of the timer is read as 15. In this case, what
actually happened was that the timer value was 14/255 (high byte 14, low byte
255) but the readout is 15/255.

Why? Because the low byte was read as 255. However, when the next instruc-
tion was executed, a small amount of time passed—enough for the timer to
increment again, at which time the value rolled over from 14/255 to 15/0. In the
process, the timer was read as being 15/255 instead of 14/255. Obviously that
is a problem.

The solution is not that complicated, really. Read the high byte of the timer,
then read the low byte, then read the high byte again. If the high byte read the
second time is not the same as the high byte read the first time you repeat the
cycle. In code, this would appear as:

REPEAT:
MOV A, THO
MOV RO, TLO
CINE A, THO,REPEAT

In this case, the Accumulator is loaded with the high byte of Timer 0. Then RO
is loaded with the low byte of Timer 0. Finally, the high byte we read out of Timer
0—which is now stored in the Accumulator—is checked to see if it is the same
as the current Timer 0 high byte. If it is not, it means it just “rolled over” and the
timer’s value must be reread—which is done by going back to REPEAT. When
the loop exits, the low byte of the timer is in RO and the high byte is in the Accu-
mulator.

Another much simpler alternative is to simply turn off the timer run bit (i.e. CLR
TRO), read the timer value, and then turn on the timer run bit (i.e. SETB TRO).
In that case, the timer is not running, so no special tricks are necessary. Of
course, this implies that the timer will be stopped for a few instruction cycles.
Whether or not this is tolerable depends on the specific application.

8.3.6.2 Detecting Timer Overflow

8-10

Often it is only necessary to know that the timer has reset to 0. That is to say,
there is no particular interest in the value of the timer, but rather an interest in
knowing when the timer has overflowed back to 0.

Whenever a timer overflows from its highest value back to 0, the microcontrol-
ler automatically sets the TFx bit in the TCON register. This is useful because,
rather than checking the exact value of the timer, you can just check if the TFx
bit is set. If the TFO bit is set, it means that timer O has overflowed; if TF1 is set,
it means that timer 1 has overflowed.

Using Timers to Measure Time

This approach can be used to cause the program to execute a fixed delay. As
shown earlier, we calculated that it takes the 8051 1/20th of a second to count
from O to 46,080. However, the TFx flag is set when the timer overflows back
to 0.

Thus, to use the TFx flag to indicate when 1/20th of a second has passed, the
timer must be set initially to 65,536 less 46,080, or 19,456. If the timer is set
to 19,456, 1/20th of a second later the timer will overflow. Thus, the following
code will execute a pause of 1/20th of a second:

MOV THO,#76 ;High byte of 19,456 (76 * 256 = 19,456)
MOV TLO,#00 ;Low byte of 19,456 (19,456 + 0 = 19,456)

MOV TMOD, #01 ;Put Timer 0 in 16-bit mode

CLR TFO ;Make sure TFO bit is clear initially

SETB TRO ;Make Timer 0 start counting

JNB TFO, S ;If TFO is not set, jump back to this same
instruction

In the above code, the first two lines initialize the Timer 0 starting value to
19,456. The next two instructions configure timer 0 and turn it on. Finally, the
last instruction (JNB TFO0,$) reads “Jump back to the same instruction if TFO
is not set.” The “$” operand means, in most assemblers, the address of the cur-
rent instruction.

As long as the timer has not overflowed and the TFO bit has not been set, the
program will keep executing this same instruction. After 1/20th of a second,
timer O will overflow, set the TFO bit, and program execution will then break out
of the loop.

8.3.7 Timing the Length of Events
The MSC1210 provides another useful method to time the length of events.

For example, in order to save electricity in the office, a light switch is measured
to see how long it is turned on each day. When the light is turned on, time must
be measured; when the light is turned off, time is not measured. One option
would be to connect the light switch to one of the pins, constantly read the pin,
and turn the timer on or off based on the state of that pin. While this would work
fine, the MSC1210 provides an easier method of accomplishing this.

Looking again at the TMOD SFR, there is a bit called GATEOQ. So far, this bit
has always been cleared because the timer is run regardless of the state of
the external pins. However, now it would be nice if an external pin could control
whether the timer was running or not. It can.

Simply connect the light switch to pin INTO (P3.2) on the MSC1210 and set the
bit GATEO. When GATEO is set, Timer 0 will only run if P3.2 is high. When P3.2
is low (i.e., the light switch is off) the timer will automatically be stopped.

Thus, with no control code whatsoever, the external pin P3.2 can control
whether or not the timer is running or not.

Timers 8-11

Using Timers as Event Counters

8.4 Using Timers as Event Counters

8-12

How a timer can be used for the obvious purpose of keeping track of time has
been discussed. However, the MSC1210 also allows the use of timers to count
events.

This can be useful in many applications. For example, a sensor is placed
across a road that would send a pulse every time a car passed over it. This
could be used to determine the volume of traffic on the road. The sensor could
be attached to one of the MSC1210’s I/O lines and constantly monitored, de-
tecting when it pulses high, and the counter incremented when it went back
to a low state. This is not terribly difficult, but requires some code. If the sensor
is hooked to P1.0, the code to count cars passing would look something like
this:

JNB P1.0,$;If a car hasn’t raised the signal, keep
waiting
JB P1.0,s ;The line is high, car is on the sensor

right now

INC COUNTER ;The car has passed completely, so we count
it

As is shown, it's only three lines of code. However, what if other processing
needs to be done at the same time? The program can’t be stuck in the JNB
P1.0,$ loop waiting for a car to pass if it needs to be doing other things. And
what if the program is doing other things when a car passes over? It is possible
that the car will raise the signal and the signal will fall low again before the pro-
gram checks the line status; this would result in the car not being counted.
Of course, there are ways to get around even this limitation, but the code quick-
ly becomes big, complex, and ugly.

Luckily, the MSC1210 provides a way to use the timers to count events. It's
actually painfully easy. Only one additional bit has to be configured.

Timer O can be used to count the number of cars that pass. In the bit table for
the TCON SFR, there is a bit called “C/T0"—it’s bit 2 (TCON.2). Reviewing the
explanation of the bit, if the bit is clear, timer O will be incremented every in-
struction cycle. This is what has already been used to measure time.

If C/TO is set, however, timer 0 will monitor the P3.4 line. Instead of being in-
cremented every machine cycle, timer 0 will count events on the P3.4 line. So
in this case, simply connect the sensor to P3.4 and let the 8052 do the work.
Then, when the number of how many cars have passed is desired, just read
the value of timer 0—the value of timer O will be the number of cars that have
passed.

So what exactly is an event? What does timer 0 actually “count?” Speaking at
the electrical level, the MSC1210 counts 1-0 transitions on the P3.4 line. This
means that when a car first runs over the sensor, it will raise the input to a high
(“1") condition. At that point the MSC1210 will not count anything, because this
is a 0-1 transition. However, when the car has passed, the sensor will fall back
to a low (“0") state. This is a 1-0 transition and at that instant the counter will
be incremented by 1.

8.5 Using Timer 2

8.5.1 T2CON SFR

Using Timer 2

It is important to note that the MSC1210 checks the P3.4 line each instruction
cycle (4 clock cycles). This means that if P3.4 is low, goes high, and goes back
low in 3 clock cycles it will probably not be detected by the MSC1210. This also
means the MSC1210 event counter is only capable of counting events that occur
at a maximum of 1/8th the rate of the crystal frequency. That is to say, if the crystal
frequency is 12.000MHz, it can count a maximum of 1,500,000 events per sec-
ond (12.000MHz « 1/8 = 1,500,000). If the event being counted occurs more than
1,500,000 times per second, it will not be able to be accurately counted by the
MSC1210 without using additional external circuitry or a faster crystal.

The MSC1210 has a third timer, Timer 2, which functions slightly differently
than Timers 0 and 1 and, for that reason, we are addressing this third timer sep-
arately from the first two.

The operation of Timer 2 (T2) is controlled almost entirely by the T2CON SFR,
at address C8y. Note that because this SFR is evenly divisible by eight, it is
bit-addressable.

The individual bits of T2CON have the following functions:

6 5 4 3 2 1 0 Reset Value

SFR C8y

TF2

EXF2 RCLK TCLK EXEN2 TR2 CIT CP/RL2 00y

TF2 (bit 7—Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows
from FFFF. It must be cleared by software. TF2 will only be set if RCLK and TCLK
are both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

EXF2 (bit 6) Timer 2 External Flag. A negative transition on the T2EX pin
(P1.1) will cause this flag to be set based on the EXEN2 (T2CON.3) bit. If set
by a negative transition, this flag must be cleared to 0 by software. Setting this
bit in software will force a timer interrupt if enabled.

RCLK (bit 5)—Receive Clock Flag. This bit determines the serial Port 0 time-
base when receiving data in serial modes 1 or 3.

0 = Timer 1 overflow is used to determine receiver baud rate for serial Port O.
1 =Timer 2 overflow is used to determine receiver baud rate for serial Port 0.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will
operate from a divide by 2 of the external clock.

TCLK (bit 4)—Transmit Clock Flag. This bit determines the serial Port O tim-
erbase when transmitting data in serial modes 1 or 3.

0 = Timer 1 overflow is used to determine transmitter baud rate for serial Port 0.
1 = Timer 2 overflow is used to determine transmitter baud rate for serial Port O.

Setting this bit will force Timer 2 into baud rate generation mode. The timer will
operate from a divide by 2 of the external clock.

EXEN2 (bit 3)—Timer 2 External Enable. This bit enables the capture/reload
function on the T2EX pin if Timer 2 is not generating baud rates for the serial port.

0 = Timer 2 will ignore all external events at T2EX.

1 =Timer 2 will capture or reload a value if a negative transition is detected on
the T2EX pin.

Timers 8-13

Using Timer 2

TR2 (bit 2)—Timer 1 Run Control. This bit enables/disables the operation of
Timer 2. Halting this timer will preserve the current count in TH2, TL2.

0 = Timer 2 is halted.

1 = Timer 2 is enabled.

CI/T (bit 1)—Counter/Timer Select. This bit determines whether Timer 2 will
function as a timer or counter. Independent of this bit, Timer 2 runs at 2 clocks
per tick when used in baud rate generator mode.

0 = Timer 2 functions as a timer. The speed of Timer 2 is determined by the
T2M bit (CKCON.5).

1 = Timer 2 will count negative transitions on the T2 pin (P1.0).

CP/RL2 (bit 0)—Capture/Reload Select. This bit determines whether the
capture or reload function will be used for Timer 2. If either RCLK or TCLK is
set, this bit will not function and the timer will function in an auto-reload mode
following each overflow.

0 = Auto-reloads will occur when Timer 2 overflows or a falling edge is detected
on T2EX if EXEN2 = 1.

1 = Timer 2 captures will occur when a falling edge is detected on T2EX if
EXEN2 = 1.

8.5.2 Timer 2 in Auto-Reload Mode

8-14

The first mode in which Timer 2 may be used is Auto-Reload. The auto-reload
mode functions just like Timer 0 and Timer 1 in auto-reload mode, except that
the Timer 2 auto-reload mode performs a full 16-bit reload (recall that Timer
0 and Timer 1 only have 8-bit reload values). When a reload occurs, the value
of TH2 will be reloaded with the value contained in RCAP2H, and the value of
TL2 will be reloaded with the value contained in RCAP2L.

To operate Timer 2 in auto-reload mode, the CP/RL2 bit (T2CON.0) must be
clear. In this mode, Timer 2 (TH2/TL2) will be reloaded with the reload value
(RCAP2H/RCAP2L) whenever Timer 2 overflows; that is to say, whenever
Timer 2 overflows from FFFFy back to 00004. An overflow of Timer 2 will cause
the TF2 bit to be set, which will cause an interrupt to be triggered, if Timer 2
interrupt is enabled. Note that TF2 will not be set on an overflow condition if
either RCLK or TCLK (T2CON.5 or T2CON.4) are set.

Additionally, by also setting EXEN2 (T2CON.3), a reload will also occur when-
ever a 1-0 transition is detected on T2EX (P1.1). A reload that occurs as a re-
sult of such a transition will cause the EXF2 (T2CON.6) flag to be set, triggering
a Timer 2 interrupt, if said interrupt has been enabled.

Using Timer 2

8.5.3 Timer 2 in Capture Mode

A new mode, specific to Timer 2, is called “Capture Mode.” As the name im-
plies, this mode captures the value of Timer 2 (TH2 and TL2) into the capture
SFRs (RCAP2H and RCAP2L). To put Timer 2 in capture mode, CP/RL2
(T2CON.0) and EXEN2 (T2CON.3) must be set.

When configured as mentioned above, a capture will occur whenever a 1-0
transition is detected on T2EX (P1.1). At the moment the transition is detected,
the current values of TH2 and TL2 will be copied into RCAP2H and RCAP2L,
respectively. At the same time, the EXF2 (T2CON.6) bit will be set, which will
trigger an interrupt, if Timer 2 interrupt is enabled.

NOTE: Even in capture mode, an overflow of Timer 2 will result in TF2 being set and
an interrupt being triggered.

NOTE: Capture mode is an efficient way to measure the time between events. At
the moment that an event occurs, the current value of Timer 2 will be copied into
RCAP2H/L. However, Timer 2 will not stop and an interrupt will be triggered. Thus
the interrupt routine may copy the value of RCAP2H/L to a temporary holding vari-
able without having to stop Timer 2. When another capture occurs, the interrupt can
take the difference of the two values to determine the time transpired. Again, the
main advantage is that timer 2 does not need to be stopped to have its value read,
as is the case with timer 0 and timer 1.

8.5.4 Timer 2 as a Baud Rate Generator

Timer 2 may be used as a baud rate generator. This is accomplished by setting
either RCLK (T2CON.5) or TCLK (T2CON.4).

With Timer 1, the receive and transmit baud rate must be the same. With Timer
2, however, the user may configure the serial port to receive at one baud rate
and transmit at another. For example, if RCLK is set and TCLK is cleared, seri-
al data will be received at the baud rate determined by Timer 2, whereas the
baud rate of transmitted data will be determined by Timer 1.

Determining the auto-reload values for a specific baud rate is discussed in Se-
rial Port Operation; the only difference is that in the case of Timer 2, the auto-
reload value is placed in RCAP2H and RCAP2L, and the value is 16-bit rather
than 8-bit.

NOTE: When Timer 2 is used as a baud rate generator (either TCLK or RCLK are
set), the Timer 2 Overflow Flag (TF2) will not be set.

Timers 8-15

Chapter 9

Serial Communication

Chapter 9 describes serial communication using the MSC1210.

Topic Page
9.1 DeSCHIPLION ...ttt e 9-2
9.2 Setting the Serial Port Mode i 9-3
9.3 Setting the Serial PortBaud Rate 9-10
9.4 Writing to the Serial Port 9-13
9.5 Readingthe Serial Port i 9-13

9-1

Description

9.1 Description

The MSC1210 family has three serial port interfaces: two UARTs and one SPI.
This chapter will cover the UARTSs, while the SPI will be covered in a later chapter.

One of the MSC1210’s many powerful features is its integrated UARTS, other-
wise known as universal synchronous/asynchronous receiver/transmitter.
Just as the name implies, the UART can be configured for either synchronous,
half-duplex operation or asynchronous full-duplex (transmit and receive data
simultaneously) operation.

The fact that the MSC1210 has integrated UARTs means that values may be
very easily read from and written to the serial port. If it were not for the inte-
grated UARTS, writing a byte to a serial line would be a rather tedious process
requiring turning on and off one of the 1/O lines in rapid succession to properly
“shift out” each individual bit, including start bits, stop bits, and parity bits.

However, this does not have to be done. Instead, simply configure the serial
ports’ operating modes and baud rates. Once configured, write to an SFR to
write a value to the serial port or read the same SFR to read a value from the
serial port. The MSC1210 will automatically let the user know when it has fin-
ished sending the written character and will also let the user know whenever
it has received a byte, so that it can be processed. There is no need to worry
about transmission at the bit level, which saves quite a bit of coding and proc-
essing time.

The UART serial port is an asynchronous full duplex (transmit and receive si-
multaneously) or synchronous half-duplex (transmit or receive). It also has a
receiver buffer, to enable the UART to continue to receive a second byte before
the first byte has been read in software. If the first byte has not been read when
the second byte has been completely transmitted, the second byte will be lost.
The serial port receive end transmit registers are both accessed through
SBUF. Writing to SBUF loads the transmit buffer, and reading SBUF reads the
receive register.

NOTE: Although a standard 8052 has only one UART, the MSC1210 has two. This
provides additional flexibility when integrating the part in a device that must commu-
nicate with more than one external serial devices. This chapter explains how to use
the “primary” UART (serial port 0); using the secondary UART, serial port 1, is identi-
cal. Just use the SFRs that refer to port 1 instead of port O (i.e., SCONL1 instead of
SCONQO, etc.). Also note that the secondary UART cannot use timer 2 as a baud rate
clock, while the primary UART can.

9-2

Setting the Serial Port Mode

9.2 Setting the Serial Port Mode

The first thing to be done when using the MSC1210’s integrated serial port is, ob-
viously, to configure it. This lets the user tell the MSC1210 how many data bits
are needed, the baud rate to be used, and how the baud rate will be determined.

First, the “Serial Control 0" (SCONO) SFR is presented and what each bit of
the SFR represents is defined. (Remember, SCONL1 has the exact same func-
tion but relates to the secondary UART).

The individual bits of SCONO have the following functions:

6 5 4 3 2 1 0 Reset Value

SFR 98y

SMO0_0

SM1 0 | SM20 [RENO | TB8 0 [RBB O [TILO RO 00y

SMO- 2 (bits 7- 5)—Serial Port 0 Mode. These hits control the mode of serial Port
0. Modes 1, 2, and 3 have one start and one stop bit in addition to the eight or
nine data bits.

MODE | SMO | SM1 [SM2 | FUNCTION LENGTH [PERIOD
0 0 0 0 Synchronous 8 bits 12 pc kM
0 0 0 1 Synchronous 8 bits 4 pcr kD
1 0 1 X Asynchronous 10 bits | Timer 1 or 2 Baud Rate
Equation
2 1 0 0 | Asynchronous 11 bits [64 pc kY (SMOD = 0)
32 pe k@ (SMOD = 1)
2 1 0 1 [Asynchronous with | 11 bits [64 pc k(D) (SMOD = 0)
Multiprocessor 32 pck@® (SMOD = 1)
Communication
3 1 1 0 Asynchronous 11 bits | Timer 1 or 2 Baud Rate
Equation
3 1 1 1 Asynchronous with 11 bits | Timer 1 or 2 Baud Rate
Multiprocessor Equation
Communication

1) pcLk Will be equal to to k, except that pc k will stop for IDLE.

REN_O (bit 4)—Receive Enable. This bit enables/disables the serial Port 0
received shift register.

0: Serial Port O reception disabled.

1: Serial Port O received enabled (modes 1, 2, and 3). Initiate synchronous re-
ception (mode 0).

TB8_0 (bit 3)—9th Transmission Bit State. This bit defines the state of the
9th transmission bit in serial Port 0 modes 2 and 3.

RB8_0 (bit 2)—9th Received Bit State. This bit identifies the state of the 9th
reception bit of received data in serial Port 0 modes 2 and 3. In serial port mode
1, when SM2_0 =0, RB8_0 is the state of the stop bit. RB8 0 is not used in
mode 0.

T1_0 (bit 1)—Transmitter Interrupt Flag. This bit indicates that data in the se-
rial Port O buffer has been completely shifted out. In serial port mode 0, TI_0O
is set at the end of the 8th data bit. In all other modes, this bit is set at the end
of the last data bit. This bit must be manually cleared by software.

Serial Communication 9.3

Setting the Serial Port Mode

RI_0O (bit 0)—Receiver Interrupt Flag. This bit indicates that a byte of data has
been received in the serial Port 0 buffer. In serial port mode 0, RI_0 is set at the
end of the 8th bit. In serial port mode 1, RI_0 is set after the last sample of the
incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set
after the last sample of RB8_0. This bit must be manually cleared by software.

Additionally, it is necessary to define the function of SMO and SM1, as shown
in Table 9-1.

Table 9-1.SMO0 and SM1 Function Definitions.

MODE Sync/Async Baud Clock Data Bits Start/Stop 9th-Bit Function
0 Sync clk/4 or clk/12 8 None None
1 Async Timer 1 or Timer 2(1) 8 1 Start, 1 Stop None
2 Async clk/32 or clk/64 9 1 Start, 1 Stop 0, 1, Parity
3 Async Timer 1 or Timer 2(1) 9 1 Start, 1 Stop 0, 1, Parity

(1) Timer 2 available for Serial Port O only.

9-4

The SCONO SFR allows us to configure the primary serial port. Go through
each bit and review its function.

The low four bits (bits 0 through 3) are operational bits. They are used when actu-
ally sending and receiving data—they are not used to configure the serial port.

The TB8 bit is used in modes 2 and 3. In modes 2 and 3, a total of nine data
bits are transmitted. The first eight data bits are the eight bits of the main value,
and the 9th bit is taken from TB8. If TB8 is set and a value is written to the serial
port, the data’s bits will be written to the serial line followed by a “set” 9th bit.
If TB8 is clear, the 9th bit will be “clear.”

The RB8 bit also operates in modes 2 and 3 and functions essentially the same
way as TB8, but on the reception side. When a byte is received in modes 2 or
3, a total of nine bits are received. In this case, the first eight bits received are
the data of the serial byte received, and the value of the 9th bit received will
be placed in RB8.

TI means “Transmit Interrupt.” When a program writes a value to the serial
port, a certain amount of time will pass before the individual bits of the byte are
shifted out of the serial port. If the program were to write another byte to the
serial port before the first byte was completely output, the data being sent
would be intertwined. Thus, the MSC1210 lets the program know that it has
shifted out the last byte by setting the TI bit. When the Tl bit is set, the program
may assume that the serial port is “free” and ready to send the next byte.

Finally, the RI bit means “Receive Interrupt.” It functions similarly to the “TI” bit,
but it indicates that a byte has been received. That is to say, whenever the
MSC1210 has received a complete byte, it will trigger the RI bit to let the pro-
gram know that it needs to read the value quickly, before another byte is read.

The high four bits (bits 4 through 7) are configuration bits.

The bit REN means “Receiver Enable.” This it is very straightforward: if data need
to be received via the serial port, set this bit. This bit will almost always need be
set, because leaving it cleared will prevent the MSC1210 from receiving serial data.

Setting the Serial Port Mode

The function of the SM2 bit depends on the serial mode. In mode 0, the SM2
bit is used to set the baud rate. When SM2 is cleared in this mode, the baud
rate is fpg/12. When SM2 is set in this mode, the baud rate is fogc/4. In mode
3, the SM2 hit is a flag for “multiprocessor communication.” Generally, when-
ever a byte has been received the MSC1210 will set the RI flag. This lets the
program know that a byte has been received and that it needs to be processed.
However, when SM2 is set, the RI flag will only be triggered if the 9th bit re-
ceived is a “1". That is to say, if SM2 is set and a byte is received whose 9th
bit is clear, the RI flag will never be set. This can be useful in certain advanced
serial applications that allow multiple MSC1210s (or other hardware) to com-
municate amongst themselves. For now it is safe to say that this bit should al-
most always be clear, so that the flag is set upon reception of any character.

Bits SMO and SM1 let the serial mode be set to a value between 0 and 3, inclu-
sive. The four modes are defined in Table 9-1. As is shown, selecting the Serial
Mode selects the mode of operation (8-bit/9-bit, UART, or Shift Register) and
also determines how the baud rate will be calculated.

9.2.1 Serial Mode 0: Synchronous Half-Duplex

In mode 0, serial data transfers are eight bits long, half-duplex, and synchro-
nous. The serial data are transmitted and received through the RXD pin. The
shift clock is generated on the TXD pin. Eight bits are transmitted or received
on each data transfer, LSB first. The data transmission begins when data are
written to SBUF.

Data reception begins when the REN_O/REN_1 bit is set and the RI_O0/RI_1
bit is cleared in the corresponding SCON SFR. The shift clock is activated and
the UART shifts data in on each rising edge of the shift clock until eight bits
have been received. One instruction cycle after the 8th bit is shifted in, the
RI_O/RI_1 hitis set, and reception stops until the software clears the RI bit. The
baud rate is either fogc/12 (if SCONX.5 is clear) or fosc/4 (if SCONX.5 is set).

Figure 9-1. Serial Port 0 Mode 0 Transmit Timing—High Speed Operation.

mem_ale

mem_psrd_n

rxd0_in

rxd0_out

txdo

TI

RI

1 [1 [L

_I1
I

Tyuuriruyuuiutiriuyutod ot
[]
|

X Do

Serial Communication 9.5

Setting the Serial Port Mode

Figure 9-2. Serial Port Mode 0 Receive Timing—High Speed Operation.

o JUUUUUUUUUTTUUUUUUrUUyiiry iy Uit
mem_ale _|_| |_| _| I_l_
|

mem_psrd_n | | | L

0. XL XX T X XX X[X XX T XX

xd0 L] | |

TI

RI

RXD is used for serial TX and RX of data, LSB first. TXD is used as the baud
clock. Transmission is initiated by any instruction that writes to SBUF.

9.2.2 Serial Mode 1: Asynchronous Full-Duplex

In mode 1, serial data transfers are 10 bits long, full-duplex, and asynchronous.
The transfer begins with a start bit, followed by eight bits of data (LSB first), then
a stop bit. On receive, the stop bit is shifted into the RB8 bit in the SCON register.
The baud rate is set by Timer 1 (UART O or 1) or Timer 2 (UART 0).

RXD is used for receiving data and TXD is used for transmitting data, LSB first.
On reception, the stop bit goes into RB8 in the SCON register. Transmission
is initiated by any instruction that writes to SBUF. The transmission begins after
the first rollover of the divide-by-16 counter after the write. The SCONX.TIx
interrupt flag is set two fogc cycles after the stop bit has been transmitted.

Figure 9-3. Serial Port Mode 1 Transmit Timing.

Write to
SBUFO H

TXCLK ” ”

SHIFT

txdo \ START DO D1 D2 D3 D4 D5 D6 D7 STOP

rxdO_in

rxdO_out

9-6

Setting the Serial Port Mode

Figure 9-4. Serial Port 0 Mode 1 Receive Timing.

RX CLK

rxdO_in

Bit Detector
Sampling

SHIFT

rxdO_out

txdo

TI_O

RI_O

|

[Ll

\STAHT DO D1 D2 D3 D4 X D5 D6 D7 STOR

- n - n nnn i

Reception is enabled by configuring SCONO.RBN = 1. Reception of the data
begins at the falling edge of start-bit detection. The RXDx pin is sampled 16
times-per-bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit; this provides an amount of noise rejection. At the middle of
the stop-hit time, the serial port verifies that the status of SCONX.RI_x =0 and
SCONO0.SM2_x =1 (if SCON0.SM2_x =0, the stop bit is a “don’t care”). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONX.RB8_x, and sets the SCONX.RI_x flag.
If the conditions are not met, the data is ignored. After the middle of the stop
bit, the serial port waits for another start bit detection.

The baud rate is adjustable and is based on either Timer 1 or Timer 2. Serial Port
0 can use either Timer 1 or Timer 2, while Serial Port 1 can use only Timer 1.
On an overflow from the timer, a clock is sent to the baud clock. The clock is
divided by 16 to generate the baud clock. The PCON.SMODO and
EICON.SMOD1 bits determine whether or not to divide Timer 1 by the rollover
rate of 2. The equation for baud rate is given below:

ZSMOD . .
3 Timer1Overflow

BaudRate =
It is recommended to use Timer 1 in mode 2 (8-bit counter with auto reload).
This changes the equation to:

2SMoD fosc

BaudRate = =3 12 (256 — THI)

The divide-by-12 can be changed to 4 by setting CKCON.T1M.

To determine the reload value from a given baud rate, use the equation below:

2SMOD .

— fOSC
TH1 = 256 384 - BaudRate

Serial Communication 9-7

Setting the Serial Port Mode

You can also achieve very low baud rates from Timer 1 by enabling
T1CON.TF1, configuring the timer for mode 1, and using the timer interrupt to
initiate a 16-bit software reload, as shown in Table 9-2.

Table 9-2.Common Baud Rates Using Timer 1

B TH1 Value for an

Baud Rate SMODx CIT Timer 1 Mode 11.0592MHz fosc
57.6k 1 0 2 OFFy
19.2k 1 0 2 OFDy
9.6k 1 0 2 OFAY
4.8k 1 0 2 OF4y
2.4k 1 0 2 OE8y
1.2k 1 0 2 0DOy

When using Timer 2 for the baud rate clock, the equation is:

Timer20verflow

BaudRate = 16

To use Timer 2 as the baud rate generator, configure Timer 2 in auto-reload
mode and set T2CON.TCLK and T2CON.RCLK (to select Timer 2 as the baud-
rate generator for the transmitter and receiver, respectively). Setting
T2CON.TCLK and T2CON.RCLK will disable the setting of T2CON.TF2 and
the reload on 1-to-0 on T2. The 16-bit reload value is stored in RCAP2L and
RCAP2H, which gives the following equation:

_ fOSC
BaudRate = 35 (65536 — (RCAP2H : RCAP2L))

The divide by 32 is a result of the fogc being divided by 2 (by setting
T2CON.TCLK and T2CON.RCLK) and the Timer 2 overflow being divided by
16.

To determine the RCAP2H:RCAP2L value from a given baud rate use the
equation below:

. _ fOSC
RCAP2H : RCAP2L = (65536 — o5~ 2t)

Table 9-3.Common Baud Rates Using Timer 2

9-8

Baud Rate CIT2 RCAP2H:RCAP2L (@ 11.0592MHz fogc)
57.6k 0 OFFFAY
19.2k 0 OFFEEy
9.6k 0 OFFDCh
4.8k 0 OFFB8y
2.4k 0 OFF70y
1.2k 0 OFEEOY

Setting the Serial Port Mode

9.2.3 Serial Mode 2: Asynchronous Full-Duplex

In mode 2, serial data transfers are 11 bits long, full-duplex, and asynchronous.
The transfer begins with a start bit, followed by eight bits of data (LSB first),
an additional bit of data (9th bit), then a stop bit. On transmit, the 9th data bit
is set by TB8. On receive, the 9th bit is shifted into the RB8 bit in the SCON
register and the stop bit is ignored. The baud rate is either fogc/64 or fogc/12.

RXD is used for receiving data, TXD is used for transmitting data, LSB first.
On transmission, SCON.TB8 is used for the 9th bit. On reception the 9th bit
goes into RB8 in the SCON register. The baud rate is selectable at fogc/32 or

Figure 9-5. Serial Port 0 Mode 2 Transmit Timing.

Write to
SBUF0O

TXCLK

SHIFT

txdo

rxdO_in
rxdO_out

TI_O

RI_O

]

\START/" DO D1 X D2 p3 X p4[X D5 | X pe X D7 [X B8]/ STOFR

Figure 9-6. Serial Port 0 Mode 2 Receive Timing.

RX CLK

rxd0_in

Bit Detector
Sampling

SHIFT

rxdO_out
txdo

TI_O

RI_O

\START DO D1 D2 D3 D4 D5 Dé D7 RB8 STOR

] N | |

Serial Communication 9-9

Setting the Serial Port Mode

Transmission is initiated by any instruction that writes to SBUF. The transmis-
sion begins after the first rollover of the divide-by-16 counter after the write.
The SCONX.Ti_x interrupt flag is set when the stop bit has been placed on the
TXDx pin.

Reception is enabled by configuring SCONO.RBN = 1. Reception of the data
begins at the falling edge of start bit detection. The RXDx pin is sampled 16
times per bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit, providing an amount of noise rejection. At the middle of the
stop-bit time, the serial port verifies that the status of SCONx.RI_x = 0 and
SCONO0.SM2_x =1 (if SCON0.SM2_x = 0, the stop bit is a “don’t care”). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONx.RB8_x, and sets the SCONx.RI_x flag.
If the conditions are not met, the data are ignored. After the middle of the stop
bit, the serial waits for another start-bit detection.

The state of SCONO.SMODx determines the baud rate clock. The equation is:

ZSMOD . f
BaudRate = ——95¢

64

Mode 2 has a special provision for multiprocessor communications. This mode
is typically used when a master wants to address a specific slave device on
the bus. The address of the target slave device is transmitted in the first eight
data bits. The 9th bit is used to indicate to the slaves that the data was an ad-
dress. If the data matches the slave address, the device can then resume nor-
mal reception. In this mode, nine data bits are received (the 9th bit is latched
into SCONO.RB8). The port can be configured such that when the stop bit is
received, the serial port interrupt will be generated if RB8 = 1. This feature is
enabled by setting bit SCON0.SM2.

9.2.4 Serial Mode 3: Asynchronous Full-Duplex

9-10

In mode 3, serial data transfers are 11 bits long, full-duplex, and asynchronous.
Mode 3 is identical to mode 2, with the exception of the baud rate. The transfer
begins with a start bit, followed by eight bits of data (LSB first), an additional
bit of data (9th bit), then a stop bit. On transmit, the 9th data bit is set by TB8.
On receive, the 9th bit is shifted into the RB8 bit in the SCON register and the
stop bit is ignored. The baud rate is set by Timer 1 (USART 0 or 1) or Timer
2 (USART 0).

RXD is used for receiving data, TXD is used for transmitting data, LSB first.
On transmission, SCON.TB8 is used for the 9th bit. On reception, the 9th bit
goes into RB8 in the SCON register. The baud rate is adjustable and is based
on either Timer 1 or Timer 2.

Transmission is initiated by any instruction that writes to SBUF. The transmis-
sion begins after the first rollover of the divide-by-16 counter after the write.
The SCONx.Ti_x interrupt flag is set when the stop bit has been placed on the
TXDx pin.

Write to
SBUFO0

TXCLK

SHIFT

txdo

rxdO_in

rxdO_out

TI_O

RI_O

Setting the Serial Port Mode

N\START

DO D1 D2 D3 D4 D5 D6 D7 RB8 STOF

Figure 9-7. Serial Port 0 Mode 3 Transmit Timing.

RX CLK

rxd0_in

Bit Detector
Sampling

SHIFT

rxd0_out
txd0
TI_O

RI_O

\STAR]

1/ Do [X D1 X D2 D3 X D4 X D5 [X D6 [X D7)X RB8 |/ STOR

]

Figure 9-8. Serial Port 0 Mode 3 Receive Timing.

Reception is enabled by configuring SCONO.RBN = 1. Reception of the data
begins at the falling edge of start-bit detection. The RXDx pin is sampled 16
times per bit for any baud rate setting. When the falling edge of the start bit is
detected, the divide-by-16 counter used to generate the receive clock is reset
to align the counter rollover with the bit boundaries. The state of each bit is de-
termined by a majority detect decision on three consecutive samples in the
middle of the bit, providing an amount of noise rejection. At the middle of the
stop bit time, the serial port verifies that the status of SCONx.RI_x = 0 and
SCONO0.SM2_x =1 (if SCON0.SM2_x =0, the stop bit is a “don’t care”). If these
conditions are true, then the serial port writes the received byte to the SBUFx
register, loads the stop bit into SCONX.RB8_x, and sets the SCONX.RI_x flag.
If the conditions are not met, the data are ignored. After the middle of the stop
bit, the serial waits for another start-bit detection.

Baud rate calculation for mode 3 is identical to that of mode 1, which is full yex-
plained in section 9.2.2.

Serial Communication 9-11

Setting the Serial Port Baud Rate

Mode 3 has a special provision for multiprocessor communications. This mode
is typically used when a master wants to address a specific slave device on
the bus. The address of the target slave device is transmitted in the first eight
data bits. The 9th bit is used to indicate to the slaves that the data was an ad-
dress. If the data matches the slave address, the device can then resume nor-
mal reception. In this mode, nine data bits are received (the 9th bit is latched
into SCONO0.RB8). The port can be configured such that when the stop bit is
received, the serial port interrupt will be generated if RB8 = 1. This feature is
enabled by setting bit SCON0.SM2.

9.3 Setting the Serial Port Baud Rate

Once the serial port mode has been configured, as explained above, the pro-
gram must configure the serial port’s baud rate. In mode 0, the baud rate is
either the clock frequency divided by 12 or the clock frequency divided by 4,
depending on the SM2 bit in the SCONX register.

Table 9-4 shows some commonly used baud rates for Mode 0.

Table 9-4.Mode 0 Commonly Used Baud Rates.

9-12

fosc Baud Rate
SM2 (MHz) (kBaud)
0 33 2750
1 33 8250
0 12 1000
1 12 3000

The mode 1 baud rate is a function of timer overflow. Serial Port O can use ei-
ther Timer 1 or Timer 2 to generate baud rates. Serial Port 1 can only use Timer
1. The two serial ports can run at the same baud rate if they both use Timer
1, or different baud rates if Serial Port O uses Timer 2 and Serial Port 1 uses
Timer 1.

Each time the timer increments from its maximum count (FFy for Timer 1 or
FFFFy for Timer 2), a clock is sent to the baud-rate circuit. The clock is then
divided by 16 to generate the baud rate. When using Timer 1, the SMODO (or
SMOD1) bit selects whether or not to divide the Timer 1 rollover rate by two.

In modes 1 and 3, the baud rate is determined by how frequently Timer 1 or
Timer 2 overflows. The more frequently Timer 1 overflows, the higher the baud
rate. There are many ways one can cause Timer 1 to overflow at a rate that
determines a baud rate, but the most common method is to put Timer 1 in 8-bit
auto-reload mode (Timer mode 2) and set a reload value (TH1) that causes
Timer 1 to overflow at a frequency appropriate to generate a baud rate.

To determine the value that must be placed in TH1 to generate a given baud
rate, the following equation may be used (assuming PCON.7 is clear):

TH1 = 256 - ((Crystal / 384) / Baud)

Setting the Serial Port Baud Rate

If PCON.7 is set, the baud rate is effectively doubled, thus, the equation be-
comes:

TH1 = 256 - ((Crystal / 192) / Baud)

For example, with an 11.059MHz crystal, to configure the serial port to 19,200
baud, try plugging it in the first equation:

TH1 = 256 - ((Crystal / 384) / Baud)

TH1 = 256 - ((11,059,000 / 384) / 19,200)
TH1 = 256 - ((28,799) / 19,200)

TH1 = 256 - 1.5 = 254.5

As is shown, to obtain 19,200 baud with an 11.059MHz crystal, TH1 would
have to be set to 254.5. If it is set to 254, 14,400 baud will be achieved and if
it is set to 255, 28,800 baud will be achieved. This may seem to be an impasse.

However, there is a solution. To achieve 19,200 baud, simply set PCON.7
(SMOD). When this is done, the baud rate is doubled and the second equation
mentioned above is used. Thus:

TH1 = 256 - ((Crystal / 192) / Baud)

TH1 = 256 - ((11,059,000 / 192) / 19,200)
TH1 = 256 - ((57,699) / 19,200)

TH1 = 256 - 3 = 253

Here, a nice, even TH1 value is calculated. Therefore, to obtain 19,200 baud
with an 11.059MHz crystal:

1) Configure Serial Port mode 1 or 3 (for 8-bit or 9-bit serial mode).
2) Configure Timer 1 to Timer mode 2 (8-bit auto-reload).

3) Set TH1 to 253 to reflect the correct frequency for 19,200 baud.
4) Set PCON.7 (SMOD) to double the baud rate.

Table 9-5 shows common settings when using Timer 1 to generate the baud
rate clock.

Table 9-5.Baud Rate Settings for Timer 1.

Desired Baud Rate B Timer 1 TH1 Value for TH1 Value for TH1 Value for

(kb/s) SMODx CIT Mode 33MHz clk 25MHz clk 11.0592MHz clk
57.6 1 0 2 FDy FEn FFy

19.2 1 0 2 F7n FOy FDy

9.6 1 0 2 EEn F2y FAH

4.8 1 0 2 DCh E5y Fay

24 1 0 2 B8y CAyH E8H

1.2 1 0 2 71y 93y DOy

Serial Communication 9-13

Writing to the Serial Port

Likewise, common settings when using timer 2 to generate a baud rate clock
are indicated in Table 9-6.

Table 9-6.Baud Rate Settings for Timer 2.

Boud Rate 33MHz clk 25MHz clk 11.0592MHz clk
(Kb/s) T RCAP2H RCAP2L RCAP2H RCAP2L RCAP2H RCAP2L
19.2 0 FFy EEn FFy F24 FFy FAq
9.6 0 FFy CAH FFy D7y FFy EEn
4.8 0 FFy 95, FFy AFy FFy DCH
2.4 0 FFy 29y FFy 5Dy FFy B8y
12 0 FEn 524, FEn BBH FFy 704
12 0 FCh A5 FDy 754 FEn EOn

9.4 Writing to the Serial Port

9-14

Once the serial port has been properly configured as explained above, the se-
rial port is ready to be used to send and receive data. If configuring the serial
port was simple, using the serial port will be a breeze.

To write a byte to the serial port, simply write the value to the SBUFO (99y)
SFR. For example, sending the letter “A” to the serial port could be accom-
plished as easily as:

MOV SBUFO, #'A’

Upon execution of the above instruction, the MSC1210 will begin transmitting
the character via the serial port. Obviously, transmission is not instanta-
neous—it takes a measurable amount of time to transmit the eight data bits
that make up the byte, along with its start and stop bits—and because the
MSC1210 does not have a serial output buffer, we need to be sure that a char-
acter is completely transmitted before we try to transmit the next character.

The MSC1210 lets the user know when it is done transmitting a character by set-
ting the TI bit in SCON. When this bit is set, the last character has been transmitted
and the next character, if any, may be sent. Consider the following code segment:

CLR TI ;Be sure the bit is initially clear
MOV SBUF, #'A’ ;Send the letter ‘A’ to the serial port
JNB TI,S ;Pause until the RI bit is set.

The above three instructions will successfully transmit a character and wait for
the TI bit to be set before continuing. The last instruction says “Jump if the Tl
bit is not set to $.” The “$” character (in most assemblers), means “the same
address of the current instruction.” Thus, the MSC1210 will pause on the JNB
instruction until the TI bit is set upon successful transmission of the character.

Reading the Serial Port

9.5 Reading the Serial Port

Reading data received by the serial port is equally easy. To read a byte from
the serial port, just read the value stored in the SBUFO (99y) SFR after the
MSC1210 has automatically set the RI flag in SCON.

For example, if the user wants the program to wait for a character to be re-
ceived and subsequently read it into the Accumulator, the following code seg-
ment may be used:

JNB RI,S ;Wait for the MSC1210 to set the RI flag
MOV A, SBUF ;Read the character from the serial port

The first line of the above code segment waits for the MSC1210 to set the RI
flag; again, the MSC1210 sets the RI flag automatically when it receives a
character via the serial port. So as long as the bit is not set, the program re-
peats the “JNB” instruction continuously.

Once a character is received, the RI bit will be set automatically, the above con-
dition automatically fails, and program flow falls through to the “MOV” instruc-
tion that reads the character into the Accumulator.

Serial Communication 9-15

Chapter 10

Interrupts

Chapter 10 describes the MSC1210 interrupts.

Topic Page
10.1 DeSCription e e 10-2
10.2 Events That Can Trigger Interrupts ..., 10-3
10.3 Enabling INterrupts 10-4
10.4 Polling SEqUENCE it 10-6
10.5 Interrupt Priorities e 10-6
10.6 Interrupt TrigQeringt e 10-7
10.7 EXiting INterrupts 10-8
10.8 Types of INterruptst e 10-8
10.9 Waking Up fromldleMode i, 10-14
10.10 Register Protectionot 10-14
10.11 Common Problems with Interrupts 10-16

10-1

Description

10.1 Description

10-2

As the name implies, an interrupt is some event that interrupts normal program
execution.

As stated previously, program flow is always sequential, being altered only by
those instructions that expressly cause program flow to deviate in some way.
However, interrupts give us a mechanism to “put on hold” the normal program
flow, execute a subroutine, and then resume normal program flow as if we had
never left it. This subroutine, called an interrupt handler or interrupt service routine
(ISR), is only executed when a certain event (interrupt) occurs. The event may
be one of 21 interrupt sources such as the timers “overflowing,” receiving a char-
acter via the serial port, transmitting a character via the serial port, or “external
events.” The MSC1210 may be configured so that when any of these events oc-
cur, the main program is temporarily suspended and control passed to a special
section of code, which presumably would execute some function related to the
event that occurred. Once complete, control would be returned to the original pro-
gram. The main program never even knows it was interrupted.

The ability to interrupt normal program execution when certain events occur makes
it much easier and much more efficient to handle certain conditions. If it were not
for interrupts, the program would have to be manually checked as to whether the
timers have overflowed, whether the serial port has received another character, or
if some external event has occurred. Besides making the main program “ugly” and
hard to read, such a situation would make the program inefficient, because pre-
cious instruction cycles would be wasted checking for events that happen infre-
guently.

For example, say a large 16k program is executing many subroutines and per-
forming many tasks. Additionaly, suppose that the program is to automatically
toggle the P3.0 port every time Timer 0 overflows. The code to do this is not
too difficult:

JNB TFO,SKIP TOGGLE
CPL P3.0

CLR TFO

SKIP_ TOGGLE:

The above code will toggle P3.0 every time Timer 0 overflows because the TFO
flag is set whenever Timer 0 overflows. This accomplishes what is needed, but
is inefficient.

Luckily, this is not necessary. Interrupts allow the user to forget about checking for
the condition. The microcontroller itself will check for the condition automatically
and when the condition is met, will jump to a subroutine (the interrupt handler), exe-
cute the code, then return. In this case, the subroutine would be nothing more than:

CPL P3.0 ;Toggle P3.0
RETI ;Return from the interrupt

First, notice that the CLR TFO command has disappeared. That is because
when the MSC1210 executes the “Timer O interrupt routine,” it automatically
clears the TFO flag. Also notice that instead of a normal RET instruction, there
is a RETI instruction. The RETI instruction does the same thing as a RET in-

Events That Can Trigger Interrupts

struction, but tells the 8051 that an interrupt routine has finished. Interrupt han-
dlers must always end with RETI.

Thus, every 65,536 instruction cycles, Timer 0 overflows and the CPL and
RETI instructions are executed. Those two instructions together require three
instruction cycles, and accomplish the same goal as the first example. As far
as the toggling of P3.0 goes, the code is 437 times more efficient! Not to men-
tion it is much easier to read and understand because the timer O flag does not
have to be checked, in the main program. Just setup the interrupt and forget
about it, secure in the knowledge that the MSC1210 will execute the code
whenever it is necessary.

10.2 Events That Can Trigger Interrupts

The MSC1210 can be configured so that any of the events in Table 10-1 will
cause an interrupt.

Table 10-1.Interrupt Sources

Priority
Interrupt/Event Addr Priority Flag Enable Control
DVpp Low Voltage HW 33y HIGH EDLVB (AIE.0)®) EDLVV (AIE.0)D) N/A
Breakpoint 0 EBP (BPCON.0)) EBP (BPCON.0)D)
Avpp Low Voltage 334 0 EALV (AIE.1)(D) EALV (AIE.1)D) N/A
SPI Receive 33y 0 ESPIR (AIE.2)1) ESPIR (AIE.2)D) N/A
SPI Transmit 334 0 ESPIT (AIE.3)®) ESPIT (AIE.3)®) N/A
Milliseconds Timer 33y 0 EMSEC (AIE.4)1) EMSEC (AIE.4)®) N/A
ADC 334 0 EADC (AIE.5)®) EADC (AIE.5)®) N/A
Summation Register 33y 0 ESUM (AIE.6)(1) ESUM (AIE.6)(1) N/A
Seconds timer 334 0 ESEC (AIE.7)(ESEC (AIE.7)D) N/A
External Interrupt O 034 1 IEO (TCON.1)® EXO (IE.0)@) PXO0 (IP.0)
Timer 0 Overflow 0By 2 TFO (TCON.5)@®) ETO (IE.1)@ PTO (IP.1)
External Interrupt 1 13y 3 IE1 (TCON.3)® EX1 (IE.2)@ PX1 (IP.2)
Timer 1 Overflow 1By 4 TF1 (TCON.7)®) ET1 (IE.3)®4 PT1 (IP.3)
Serial Port 0 234 5 RI_0 (SCONO0.0) ESO (IE.4)@) PSO0 (IP.4)
TI_0 (SCONO.1)
Timer 2 Overflow 2By 6 TF2 (T2CON.7) ET2 (IE.5)@ PT2 (IP.5)
Serial Port 1 3By RI_1 (SCON1.0) ES1 (IE.6)@ PS1 (IP.6)
TI_1 (SCON1.1)
External Interrupt 2 434 IE2 (EXIF.4) EX2 (EIE.0)@ PX2 (EIP.0)
External Interrupt 3 4By IE3 (EXIF.5) EX3 (EIE.1)@ PX3 (EIP.1)
External Interrupt 4 53y 10 IE4 (EXIF.6) EX4 (EIE.2)@ PX4 (EIP.2)
External Interrupt 5 5BH 11 IE5 (EXIF.7) EX5 (EIE.3)@) PX5 (EIP.3)
Watchdog 63y 12 WDTI (EICON.3) EWDI (EIE.4)4 PWDI (EIP.4)
LOW

1) These interrupts set the Al flag (EICON.4) and are enabled by EAI (EICON.5).

2) If edge triggered, cleared automatically by hardware when the service routine is vectored to. If level triggered, the flag follows
the state of the pin.

3) Cleared automatically by hardware when interrupt vector occurs.

4) Globally enabled by EA (IE.7).

Interrupts 10-3

Enabling Interrupts

In other words, the MSC1210 can be configured so that any of the above events,
ranging from a simple Timer 0 overflow to a watchdog or ADC conversion event
will trigger an interrupt calling the appropriate interrupt handler routines.

Interrupt/Event: The 1st column of Table 10-1 indicates the name of the
event, or interrupt, in question.

Addr: The 2nd column indicates the address to which the MSC1210 will jump,
to service the interrupt when it occurs, assuming it has been enabled. This is
where the interrupt code should be placed in code memory. It is common prac-
tice to place an LIMP at the address specified for the interrupt, which jumps
to the actual code somewhere else in code memory, because there are only
eight bytes of memory for each routine.

Priority: The 3rd column indicates the natural priority of the interrupt. This is
the order in which interrupts will be checked. If two or more interrupts occur
simultaneously, the interrupt with a higher interrupt priority (i.e., that appears
first in the list) will be serviced first.

Flag: The 4th column indicates the flag that, when set, will trigger the specified
interrupt. These flags are normally set by the MSC1210 automatically to indi-
cate an interrupt condition. The program may, however, set these bits manual-
ly to trigger the corresponding interrupt, except in the case of the Auxiliary in-
terrupts which are serviced at 33.

Enable: The 5th column indicates the bit that must be set in order to enable
the given interrupt. If this bit is not set, the interrupt flag will not provoke an in-
terrupt.

Priority Control: The final column indicates the bit that controls that interrupt’s
priority as either “high” or “low” priority. Note that the interrupts that are ser-
viced at 0033y are always of the highest priority and that priority may not be
modified.

10.3 Enabling Interrupts

By default at power-up, all interrupts are disabled. This means that even if, for
example, the TFO bit is set, the MSC1210 will not execute the Timer O interrupt.
The program must specifically tell the MSC1210 that it wishes to enable inter-
rupts and specifically which interrupts it wishes to enable. The program may
enable and disable interrupts by modifying the IE (A8y), EICON (D8y), and
EIE (E8H) SFRs, as shown in Tables 10-2, 10-3, and 10-4.

Table 10-2.IE (A84) SFR

10-4

Bit Name Bit Address Explanation of Function

7 EA AFy Global Interrupt Enable/Disable
6 ES1 AEy Enable Serial Port 1 Interrupt

5 ET2 ADy Enable Timer 2 Interrupt

4 ES ACh Enable Serial Port O Interrupt

3 ET1 ABH Enable Timer 1 Interrupt

2 EX1 AAL Enable External Interrupt 1

1 ETO A9y Enable Timer O Interrupt

0 EXO A8y Enable External Interrupt O

Enabling Interrupts

Table 10-3.EICON (D84) SFR

Table 10-4.EIE (E8y)

Bit Name Bit Address Explanation of Function
7 SMOD1 DFy Serial Port 1 Double Baud Rate
6 DEy Undefined (set to 1)

5 EAI DDy Enable Auxiliary Interrupt

4 Al DChx Auxiliary Interrupt Flag
3 WDTI DBy Watchdog Interrupt Flag
2 DAy Undefined (cleared to 0)

1 D9y Undefined (cleared to 0)
0 D8y Undefined (cleared to 0)
SFR

Bit Name Bit Address Explanation of Function
7 EFy Undefined (set to 1)

6 EEH Undefined (set to 1)

5 EDy Undefined (set to 1)

4 EWDI ECH Enable Watchdog Interrupt
3 EX5 EBy Enable External Interrupt 5
2 EX4 EAyY Enable External Interrupt 4
1 EX3 E9y Enable External Interrupt 3
0 EX2 E8H Enable External Interrupt 2

Each of the MSC1210’s interrupts has its own “enable bit” in one of these three
SFRs. Enable a given interrupt by setting the corresponding bit. For example,
to enable the Timer 1 Interrupt, execute either:

MOV IE,#08h
or

SETB ET1

Both of the above instructions set bit 3 of IE, thus enabling the Timer 1 Inter-
rupt. Once the Timer 1 Interrupt is enabled, whenever the TF1 bit is set, the
MSC1210 will automatically put “on hold” the main program and execute the
Timer 1 Interrupt Handler at address 001B.

However, before the Timer 1 Interrupt (or any other interrupt) is truly enabled, bit
7 of IE must also be set. Bit 7, the Global Interrupt Enable/Disable, enables or
disables all interrupts simultaneously (except the Auxiliary Interrupts). That is to
say, if bit 7 is cleared, no interrupts will occur, even if all the other bits of IE are
set. Setting bit 7 will enable all the interrupts that have been selected by setting
one of the other “enable bits” in one of the three SFRs. This is useful in program
execution if there is time-critical code that needs to be executed. In this case, the
code may need to be executed from start to finish without any interrupts getting
in the way. To accomplish this, simply clear bit 7 of IE and (CLR EA) bit 5 of EI-
CON (CLR EAI), and then set them after the time- critical code is done.

So, to sum up what has been stated in this section, to enable the Timer 1 Inter-
rupt, the most common approach is to execute the following two instructions:

SETB ET1 ;Enable Timer 1 Interrupt
SETB EA ;Enable Global Interrupt flag

Thereafter, the Timer 1 Interrupt Handler at 01By will automatically be called
whenever the TF1 bit is set (upon Timer 1 overflow).

Interrupts 10-5

Polling Sequence

10.4 Polling Sequence

The MSC1210 automatically evaluates whether an interrupt should occur after
every instruction. When checking for interrupt conditions, under default condi-
tions, it checks them in the order as they appear in the table in section 10.1.

This means that if a Serial interrupt occurs at the exact same instant that an Exter-
nal 0 interrupt occurs, the External O interrupt will be executed first and the Serial
interrupt will be executed once the External O interrupt has completed.

10.5 Interrupt Priorities

The MSC1210 offers three levels of interrupt priority: highest, high, and low.
By using interrupt priorities, higher priority may be assigned to certain interrupt
conditions. The “highest” priority is reserved for the Auxiliary interrupt that vec-
tors through address 0033—the Auxiliary interrupt is always of “highest”
priority and no other interrupt may be assigned that priority.

All other interrupts may be assigned either “high” or “low” priority. For example,
assume the Timer 1 interrupt has been enabled to be automatically called ev-
ery instance Timer 1 overflows. Additionally, the serial interrupt has been en-
abled to be called every time a character is received via the serial port. Howev-
er, in this case, receiving a character is much more important than the timer
interrupt. Therefore, if Timer 1 interrupt is already executing, the serial inter-
rupt should interrupt the Timer 1 interrupt. When the serial interrupt is com-
plete, control passes back to the Timer 1 interrupt and finally back to the main
program. This may be accomplished by assigning a high priority to the Serial
Interrupt and a low priority to the Timer 1 Interrupt.

Interrupt priorities are controlled by the IP (B8y) or EIP (F8) SFRs. The SFRs
have the following formats, as shown in Tables 10-5 and 10-6.

Table 10-5.IP (B84) SFR

Table 10-6.EIP (F8y)

10-6

Bit Name Bit Address Explanation of Function

7 BFy Undefined

6 BEH{ Undefined

5 - BDy Undefined

4 PS BCh Serial Interrupt Priority

3 PT1 BBy Timer 1 Interrupt Priority

2 PX1 BA{ External 1 Interrupt Priority

1 PTO B9y Timer O Interrupt Priority

0 PX0 B8y External O Interrupt Priority
SFR

Bit Name Bit Address Explanation of Function

7 FFy Undefined (set to 1)

6 FEH Undefined (set to 1)

5 - FDy Undefined (set to 1)

4 PWDI FCH Watchdog Interrupt Priority

3 PX5 FBy External Interrupt 5 Priority

2 PX4 FAH External Interrupt 4 Priority

1 PX3 F9y External Interrupt 3 Priority

0 PX2 F8y External Interrupt 2 Priority

Interrupt Triggering

When considering interrupt priorities, the following rules apply:

1)

2)

3)
4)

5)

Nothing can interrupt the highest-priority Auxiliary interrupt, not even
another Auxiliary interrupt.

Only an Auxiliary interrupt (highest priority) can interrupt a high-priority in-
terrupt.

A high-priority interrupt may interrupt a low-priority interrupt.
A low-priority interrupt may only occur if no other interrupt is already executing.

If two interrupts occur at the same time, the interrupt with higher priority
will execute first. If both interrupts are of the same priority, the interrupt that
is serviced first by polling sequence will be executed first.

10.6 Interrupt Triggering

When an interrupt is triggered, the following actions are taken automatically
by the microcontroller:

1)

2)

3)

4)

5)

The current Program Counter is saved on the stack, low byte first and high
byte second.

Interrupts of the same and lower priority are blocked.

In the case of Timer and External interrupts, the corresponding interrupt
flag is cleared.

Program execution transfers to the corresponding interrupt handler vector
address.

The Interrupt Handler routine, written by the developer, is executed.

Take special note of the third step. If the interrupt being handled is a Timer or
External interrupt, the microcontroller automatically clears the interrupt flag
before passing control to the interrupt handler routine. This means it is not nec-
essary that the bit be cleared in code.

10.7 Exiting Interrupts

An interrupt ends when your program executes the RETI (Return from Inter-
rupt) instruction. When the RETI instruction is executed the following actions
are taken by the microcontroller:

1)

2)

Two bytes are popped off the stack into the Program Counter to restore
normal program execution, high byte first and low byte second.

Interrupt status is restored to its pre-interrupt status. This means interrupts
of the same and higher level may once again be executed.

Interrupts 10-7

Types of Interrupts

10.8 Types of Interrupts

Each interrupt can be categorized as one these types: serial, external, timer,
watchdog, and auxiliary.

10.8.1 Serial Interrupts

There are two interrupt flags that provoke a Serial interrupt: Receive Interrupt (RI)
and Transmit Interrupt (TI). If either flag is set, a serial interrupt is triggered. As
discussed in the section on the serial port, the RI bit is set when a byte is received
by the serial port and the Tl bit is set when a byte has been sent.

This means that when the serial interrupt is executed, it may have been trig-
gered because the RI flag was set or because the Tl flag was set—or because
both flags were set. Thus, the user’s routine must check the status of these
flags to determine what action is appropriate. Additionally, because the
MSC1210 does not automatically clear the Rl and Tl flags, the user must clear
these bits in the interrupt handler.

A brief code example is in order:

INT SERIAL:
JNB RI,CHECK TI ;If RI flag is not set, we jump to check TI

MOV A, SBUF ;If we got here, the RI bit *was* set
CLR RI ;Clear the RI bit after we’ve processed it
CHECK TI:

JNB TI,EXIT INT ;If TI flag not set, we jump to exit point

CLR TI ;Clear TI bit before we send next character

MOV SBUF,#'A’ ;Send another character to the serial port
EXIT INT:

RETI ;Exit interrupt handler

As shown, the code checks the status of both interrupts flags. If both flags were
set, both sections of code will be executed. Also note that each section of code
clears its corresponding interrupt flag. If the interrupt bits are not cleared, the
serial interrupt will be executed over and over until the bit is cleared. For this
reason, it is very important that the interrupt flags in a serial interrupt always
be cleared.

10.8.2 External Interrupts

The MSC1210 microcontroller has six external interrupt sources. These in-
clude the standard two interrupts of the 8052 architecture and four new
sources. The standard 8052 interrupts are INTO and INT1. These are active
low, but can be configured to be edge- or level- triggered by modifying the val-
ue of ITO and IT1 (TCON, 88y). If ITx is assigned a logic O, the interrupt is level-
triggered. The interrupt condition remains in force as long as the pin is low. If
ITx is assigned a logic 1, the interrupt is pseudo edge-triggered.

The pin driver of an edge-triggered interrupt should hold both the high, then
the low condition for at least one machine cycle (each) to ensure detection be-
cause the external interrupts are sampled. This means maximum sampling
frequency on any interrupt pin is 1/8th of the main oscillator frequency.

10-8

Types of Interrupts

It is important to note that level-sensitive interrupts are not latched. If the inter-
rupt is level-sensitive, the condition must be present until the processor can
respond to it. This is most important if other interrupts are being used with a
higher or equal priority. If the device is currently processing another interrupt
of higher priority, the condition must be present until the current interrupt is
complete. This is because the level-sensitive interrupt will not be sampled until
the RETI instruction is executed. Upon returning, if the level-triggered inter-
rupting signal is not there, it will be as though the interrupt request was never
issued.

The remaining four external interrupts are similar in nature, with one differ-
ence: INT2 and INT4 are positive edge detect only, while INT3 and INT5 are
negative edge detect only. These interrupts do not have level-detect modes.
All associated bits and flags operate the same and have the same polarity as
the original two. A logic 1 on an interrupt flag indicates the presence of an inter-
rupt condition, not the logic state of the input pin.

The flags that trigger external interrupts 2 through 5 are found in the EXIF (91y)
SFR, as shown in Table 10-7. When the appropriate condition (falling-edge or
rising-edge) is detected, the corresponding flag is set and the interrupt will be
triggered, if enabled. Note that the bits in EXIF are set to 1 to indicate that the
condition is true—the bits do not represent the current level of the pin. That is,
IE5 will be set to 1 when a falling edge is detected on INT5 even though INT5
is at a logic 0 level at that point.

Table 10-7.EXIF (914) SFR

Bit Name Explanation of Function

7 IE5 External Interrupt 5 Flag — Falling Edge Detected on INT5
6 IE4 External Interrupt 4 Flag — Rising Edge Detected on INT4
5 IE3 External Interrupt 3 Flag — Falling Edge Detected on INT3
4 IE2 External Interrupt 2 Flag — Rising Edge Detected on INT2
3 Reserved (cleared to 1)

2 Undefined (cleared to 0)

1 Undefined (cleared to 0)

0 Undefined (cleared to 0)

There are three interrupts that can wake up the processor if it is in the low-pow-
er IDLE mode: the external interrupts (INTO and INT1), and the Watchdog
(when used as an interrupt). In order to be used to wake up the processor, they
must be enabled in the Wake Up Enable register WUEN (C6p).

10.8.3 Timer Interrupts

The MSC1210 microcontroller incorporates three 16-bit programmable tim-
ers, each of which can generate an interrupt. In addition, there are three other
sources for timer interrupts: the milliseconds timer, seconds timer, and watch-
dog timer. Each timer has an independent interrupt enable, flag, vector, and
priority.

Interrupts 10-9

Types of Interrupts

Timers 0, 1, and 2 will set their respective flags when their individual timer over-
flows. These flags will be set regardless of the interrupt enable status. If the
interrupt is enabled, this event will also cause the processor to vector into the
corresponding ISR routine, provided it has the highest priority. For Timers 0
and 1, the flags are cleared when the processor jumps to the interrupt vector.
Thus, these flags are not available for use by the interrupt service routine, but
are available outside of the ISR and in applications that do not acknowledge
the interrupt (i.e., jump to the vector). If the interrupt is not acknowledged, then
software must manually clear the flag bit. In Timer 2, jumping to the interrupt
vector does not clear the flag, therefore, software must always clear it manual-
ly. Timer O and 1 flag bits reside in the TCON register. The Timer 2 flag bit re-
sides in the T2CON register. The interrupt enables and priorities for Timers 0,
1, and 2 reside in the IE and IP registers, respectively.

10.8.4 Watchdog Interrupt

The Watchdog interrupt usually has a different connotation than the Timer in-
terrupts. Unless the Watchdog is being used as a very long timer, the comple-
tion of the watchdog count means the software has failed to reset the counter
and may be lost. Like other sources, the Watchdog Timer has a flag bit, an en-
able, and a priority. It also has its own vector. These are summarized in Table
10-1. For the Watchdog timer to perform the processor reset function, it must
be enabled in the Flash Configuration Register during serial or parallel pro-
gramming.

10.8.5 Auxiliary Interrupts

The Auxiliary interrupt allows the MSC1210 to offer additional interrupts without
requiring additional ISR vectors. A number of distinct interrupts, when enabled,
all provoke the Auxiliary interrupt. The interrupt service routine then examines the
flags to determine which auxiliary interrupt was the source of the interrupt.

The Auxiliary interrupt has the “highest” priority, which means all of the inter-
rupts that are handled by the auxiliary interrupt will always have precedence
over non-Auxiliary interrupts. Although the interrupt may be disabled if re-
quired, the priority level (highest) cannot be altered by the user.

Before returning from the ISR for an auxiliary interrupt, the interrupt source
must be cleared and then EICON.4 (Al) must be cleared. The Interrupt sources
are cleared, as shown in Table 10-8.

Table 10-8.Clearing Auxiliary Interrupts

10-10

Aux Interrupt Type Method to Clear Interrupt
Seconds Interrupt Read SECINT SFR

Summation Interrupt Read SUMRO SFR

ADC Conversion Interrupt Read ADRESL SFR

Millisecond Interrupt Read MSINT SFR

SPI Transmit Interrupt Write SPIDATA SFR

SPI Receive Interrupt Read SPIDATA SFR

Analog Low Voltage Interrupt Remove Low-Voltage Condition
Digital Low Voltage Interrupt Remove Low-Voltage Condition
Breakpoint Interrupt Set BP = 1, bit 7 of BPCON SFR

Types of Interrupts

To enable Auxiliary interrupts, the EICON.5 (EAI) bit must be set, which “En-
ables Auxiliary Interrupts.” When so configured, the MSC1210 will be config-
ured to respond to those Auxiliary interrupts that are enabled in the AIE (A6R)
SFR.

The Auxiliary Interrupt Enable (AIE) SFR controls which of the Auxiliary inter-
rupts are enabled and which are disabled (masked). If Auxiliary interrupts are
enabled, as described in the previous paragraph, and the specific auxiliary in-
terrupt is enabled in AIE, that condition will set the EICON.4 (Al) flag to indicate
an Auxiliary interrupt and vector through 00334. The ISR must clear the Al flag
before returning, or the auxiliary interrupt will be triggered again.

Table 10-9.AIE (A6y) SFR

Bit Name Explanation of Function

7 ESEC Enable Seconds Auxiliary Interrupt

6 ESUM Enable Summation Auxiliary Interrupt

5 EADC Enable ADC Conversion Auxiliary Interrupt

4 EMSEC Enable Millisecond Auxiliary Interrupt

3 ESPIT Enable SPI Transmit Auxiliary Interrupt

2 ESPIR Enable SPI Receive Auxiliary Interrupt

1 EALV Enable Analog Low-Voltage Auxiliary Interrupt

0 EDLVB Enable Digital Low-Voltage or Breakpoint Auxiliary Interrupt

Note that reading from the AIE SFR will return the current state of the corre-
sponding condition, regardless of whether or not an interrupt is enabled. For
example, if an ADC conversion has been completed and an interrupt would be
triggered if it were enabled, reading the EADC bit will return a 1, regardless of
whether or not the interrupt was actually enabled.

The AISTAT (A7y) is a read-only SFR that returns the current state of interrupt
conditions that are enabled. Any condition that is configured to provoke an in-
terrupt and is currently true will return a 1. Any condition that is not currently
true or was not configured to provoke an interrupt will return a 0.

Table 10-10. AISTAT (A7y) SFR

Bit | Name Explanation of Function Clear Interrupt

7 | SECIF Detect Seconds Auxiliary Interrupt Read SECINT

6 | ACCIF Detect Summation Auxiliary Interrupt Read SUMRO

5 | ADCIF Detect ADC Conversion Auxiliary Interrupt Read ADRESL

4 | MSECIF | Detect Millisecond Auxiliary Interrupt Read MSINT

3 | SPITIF Detect SPI Transmit Auxiliary Interrupt Write SPIDATA

2 | SPIRIF Detect SPI Receive Auxiliary Interrupt Read SPIDATA

1 |ALVIF Detect Analog Low-Voltage Auxiliary Interrupt Voltage Above Threshold
0 |DLVIF Detect Digital Low-Voltage or Breakpoint Auxiliary Interrupt Write BP =1

Note that AISTAT is read-only. A value may not be written to this SFR with the
expectation of triggering the specific auxiliary interrupt. An auxiliary interrupt
may be triggered by setting the EICON.4 (Al) flag, but which auxiliary interrupt
will be triggered in software cannot be specified.

Interrupts 10-11

Types of Interrupts

When an Auxiliary interrupt occurs, the MSC1210 will vector to the interrupt
service routine at 0033y. The code of the ISR may use the Pending Auxiliary
Interrupt (PAI, A5y) SFR to determine which of the auxiliary interrupts pro-
voked the actual interrupt.

Table 10-11. PAI (A5y) SFR

Bit Name Explanation of Function

7 Undefined

6 Undefined

5 Undefined

4 Undefined

3 PAI3 Bit 3 of Auxiliary Interrupt Index
2 PAI2 Bit 2 of Auxiliary Interrupt Index
1 PAIL1 Bit 1 of Auxiliary Interrupt Index
0 PAIO Bit 0 of Auxiliary Interrupt Index

The four bits, PAIO through PAI3, make up a 4-bit value that indicates the Auxil-
iary interrupt that triggered the actual interrupt. Due to the value returned by
PAI being from 0 through 8, it can be used as an index or offset to determine
what interrupt routine to execute. There is no priority to the Auxiliary interrupts,
but there is a priority to how they are displayed in the PAI register.

Table 10-12. PPI Bits of PAI SFR

PAIX BITS Explanation of Interrupt/Event
1

No Pending Peripheral IRQ

Digital Low-Voltage/Breakpoint IRQ or Lower Priority IRQ Pending
Analog Low-Voltage IRQ or Lower Priority IRQ Pending

SPI Receive IRQ or Lower Priority IRQ Pending

SPI Transmit IRQ or Lower Priority IRQ Pending

One Millisecond System Timer IRQ or Lower Priority IRQ Pending
ADC Conversion IRQ or Lower Priority IRQ Pending

Accumulator IRQ or Lower Priority IRQ Pending

PR|lO|lO|lO|O|O|O|O|O|W
O|lkRr|(RP|RP|PR|IO|O|OC|O|N
O|lRr|PR|O|O|FR|RP|O|O

O|Rr|O|(rR|O|R|O|R,|O|O

One Second System Timer IRQ Pending

10.8.5.1 Low-Voltage Detect Interrupts

10-12

There are two low-voltage detect interrupts: one for AVpp and one for DVpp. In
addition to these, a voltage level can be selected during programming that will
cause a reset. The voltage level used for the interrupts is selected by the Low
Voltage Detect Control register LVDCON (E7y). If Vpp drops below the level se-
lected, an interrupt will result (if enabled).

The Breakpoint and these two interrupts have priority for encoding in the PAI
SFR for the Al interrupt. The detection level can be adjusted from 2.7V to 4.7V
or an external analog signal. Note that the EAI bit enables the Al Interrupt. This
bit is not subject to the global interrupt enable (EA). The Low-Voltage Detect
interrupts are a level-sensitive interrupt and will remain set as long as Vpp
remains below the select voltage.

Waking Up from Idle Mode

10.8.5.2 SPI Receive/Transmit Interrupts

The SPI Receive or Transmit interrupt will be triggered when the number of
bytes indicated by SPIRCON have been received, or the number of bytes indi-
cated by SPITCON have been transmitted.

10.8.5.3 Milliseconds/Seconds Interrupts

The MSC1210 includes two additional timer interrupts that may trigger an in-
terrupt at regular intervals.

The milliseconds interrupt will be triggered every time the number of millisec-
onds stored in the MSINT (FAQ) SFR. For example, if MSINT is set to 20, a
millisecond interrupt will be provoked every 20ms. This assumes and requires
that MSECH (FDy) and MSECL (FCy) are set to values that represent a milli-
second. If MSECH and MSECL are set to other values, the frequency at which
the millisecond interrupt occurs will vary proportionally.

The seconds interrupt functions in a manner similar to the millisecond inter-
rupt, but can be used to provoke an interrupt at reduced frequencies, on the
order of seconds. For the seconds interrupt to be provoked once per second,
MSECH and MSECL must be set to values that represent a millisecond, and
HMSEC (FEH) must be set to a value that represents 1/100th of a second. If
any of these three SFRs are assigned different values, the frequency of the
seconds interrupt will vary proportionally.

10.8.5.4 ADC Conversion Interrupt

The ADC conversion interrupt is triggered whenever an analog to digital con-
version produces a new result in the ADRESH/M/L SFRs. When an ADC con-
version interrupt is triggered or signaled, the user program may read the new
result from these SFRs. The interrupt is cleared by reading the LSB of the sam-
ple data (ADRESL).

10.8.5.5 Summation Register Interrupt

When the summation mode is set to modes 1 (sum values from the ADC) or
3 (sum for SCNT times, then shift SHFT times), an interrupt will occur at the
end of the process. Note that an interrupt will not occur in modes 0 and 2. The
interrupt is cleared by reading the LSB of the summation registers (SUMRO).

10.9 Waking Up from Idle Mode

When the MSC1210 is placed in idle mode, three events and the auxiliary inter-
rupts may optionally “wake up” the microcontroller. The three events are: a
watchdog interrupt, external interrupt 1, or external interrupt 0. Which inter-
rupt(s) wake up the MSC1210 is determined by the Enable Wake Up (EWU,
E8,) SFR.

Interrupts 10-13

Register Protection

Table 10-13. EWU (C6y) SFR

@
z
o
3
)

Explanation of Function
- Undefined

- Undefined
- Undefined
- Undefined

Undefined

EWUWDT Wake Up on Watchdog Timer
EWUEX1 Wake Up on External Interrupt 1
EWUEXO0 Wake Up on External Interrupt O

O|lFRr(INW| OO |
'

Setting each of the bits in this SFR will allow the MSC1210 to wake up from
idle mode when the corresponding interrupt occurs. If the corresponding bit is
clear, the specified interrupt will not cause the MSC1210 to wake up from idle
mode.

10.10 Register Protection

10-14

One very important rule applies to all interrupt handlers: interrupts must leave
the processor in the same state as it was in when the interrupt initiated. Re-
member, the idea behind interrupts is that the main program is not aware that
they are executing in the “background.” However, consider the following code:

CLR C ;Clear carry
MOV A, #25h ;Load the accumulator with 25h
ADDC A,#10h ;Add 10h, with carry

After the above three instructions are executed, the Accumulator will contain
a value of 35y.

However, what would happen if an interrupt occurred right after the MOV in-
struction? During this interrupt, the carry bit was set and the value of the Accu-
mulator was changed to 40y. When the interrupt finished and control was
passed back to the main program, the ADDC would add 104 to 404, and also
add an additional 01 because the carry bit is set. The Accumulator will contain
the value 514 at the end of execution.

In this case, the main program has seemingly calculated the wrong answer. How
can 25 + 10y yield 51 as a result? It does not make sense. A developer that
was unfamiliar with interrupts would be convinced that the microcontroller was
damaged in some way, provoking problems with mathematical calculations.

What has happened, in reality, is the interrupt did not protect the registers it
used. Restated: an interrupt must leave the processor in the same state as it
was in when the interrupt initiated.

This means if an interrupt uses the Accumulator, it must insure that the value
of the Accumulator is the same at the end of the interrupt as it was at the begin-
ning. This is generally accomplished with a PUSH and POP sequence at the
beginning and end of each interrupt handler. For example:

Register Protection

INTERRUPT HANDLER:

PUSH ACC ;Push the initial value of accumulator onto stack
PUSH PSW ;Push the initial value of PSW SFR onto stack

MOV A, #0FFh ;Use accumulator & PSW for whatever you want

ADD A,#02h ;Use accumulator & PSW for whatever you want

POP PSW ;Restore the initial value of the PSW from the stack
POP ACC ;Restore initial value of the accumulator from stack

The guts of the interrupt are the MOV instruction and the ADD instruction.
However, these two instructions modify the Accumulator (the MOV instruction)
and also modify the value of the carry bit (the ADD instruction will cause the
carry bit to be set). The routine pushes the original values onto the stack using
the PUSH instruction because an interrupt routine must ensure that the regis-
ters remain unchanged by the routine. It is then free to use the registers it pro-
tected to its heart’s content. Once the interrupt has finished its task, it POPs
the original values back into the registers. When the interrupt exits, the main
program will never know the difference because the registers are exactly the
same as they were before the interrupt executed.

In general, the interrupt routine must protect the following registers:

1) Program Status Word SFR (PSW)

2) Data Pointer SFRs (DPH/DPL)

3) Accumulator (ACC)

4) “B” Register (B)

5) “R” Registers (RO-R7)

Remember that the PSW consists of many individual bits that are set by vari-
ous instructions. Unless absolutely sure and have a complete understanding
of what instructions set what bits, it is generally a good idea to always protect

the PSW by pushing and popping it off the stack at the beginning and end of
the interrupts.

Note also that most assemblers will not allow the execution of the instruction:

PUSH RO ;BError - Invalid instruction!

This is due to the fact that, depending on which register bank is selected, RO
may refer to either internal RAM address 004, 08y, 104, or 184. RO, in and of
itself, is not a valid memory address that the PUSH and POP instructions can
use.

Thus, if using any “R” register in the interrupt routine, push that register’s abso-
lute address onto the stack instead of just saying PUSH RO. For example,
instead of PUSH RO, execute:

PUSH Reg0 ;Requires use of definition file MSC1210.INC file

If the MSC1210.INC definition file has not been included in the project, the reg-
ister must be protected with:

PUSH 00h ;Pushes RO onto the stack, if using register bank 0

Interrupts 10-15

Common Problems with Interrupts

Of course, this only works if the default register bank (bank 0) has been se-
lected. If using an alternate register set, PUSH the address that corresponds
to the register in the bank being used.

10.11 Common Problems with Interrupts

10-16

Interrupts are a very powerful tool available to the developer but, when used
incorrectly, can be a source of a huge number of debugging hours. Errors in
interrupt routines are often very difficult to diagnose and correct.

If using interrupts and the program is crashing or does not seem to be
performing as expected, always review the following interrupt-related issues:

Register Protection: make sure all registers are protected, as explained
above. Forgetting to protect a register that the main program is using can
produce very strange results. In the example above, failure to protect registers
caused the main program to apparently calculate that 254 + 10y = 51p. If
registers start changing values unexpectedly or operations produce
“incorrect” values, it is very likely that the registers have not been protected.
Always protect the registers!

Forgetting to restore protected values: another common error is to push
registers onto the stack to protect them, and then forget to pop them off the
stack before exiting the interrupt. For example, push ACC, B, and PSW onto
the stack in order to protect them and subsequently pop only ACC and PSW
off the stack before exiting. In this case, forgetting to restore the value of “B”
leaves an extra value on the stack. When executing the RETI instruction, the
8051 will use that value as the return address instead of the correct value. In
this case, the program will almost certainly crash. Always make sure to pop
the same number of values off the stack as were pushed onto it.

Using RET instead of RETI: remember that interrupts are always terminated
with the RETI instruction. It is easy to inadvertently use the RET instruction
instead. However, the RET instruction will not end the interrupt. Usually, using
a RET instead of a RETI will cause the illusion of the main program running
normally, but the interrupt will only be executed once. If it appears that the inter-
rupt mysteriously stops executing, verify that the routine is exiting with RETI.

Make interrupt routines small: interrupt routines should be designed to do
as little as possible, as quickly as possible, and leave longer processing to the
main program. For example, a “receive” Serial interrupt should read a byte
from SBUF and copy it to a temporary buffer defined by the user and exit as
quickly as possible. The main program should then handle the process of inter-
preting the data that was stored in the temporary buffer. By minimizing the
amount of time spent in an interrupt, the MSC1210 spends more time in the
“main program”, which means additional interrupts can be handled faster
when they occur.

Chapter 11

Pulse Width Modulator/Tone Generator

Chapter 11 describes the MSC1210 Pulse Width Modulator/Tone Generator.

Topic Page
11.1 DeSCriptiont e e e 11-2
11.2 Tone GeNEerator . ..ottt e e e et e 11-3
11.3 PWM GENEIratOr . . .oi ittt e et et e 11-5

111

Description

11.1 Description

The Pulse Width Modulator (PWM) has two modes: one mode functions as a
tone generator and the the other mode functions as a Pulse Width Modulator.

PWMSEL
l
PWM HI : 1
PWMLOW _ - O/(é
CPU SFR 00
Read Write
PWM Period PWM Duty
16 16
) 1 |o
ck 1 - - -~ TPCNT2
0 ‘ 16-Bit Down Counter
USECCLK —© ,
|
! 16
SPDSEL 16
Comparator

i

FSM [— P33

3

TPCNTL —<—+|
f

PPOL —~>|

Figure 11-1. Block Diagram

The PWM/Tone Generator is controlled and configured by a number of SFRs,
the primary being the PWM Configuration (PWMCON, Aly) SFR.

The individual bits of PWMCON have the following functions:

7 6 5 4 3 2 1 0 Reset Value
SFR Aly — — PPOL | PWMSEL | SPDSEL | TPCNTL.2 | TPCNTL.1 | TPCNTL.O 00y

PPOL (bit 5)—Period Polarity. Specifies the level of the PWM pulse.

0: ON period. PWM duty register programs the ON period.

1: OFF period. PWM duty register programs the OFF period.

PWMSEL (bit 4)—PWM Register Select. Select which 16-bit register is ac-
cessed by PWMLOW/PWMHIGH.

0: Period.

1: Duty.

SPDSEL (bit 3)—Speed Select.

0: 1MHz (ONEUSEC Clock).

1: SYSCLK.
TPCNTL (bits 2-0)—Tone Generator/Pulse Width Modulator Control.
TPCNTL.2 TPCNTL.1 TPCNTL.O Mode
0 0 0 Disable (default)
0 0 1 PWM
0 1 1 Tone—Square
1 1 1 Tone—Staircase

11-2

Description

The three bits that together make up TPCNTL, control the function of the PWM/
Tone generator. The function of the generator is determined according to the
table above.

TPCNTL.O enables or disables the PWM/tone generator. If set to ‘1’, the block
will act as either a PWM or tone generator depending on the setting of
TPCNTL.1. When TPCNTL.O is ‘0’, the function block is completely disabled.
This state of the block is the default state.

When TPCNTL.1 is ‘0’, the block acts as a pulse width modulator in which a
modulated pulse is generated whose duty cycle is determined by the PWM
Duty and PWM Period registers. The range of frequencies that can be
generated is 4kHz to 500kHz with a 1MHz clock, or up to 16MHz with sysclock.

When TPCNTL.1 is ‘1, the block acts as a tone generator which may generate
either a staircase or square waveform, depending on further configuration. In
either case, the frequency range is 60Hz to 16MHz.

11.2 Tone Generator

Figure 11-2.

When TPCNTL [1:0] = ‘11", the block functions as a tone generator in which it gen-
erates either a square or staircase waveform that has two or three levels, respec-
tively, of OV, high impedance, and Vpp volts. The widths of each step in the stair-
case waveform are chosen such that the error between the staircase waveform
and a sinusoidal waveform of the same frequency is minimized; in staircase
mode, the output is high impedance for the last 1/4 of each half period.

1
2 - PWMPeriod[15: 0] * Tgase

ToneFrequency =

WhereTBASE = TCLK when SPDSEL = 1,
TBASE = TUSEC when SPDSEL = 0.

TONE/PWM Pin O

Operational
— Amplifier Speaker

The TONE/PWM output pin is fed to a circuit depending upon the application.
In the Figure 11-2, the circuit of a tone generator is shown. When the output
is high-impedance, the voltage value that is buffered and fed to the speaker
is VDD/2-

Pulse Width Modulator/Tone Generator 11-3

Description

11.2.1 Tone Generator Waveforms

When TPCNTL[1:0] = *11’, the output of the tone generator may be either a
staircase waveform or a square waveform depending on the configuration of
TPCNTL.2.

When TPCNTL.2 is ‘1’, a staircase waveform is generated that will have three
levels: DGND, tristate, Vpp Volts.

When the TPCNTL.2 is ‘0", a square waveform of 50% duty cycle is generated
that will have two levels: DGND and Vpp volts.

11.2.1.1 Staircase Mode

When TPCNTL.2 is ‘1’ (i.e., TPCNTL[2:0] = ‘111"), a staircase waveform is gen-
erated, as shown in Figure 11-3.

Tone Period =2 ¢ 18F

| PWMPeriod [15:0] = 18F,

i L | | : | | | ! !
Tone Pin —l_\—l—,—‘_\—l—,—‘—\
High Hiz ~ Low ‘ ‘ ‘ ‘ ‘ ‘

Figure 11-3. Timing Diagram of Tone Generator in Staircase Mode

In the Figure 11-3, the value of PWM Period = 18F, which is equal to 399.
Therefore, the total time period is equal to 800 TgasEg.

11.2.1.2 Square Mode

When TPCNTL.2 is ‘0’ (i.e., TPCNTL[2:0] = ‘011’), a square waveform is gen-
erated. An example with PWM Period = 2 is shown in Figure 11-4.

S e I e

PWMPeriod [15:0] } 3 3

-

Wt N N o N R N O N o N MO s N

Tone Period

Figure 11-4. Timing Diagram of Tone Generator in Square Wave Mode

We get a 50 % duty cycle square wave with a period of (2 « PWM Period).

11-4

Description

11.3 PWM Generator

Table 11-1.

The PWM Generator is activated when TPCNTL[1:0] =‘01’. This setting allows
a PWM waveform to be generated automatically by the MSC1210 with charac-
teristics defined by the user program. The PWM is configured based on the
PWMCON SFR, the PWM Period and PWM Duty settings, and the USEC SFR
setting. The USEC SFR or SYS Clock (defined by Speed Select) generates
a “tick” that defines the unit period that is used by PWM Period and PWM Duty
in defining the waveform.

As its name indicates, the PWM Period register gives us the period of the PWM
wave, whereas, the PWM Duty register defines the length of time which sets
the duty cycle. We can program either the ON duty or the OFF duty depending
on the bit PPOL (PWMCOM.5). If PPOL is set, then OFF duty period is pro-
grammed, and if it cleared, then ON duty period is programmed. The duty cycle
is periodic with respect to the period of PWM, irrespective of the duty register.
The duty cycle of the PWM wave for different configurations is shown in the
following equations and in Table 11-1.

WhenPPOL (PWMCON.5) =0,
PWM Frequency = 1/Tgasge * (PWM Period[15:0] + 1),
PWM ON Period = Tgasg * PWM Duty[15:0],
Duty Cycle = PWM Duty/(PWM Period[15:0] +1),
WhereTBASE = TCLK when SPDSEL =1,
TBASE = TUSEC when SPDSEL = 0.

WhenPPOL (PWMCON.5) = 1,
PWM Duty is controlling the OFF period, therefore,
Duty Cycle = PWM Period +1 - PWM Duty/PWM Period +1.

PPOL Condition Duty Cycle
0 Period = X, Duty =0 0% (always outputs low)
0 0 < Duty < Period Intermediate Value
0 Duty > Period 100% (always outputs high)
1 Period = X, Duty =0 100% (logic ‘1’)
1 0 < Duty < Period Intermediate Value
1 Duty > Period 0% (logic ‘0")

In the timing diagram of a PWM waveform in Figure 11-5, the waveform is low for
2 ticks and high for 4 ticks. Thus, the value of PWM Period = 5 (6 ticks minus 1)
and PWM Duty = 1 (2 ticks minus 1). Assuming the PPOL (PWMCON.5) hit is set,
the actual length of a tick is defined by the value of USEC, or equal to the period
of CLK.

IR N o N o N Y N N N o M o N N

PWM Pin | |

' PWM OFF Period ' PWM ON Period

Figure 11-5. Timing Diagram of a PWM Waveform

Pulse Width Modulator/Tone Generator 11-5

Description

Configuring the PWM generator requires that the PWM Period and PWM Duty
registers be set. Both of these registers are set using the PWMLOW and
PWMHI SFRs; whether the program writes to PWM Period or PWM Duty is
configured by first clearing or setting PWMCON.4. When PWMSEL is clear
any subsequent write to PWMLOWY/HI will write to the PWM Duty register.
When PWMCON 4 is set, any subsequent write to PWMLOW/HI will write to
the PWM Period register. PWMLOW and PWMHI can be treated as one 16-bit
register because they are adjacent SFRs.

Thus, the general process for configuring the PWM generator is as follows:
1) Configure PWMCON such that PWM mode is selected, PWMCON][2:0] = 001.
2) Set PWMCON.4 to select the PWM Duty register.

3) Write the PWM Duty - 1 value to PWMLOW and PWMHI. In the above ex-
ample, PWMLOW/HI would be written with the value 1, because the “off”
period is 2 ticks long, and the value written to PWM Period should be the
period, less 1.

4) Clear PWMCON 4 to indicate that the program will now write to PWM Peri-
od.

5) PWMCON.5 should be set to either 0 or 1. If clear, the PWM Duty value
(set in step 3) is the time the signal will be high. If it is set, the PWM Duty
value is the time the signal will be low. PWM Duty must be less than PWM
Period or the output will stay in the state defined by PWMCON.5

6) Write the PWM Period - 1 value to PWMLOW and PWMHI. The value will
be the total number of USEC ticks of the period of the PWM. In the above
example, PWMLOW/HI would be written with the value 5, because the to-
tal period is 6 ticks long, and the value written to PWM Period should be
the period — 1.

This can be expressed in code as:

PWMCON = 0x10; // Sel PWM Duty Register

PWM = 128-1; // PWM toggle at a count of 128

PWMCON = 0x09; // Sel PWM period access, SysClk rate, PWM mode
PWM = 512-1; // 11.0592MHz/512=21.6KHz PWM Freq, Period=512 counts

Note that the port pin used for PWM (P3.3) must be configured as either stan-
dard 8051 or CMOS output for the Tone Generator/PWM to function.

The duty cycle of the Pulse Width Modulated waveform is given by the equa-
tions:

PWMDuty

DutyCycle = 5\WhPeriod

and

Period of PWM wave = PWM Period ¢ clock

Where clock is either 1uSec or Sysclock.

11-6

11.3.1 Example of PWM Tone Generation

Description

The following program illustrates configuring the PWM for tone generation.

Stmt [‘C’ Source Code Assembly Source Code

1 // PWM PUBLIC main
RSEG ???main?PWM

2 #include <regl210.h>

3 #define OneUsConst (2-1)

4 sbit p33=p3”3;

5 void main (void) Main:

6 {

7 PDCON &= OxED; // turn on tone gen & sys timer ANL PDCON, #0Edh

8 USEC = OneUsConst; MOV USEC, #01h

9 P33 = 1; // turn on P3.3 SETB p33

10 PWMCON = 0; // select PWMPeriod MOV PWMCON, #00h

11 PWM = 5; // Set PWMPeriod MOV PWMHI, #00h
MOV PWMLOW, #05h

12 PWMCON = 0x10; // select PWMDuty MOV PWMCON, #10h

13 PWM = 4; // Set PWMDuty MOV PWMHI, #00h
MOV PWMLOW, #04h

14 PWMCON = 0x09; // Enable PWM MOV PWMCON, #09h

15 While(1) {} SIMP $

16 }

Statement Explanations:
Statement # |[Explanation
7 ANDing PDCON with EDy effectively turns off bits 1 (PDST) and 4 (PDPWM).

Clearing the PDST (Power Down System Timer) bit turns the system timer on, while
clearing the PDPWM (Power Down PWM module) bit turns the PWM module on.

8 Sets the USEC SFR to define 1us, which will be used for determining the PWM
timing.

9 P3.3 must be set to ‘1’ prior to using PWM or Tone Generator. If P3.3 is clear, the
PWM or Tone Generator will not produce any output.

10 Clearing bit 4 by setting PWMCON to 0 selects the PWM Period register, which
will be written to in the next statement.

11 Having selected PWM Period in statement 10, this statement sets the PWM Peri-
od to 5.

12 Setting bit 4 by setting PWMCON to 10y select the PWM Duty register will be
written to in the next statement.

13 Having selected PWM Duty in statement 12, this statement sets the PWM Duty to 4.

14 This statements enables the PWM.

Pulse Width Modulator/Tone Generator

11-7

Description

11.3.2 Example of PWM Tone Generation Idling

When PWM is idling, system requirements for the PWM output varies (idle at
low or high voltage). The output of P3.3 (Tone/PWM) is internal pull-high upon
power-on reset—idle high. If idle low is needed, many methods can be used
to initialize P3.3 to low. Note that if idle low on Tone/PWM is achieved by writing
0 to P3.3 (which will suppress PWM output), subsequently, writing a 1 to P3.3
will enable PWM output at any position of the PWM cycle.

The following program, very similar to the one provided in the previous section,
initially sets PWM Duty to zero, which idles the PWM. It is then reset to 4 at
which point the function of the program continues as the program above.

Stmt ['C’ Source Code Assembly Source Code
1 // PWM PUBLIC main
RSEG ???main?PWM
2 #include <regl210.h>
3 #define OneUsConst (2-1)
4 sbit p33=p3°3;
5 void main (void) Main:
6 {
7 PDCON &= OxED; // turn on tone gen & sys timer ANL PDCON, #0Edh
8 USEC = OneUsConst; MOV USEC, #01h
9 P33 = 1; // turn on P3.3 SETB p33
10 PWMCON = 0; // select PWMPeriod MOV PWMCON, #00h
11 PWM = 5; // Set PWMPeriod MOV PWMHI, #00h
MOV PWMLOW, #05h
12 PWMCON = 0x10; // select PWMDuty MOV PWMCON, #10h
13 PWM = 0; // Set PWMDuty MOV PWMHI, #00h
MOV PWMLOW, #04h
14 PWMCON = 0x09; // Enable PWM MOV PWMCON, #09h
15 for(i=0; 1 < 10; i++); MOV R7,#00h
Loop:
INC R7
CJINE R7, #0Ah, Loop
16 PWMCON = 0x10; // select PWMDuty MOV PWMCON, #10h
17 PWM = 4; // Set PWMDuty MOV PWMHI, #00h
MOV PWMLOW, #04h
18 PWMCON = 0x09; // Enable PWM MOV PWMCON, #09h
19 while (1) {} SJIMP 3
20 }

Statement Explanations:

Statement # | Explanation
1-12 Same as previous program in section 11.3.1.
13 Sets PWM Duty to 0, thereby configuring the PWM tone generator for idle mode.
14 Enables PWM. The PWM is enabled, but is in idle mode due to the fact that
PWM Duty is 0.
15 This loops for an arbitrary number of instructions.
16-20 Same as statements 12 to 16 in previous program in section 11.3.2.

11-8

Description

11.3.3 Example of Updating PWM

Figure 11-6.

Both PWM Period and PWM Duty, set via the PWMHI and PWMLOW SFRs,
are double-buffered. Their values are loaded to the 16-bit down counter and
16-bit PWMTemp register, respectively, when the counter expires.

PWM Period and PWM Duty may be renewed anytime during a PWM cycle.
The newly updated values are effective on the next PWM cycle. Double-buff-
ered operation is depicted in Figure 11-6.

WAITING FOR FIGURE
WAITING FOR FIGURE

WAITING FOR FIGURE
WAITING FOR FIGURE
WAITING FOR FIGURE
WAITING FOR FIGURE

PWM Period is accessed via the two 8-bit SFRs, PWMHI and PWMLOW. It
is possible that while the user program is updating one of these two SFRs at
the transition of two PWM cycles, PWM Period and PWM Duty are loaded to
the counter PWMTemp. As a result, only a partial PWM Period or PWM Duty
is updated. For those applications that need to avoid incomplete updates, the
microcontroller could busy poll the P3.3 line to detect the transition of two PWM
cycles and update the PWM SFRs after the transition is finished. However,
busy polling will use up a high percentage of CPU time.

The INT1 ISR can be used to detect the PWM cycle transition and update the
PWM SFRs at the appropriate time because P3.3 is fed back to the CPU as
INT1. This is illustrated in the following program example:

Pulse Width Modulator/Tone Generator 11-9

Description

// PWM

#include <REG1210.H>
#define OneUsConst (2-1)
#define CLEARO

#define SET 1

sbit p33=P373;

sbit pl4=P1"4;

unsigned char p,d;

void pwm isr(void) interrupt 2 //External Interrupt 1

{ pla=1p14; // debug
PWMCON &= Oxef; // select PWMPeriod
PWM=p; // Set PWMPeriod
PWMCON |:OX10; // select PWMDuty
PWM=d;
IE1=CLEAR; // Clear pending interrupt
EX1=CLEAR;

}

void setpwm(period, duty)

{ pla=1p14; // debug
p=period; d=duty;
IE1=CLEAR; // Clear any pending interrupt
EX1=SET; // Enable *INT1 pin interrupt

}

void main (void)

{ char i;
// Setup External INT1
IT1=SET; // Config *INT1 pin for falling edge trigger
EA=SET; // Global Int Enable
PDCON &= 0x0Oed; //turn on tone gen & sys timer
USEC = OneUsConst;

p33=1; // turn on P3.3
PWMCON=0; // select PWMPeriod
PWM=500; // Set PWMPeriod
PWMCON=0x10; // select PWMDuty
PWM=200;

PWMCON=0x19; // Enable PWM

for (i=0;i<5;i++) {;}

setpwm (200,100) ; // set period/duty after current PWM cycle
while (1) {}

11-10

Chapter 12

Analog-to-Digital Converter

Chapter 12 describes the MSC1210’s Analog-to-Digital Conversion.

Topic Page
12.1 DeSCriPliON ..ttt e 12-2
12.2 Input Multiplexer 12-3
12.3 Temperature SENSOrttt e 12-4
12.4 Burnout Current SOUrCesSiiiiiiiiiiiaannnn. 12-7
12,5 Input Buffer 12-8
12.6 Analog INput 12-8
12.7 Programmable Gain Amplifier (PGA) ot 12-8
12.8 PGA DAC . .ttt 12-9
12.9 MOdUIALOr ... 12-9
12.10 Calibrationoooii 12-10
12.11 Digital Filter 12-11
12.12 Voltage References 12-14
12.13 Summation/Shifter Register 12-14
12.14 Interrupt-Driven Analog-to-Digital (A/D) Sampling 12-18
12.15 Synchronizing Multiple MSC1210 Devices 12-19
12.16 Ratiometric Measurementsc.c.coiiiiiininiaian. 12-20

12-1

Description

12.1 Description

The MSC1210 includes an Analog to Digital Converter (ADC) with 24-bit reso-
lution. The ADC consists of an input multiplexer (MUX), an optional buffer, a
Programmable Gain Amplifier (PGA), and a digital filter. The architecture is de-
scribed diagram in Figure 12-1.

Figure 12-1. MSC1210 Architecture

AVpp AGND Veerout Vrcar VREF+ VREF-
[
1.25V or
+AVoo 2.5V
Reference
i 2uA
AINO
AIN1
AIN2
IN+ || .

A ond-Order Programmable Registers
AIN4 - || A L contal

MUX IN— Modulator D|g|ta| Controller
AINS Filter
AIN6
AIN7

AINCOM
2uA
AGND
Lo
DVpy DGND

12-2

Description

12.2 Input Multiplexer

The MSC1210’s multiplexer is more flexible than a typical ADC in that each
input pin can be configured as either a positive or negative input for a given
measurement. While other ADC parts often define input “pairs,” the MSC1210
defines one pin as the negative input and the other as the positive input, thus
providing complete design freedom in this respect. Any given input pin may
serve as the negative input in one measurement and serve as the positive in-
put in the next. Further, any combination of pins can be used—there are no
predefined input “pairs” that restrict.

The input multiplexer provides for any combination of differential inputs to be
selected on any of the input channels, as shown in Figure 1. For example, if
channel 1 is selected as the positive differential input channel, any other chan-
nel can be selected as the negative differential input channel. With this meth-
od, it is possible to have up to eight fully differential input channels.

Figure 12-2. Input Multiplexer Configuration

—/o
ANO O
—/o
Ap1 O Aoy AV
L—" o0—q 19
_
© Burnout Current Source On
Ap2 O
L—" o0—1
—/o
ApN3 O
L]
¢ +
In+
—/o
Apnd O
JO_‘
In—
—/o
ApnS O
Jo_.
Jo @ Burnout Current Source On
AnB O
AGND
—/o
I
AN7 O ; ! 101
L o4 -
|
I
—/o !
Aincom O !
L—0—e——~
I

The positive input channel and the negative input channel are selected in the
ADC Multiplexer register (ADMUX, SFR D7h). The high four bits of ADMUX
(bits 4 through 7) select the positive channel, while the low four bits (bits O
through 3) select the negative channel. The ADMUX SFR has the following
definition:

Analog-to-Digital Converter 12-3

Description

6 5 4 3 2 1 0 Reset Value

SFR D7y

INP3

INP2 INP1 INPO INN3 INN2 INN1 INNO 01y

INP3-0 (bits 7-4)—Input Multiplexer Positive Channel. This bit selects the
positive signal input.

INP3 | INP2 | INP1 | INPO | Positive Input
0 0 0 0 AINO (default)
0 0 0 1 AIN1
0 0 1 0 AIN2
0 0 1 1 AIN3
0 1 0 0 AIN4
0 1 0 1 AIN5
0 1 1 0 AIN6
0 1 1 1 AIN7
1 0 0 0 AINCOM
1 1 1 1 Temperature Sensor (requires ADMUX = FFp)

INN3-0 (bits 3-0)—Input Multiplexer Negative Channel. This bit selects the
negative signal input.

INN3 | INN2 | INN1 | INNO | Negative Input
0 0 0 0 AINO
0 0 0 1 AIN1 (default)
0 0 1 0 AIN2
0 0 1 1 AIN3
0 1 0 0 AIN4
0 1 0 1 AIN5
0 1 1 0 AIN6
0 1 1 1 AIN7
1 0 0 0 AINCOM
1 1 1 1 Temperature Sensor (requires ADMUX = FFp)

Thus, to select AIN1 as the positive channel and AING6 as the negative channel,
the following assignment would be made to the ADMUX register:

ADMUX = 0x16h; // 0001=AIN1, 0110=AIN6

By default, ADMUX defaults to 014 at power-up, so AINO is the default positive
input and AIN1 is the default negative input.

12.3 Temperature Sensor

12-4

As shown in the chart above describing the ADMUX SFR, when all bits are set
to 1 (i.e. ADMUX = FFh), all the MUX inputs (AINO-7, AINCOM) are discon-
nected from the ADC, and the ADC inputs are connected to measure two diode
junctions with different currents. This differential voltage will change linearly
with temperature, thus providing an integrated linear temperature sensor.

When using the temperature sensor, the voltage returned by the ADC is used
to determine the temperature in the following formula:

Float temp = o * volts - 282.14;

This converts the voltage into a temperature in degrees centigrade. The above
temperature can, of course, be converted to Fahrenheit or Kelvin using stan-
dard conversion formulas. One value of o which gives good results is 2664.7.

Description

The following program is a simple example that returns the current tempera-
ture as detected by the MSC1210:

#include
#include
#include
#include

<REG1210.H>
<stdio.h>
<stdlib.h>
<math.h>

#define LSB 298.0232e-9 /* LSB=5.0/2"24 */
#define ALPHA 2664.7 /* derived for some devices */

extern void autobaud(void) ;

extern long bipolar (void) ;

void main (void)

{
float volts, temp, resistance, ratio, lr, ave;
int i, k, decimation = 1728, samples;
CKCON = 0; // 0 MOVX cycle stretch
autobaud () ;
printf (”2MSC1210 ADC Temperature Test\n”) ;
//Timer Setup
USEC= 10; // 11MHz Clock
ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz
// modclock = 1,105,920/64 = 17,280 Hz
// Setup ADC
PDCON &= 0x0f7; //turn on adc
ADMUX = O0x0FF;//Select Temperature Diodes
ADCONO = 0x30;//Vref On, Vref Hi, Buff off, BOD off, PGA=1
ADCON2 = decimation & OxFF; // LSB of decimation
ADCON3 = (decimation>>8) & 0x07; // MSB of decimation
ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain
printf (”Calibrating. . .\n”);
for (k=0; k<4; k++)
{
// Wait for Four conversions for filter to settle
// after calibration
while (! (AIE & 0x20)); // Wait for data ready
lr = bipolar(); // Dummy read to clear ADCIRQ
1
samples = 10; // The number of voltage samples we will average
while (1)
{
ave = 0;
for (i = 0; 1 < samples; 1i++)
{
while (! (AIE & 0x20)); // Wait for new next result
ave += bipolar() * LSB; // This read clears ADCIRQ
}
volts = ave/samples;
temp = ALPHA * volts - 282.14;
printf (”V=%f, resistance=%f, Temp=%f degrees C\n”,
volts, resistance, temp) ;
}// while
} //main

Analog-to-Digital Converter 12-5

Description

This program first configures the ADC, allows the ADC to self-calibrate, and
then enters a loop where the temperature is sampled and reported to the user
via the serial interface.

| need to add a discussion about APLHA, The derivation and reason for approximation.

12-6

12.4 Burnout Current Sources

Description

When the Burnout bit (BOD) is set in the ADC Control Register (ADCONO.6),

two current sources are enabled that source approximately 2uA.

This allows for the detection of an open circuit (full-scale reading) or short cir-

cuit (OV differential reading) on the selected input differential pair.

The following program illustrates a simple open-circuit and short-circuit detec-

tion routine.

#include <REG1210.H>
#include <stdio.h>
#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e-9
extern void autobaud (void) ;
extern long bipolar (void) ;

void main(void)
{
float sample, decimation = 1728;
CKCON = 0; // 0 MOVX cycle stretch
autobaud () ;
printf ("Brown-Out Detection\n”) ;
//Timer Setup
USEC= 10; // 11MHz Clock
ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz
// modclock = 1,105,920/64 = 17,280 Hz
// Setup ADC
PDCON &= 0x0f7; //turn on adc
ADMUX = 0x01;

ADCONO = 0x70; // Vref On, Vref Hi, Buff off, BOD on,

ADCON2 = decimation & OXFF; // LSB of decimation
ADCON3 =(decimation>>8) & 0x07; // MSB of decimation

PGA=1

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

while (1)

{

while (! (AIE & 0x20));

sample = bipolar() * LSB; // This read clears ADCIRQ

printf (”Sample=%f”, sample) ;
if (sample < 0.01)
printf (” Short Circuit\n”);
else if (sample > 2.4)
printf (” Open Circuit\n”);
else
printf (“Normal Sensor Range\n”) ;
while (!RI) ;
RI = 0;
}// while

} //main

Analog-to-Digital Converter

12-7

Description

12.5 Input Buffer

12.6 Analog Input

The above code detects either an open- or short-circuit situation based on the
ADC sample. Also note that the comparison is “less than 0.01” due to the fact
that the ADC generally will not return exactly 0.

The Input Buffer reduces the likelihood of an offset in the measurements taken
by the ADC. It should be used whenever the characteristics of the input signal
allow. Essentially, the only time the Input Buffer should not be used is if the
maximum voltage on either analog input is more than 1.5V below the positive
rail voltage.

The input impedance of the MSC1210 without the buffer is 5SMQ/PGA. With the
buffer enabled, the impedance is typically 10GQ, the input voltage range is re-
duced and the analog power-supply current is higher. The buffer is controlled
by the BUF bit in the ADC Control Register (ADCONO0.3); setting BUF enables
the Input Buffer, while clearing it disables the Input Buffer.

When the buffer is not selected, the input impedance of the analog input
changes with clock frequency (ACLK F6+) and gain (PGA). The relationship
is:

~ 1-10 . (5100
A\ Impedance(Q) = (ACLKFrequenCy) (PGA)

Figure 12-3 shows the basic input structure of the MSC1210.

Figure 12-3. Basic Input Structure of the MSC1210

Rsw
(8kQ typical) High
A Impedance
? >1GQ
o Cint
Switching Frequency 12pF Typical

=lsavp

12.7 Programmable Gain Amplifier (PGA)

12-8

The Programmable Gain Amplifier (PGA) can be set to gains of 1, 2, 4, 8, 16,
32, 64, or 128. Using the PGA can actually improve the effective resolution of
the ADC.

For instance, with a PGA of 1 on a 5V full-scale range, the ADC can resolve
to 1uV. With a PGA of 128 on a 40mV full-scale range, the ADC can resolve
to 75nV. With a PGA of 1 on a 5V full-scale range, it would require a 26-bit ADC
to resolve 76nV.

Description

Another way of obtaining gain is by reducing the reference voltage. However,
this approach quickly runs into noise limitations (at about 1V) whereby the
noise itself becomes a larger component of the sample, thus reducing the
benefit of the improved resolution from the lower reference voltage.

The PGA setting is set by modifying the three LSBs of the ADCONO SFR.
These three bits allow the software to set the PGA to any of the eight possible
PGA settings listed in Table 12-1.

Table 12-1.PGA Settings

12.8 PGA DAC

PGA2 PGAl PGAO GAIN
0 1 (default)
2
4
8
16
32
64
128

R R|lRr|~lo|lolo
P P OIO[FR kLI OO
P ORI O|[FRr| O|r|Oo

For example, the following instructions would have the following effects:

ADCONO = 0x03; // Set PGA to 8
ADCONO = 0x05; // Set PGA to 32

Note that in both of these examples, the instruction will also clear all of the oth-
er bits of ADCONO, which may or not be desirable. To set the PGA as in the
two previous examples without altering the other ADCONO bits, the following
instructions may be substituted:

ADCONO = (ADCONO & ~0x07) | 0x03; // Set PGA to 8
ADCONO = (ADCONO & ~0x07) | 0x05; // Set PGA to 32

The input to the PGA can be shifted by half the full-scale input range of the PGA
by using the Offset DAC (ODAC) register (SFR address: 0XxE6). The ODAC
register is an 8-bit value; the MSB is the sign and the seven LSBs provide the
magnitude of the offset. Using the ODAC does not reduce the noise perfor-
mance and increases the dynamic range of the ADC. The ODAC must be ap-
plied after any calibration is performed, because the calibration will remove
any offset induced by the ODAC.

Note that the input may only be shifted by half the full-scale input range. This
means that if the input voltage range is 5V, it can be shifted £2.5V. The range
is divided by 256 and the LSB of the ODAC indicates an offset of that amount.
Thus given an input voltage range of 5V and an ODAC of 10y (16), the input
would be shifted by 313mV (i.e., 5.000V / 256 = 19.53mV ¢ 16 = 312.5mV).

Analog-to-Digital Converter 12-9

Description

12.9 Modulator

12.10 Calibration

12-10

The modulator is a single-loop 2nd-order delta-sigma system. The modulator
clock speed is derived from the oscillator frequency divided by the ACLK regis-
ter (plus one) divided by 64. This can be summarized by the formula:

Oscillator Frequency/(ACLK + 1)
64

Analog Sample Rate =

Thus (given an oscillator frequency of 11.0592MHz), if ACLK = 8, the analog
signal sample rate will be 11.0592MHz/(8 + 1) = 1.2288MHz/64 = 19,200Hz.

The rate at which samples are made available to the user program running on
the MSC1210 is less than that of the analog sample rate. The data output rate
is determined by dividing the analog sample rate by the decimation value in
the ADCONZ2 (low byte, SFR address: OXxDE) and ADCON3 (high byte, SFR
address: OxDF) registers. Thus, in the above example that resulted in a
19,200Hz sample rate, if ADCON2 and ADCONS3 together hold the value
1920, the user program would be provided sample data at a rate of 10Hz
(19200Hz/1920 = 10Hz). The best noise performance is achieved with higher
decimation values.

The offset and gain errors in the MSC1210 ADC, or a complete measurement
system, can be reduced with calibration. The calibration mode control bits in
the ADCONL1 register (SFR address: 0xDD) can select 5 different calibration
processes.

These include Internal (Self) Calibration of Offset, Gain, or both, and System
Calibration of Offset or Gain. Each calibration process takes seven tpaya peri-
ods to complete. Therefore, it takes 14 tpata periods to complete self calibra-
tion of both offset and gain which is represented by one mode control bit selec-
tion.

For System Calibration, the appropriate signal must be applied to the inputs.
The System Calibration Offset mode requires a “zero” differential input signal.
It then computes an offset that will nullify the offset in the system. The System
Calibration Gain mode requires a positive “full-scale” differential input signal.
It then computes a value to nullify gain errors in the system. In a weigh-scale
application, the use of the system offset calibration could be used to null the
system for a tare weight. Then the measurements that follow would only have
the new weight in the output of the ADC.

Calibration should be performed after power on, a change in temperature, or
a change of the PGA. For operation with a reference voltage greater than
(AVpp - 1.5V), the buffer must also be turned off during calibration. Calibration
will remove the effects of the ODAC, therefore, changes to the ODAC register
must be done after calibration, otherwise the calibration will remove the effects
of the offset.

Description

Table 12-2.Calibration Mode Control Bits

CAL2 CAL1 CALO | Calibration Mode

0 No Calibration (default)

Self Calibration, Offset and Gain
Self Calibration, Offset Only
Self Calibration, Gain Only
System Calibration, Offset Only
System Calibration, Gain Only
Reserved

PP P R Ol OOl O
PP O]l Ol Rk O
POl Ol Ol O

Reserved

The calibration is started by setting the CALx bits in the ADCONL1 register. The
ADC Conversion interrupt will occur when the calibration is finished. If it is not
masked, it will generate an interrupt or the bit can be monitored in the Peripher-
al Interrupt Register (AISTAT.5, SFR address: 0xA7).

Thus, a full self-calibration, calibrating both offset and gain, may be executed
in the following fashion:

ADCON1 = 0x01; // Initiate self-calibration, offset and gain
while (! (AISTAT & 0x20)); // Wait for interrupt to be triggered

12.11 Digital Filter

The Digital Filter can use either the fast settling, sinc?, or sinc3 filter, as shown
in Figure 12-4. In addition, the Auto mode changes the sinc filter to the best
available option after the input channel or PGA is changed. When switching
to a new channel, it will use the fast settling filter for the next two conversions,
the first of which should be discarded. It will then use the sinc? followed by the
sinc3 filter to improve noise performance. This combines the low-noise advan-
tage of the sinc? filter with the quick response of the fast settling time filter. The
frequency response of each filter is shown in Figure 12-5.

Figure 12-4. Filter Step Responses

Filter Settling Time

Adjustable Digital Filter

Settling Time
Filter | (conversion cycles)
Sinc3 Sinc3 3M

Sinc? 20)
Fast 101)
NOTE: (1) With sychronized channel changes.

Sinc2 L 0 o Data Out

Modulator
Output

Auto Mode Filter Selection
Conversion Cycle

Fast Settling ! 2 3 4

Discard| Fast | Sinc® | Sinc®

Analog-to-Digital Converter 12-11

Description

Figure 12-5. Filter Frequency Responses

Gain (dB)
&
o

-100

-120

Gain (dB)
|
[e)]
o

-80

-100

-120

Gain (dB)
|
[2]
o

-100

-120

12-12

SINC? FILTER RESPONSE
(~30B = 0.262 * fp7a)

L/

RAVar

0 o 2f, 3fy 4f,

Frequency (Hz)

SINC? FILTER RESPONSE
(~3dB = 0.318 * fyara)

5ty

\Wa\

AV
[

N\
\

NOTE: f, = Data Output Rate = 1/tysra

0 fp 2fy 3fp 4fp 5t
Frequency (Hz)
FAST SETTLING FILTER RESPONSE
(—3dB = 0.469 * fyaa)
A ~
fo 2fp 3fp 4fy 5fy
Frequency (Hz)

Description

12.11.1 Multiplexing Channels

Table 12-3.

Table 12-4.

When the input changes suddenly, it will take a certain amount of time for the
output to correctly represent that new input. The amount of time required to
correctly represent the new input depends on the type of filter being used. The
filters are designed to settle in 1, 2 or 3 data output intervals. Up to an additional
full period will be required for an accurate sample because a change usually
will not take place synchronous with the data output interval. Due to this uncer-
tainty, as a matter of practice, one more cycle is used before the full resolution
is obtained. Refer to Table 12-3 for the number of cycles that must be dis-
carded when the input makes a significant shift.

Samples to Discard Filter
1 Fast Settling
2 Sinc2
3 Sinc3

Changing the input multiplexer usually creates the same type of step change
on the input. The one significant difference is that the timing for the change is
more precisely known.

The Auto mode can reduce the amount of data which must be discarded, but
it also reduces the resolution. The Auto mode selects each of the different filter
outputs after the input channel has changed. That means that the output will
use the Fast Settling filter for 2 cycles, then Sinc2 for the next cycle and finally
Sinc3 for all remaining cycles, until the channel is changed again.

When switching channels, the settling time must be factored in to determine
the total throughput. For example, if the data rate is 20Hz and the filter is Sinc3,
then with five channels, it will give a resulting data rate on each channel of
20Hz / (4 samples per channel) / 5 channels = 1Hz data rate on each channel.

There are many trade-offs, however, that can be evaluated to determine the
optimum setup. One of the first criteria is to determine what is the desired
Effective Number of Bits (ENOB). If 18 bits are needed, the same result could
be achieved with all three types of filters. Using Sinc3, the decimation would
be about 200. Using Sinc2, it would be about 500, and with the Fast-Settling
filter the decimation would be about 1800. With a modulation clock (or sample
rate) of 15,625, Table 12-4 shows the output data rate and channel rate.

Data Rate Channel Rate Synchronized
Filter (Hz) (Hz) (Hz)
Sinc3 (dec = 200) 78.125 /4 =19.53 /3 =26.04
Sinc2 (dec = 500) 31.25 /3= 10.41 /2 =15.625
Fast Settling (dec = 1800) 8.68 2= 4.34 /1 =8.68

It is interesting to notice that the speed difference for the synchronized channel
changes are only different by a factor of 3, whereas the non-synchronized
channel has a factor difference of 4.5.

Analog-to-Digital Converter 12-13

Description

These rates are all based on a reasonable speed for the modulation clock. In
many applications, the mod clock can run as much as 10 times faster. That
would make all of the times for throughput also 10 times faster, as shown in

Table 12-5.
Table 12-5.
Data Rate Channel Rate Synchronized
Filter (Hz) (Hz) (Hz)
Sinc3 (dec = 200) 780.125 /4 =190.53 /3 =260.04
Sinc2 (dec = 500) 310.25 /3= 100.41 /2 = 150.625
Fast Settling (dec = 1800) 80.68 /2= 40.34 /1 =280.68

12.12 Voltage Reference

The voltage reference used for the MSC1210 can either be internal or external.
The power-up configuration for the voltage reference is 2.5V internal. The
selection for the voltage reference is made through the ADCONO register, bits
5 (internal/external selection) and 4 (1.25V/2.5V internal reference voltage).

Internal voltage reference is enabled by setting ADCONO.5 (EVREF, SFR ad-
dress:0xDC), which is the default condition. When internal voltage reference is
enabled, it may be selected as either 1.25V or 2.5V depending on the setting of
ADCONO0.4 (VREFH). Setting this bit sets the internal reference voltage to 2.5V,
while clearing it sets the internal reference voltage to 1.25V (AVDD = 5V only).

When external voltage is selected, the external voltage reference is differential
and is represented by the voltage difference between pins +VREF and -VREF.
The absolute voltage on either pin (+VREF and -VREF) can range from AGND
to AVpp, however, the differential voltage must not exceed 5V. The differential
voltage reference provides an easy means of performing ratiometric measure-
ment.

The REFOUT pin should have a 0.1uF capacitor to AGND.

NOTE: Enabling the internal Vggg does not eliminate the need for an external con-
nection. The REFOUT pin must still be connected to VREF+, and VREF- must still
be connected to AGND for normal operation with internal Vg The only thing that
enabling internal Vyeg does is enable the REFOUT pin.

12.13 Summation/Shifter Register

The MSC1210 includes a summation/shifter register that facilitates and in-
creases the efficiency of certain common summation and shifting/division
functions, especially those related to ADC conversions. The summation regis-
ter is only active when the ADC is powered up. The summation register is a
32-bit value that is broken into four 8-bit SFRs named SUMRO (least significant
byte), SUMR1, SUMR2, and SUMR3 (most significant byte).

The summation registers may function in one of four distinct modes:

12-14

Description

Manual Summation: values written manually to the summation registers will
be summed to the current sum (mode 0).

ADC Summation: A specified number of values returned by the ADC will auto-
matically be summed to the current sum (mode 1).

Manual Shift/Divide: The current 32-bit value in the summation register is divid-
ed by a specified number. This division takes only four system cycles (mode 2).

ADC Summation with Shift/Divide: A specified number of values returned
by the ADC will automatically be summed to the current sum, then divided by
a specified number (mode 3).

The operation of the summation registers is controlled and configured with the
SSCON (E1y) SFR. In addition to controlling the four modes of operation,
SSCON also is used to control how many samples will be taken from the ADC
and by what value the final sum should be divided by, if any.

The individual bits of SSCON have the following functions:

7

6 5 4 3 2 1 0 Reset Value

SFREly

SSCON1

SSCONO | SCNT2 | SCNT1 | SCNTO SHF2 SHF1 SHFO 00y

The Summation register is powered down when the ADC is powered down.
If all zeroes are written to this register, the 32-bit SUMR3-0 registers will be
cleared. The Summation registers will do sign extend if Bipolar is selected in
ADCON1.

SSCON1-0 (bits 7-6)—Summation Shift Control.

Source | SSCON1 | SSCONO | Mode
ADC 0 0 Values written to the SUM registers are accumulated when
the SUMRO value is written.
Summation Register Enabled. Source is ADC, summation
CPU 0 1 . .
count is working.
Shift Enabled. Summation register is shifted by SHF Count
ADC 1 0 .
bits. It takes four system clocks to execute.
CPU 1 1 Accumulate and Shift Enabled. Values are accumulated
for SUM Count times and then shifted by SHF Count.

SSCON1 and SSCONO (SSCON.7 and SSCON.6, respectively) control which
of the four modes the summation register will operate in.

SCNTO, SCNT1, and SCNT2 (SSCON.3 through SSCON.5) are used to indi-
cate how many ADC samples should be obtained and summed to the summa-
tion register. The number of samples that will be obtained and added are:

SCNT2 | SCNT1 | SCNTO Summation Count

0 0 2

0 0 1 4

0 1 0 8

0 1 1 16

1 0 0 32

1 0 1 64

1 1 0 128

1 1 1 256

Analog-to-Digital Converter 12-15

Description

When the requested number of samples have been obtained and summed, a
summation auxiliary interrupt will be triggered, if enabled.

SHF2, SHF1, and SHFO (SSCON.0 through SSCON.2) are used to indicate
by what value the final summation value should be divided. Specifically, the
value indicates how many bits to the right the final summation value will be
shifted, less one. Thus, a shift count of 0 reflects a final right shift by 1, which
equates to a divide by 2. A shift count of 4 reflects a final right shift by 5, which
equates to a divide by 32.

SHF2 SHF1 SHFO Shift Summation Count

0 0 1 2

0 0 1 2 4

0 1 0 3 8

0 1 1 4 16

1 0 0 5 32

1 0 1 6 64

1 1 0 7 128

1 1 1 8 256

12.13.1 Manual Summation Mode

The first mode of operation, Manual Summation, allows the user to quickly add
32-bit values. In this mode, the user program simply writes the values to be
added to the SUMRO, SUMR1, SUMR2, and SUMR3 SFRs. When a value is
written to SUMRO, the current value of SUMRO-3 will be added to the summa-
tion register. For example, the following code will add 0x00123456 to
0x0051AB04:

SSCON = 0x00; // Clear summation register, manual summation
SUMR3 = 0x00; // High byte of 0x00123456

SUMR2 = 0x12; // Next byte of 0x00123456

SUMR1 = 0x034; // Next byte of 0x00123456

SUMRO = 0x56; // Next byte of 0x0012345 - Perform addition
SUMR3 = 0x00; // High byte of 0x0051AB04

SUMR2 = 0x51; // Next byte of 0x0051AB04

SUMR1 = OxAB; // Next byte of 0x0051AB04

SUMRO = 0x04; // Next byte of 0x0051AB04 - Performs addition
ANSWER = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1l << 8) + SUMRO;
The above code, while certainly more verbose than a simple ANSWER =
0x00123456 + 0x0051AB04 instruction in ‘C’, is much, much faster when ana-
lyzed in assembly language. In assembly language, the above solution re-
quires just four MOV instructions for each summation, while the simple addi-

tion approach (which does not take advantage of the MSC1210 summation
register) would take at least 8 MOV instructions and 4 ADD instructions.

12.13.2 ADC Summation Mode

The ADC Summation mode functions very similarly to the Manual Summation
mode, but instead of the user program writing values to the SUMRX registers,
the ADC writes values to the SUMRX registers.

12-16

Description

In this mode, the CNT bits of SSCON are set to indicate how many ADC con-
versions should be summed in the summation register. The ADC will then de-
liver the requested number of results to the summation register and trigger a
Summation Auxiliary interrupt, if enabled (see chapter 10).

SSCON = 0x00; // Clear summation register, manual summation

SSCON = 0x50; // ADC summation, 8 samples from ADC
while (! (AISTAT & 0x40)); // Wait for 8 samples to be added
SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1l << 8) + SUMRO;

The above code first clears the summation registers by setting SSCON to 0,
and then sets SSCON to ADC summation and requests that 8 samples from
the ADC be summed. The while() loop then waits for the summation auxiliary
interrupt flag to be set, which indicates the requested operation was complete.
The final line then takes the four individual SFRs and calculates the total
summation value.

12.13.3 Manual Shift (Divide) Mode

The Manual Shift/Divide mode provides a quick method of dividing the 32-bit
number in the summation register by the value indicated by the SHF bits in
SSCON. In assembly language terminology, this performs a 32-bit rotate right,
dropping any bits shifted out of the least significant bit position.

For example, assuming the summation register currently holds the value
0x01516612, the following code will divide it by 8:

SSCON = 0x82; // Manual shift mode, divide by 8 (shift by 3)

SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1l << 8) + SUMRO;

12.13.4 ADC Summation with Shift (Divide) Mode

The ADC Summation with Shift (Divide) mode is a combination of ADC
Summation mode and Manual Shift mode. This mode will sum the number of
ADC samples indicated by the CNT bits of SSCON, and then shift the final re-
sult to the right (divide) by the number of bits indicated by the SHF bits. This
mode is useful when calculating the average of a number of ADC samples.

For example, to calculate the average of 16 ADC samples, the following code
could be used (assuming the ADC had previously been correctly configured):

SSCON = 0x00; // Clear summation register, manual summation
SSCON = 0xDB; // ADC sum/shift, 16 ADC samples, divide by 16
while (! (AISTAT & 0x40)); // Wait for 16 samples to be added
SUM = (SUMR3 << 24) + (SUMR2 << 16) + (SUMR1l << 8) + SUMRO;

The above code will clear the summation register, obtain 16 samples from the
ADC, and then divide by 16, effectively calculating the average of the 16 sam-
ples.

Analog-to-Digital Converter 12-17

Description

12.14 Interrupt-Driven ADC Sampling

A useful, power-saving technique for obtaining ADC samples includes using
the Power-Down mode of the MSC1210 between the time that a sample is re-
guested and the time that a sample is made available to the MCU. During this
time, the MSC1210 may be put into Power-Down mode by setting PCON.1
(PD). This will reduce power consumption significantly while the ADC sample

is acquired.

The Power-Down mode is exited when the ADC unit triggers an interrupt. This
interrupt will take the MCU out of Power-Down mode, execute the appropriate
interrupt, and then continue with program execution.

#include <REG1210.H>
#include <stdio.h>
#include <stdlib.h>

#include <math.h>

#define LSB 298.0232e-9 /* LSB=5.0/2"24 */

extern void autobaud (void) ;

extern long bipolar (void) ;

long sample; // Hold the samples retrieved from A/D converter

void auxiliary isr(void) interrupt 6 //AuxInt

{

sample = bipolar() * LSB;

}

void main (void)

{

// Read sample & clear ADCIRQ
AI=CLEAR; // Clear Aux Int right before Aux ISR exit

float volts, temp, resistance,

int i, k, decimation = 1728,

ratio, lr, ave;

samples;

CKCON = 0; // 0 MOVX cycle stretch

autobaud () ;

printf (”MSC1210 Interrupt-Driven ADC Conversion Test\n”) ;

//Timer Setup

USEC= 10; // 11MHz Clock
ACLK = 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz

// modclock =
// Setup interrupts

1,105,920/64 = 17,280 Hz

EAI = 1; // Enable auxiliary interrupts

ATE

// Setup ADC

0x20; // Enable A/D aux.

PDCON &= 0x0f7; //turn on adc
ADMUX = 0x01; //Select AINO/AIN1
ADCONO = 0x30; // Vref On, Vref Hi, Buff off, BOD off, PGA=1

ADCON2 = decimation & OXFF;

ADCON3 = (decimation>>8)

& 0x07;

ADCON1 = 0x01; // bipolar, auto,

printf (”Calibrating.

12-18

An”) ;

interrupt

// LSB of decimation

// MSB of decimation

self calibration,

offset, gain

Description

for (k=0; k<4; k++)
{
// Wait for Four conversions for filter to settle
// after calibration. We go to sleep. When we wake
// up, the interrupt will have read the sample.

PCON |= 0x02; // Go to power-down until sample ready
}
samples = 10; // The number of voltage samples we will average
while (1)
{
ave = 0;
for (i = 0; 1 < samples; i++)
{
PCON |= 0x02; // Go to power-down until sample ready
ave += bipolar() * LSB; // This read clears ADCIRQ
}
printf (“Average sample=%f\n”, ave / samples) ;
}// while
} //main

12.15 Syncronizing Multiple MSC1210 Devices

In some circumstances, it may be desirable to have data conversion synchro-
nized between several devices. In order to synchronize the MSC1210, each
of the devices will need to power down their ADCs (stop the clock), and then
all devices restart their ADCs at the same time.

For this explanation we will assume that one of the input port pins has been
defined to be the “Sync” pin. A master device will raise the signal high when
the MSC1210 should prepare for synchronization. When the MSC1210
senses the high signal on the Sync input, it will wait for the next ADC conver-
sion to be completed. The ADC interrupt could be used as described in the pre-
vious section. After the ADC interrupt, the PDAD bit in the PDCON (F1p) regis-
ter is set to one to power down the ADC. The MSC1210 will then continue to
monitor the Sync input. When the Sync input goes low, the PDAD bit should
be set back to zero, thereby activating the ADC.

In summary, synchronizing the MSC1210 may be achieved with the following
steps:

1) Start ADC operation (PDAD = 0).
2) Monitor Sync input.

3) When Sync = 1, wait for the ADC IRQ, then set PDAD = 1 (power down
the ADC = stop clocks).

4) Wiait for Sync = 0, then set PDAD = 0, which will restart the ADC.

5) The ADC is now synchronized with the Sync input and, therefore, with oth-
er MSC1210 devices that followed the same Sync signal. They will also
be synchronized to within a few CPU clock cycles.

Analog-to-Digital Converter 12-19

Description

The following example program illustrates this method of syncronization:

#include <REG1210.H>

#include <stdio.h>

#include <stdlib.h>

#include <math.hs>

#define LSB 298.0232e-9 /* LSB=5.0/2"24 */

extern void autobaud (void) ;
extern long bipolar (void) ;

void main (void)
float volts, temp, resistance, ratio, lr, ave;
int i, k, decimation = 1728, samples;

autobaud () ;

printf (”MSC1210 Sync Example \n”);

//Timer Setup

USEC 10; // 11MHz Clock

ACLK 9; // ACLK = 11,0592,000/10 = 1,105,920 Hz
// modclock = 1,105,920/64 = 17,280 Hz

// Setup ADC

PDCON &= 0x0f7; // turn on adc

ADMUX = 0x01; // Select AINO/AIN1L

ADCONO = 0x30; // Vref On, Vref Hi, Buff off, BOD off,

ADCON2 = decimation & OxFF; // LSB of decimation

ADCON3 = (decimation>>8) & 0x07; // MSB of decimation

PGA=1

ADCON1 = 0x01; // bipolar, auto, self calibration, offset, gain

while (sync == 0); // As long as sync is low, wait

// Now that sync is low, shut down ADC.
PDCON |= 0x08;

while(sync == 1); // As long as sync is high, wait.

// When sync goes low, turn on ADC and continue
PDCON = ~0x08;

// At this point ADC is on and multiple MSC1210’s using the

// same Sync signal will be in syncronization.
} //main

12.16 Ratiometric Measurements

12-20

Ratiometric measurements may be used to eliminate potential inaccuracy
from the ADC process. Ratiometric measurements are obtained in a circuit
similar to the one shown in Figure 12-6, where the same source used to drive
the reference voltage (Vrgp) is used to drive the ADC (-IN). This allows mea-
surements to be taken without the accuracy of the voltage of Vg being a fac-
tor in the measurement or in potential errors because the ratio between the —IN
and —VRreg Will be constant, regardless of the accuracy of the voltage of +IN.

Figure 12-6.

PT100
100Q2 ADS1216

Description

100pA
-IN

AY, Converter

Rrer
20kQ
=

The voltage measured will be a ratio of the resistances Rgrer and PT100 because
the same current flows through the sense element (PT100) and the reference re-
sistor (Rrgp)- Any errors in lgyt1 do not enter into the accuracy of the measurment
because, as illustrated in the equations below, loyT is effectively cancelled out.

Vi = PT100 - Igyr

Veer = Rger - lour

VIN
VREF

ADC Result =

(PTlOO . IOUT) _ PT100

(REF IOUT) Reer

ADC Result =

This eliminates both the reference voltage and the current source as sources
of accuracy error and is only limited by the accuracy of the reference resistor
and performance of the PT100. A high-precision reference resistor is readily
obtainable. This is much easier than trying to get the same precision and accu-
racy from a voltage reference.

12.16.1 Differential Vggg

One application would be a system where the measurement and the ADC are
on different grounds. Normally, you might have a voltage source that connects
to a sensor, and the bottom of the sensor connects to the reference resistor.
However, with two grounds, that can be different by more than 0.3V—that will
not work. In such a case, you will need to connect the reference resistor from
the power supply to the sensor, and then connect the sensor to GND2. Now
you can still use the reference resistor to set the reference voltage, even
though the voltages are maybe 2.5V to 4.5V.

The differential reference inputs, however, can be used for both grounded and
non-grounded applications. For example, you might have a sensor that must
be grounded (because of mechanical mounting). In that case the excitation
could go through the reference resistor before the sensor.

Analog-to-Digital Converter 12-21

Chapter 13

Serial Peripheral Interface (SPI)

Chapter 13 describes the MSC1210’s Serial Peripheral Interface (SPI).

Topic Page
13.1 DeSCription e e 13-2
13.2 Functional DescCription ...t 13-2
13.3 Clock Phase and Polarity Controlsc oo, 13-3
13.4 SPISIgNnals 13-4
13.5 SPISYySstem Errors ... e 13-5
13.6 Data Transfersot 13-5
13.7 FIFO Operationt e 13-7

13-1

Description

13.1 Description

The MSC1210 includes a Serial Peripheral Interface (SPI) module that allows
simple and efficient access to SPI-compatible devices via a number of SFRs
provided for that purpose. The SPI is an independent serial communications
subsystem that allows the MSC1210 to communicate synchronously with SPI
peripheral devices and other microprocessors. The SPI is also capable of
interprocessor communication in a multiple master system. The SPI system
can be configured as either a master or a slave device.

The maximum data transfer rates can be as high as 1/2 the fogc clock rate
(12Mbits per second for a 24MHz fogc frequency).

13.2 Functional Description

The central element in the SPI system is the block containing the shift register and
the read data buffer. SPI data is transmitted and received simultaneously. For
every byte that is sent, a byte is also received. The system is double-buffered in
the transmit direction and double-buffered in the receive direction. This means
that new data for transmission can be written to the SPIDATA register before the
previous transfer is complete. Additionally, received data is transferred into a
parallel read data buffer, so the shifter is free to accept a second serial character.
As long as the first character is read out of the SPIDATA register before the next
serial character is ready to be transferred, no overrun condition occurs.

For FIFO operation, the reading of the received data can be delayed up to the
length of time it takes to fill the FIFO. The SPIDATA register is used for reading
data received, and for writing data to be sent, as shown in Figure 13-1.

Figure 13-1. SPI block diagram

13-2

MISO

b
=
o

n=Z 22w
<
25
n @

8-Bit Shift Register

Wirite Data Wirite Data
Buffer Buffer

2
‘ e
-
e
[£
o
3
¢ Clock Clock S £ SCK
osc Divider Logic = M o P1.7
3
SS
SPIEND (9F,) | 2t0 128 | P14
Byte FIFO
SPISTRT (9E,,) FIFO Select
Control 3 ?
SPIRCON (8C,) > | P1DDRH (AF,)
8| o|a|E flB Register
3 E8288
SPITGON (9D,,) Pori1 900
H
[sPiDATA (9B,)| [sPicoN (ea,) | Register

SPI Transmit SPI Receive

Description

During an SPI transfer, data is simultaneously transmitted and received. A se-
rial clock line synchronizes shifting and sampling of the information on the two
serial data lines.

A slave-select line allows individual selection of a slave SPI device; slave de-
vices that are not selected do not interfere with SPI bus activities. On a master
SPI device, the select line can optionally be used to indicate a multiple master
bus contention. Refer to Figure 13-2.

Figure 13-2. SPI Clock/Data timing

SCK Cycle #

SCK (CPOL =0)

SCK (CPOL =1)

Sample Input

(CPHA = 1) Data Out

Sample Input

[2 3 4 5 6 7 8

MSB 6 5 4 3 2 1 LSB C\—

MSB 6 5 4 3 2 1 LSB) W—

(CPHA = 1) Data Out =~~~

SS to Slave

1)§ Asserted
2) Master Writes to SPDR

Slave CPHA = 1 Transfer in Progress ————————————|

- Master Transfer in Progress

® ©)

3) First SCK Edge @

4) SPIF Set
5) SS Negated

Slave CPHA = 0 Transfer in Progress

®

A section of internal RAM from 80y to FF can be used as a FIFO to extend
the buffering for receive and transmit. The size of the FIFO can range in size
from 2 to 128 bytes.

13.3 Clock Phase and Polarity Controls

Software can select one of four combinations of serial clock phase and polarity
using two bits in the SPI control register (SPICON 9A4). The clock polarity is
specified by the CPOL control bit, which selects an active high or active low
clock, and has no significant effect on the transfer format.

The clock phase (CPHA) control bit selects one of two different transfer for-
mats. The clock phase and polarity should be identical for the master SPI de-
vice and the communicating slave device. In some cases, the phase and polar-
ity are changed between transfers to allow a master device to communicate
with peripheral slaves having different requirements.

When CPHA equals zero, the SPI standard defines that the SS line must be
negated and reasserted between each successive serial byte. This is more dif-
ficult when using the FIFO to transmit the bytes and cannot be done at higher
clock speeds.

When CPHA equals one, the SS line can remain low between successive
transfers.

Serial Peripheral Interface (SPI) 13-3

Description

13.4 SPI Signals

The following paragraphs contain descriptions of the four SPI signals: Master
In Slave Out (MISO), Master Out Slave In (MOSI), Serial Clock (SCK), and
Slave Select (SS).

The port register for P1.4, P1.5, P1.6 and P1.7 must be set (P1 = Fxy) to use
the SPI functions. Additionally, the pins need to be setup as inputs or outputs
using the Port 1 Data Direction Register (PLDDRH, AFy). For Master opera-
tion, PADDRH = 75y (drive SS pin), and slave PIDDRH = DF.

13.4.1 Master In Slave Out

MISO is one of two unidirectional serial data signals. It is an input to a master
device and an output from a slave device. The MISO line of a slave device is
placed in the high-impedance state if the slave device is not selected.

13.4.2 Master Out Slave In

13.4.3 Serial Clock

13.4.4 Slave Select

13-4

The MOSI line is the second of the two unidirectional serial data signals. It is
an output from a master device and an input to a slave device. The master de-
vice places data on the MOSI line a half-cycle before the clock edge that the
slave device uses to latch the data.

SCK, an input to a slave device, is generated by the master device and syn-
chronizes data movement in and out of the device through the MOSI and MISO
lines. Master and slave devices are capable of exchanging a byte of informa-
tion during a sequence of eight clock cycles.

There are four possible timing relationships that can be chosen by using con-
trol bits CPOL and CPHA in the SPI Control Register (SPICON). Both master
and slave devices must operate with the same timing. The SPI clock rate select
bits, CLK[2:0], in the SPICON of the master device select the clock rate. In a
slave device, CLK [2:0] have no effect on the operation of the SPI.

The SS input of a slave device must be externally asserted before a master
device can exchange data with the slave device. SS must be low before data
transactions and must stay low for the duration of the transaction.

There is no hardware support for mode fault error detection. For the master
to monitor the SS line, it either needs to poll the status of the SS signal or con-
nect it to INTO or INT1, which can generate an interrupt when the line goes low.
Due to this, it is reasonable for the master to drive P1.4 as the SS signal for
control of the slave devices.

The state of the master and slave CPHA bits affects the operation of SS. CPHA
settings should be identical for master and slave. When CPHA = 0, the shift
clock is the OR of SS with SCK. In this clock phase mode, SS must go high
between successive characters in an SPI message. When CPHA =1, SS can
be left low between successive SPI characters. In cases where there is only
one SPI slave MCU, its SS line can be tied to VSS as long as only CPHA = 1
clock mode is used.

Description

13.5 SPI System Errors

Some SPI systems define two types of system errors: write collision and mode
fault. Write collision is defined to occur when a byte is written to the transmit
register before the previous byte was sent. Mode fault is an error that occurs
in multiple master systems when two masters try to write at the same time.

There is no need to worry about write collision errors because the SPI transmit
path is double buffered. However, care should be taken to assure that more
bytes are not written to the SPIDATA register before the previous bytes have
been transferred. With the FIFO operation, when the FIFO is filled, the next
writes to the SPIDATA register are ignored.

When the SPI system is configured as a master and the SS input line goes to active
low, a mode fault error has occurred—usually because two devices have at-
tempted to act as master at the same time. In cases where more than one device
is concurrently configured as a master, there is a chance of contention between
two pin drivers. For push-pull CMOS drivers, this contention can cause permanent
damage. Care should be observed to protect against excessive currents in a multi-
master system because the MSC1210 does not detect a mode fault.

13.6 Data Transfers

The transmitted and received data for SPI transfers are both double-buffered.
This means that a second byte can be written for transmit before the first byte
has been sent. Data that is received does not have to be read from the SPIDAT
register until just before the next byte is received. The size of this buffer can
essentially be extended with the FIFO mode. This adds from 2 to 128 bytes
of FIFO memory.

The FIFO mode uses a portion of the internal indirect RAM from 80y to FFy.
The start and end of the FIFO portion of memory is set with the SPISTRT (9Ep)
and SPIEND (9Fy) registers. The only restriction on those addresses is that
the value of SPIEND must be larger than SPISTRT. The most significant bit is
forced to a one.

There is no signal that switches the SPI interface on or off. It can be powered
down using the PWRMGT (F1p) register. However, if it is powered up, then it
is operational. For the master, all that is necessary to transmit a byte is to write
the value to SPIDATA (9By). The SS pin is not used in master mode. It can be
used to drive an SS signal. For slave operation, the bytes will not transfer until
SS is asserted and the clock signals are received.

For slave mode, if the SS signal goes high while a byte is being received, that
byte is immediately flagged as completed and the interface is prepared for a
new byte.

Serial Peripheral Interface (SPI) 13-5

Description

The SPICON (9AR) register controls the SCLK frequency for master operation,
and has bits to enable the FIFO, Master mode, set bit order, clock polarity and
phase. Any change to the SPICON register resets the SPI interface, and clears
the counters and pointers, as shown in Figure 13-3.

Figure 13-3. SPI Reset State

13-6

Reset State

SPIDATA SPIDATA

12-Byte FIFO Memory

Transmit Receive

—>| Transmit/Receive Shift Register |—>

The SPI Receive Control register, SPIRCON (9Cp), controls the data receive
operation. The Receive Buffer can be flushed with the write only RXFLUSH bit.
A flush operation changes the SPI Receive pointer so that it points to the same
address as the FIFO IN pointer, and clears the Receive Counter. The Receive
Counter indicates the number of bytes that have been received. An interrupt
can be generated when the Receive Count equals or exceeds a chosen num-
ber. If the interrupt is not masked in the AISTAT register, the SPI Received in-
terrupt with cause a PFI interrupt. The PPIRQ register is used in the PFI inter-
rupt routine to determine the source of the interrupt. The SPI Receive interrupt
can be monitored in the PISTAT register.

The SPI Transmit Control register, SPITCON (9Dy), controls the data transmit
operation. The Transmit Buffer can be flushed with the write only TXFLUSH
bit. A flush operation changes the SPI Transmit pointer so that it points to the
same address as the FIFO OUT pointer, and clears the Transmit Counter. The
Transmit Counter indicates the number of bytes in the Transmit Buffer (FIFO
and buffer). An interrupt can be generated when the transmit count is less than
or equal to a chosen number. If the interrupt is not masked in the AISTAT regis-
ter, the SPI Transmit interrupt with cause a PFl interrupt. The PPIRQ register
is used in the PFI interrupt to determine the source of the interrupt. The SPI
Transmit interrupt can be monitored in the PISTAT register.

Description

13.7 FIFO Operation

Data to be transmitted by the SPI interface is written to the SPIDATA register.
If the FIFO is enabled, it will be stored in the FIFO memory. The first two bytes
will immediately be written to the Transmit Buffer, and the SPI Transmit pointer
will be incremented. For each byte transmitted using the SCLK signal, a byte
is also received. The received bytes will be immediately transferred to the
FIFO. The FIFO IN pointer increments for each byte received until one less
than the SPI Received pointer. If the received bytes are not read or flushed,
then additional SCLKs will continue to send the last byte sent. Therefore, if the
SPI is planned to only transmit bytes, the SPI Receive interrupt can be used
to flush the received bytes so that transmission of data is not blocked.

The SPI interrupts can be used to achieve maximum throughput. The size of
the FIFO can be adjusted from 2 to 128 bytes depending on the allowable inter-
rupt latency. For example, assume that the application has time critical opera-
tions that cannot be interrupted for 10us. Using an 11.0592MHz crystal and the
SPI clock is fogc/2, one byte can be shifted out in 1.46us, or 69 bytes in 100us.
By setting the transmit IRQ level for 8, it would require that the FIFO be at least
77 bytes. If not receiving bytes, but simply flushing the receive buffer, the IRQ
level for the Receive interrupt has to be taken into account. For example, to
allow the receive buffer to grow to 32 before generating an interrupt, add 32
to the 69 transfers. That gives a minimum buffer size of 101. A FIFO of 100
bytes would be adequate because two bytes are stored in the buffer register
and shift register.

When using the FIFO, there is no mechanism to remove and reassert the SS
line between each byte transferred, which is required for CPHA = 0. For slower
transfer rates, it is possible for the program to monitor the SCLK using INT5
and control the SS signal as needed.

Figure 13-4. SPI FIFO Operation
8 Bytes Written

4 Bytes Queued
2 Bytes Sent and Received

SPIDATA
/ FIFO In
SPI Transmit /
»| SPIDATA
< {sroan]

Pointer
SPI Receive
Transmit Fieoeive—l Pointer

—»I Transmit/Receive Shift Register |—>

FIFO Out 12-Byte FIFO Memory

Serial Peripheral Interface (SPI) 13-7

Chapter 14

Additional MSC1210 Hardware

Chapter 14 describes addtional hardware on the MSC1210.

Topic Page
14.1 DeSCription e e 14-2
14.2 Low-Voltage Detectiiiiiii i 14-2
14.3 Watchdog Timert e 14-4

14-1

Description

14.1 Description

The MSC1210 includes a number of special hardware features above and
beyond those of a typical MCS-51 part.

14.2 Low Voltage Detect

The MSC1210 includes low voltage and brownout detection circuits for both
the analog and digital supply voltages. The voltage levels at which these cir-

cuits are tripped is programmable.

DBO_DETECTn

———

DLV_DETECTn

|

ABO_DETECTn

L e

ALV_DETECTn

|

Figure 14-1.
VSPD
DBOENN
— BO
pBoft:0) | Dot
—
DLVENn | |
Lv
DLV[2:0] Digital
—
EXTD
e
ABOENnN BO
= Analog
ABO[1:0]
—
ALVENN focomeeo—
ALV[2:0] Analog
—]
EXTA
VSPA
Logic Receiving
LVD DIG
—
P3[0]
™ Logic Receiving
LVD ANA
——
Logic Receiving
BOR DIG
—
P1[3]
™ Logic Receiving
BOR ANA
| —

There are low-voltage and brownout detects for both analog and digital supply
voltages. As shown in the block diagram, the circuit consists of two resistor
strings with multiplexers, four comparators, and a bandgap voltage reference.
Not shown are the output enable signals used to control the switches that
connect I/O pins AIN<6:7> to EXTD and EXTA when the EXT level is selected.
The EXT inputs allow the low-voltage detect circuits to monitor signals outside

of chip.

14-2

When in analog test mode:

1) DBOJ[1:0] and ABO[1:0] inputs are from P3[4:3].

2) DLV[2:0] and ALV[2:0] inputs are from P3[5:3].

3) P3[5:3] is also driving DFMsize[2:0].

4) P1[1] is also driving BromEnb.

5) Logic receiving DLV_DETECTn and ALV_DETECTn
are getting P3[0] input.

6) Logic receiving DBO_DETECTn and ABO_DETECTn
are getting P1[3] input.

7) CompSel are from P1[5:4]. 00 = SelA, 01 = SelB,
10 = SelC, and 11 = SelD.

8) CompO output is to P1[6].

9) CompEnb input is from P1[7].

Description

Figure 14-2.
@) (b)
BandGap
Vspo Vsea
DBOENN DLVENN ABOENN ALVENNn
—_— R —_— -
EXTD EXTA
DBO_DETECTn | DLV_DETECTn ABO_DETECTn | ALV_DETECTn
| |
| o 1 ~] | o 1 ~
| |
| |
I I
| |
| |
BandGap T T BandGap BandGap T T BandGap
DBOI[1:0] DLV[2:0] ABO[1:0] ALV[2:0]

The detect circuit must activate whenever the supply voltage drops below the
programmed level. In order to account for temperature and process variations,
the trip levels are typically higher than the specified value, to provide some
margin. For example, when “4.5V” is selected, the detect output will typically
activate when the supply drops below 4.7V.

14.2.1 Power Supply

Vgpp powers the digital section resistor string and the comparators. Vgpa
powers the analog section resistor string and the bandgap voltage. Level
shifters, where needed, are included inside the block.

Table 14-1.Typical Sub-Circuit Current Consumption

Sub-Ckt Current Consumption
Band Gap 20uA
Compartors 2uA
Resistor String 6UA
Total 40uA

Table 14-2.Comparator Specification

Comparator Parameters
Hysteresis at 2.5V 50mV £ 2mV
Hysteresis at 4.7V 100mV + 8mV
Hysteresis at Each Terminal | 26mV
Response Time for Slow Input | 400nS

Table 14-3.Band Gap Parameters

Band Gap Parameters
Bandgap Voltage Reference (min) | 1.00V
Bandgap Voltage Reference (typ) | 1.22V

Bandgap Voltage Reference (max) | 1.50V
Minimum Supply Voltage (Vspa) | 1.50V
Bandgap Startup Time (typ) | < 16uS

Additional MSC1210 Hardware 14-3

Description

14.3 Watchdog Timer

Figure 14-3.

The Watchdog timer is used to ensure that the CPU is executing the user pro-
gram and not some random sequence of instructions provoked by a malfunc-
tion. When the Watchdog timer is enabled, the user program must periodically
notify the watchdog that the program is still running correctly. If the watchdog
detects that the user program has not made this notification after a certain
amount of time, the watchdog automatically resets the MCS1210 or executes
an interrupt. This ensures that the part does not hang in an infinite loop or exe-
cute non-program code due to some malfunction or programming error.

SYS Clock
STOP

mSec [FTCON Flash Erase
- 4ms to 11ms
MSECH ¢ ‘ MSECL g ’7 (4] gr| Tmng ¢)

milliseconds
interrupt

MSINT FA

seconds

interrupt

SECINT Fo
watchdog

WDTCON FE

PDCON.1

PDCON.2

14.3.1 Watchdog Timer Hardware Configuration

14-4

The Watchdog is first configured when code is downloaded to the MSC1210.
Bit 3 of Hardware Configuration Register 0 (HCRO) is the Enable Watchdog
Reset (EWDR) bit. If this bit is set, the Watchdog will trigger a reset (if the
Watchdog is enabled by software and not reset at appropriate intervals).
Whereas, if this bit is clear, the Watchdog will trigger an interrupt (if the
watchdog is enabled by software not reset at appropriate intervals). The point
to remember is that the EWDR bit in the HCRO register indicates what the
Watchdog will do when it is triggered: reset the MSC1210 or cause an
interrupt. It does not, by itself, enable or disable the Watchdog. Enabling or
disabling the Watchdog is done in software at execution time.

NOTE: The HCRO and HCRL1 registers may be set by the TI Downloader application
at download time. It may also be set manually from within the source code by includ-
ing the following assembly language file:

CSEG AT 0807EH

DB OFCH ; Value for HCRO

DB OFFH ; Value for HCR1

When the MSC1210 is in programming/download mode, code address 807E refers
to the HCRO register and 807Fy refers to the HCR1 register. This allows the values
that are needed for HCRO/HCR1 to be hardcoded in the source code rather than
having to set the registers manually via the downloader program.

Description

14.3.2 Enabling Watchdog Timer

The Watchdog timer is enabled by writing a 1 and then a 0 to the EWDT bit
(WDTCON.7). This may be accomplished, for example, with the following code:

WDTCON 0x80; // Set EWDT

WDTCON = 0x00; // Clear EWDT - Watchdog enabled

The Watchdog timer then begins a countdown that, unless reset by the user pro-
gram, will trigger a Watchdog reset or interrupt (depending on the configuration
of HCRO, described previously). The time after which the Watchdog will be trig-
gered is also configured by the low five bits of the WDTCON SFR. These bits,
which may represent a value from 1 to 32 (0 to 31, plus 1), multiplied by the time
represented by HMSEC, defines the countdown time for the Watchdog.

For example, if HMSEC is assigned a value that represents 100ms and
WDTCON is assigned a value of seven, the watchdog will automatically trigger
after 800ms ([7 + 1] » 100), unless the reset sequence is issued by the user
program. Thus, a better approach to enabling the Watchdog timer is:

WDTCON = 0x80; // Set EWDT

WDTCON

0x07; // Clear EWDT, set timeout = 7, 800ms

NOTE: There is an uncertainty of one count in the Watchdog counter. That is to say,
the Watchdog counter may occur a full HMSEC after the programmed time interval.
In the above example, in which the watchdog is set to trigger after 800ms, the Watch-
dog may in fact trigger as late as 900ms.

Although the Watchdog timeout value (0x07 in the above example) may be set
at the same time as the EWDT bit is cleared, it may be changed after the fact.
If the timeout value is changed after the Watchdog has been enabled, the new
timeout will take effect the next time the Watchdog times out, or the next time
the Watchdog is reset (see next section). For example:

WDTCON = 0x80; // Set EWDT

WDTCON 0x07; // Clear EWDT, set timeout = 7, 800ms

WDTCON = 0x06; // Set timeout = 6, 700ms

In this example, the Watchdog will initially be enabled with a timeout of 800ms.
The very next instruction sets the timeout to 700ms. In this case, the Watchdog
will time out after 800ms, unless it is reset as described in the next section.
Once the watchdog has been reset, the new timeout of 700ms will take effect.

14.3.3 Resetting the Watchdog Timer

The user program, when operating properly, must reset the Watchdog periodi-
cally. The Watchdog may be reset as frequently or infrequently as desired by
the developer, as long as it is reset more frequently than the Watchdog count-
down time described above.

The user program must reset the Watchdog by writing a 1 and then a 0 to the
RWDT bit (WDTCON.5). This notifies the Watchdog that the user program is
still operating correctly and that the Watchdog timer should be reset.

Additional MSC1210 Hardware 14-5

Description

The following code will reset the Watchdog timer and notify the MSC1210 that
the user program is still executing correctly:

WDTCON |= 0x20; // Set RWDT, other bits unaffected

WDTCON &= ~0x20; // Clear RWDT—watchdog reset

NOTE: Itis generally a good idea to place the Watchdog reset code in the main sec-
tion of your program that is within a rapidly-executing control loop. It is not advisable
to place the code within an interrupt, since the main program may have “hung” or be
stuck in an infinite loop, but the interrupts may still be triggered properly. Placing the
Watchdog reset code in an interrupt, in these cases, would tell the MSC1210 that
the program is still executing correctly when, in fact, it is stuck in an infinite loop.

14.3.4 Disabling Watchdog Timer

Once the Watchdog timer has been activated, it will operate continuously and
the user program must reset the Watchdog timer regularly, as described in the
previous section.

If, for some reason, the user program should need to disable the Watchdog
timer (e.g., before entering idle mode), the program must write a 1 and then
a 0 to the DWDT (WDTCON.6) bit. In code, this may be accomplished with:

WDTCON |= 0x40; // Set DWDT, other bits unaffected
WDTCON &= ~0x40; // Clear RWDT—watchdog disabled

The Watchdog will then be disabled until such time as it is subsequently
re-enabled using the process in section 14.3.2.

14.3.5 Watchdog Timeout/Activation

If the Watchdog is not reset by sending the reset sequence described above
before the Watchdog counter expires, the Watchdog will be activated. The
Watchdog will either reset the MSC1210 or trigger a Watchdog interrupt,
depending on the setting of the HCRO hardware configuration register.

14.3.5.1 Watchdog Reset

In the case of a Watchdog reset, the MSC1210 will be reset. SFRs will assume
their default values, the stack will be reset, and the program will start executing
again at address 00004. The contents of RAM will not be affected.

14.3.5.2 Watchdog Interrupt

14-6

If the HCRO register is configured to cause a Watchdog interrupt, a Watchdog
Auxiliary interrupt will be flagged in the Watchdog Timer interrupt WDTI
(EICON.3). If the Watchdog interrupt is enabled in EWDI (EIE.4) and interrupts
are enabled via EA (IE.7), a Watchdog interrupt will be triggered and will vector
to 0063y. The user program must clear the WDTI flag before exiting the
interrupt or the Watchdog interrupt will be triggered again.

NOTE: If the MSC1210 is in Idle mode when the Watchdog interrupt is triggered, the
processor will only be “woken up” from idle mode if EWUWDT (EWU.2) is set. See
section 10.9 for additional details.

Chapter 15

Advanced Topics

Chapter 15 describes the MSC1210 advanced topics.

Topic Page
15.1 Hardware Configuration coiiiiiiiiniinainnann. 15-2
15.2 Advanced Flash Memory ..., 15-5
15.3 Breakpoint Generatorooeiiiiiiiiiiniii 15-6
15.4 Power-Up Timing e 15-8
15.5 Power Optimizationciiiiiiiiiii i 15-10
15.6 Flash Memory as DataMemory ..., 15-10
15.7 Advanced Topics and Other Information 15-12

15-1

Hardware Configuration

15.1 Hardware Configuration

In addition to whatever amount of Flash memory the specific MSC1210 part
contains (which may be partitioned between Flash Data memory and Flash
Program memory), the MSC1210 also includes 128 bytes of “hardware config-
uration memory.” This memory is used to store two hardware configuration
registers and also to store, optionally, up to 110 bytes of configuration data that
the user may set at program time, and that may be used to store information
such as serial numbers, product codes, etc.

NOTE: Hardware Configuration memory, including the Hardware Configuration reg-
isters and the 110 bytes of configuration data, can only be set at program time. They
cannot be modified by the user program at run time once the firmware has been
downloaded to the MSC1210.

15.1.1 Hardware Configuration Registers

The MSC1210 has two Hardware Configuration Registers, HCRO and HCR1.
These registers are set at the moment the MSC1210 is programmed—be it in
parallel or serial mode—and are used to set various operating parameters of
the MSC1210.

When loading a program on the MSC1210, the HCRO register is at code ad-
dress 807Ey, while HCR1 may be found at code address 807F. Thus, in a
typical assembly language program, the HCRO and HCR1 registers could be
set by adding the following code to the program:

CSEG AT 0807EH ;Address of HCRO
DB OFCH ;HCRO:76 :DBLSEL 54 :ABLSEL 3:DAB 2:DDB 1:EGPO 0:EGP23
DB OFFH ;HCR1: 7:EPMA 6:PML 5:RSL 4:EBR 3:EWDR 210:DFSEL

15.1.1.1 Hardware Configuration Register 0 (HCRO)

Hardware Configuration Register 0 (HCRO) is used to configure the amount
of Flash memory partitioned as Data Fash memory, configure the Watchdog,
and set a number of security bits that restrict write access to Flash memory.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

FADDR 7Fy

EPMA PML RSL EBR EWDR DFSEL2 DFSEL1 DSELO

15-2

EPMA (bit 7)—Enable Program Memory Access (Security Bit). When this bit
is clear, Flash memory cannot be read or written after the part is programmed.
This will prevent future updates to the firmware code. When the bit is set, which
is the default condition, Flash memory will remain fully accessible for reprogram-
ming.

PML (bit 6)—Program Memory Lock. When clear, the user program may
write to Flash Program memory. When set, Flash Program memory is locked
and cannot be changed by the user program. This may be set to ensure that
the user program does not overwrite the program itself by writing to Flash
memory.

Hardware Configuration

RSL (bit 5)—Reset Sector Lock. When clear, the user program may write to
the reset sector (the first 4k of Flash Program memory). When it is set (default),
the user program may not write to this area of Flash memory. This bit functions
the same as the PML bit, but applies to only the first 4k of Flash Program
memory. If the MSC1210 is configured such that only 4k is assigned to Flash
Program memory, this bit has the same effect as setting PML.

EBR (bit 4—Enable Boot ROM.

EWDR (bit 3)—Enable Watchdog Reset. When this bit is clear, a watchdog
situation will provoke a Watchdog Auxiliary interrupt which the user program
would need to intercept and handle. If this bit is set, a watchdog situation would
provoke a reset of the MSC1210.

DFSEL2/DFSEL1/DFSELO (bits 2-0)—Flash Data Memory Size. These
three bits, together, select how much of the available Fash memory will be as-
signed to Data memory; the rest will be assigned to Flash Program memory.

DFSEL2/1/0 Amount of Flash Data Memory
001 32k Flash Data Memory
010 16k Flash Data Memory
011 8k Flash Data Memory
100 4k Flash Data Memory
101 2k Flash Data Memory
110 1k Flash Data Memory
111 No Flash Memory (default)

Note that if more Flash Data memory is selected than Flash memory exists on
the actual part, all of the Flash memory available will be partitioned as Flash
Data memory, leaving nothing for Flash Program memory.

15.1.1.2 Hardware Configuration Register 1 (HCR1)

Hardware Configuration Register 1 (HCR1) is used primarily to configure the
brownout detection for both the digital and analog power supply. It is also used
to configure whether ports 0, 2, and 3 are used as general I/O ports, or take
part in external memory access.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

FADDR 7Ey

DBLSEL1 | DBLSELO | ABLSEL1 | ABLSELO DAB DDB EGPO EGP23

DBLSEL1/0 (bits 7-6)—Digital Brownout Level Select. These two bits, to-
gether, select the voltage level that will trigger a digital brownout situation.
00: 4.5V
01: 4.2V
10: 2.7V
11 2.5V (default)

ABLSEL1/0 (bits 5-4)—Analog Brownout Level Select. These two bits, to-
gether, select the voltage level that will trigger an analog brownout situation.

00: 4.5V
01:4.2v

Advanced Topics 15-3

Hardware Configuration

10: 2.7V
11 2.5V (default)

DAB (bit 3)—Disable Analog Power-Supply Brownout Detection. When
this bit is set, brownout detection on the analog power supply will be disabled.
When clear, brownout detection will operate normally.

DDB (bit 2)—Disable Digital Power-Supply Brownout Detection. When
this bit is set, brownout detection on the digital power supply will be disabled.
When clear, brownout detection will operate normally.

EGPO (bit 1)—Enable General-Purpose 1/O for Port 0. When this bit is set
(default), port O will be used as a general I/O port. When clear, PO is used to
access external memory—in this mode, P3.6 and P3.7 are used to control the
WR and RD lines.

EGP23 (bit 0)—Enable General-Purpose I/O for Port 2 and 3. When this bit
is set (default), ports 2 and 3 will be used as general I/O ports. When clear, P2
and P3 are used to access external memory—in this mode, P3.6 and P3.7 are
used to control the WR and RD lines.

15.1.2 Hardware Configuration Memory

In addition to the hardware configuration registers, 116 bytes of configuration
memory are available to the developer for their own use. This configuration
memory, also set during device programming, may hold information such as
unique serial numbers, parameters, or any other information that the develop-
er may wish to record. The configuration information will be available to the
program when the part is operating for read operations, but cannot be
changed.

Setting the configuration memory is accomplished in the same way as setting
the hardware configuration registers as described above—the only difference
is that the configuration memory available to the developer is located from
8002y through 806Fy. Thus, the first five bytes of the user configuration
memory could be set with assembly code such as the following:

CSEG AT 8002H jAddress of user configuration memory
DB 10h, 20h, 30h,40h, 50h ;User configuration data, up to 116 bytes

Be careful that the configuration data is located at 8002 and includes no more
than 116 bytes of data. Including more than 116 bytes of configuration data will
cause the data to “spill over” into the area of configuration memory that is used
to configure the actual MSC1210 hardware.

15.1.3 Accessing Configuration Memory in a User Program

15-4

The 128 bytes of Flash configuration memory, which include the 116 bytes of
user-defined configuration data and 2 bytes of hardware configuration regis-
ters, can be read by the program in normal operation. However, the configura-
tion data is not obtained by reading the code address to which they were pro-
grammed. That is to say, although Flash configuration memory is set at pro-

Hardware Configuration

gram time by locating it at code memory addresses 80024 through 806Fy
(user configuration memory) and 807E4 and 807Fy (hardware configuration),
the data cannot be read by simply reading the data from that Program memory
address. Rather, two SFRs are used to read the configuration memory.

In code, the user program may set the Configuration Address Register SFR,
CADDR (93R), to the address of the byte of configuration memory that should
be read. The address must be a value between 00y and 7F reflecting the 128
bytes of configuration Flash memory. Once the address is set in CADDR, the
value of that address can then be read by reading the CDATA (94R) SFR.

Note that you may not write to the CADDR SFR if the code is executing from
Flash memory. This is because that would imply that the MSC1210 fetch the
Flash configuration memory at the same time as it is fetching instructions from
Flash memory.

To read Flash configuration memory, a call must be made to the 2k Boot ROM
that is included on the MSC1210. A call to the faddr_data_read function, pass-
ing it the address as a parameter, will return the value of the configuration
memory address.

15.2 Advanced Flash Memory

Flash memory may be configured as Data memory, Program memory, or both.

15.2.1 Write Protecting Flash Program Memory

Flash Program Memory may be protected against the user program overwrit-
ing it by writing to Flash memory during program execution. This provides a
safeguard to the code’s integrity against intentional or accidental manipulation
by the user program.

By setting the Program Memory Lock (PML) bit in HCRO, all of Flash Program
memory will be write-protected inasmuch as the user program modifying
Flash Program memory is concerned. When this bit is set, the user program
will not be able to write to any area of Flash memory that has been partitioned
as Flash Program memory.

Likewise, by setting the Reset Sector Lock (RSL) bit in HCR, the first 4k of
Flash Program memory will be write-protected inasmuch as the user program
modifying that area of Flash Program memory is concerned. This is functional-
ity identical to the PML bit, but the RSL bit only applies to the first 4k of Flash
Program memory, whereas the PML bit applies to all of Flash Program
memory. By clearing PML and setting RSL, the first 4k of Flash Program
Memory will be locked against all writes by the user program, but the rest of
Flash Program memory will be accessible to memory writes.

If writing to Flash Program memaory is permitted by the PML and RSL bits, the
user program must first set the MXWS bit of MWS (8F) prior to writing to Flash
Program memory. If this bit is not set, writes to Flash Program memory will not
be effective.

Advanced Topics 15-5

Hardware Configuration

15.2.2 Updating Interrupts with Reset Sector Lock

If the Reset Sector Lock (RSL) bit in HCRO has been set, the user program will
not be able to modify the contents of the first 4k of Flash Program memory. Set-
ting RSL makes it impossible to change where the ISRs will branch to when
triggered because the interrupt service routine vectors are all located in the
first bytes of Flash Program memory.

If RSL needs to be set, but the interrupt service routines also need to be able
to change , it is recommended that the ISRs in the reset sector simply branch
to the same address, plus 4k. At the resulting branch address, the the user will
be able to jump to wherever the ISR is actually located, and will also be able
to modify that jump because it is not contained in the reset sector.

For example, given an external O interrupt that branches to 0003y when trig-
gered, the following code could be implemented:

CSEG AT 0003h ;Address of External 0 Interrupt

LJMP ExtOISR ;Jump to the interrupt vector at 0003h + 4k

CSEG AT 1003h ;Ext0 jump vector, outside of reset sector

LJMP ExtO0Code ;Jump to wherever the real Ext. 0 interrupt code is

Thus, if the external O interrupt code needs to be changed later, simply change
the instruction at 1003y to jump to the new code. Both the code and the jump at
1003y can be updated as desired because both are outside of the reset sector.

15.3 Breakpoint Generator

The purpose of the breakpoint block is to generate an interrupt whenever the
desired program or data memory address is accessed. There are two kinds
of memory accesses it can detect:

1) Accesses to Program memory (read or write),
2) Accesses to Data memory (read or write).

The interrupt is handled by the interrupt controller (chapter 10). Breakpoints
are useful in debugging code. A user can set a breakpoint at the start of a sus-
pect piece of code. Once the program reaches the breakpoint address, pro-
gram flow can be suspended/interrupted so the user can force a memory
dump or a register dump. The user may specify up to two 16-bit addresses for
which the interrupt may be generated.

15.3.1 Configuring Breakpoints

Breakpoints are controlled by the BPCON (A9y), BPL (AAh), BPH (ABy) and
MCON (954) SFRs. The Breakpoint Control SFR (BPCON) controls the con-
figuration of the breakpoint, while BPL and BPH together form a 16-bit break-
point address. BPSEL (MCON.7) selects which of the two breakpoints is to be
configured.

15-6

Hardware Configuration

The BPCON SFR has the following structure:

7 6 5 4 3 2 1 0 Reset Value
SFR A9, BP 0 0 0 0 0 PMSEL EBP 00H

BP (bit 7)—Breakpoint Interrupt. This bit indicates that a break condition has
been recognized by a hardware breakpoint register(s).
READ: Status of Breakpoint Interrupt. Will indicate a breakpoint match for any
of the breakpoint registers.
WRITE: 0: No effect.
1: Clear Breakpoint 1 for breakpoint register selected by MCON (SFR 95,).

PMSEL (bit 1)—Program Memory Select. Write this bit to select memory for
address breakpoints of register selected in MCON (SFR 95,).

0: Break on address in Data memory.

1: Break on address in Program memory.

EBP (bit 1)—Enable Breakpoint. This bit enables this breakpoint register. Ad-
dress of breakpoint register selected by MCON (SFR 95p).

0: Breakpoint disabled.

1: Breakpoint enabled.

To configure a breakpoint, the following steps should be taken:

1) The BPSEL (MCON.7) bit must be set to either O (for Breakpoint 0) or 1
(for Breakpoint 1).

2) The Program Memory Select bit, PMSEL (BPCON.1), must be either
cleared if the breakpoint is to detect an access to Data memory, or be set
if the breakpoint is to detect an access to Program memory.

3) BPL and BPH should be loaded with the low and high byte, respectively,
of the address at which the breakpoint should be triggered.

4) The Enable Breakpoint bit, EBP (BPCON.0), must then be set to activate
the interrupt.

15.3.2 Breakpoint Auxiliary Interrupt

Once a breakpoint interrupt has been configured, the BP (BPCON.7) interrupt
flag will be set and, if enabled and not masked, a breakpoint auxiliary interrupt
will be triggered whenever the specified memory address is accessed. The
program must write a “1” back to BPCON.7 in order to clear the interrupt after
processing it.

When a breakpoint interrupt occurs, the program may read the BPSEL
(MCON.7) bit to determine which breakpoint was triggered. If BPSEL is clear,
Breakpoint 0 triggered the interrupt. If BPSEL is set, Breakpoint 1 triggered the
interrupt.

When using breakpoints, note that the actual breakpoint occurs after the se-
lected address. This is because of interrupt latency on the MSC1210. It takes
a few cycles for the interrupt to be recognized and serviced. During that time
the processor continues for two or three more instructions, which means that
the Program Counter will be offset from the address in the breakpoint.

Advanced Topics 15-7

Hardware Configuration

Additionally, when placing a breakpoint after a jump or return instruction, the
breakpoint may be triggered even though the instruction was never executed.
This is because the processor pre-fetches the instructions. The breakpoint
hardware cannot distinguish between pre-fetched operations or those being
executed. This usually means that breakpoints should not be placed on the
first instruction of a routine, because just before that instruction is the jump or
return instruction from a previous routine. A workaround is to place two NOPs
at the beginning of the routine and then break after those NOPs.

15.3.3 Disabling a Breakpoint

To clear a previously set breakpoint, the following steps should be taken:

1) The BPSEL (MCON.7) bit must be set to either O (for breakpoint 0) or 1
(for breakpoint 1).

2) The Enable Breakpoint bit, EBP (BPCON.0), must be cleared to
deactivate the interrupt.

15.4 Power-Up Timing

When power is turned on, or a reset is initiated, a power-on delay circuit is im-
plemented with a 17-bit counter to guarantee that the power supply has
reached a certain level, and the oscillator is stable. The delay introduced by
this counter is:

24MHz System clock: (217 - 1) « (1/24) « 10°6 = 0.005461s
1MHz System clock: (217- 1) « 10-6=0.131071s

Table 15-1.

Symbol | Parameter Min Max Unit
trw RST Width 10 to @ ~ s
trrd RST rise to PSEN ALE internal pull high -- 5 us
trig RST falling to PSEN and ALE start - (2174512) tc k@ ns
trs Input signal to RST falling setup time ter k@ - ns
tn RST falling to input signal hold time (217+512) to k@ - ns

1) tcikis the Xtal clock Period.

15.4.1 Normal Mode Power-On Reset Timing

15-8

EA is sampled during power-on reset for code security purposes. PSEN and
ALE are internally pulled up during reset for serial and parallel Flash program-
ming mode detection. After reset sequence, the PSEN and ALE signals are
driven by the CPU and the internal pull-up resistors are removed for saving
power.

Hardware Configuration

}‘7 th

Figure 15-1.
}‘ L -
RST /
‘— tg —>| tig I
PSEN | / \
trg "‘ tig I
ALE | / \
|
\
N

£x [

NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.

15.4.2 Flash Programming Mode Power-On Reset Timing

15.4.2.1 Serial Flash Programming Power-On Timing

EA is ignored for both serial and parallel Flash programming operations.

Figure 15-2. Serial Flash Programming Power-On Timing (EA is ignored)

t

w >

RST /
’— tra _>| }<_ ts tn I
PSEN | 4 \ AN
trrd _>I trfd I
ALE | / \

NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.

15.4.2.2 Parallel Flash Programming Power-On Timing

Figure 15-3. Parallel Flash Programming Power-On Timing (EA is ignored)

|< t -
‘ ™w
RST /
‘— Y —>i Yt I
PSEN | / \
trrd _>| }<_ trs - trh I
ALE | / \ AN

NOTE: PSEN and ALE are internally pulled up with ~9kQ during RST high.

Advanced Topics 15-9

Hardware Configuration

15.5 Power Optimization

The MSC1210, like a standard 8052, has the ability to operate in a power-sav-
ing mode, known as “Idle mode.” As the name implies, idle mode shuts down
most of the energy-consuming functions of the microcontroller and idles. Code
execution stops in idle mode, and the only way to exit idle mode is a system
reset or an enabled interrupt being triggered.

Idle mode is useful in causing the microcontroller to “go to sleep” until an inter-
rupt wakes it up. Instead of cycling repeatedly waiting for an interrupt condition
to occur, the part may be made to go to sleep until the condition is triggered—
during that time, power consumption is minimized. External interrupts, the
watchdog interrupt, or the auxiliary interrupts can be made to wake up the
MSC1210 when it is in idle mode.

To enter idle mode, bit 0 of PCON must be set. This can be accomplished with
the instruction:

PCON |= 0x01;

When this instruction is executed, the MSC1210 will immediately drop into idle
mode and remain there until an enabled interrupt occurs. When an interrupt
occurs, the Interrupt Service Routine (ISR) will be executed and, upon finish-
ing the ISR, program execution will continue with the instruction following the
instruction that put the MSC1210 in idle mode—in this case, the instruction
mentioned above.

15.6 Flash Memory as Data Memory

15-10

If so configured in HCRO, some portion of Flash memory can be accessed by
the user application program as Flash Data memory. The amount of Flash
memory that is partitioned as Flash Data memory is controlled by the low 3 bits
of HCRO. Please see the section 15.1.1.1, Hardware Configuration Register
0 for details.

When some amount of Flash memory is partitioned as Flash Data memory, the
program may read, update, and store information in nonvolatile memory that
will survive power-off situations. That makes the Flash Data memory a useful
area to store configuration or data logging information.

The following program illustrates how Flash Data memory may be read and
updated. Note that the MSEC and USEC SFRs must be correctly set prior to
erasing or writing to Flash memory.

Within the infinite while () loop, the program first reads Flash Data memory.
This is accomplished directly by reading XRAM memory. This is accomplished
in this ‘C’ program by using the pFlashPage pointer—it would be accom-
plished in assembly language using the MOVX instruction.

After reading Flash memory, it increments the value of the first byte of the
memory block read by one. The call to page erase () is a call to the routine
in boot ROM that erases the requested block of memory. Thereafter, it makes
repeated callsto write flash chk to write the buffer back to the block of
Flash Data memory one byte at a time.

Hardware Configuration

The infinite loop continues by displaying the result of the writes to Flash Data
memory (0 = Success) and the updated value contained in the buffer as read
from Flash Data memory via the pFlashPage pointer. It then prompts the user
to hit any key, after which the loop will repeat itself and the first byte of the buffer
will again be incremented.

#include <stdio.h>
#include <regl210.h>
#include “"roml210.h”

// define the page we want to modify
#define PAGE_ START 0x0400
#define PAGE SIZE 0x80

// define a pointer to this page
char xdata * pFlashPage;

// define a RAM area as a buffer to hold one page
char xdata Buffer [PAGE SIZE];

int main()
char Result;
unsigned char i;

// synchronize baud rate
autobaud() ;

// Set the pointer to the beginning of the page to modify
pFlashPage = (char xdata *) PAGE_ START;

// before writing the flash, we have to initialize

// the usec and msec SFRs because the flash programming
// routines rely on these SFRs

USEC = 12-1; // assume a 12 MHz clock

MSEC = 12000-1;

while (1)
{
// copy the page from FLASH to RAM
for(i:O;i<PAGE_SIZE;i++)
Buffer([i] = *pFlashPage++;
// increment the counter
Buffer[0] += 1;

// now erase the page
page_erase (PAGE_START, O0xff, DATA FLASH) ;

Result = 0;
// and write the modified contents back into flash
for(i:O;i<PAGE_SIZE;i++)
Result |= write flash chk (PAGE START+i, Buffer[i],
DATA FLASH) ;

// re-read the counter
pFlashPage = (char xdata *) PAGE_START;

Advanced Topics 15-11

Hardware Configuration

printf ("Flash write returned %d, Reset counter is now %d,
press any key\n”, (int) Result, (int) (*pFlashPage)) ;

}

Note that the user program must use the boot ROM routines, such as
write flash chk, in order to modify Flash Data memory, if the user pro-
gram is itself executing from Flash memory. This is because the instructions
are being fetched from Flash memory, and writing to Flash memory simulta-
neously will cause a conflict that will result in undesired program execution.
The boot ROM routines must be used to modify Flash memory whenever the
user program itself resides on-chip in Flash memory.

15.7 Advanced Topics and Other Information

15.7.1 Serial and Parallel Programming of the MSC1210

The MSC1210's Flash Program memory may be updated either in a serial or par-
allel fashion. In these cases, the process is controlled by protocol that allows the
PC (or other external device) and the MSC1210 to communicate. This protocol
is described in http:/Amww- s.ti.com/sc/psheets/shaa076a/sbaa076a.pdf.

15.7.2 Debugging Using the MSC1210 Boot ROM Routines

The MSC1210’s boot ROM, in addition to facilitating the update of Flash
memory, can also be used to control a debugging session. This is described
in http://www-s.ti.com/sc/psheets/sbaa079/sbaa079.pdf .

15.7.3 Using MSC1210 with Raisonance Development Tools

In addition to the Keil toolset, which is included with he MSC1210’s EVM kit, Raiso-
nance provides a development toolset that may be used to develop software for
the MSC1210. Further details on using the Raisonance tools with the MSC1210
are provided at http:/Mmww- s.ti.com/sc/psheets/sbaa080/sbaa080.pdf.

15.7.4 Using the MSC1210 Evaluation Module (EVM)

The MSC1210's EVM is a complete evaluation module that provides significant
flexibility in testing and using the features of the MSC1210. Details of using the
EVM may be found at http:/Amww- s.ti.com/sc/psheets/sbau073/sbau073.pdf.

15-12

Chapter 16

8052 Assembly Language

Chapter 16 describes the 8052 Assembly Language.

Topic Page
16.1 DeSCriPtiON .o\ttt 16-2
16.2 SYNTAX .ottt 16-2
16.3 NUMbDEr BasSes e 16-3
16.4 EXPreSSIiONS ...ttt e e 16-4
16.5 Operator PreCedencCettt 16-4
16.6 Characters and Character Stringsc.ooviiiiiinieinneenn.. 16-5
16.7 Changing Program Flow (LJMP, SIMP, AJMP) 16-5
16.8 Subroutines (LCALL, ACALL, RET) ... oiiiiii e 16-6
16.9 Register Assignment (MOV)ot 16-7
16.10 Incrementingand Decrementing Registers (INC,DEC) 16-9
16.11 Program Loops (DINZ) . ..ottt et 16-10
16.12 Setting, Clearing and Moving bits (SETB, CLR, CPL, MOV) 16-11
16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC) 16-13
16.14 Value Comparison (CINE)ot 16-13
16.15 Less Than and Greater Than Comparison (CINE) 16-15
16.16 Zero and Nonzero Decisions (JZ,INZ)ccoiiiiiiiinnan. 16-15
16.17 Performing Additions (ADD, ADDC)cciiiiiiiiiiiinennn. 16-16
16.18 Performing Subtractions (SUBB), 16-17
16.19 Performing Multiplication (MUL) i, 16-18
16.20 Performing Division (DIV)t e 16-18
16.21 Shifting Bits (RR, RRC, RL, RLC)ttt 16-19
16.22 Bit-Wise Logical Intructions (ANL, ORL, XRL) 16-20
16.23 Exchanging Register Values (XCH) i, 16-21
16.24 Swapping Accumulator Nibbles (SWAP) 16-21
16.25 Exchanging Nibbles between Accumulator and Internal RAM (XCHD) . 16-22
16.26 Adjusting Accumulator for BCD Addition (DA) 16-22
16.27 Using the Stack (PUSH, POP) i 16-23
16.28 Setting the Data Pointer, DPTR (MOVDPTR)cooo... 16-25
16.29 Reading and Writing External RAM/Data Memory (MOVX) 16-25
16.30 Reading Code Memory/Tables (MOVC) ..., 16-26
16.31 Using Jump Tables (JMP @A+DPTR) 16-27

16-1

Description

16.1 Description

16.2 Syntax

16-2

Assembly language is a low-level, pseudo-English representation of the mi-
crocontroller’'s machine language. Each assembly language instruction has a
one-to-one relation to one of the microcontroller’'s machine-level instructions.

High-level languages, such as ‘C’, Basic, Visual Basic, etc. are one or more
steps above assembly language, in that no significant knowledge of the under-
lying architecture is necessary. It is possible (and common) for a developer to
program a Visual Basic application in Windows without knowing much of any-
thing about the Windows API, much less the underlying architecture of the Intel
Pentium. Furthermore, a developer who has written code in ‘C’ for Unix will not
have significant problems adapting to writing code in ‘C’ for Windows, or a mi-
crocontroller such as an 8052; while there are some variations, the C compiler
itself takes care of most of the processor-specific issues.

Assembly language, on the other hand, is very processor specific. While a
prior knowledge of assembly language with any given processor will be helpful
when attempting to begin coding in the assembly language of another proces-
sor, the two assembly languages may be extremely different. Different archi-
tectures have different instruction sets, different forms of addressing. In fact,
only general concepts may “port” from one processor to another.

The low-level nature of assembly language programming requires an under-
standing of the underlying architecture of the processor for which one is devel-
oping. This is why we explained the 8052’s architecture fully before attempting
to introduce the reader to assembly language programming in this document.
Many aspects of assembly language may be completely confusing without a
prior knowledge of the architecture.

This section of the document will introduce the reader to 8052 assembly lan-
guage, concepts, and programming style.

Each line of an assembly language program consists of the following syntax,
each field of which is optional. However, when used, the elements of the line
must appear in the following order:

1) Label—a user-assigned symbol that defines this instruction’s address in
memory. The label, if present, must be terminated with a colon.

2) Instruction—an assembly language instruction that, when assembled,
will perform some specific function when executed by the microcontroller.
The instruction is a psuedo-English “mnemonic” which relates directly to
one machine language instruction.

3) Comment—the developer may include a comment on each line for inline
documentation. These comments are ignored by the assembler but may
make it easier to subsequently understand the code. A comment, if used,
must be preceded with a semicolon.

Description

In summary, then, a typical 8052 assembly language line might appear as:

MYLABEL: MOV A, #25h ;This is just a sample comment

In this line, the label is MYLABEL. This means that if subsequent instructions
in the program need to make reference to this instruction, they may do so by
referring to the label “MYLABEL” rather than the memory address of the in-
struction.

The 8052 assembly language instruction in this line is MOV A #25h. This is the
actual instruction that the assembler will analyze and assemble into the two
bytes 74 25. The first number, 744, is the 8052 machine language instruc-
tion (opcode) “MOV A #dataValue”, which means “Move the value dataValue
into the Accumulator.” In this case, the value of dataValue will be the value of
the byte that immediately follows the opcode. We want to load the Accumulator
with the value 25 and the byte following the opcode is 254. As you can see,
there is a one-to-one relationship between the assembly language instruction
and the machine language code that is generated by the assembler.

Finally, the instruction above includes the optional comment ;This is just a
sample comment. The comment must always start with a semicolon. The
semicolon tells the assembler that the rest of the line is a comment that should
be ignored by the assembler.

All fields are optional and the following are also alternatives to the above syntax:

Label without instruction and comment; LABEL:

Line with label and instruction: LABEL: MOV A,#25h

Line with instruction and comment: MOV A,#25h ;This is just a comment
Line with label and a comment; LABEL: ;This is just a comment

Line with just a comment: ;This is just a sample comment

All of the above permutations are completely valid. It is up to the developer
which components of the assembly language syntax will be used. However,
when used, they must follow the above syntax and in the correct order.

NOTE: It does not matter what column each field begins in. That is, a label may start
at the beginning of the line or after any number of blank spaces. Likewise, an instruc-
tion may start in any column of the line, as long as it follows any label that may also
be on that line.

16.3 Number Bases

Most assemblers are capable of accepting numeric data in a variety of number
bases. Commonly supported are decimal, hexadecimal, binary, and octal.

Decimal: To express a decimal number in assembly language, simply enter
the number as normal.

Hexadecimal: To express a hexadecimal number, enter the number as a hex-
adecimal value, and terminate the number with the suffix “h”. For example, the

8052 Assembly Language 16-3

Description

16.4 Expressions

hexadecimal number 45 would be expressed as 45h. Furthermore, if the hexa-
decimal number begins with an alphabetic character (A, B, C, D, E, or F), the
number must be preceded with a leading zero. For example, the hex number
E4 would be written as OE4h. The leading zero allows the assembler to differ-
entiate the hex number from a symbol because a symbol can never start with
a number.

Binary: To express a binary number, enter the binary number followed by a
trailing “B”, to indicate binary. For example, the binary number 100010 would
be expressed as 100010B.

Octal: To express an octal number, enter the octal number itself followed by
a trailing “Q”, to indicate octal. For example, the octal number 177 would be
expressed as 177Q.

As an example, all of the following instructions load the Accumulator with 30
(decimal):

MOV A, #30

MOV A,#11110B

MOV A, #1EH

MOV A, #36Q

You may use mathematical expressions in your assembly language instruc-
tions anywhere a numeric value may be used. For example, both of the follow-
ing are valid assembly language instructions:

MOV A,#20h + 34h ;Equivalent to #54h
MOV 35h + 2h,#10101B ;Equivalent to MOV 37h,#10101B

16.5 Operator Precedence

Mathematical operators within an expression are subject to the following order
of precedence. Operators at the same “level” are evaluated left to right.

Table 16-1.Order of Precedence for Mathematical Operators

Order Operator

1 (Highest) ()
2 HIGH LOW
3 * [MOD SHL SHR
4 EQNELTLEGT GE =<><<=>>=
5 NOT
6 AND

7 (Lowest) OR XOR

NOTE: If you have any doubt about operator precedence, it is useful to use paren-
theses to force the order of evaluation that you have contemplated. Even if it is not
strictly necessary, it is often easier to read mathematical expressions when paren-
theses have been added, even when the parentheses are not technically necessary.

16-4

Description

16.6 Characters and Character Strings

Characters and character strings are enclosed in single quotes and are con-
verted to their numeric equivalent at assemble time. For example, the follow-
ing two instructions are the same:

MOV A,#’'C’
MOV A, #43H

The two instructions are the same because the assembler will see the ‘C’ se-
quence, convert the character contained in quotes to its ASCIl equivalent
(43R), and use that value. Thus, the second instruction is the same as the first.

Strings of characters are sometimes enclosed in single quotes and sometimes
enclosed in double quotes. For example, Pinnacle 52 uses double quotes to
indicate a string of characters and a single quote to indicate a single character.

Thus:
MOV A, #'C’ ;Single character - ok
MOV A, #” STRING” ;String — ERROR! Can’t load a string into the

accumulator

Strings are invalid in the above context, although there are other special as-
sembler directives that do allow strings. Be sure to check the manual for your
assembler to determine whether character strings should be placed within
single quotes or double quotes.

16.7 Changing Program Flow (LIMP, SIMP, AJMP)

LIMP, SIMP and AJMP are used as a “go to” in assembly language. They
cause program execution to continue at the address or label they specify. For
example:

LJMP LABEL3 ;Program execution is transferred to LABEL3

LJMP 2400h ;Program execution is transferred to address 2400h
SJMP LABEL4 ;Program execution is transferred to LABEL4

AJMP LABEL7 ;Program execution is transferred to LABEL7

The differences between LIMP, SJIMP, and AJMP are:

(1 LJMP requires 3 bytes of program memory and can jump to any address
in the program.

1 SJMP requires 2 bytes of program memory, but can only jump to an ad-
dress within 128 bytes of itself.

1 AJMP requires 2 bytes of program memory, but can only jump to an ad-
dress in the same 2k block of memory.

These instructions perform the same task, but differ in what addresses they
can jump to, and how many bytes of program memory they require.

8052 Assembly Language 16-5

Description

LIMP will always work. You can always use LIMP to jump to any address
in your program.

SJIMP requires two bytes of memory, but has the restriction that it can only
jump to an instruction or label within 128 bytes before or 127 bytes after the
instruction. This is useful if you are branching to an address that is very close
to the jump itself. You save 1 byte of memory by using SIMP instead of AJMP.

AJMP also requires two bytes of memory, but has the restriction that it can only
jump to an instruction or label that is in the same 2k block of program memory.
For example, if the AJMP instruction is at address 0200y, it could only jump
to addresses between 0000y and 07FFy__It could not jump to 800y.

NOTE: Some optimizing assemblers allow you to use JMP in your code. While there
is no JMP instruction in the 8052 instruction set, the optimizing assembler will auto-
matically replace your JMP with the most memory-efficient instruction. That is, it will
try to use SIMP or AJMP if it is possible, but will resort to LIMP if necessary. This
allows you to simply use the JMP instruction and let the assembler worry about sav-
ing program memory whenever it is possible.

16.8 Subroutines (LCALL, ACALL, RET)

16-6

As in other languages, 8052 assembly language permits the use of subrou-
tines. A subroutine is a section of code that is called by a program, does a task,
and then returns to the instruction immediately following that of the instruction
that made the call.

LCALL and ACALL are both used to call a subroutine. LCALL requires three
bytes of program memory and can call any subroutine anywhere in memory.
ACALL requires two bytes of program memory and can only call a subroutine
within the same 2k block of program memory.

Both call instructions will save the current address on the stack and jump to
the specified address or label. The subroutine at that address will perform
whatever task it needs to and then return to the original instruction by execut-
ing the RET instruction.

For example, consider the following code:

LCALL SUBROUTINEl ;Call the SUBROUTINEl subroutine
LCALL SUBROUTINE2 ;Call the SUBROUTINE2 subroutine

SUBROUTINEl: {subroutine code} ;Insert subroutine code here

RET ;Return from subroutine

SUBROUTINE2: {subroutine code} ;Insert subroutine code here

RET ;Return from subroutine

Description

The previous code starts by calling SUBROUTINEL. Execution will transfer to
SUBROUTINE1 and execute whatever code is found there. When the MCU
hits the RET instruction, it will automatically return to the next instruction, which
is LCALL SUBROUTINE2. SUBROUTINEZ2 will then be called, execute its
code, and return to the main program when it hits its RET instruction.

NOTE: It is very important that all subroutines end with the RET instruction, and that
all subroutines exit themselves by executing the RET instruction. Unpredictable re-
sults will occur if a subroutine is called with LCALL or ACALL and a corresponding
RET is not executed.

NOTE: Subroutines may call other subroutines. For example, in the code above
SUBROUTINEL1 could include an instruction that calls SUBROUTINE2. SUBROU-
TINE2 would then execute and return to SUBROUTINEZL, which would then return
to the instruction that called it. However, keep in mind that every LCALL or ACALL
executed expands the stack by two bytes. If the stack starts at Internal RAM address
304 and 10 successive calls to subroutines are made from within subroutines, the
stack will expand by 20 bytes to 44.

NOTE: Recursive subroutines (subroutines that call themselves) are a very popular
method of solving some common programming problems. However, unless you
know for certain that the subroutine will call itself a certain number of times, it is gen-
erally not possible to use subroutine recursion in 8052 assembly language. Due to
the small amount of Internal RAM a recursive subroutine could quickly cause the
stack to fill all of Internal RAM.

16.9 Register Assignment (MOV)

MOV A, 25h
MOV 25h,A
MOV 80h,A
MOV A, #25h

One of the most commonly used 8052 assembly language instructions, and
the first to be introduced here, is the MOV instruction. 57 of the 254 opcodes
are MOV instructions, which is due to the fact that there are many ways data
can be moved between various registers using various addressing modes.

The MOV instruction is used to “move” data from one register to another—or
to simply assign a value to a register—and has the following general syntax:

MOV DestinationRegister,SourceValue

DestinationRegister always indicates the register or address in which Source-
Value will be stored, whereas SourceValue indicates the register the value will
be taken from, or the value itself if it is preceded by a pound sign (#).

For example:

;Moves contents of Internal RAM address 25h to accumulator
;Move contents of accumulator into Internal RAM address 25h
;Move the contents of the accumulator to PO SFR (80h)

;Moves the value 25h into the accumulator

8052 Assembly Language 16-7

Description

As is shown, the first parameter is the register, Internal RAM address, or SFR
address that a value is being moved to. Another way of looking at it is that the
first parameter is the register that is going to be assigned a new value.

Likewise, the second parameter tells the 8052 where to get the new value. Nor-
mally, the value of the second parameter indicates the Internal RAM or SFR
address from which the value should be obtained. However, if the second pa-
rameter is preceded by a pound sign, the register will be assigned the value
of the number that follows the pound sign (as is demonstrated in the last exam-
ple previously).

As already mentioned, the MOV instruction is one of the most common and
vital instructions that an 8052 assembly language programmer will use. The
prospective assembly language programmer must fully master the MOV in-
struction. This may seem simple, but it requires knowing all of the permuta-
tions of the MOV instruction and knowing when to use them. This knowledge
comes with time and experience, and by reviewing the “8052 Instruction Set
Overview” (Appendix A).

It is important that all types of MOV instructions be understood so that the pro-
grammer knows what types of MOV instructions are available, as well as what
kinds of MOV instructions are not available.

Careful inspection of the MOV commands in the instruction set reference will
reveal that there is no “MOV from ‘R’ register to ‘R’ register.” That is to say, the
following instruction is invalid:

MOV R2,R1 ; INVALID!!

This is a logical type of operation for a programmer to implement, but the in-
struction above is not valid because there is no “MOV from ‘R’ register to ‘R’
register” MOV instruction. Instead, the above must be programmed as:

MOV A,R1 ;Move R1 to accumulator
MOV R2,A ;Move accumulator to R2

Another combination that is not supported is “MOV indirectly from Internal
RAM to another Indirect RAM address”. Again, the following instruction is in-
valid:

MOV @RO,@R1 ;INVALID!!
This is not a valid MOV combination. Instead, this could be programmed as:

MOV A,@R1 ;Move contents of IRAM pointed to by R1 to accumulator
MOV @RO,A ;Move accumulator to Internal RAM address pointed to by RO

Also note that only RO and R1 can be used for “Indirect Addressing”.

NOTE: When needing to execute a type of MOV instruction that does not exist, it is gen-
erally helpful to use the Accumulator. If a given MOV instruction does not exist, it can
usually be accomplished by using two MOV instructions that both use the Accumulator
as a transfer or temporary register.

With this knowledge of the MOV instruction,some simple memory assignment
tasks can be performed.

16-8

Description

1) Clear the contents of Internal RAM address FFy:

MOV A, #00h ;Move the value 00h to the accumulator
(Accumulator=00h)

MOV RO, #0FFh ;Move the value FFh to RO (RO=0FFh)

MOV @RO,A ;jMove accumulator to @RO, thus clearing
contents of FFh

2) Clear the contents of Internal RAM address FF (more efficient):

MOV RO, #0FFh ;Move the value FFh to RO (R0O=0FFh)
MOV @RO, #00h ;Move 00h to @RO (FFh), thus clearing contents of FFh

3) Clear the contents of all bit memory (internal RAM addresses 20y through
2Fy): (note that this example will later be improved upon to require less
code)

MOV 20h,#00h ;Clear Internal RAM address 20h
MOV 21h,#00h ;Clear Internal RAM address 20h
MOV 22h,#00h ;Clear Internal RAM address 20h
MOV 23h,#00h ;Clear Internal RAM address 20h
MOV 24h,#00h ;Clear Internal RAM address 20h
MOV 25h,#00h ;Clear Internal RAM address 20h
MOV 26h,#00h ;Clear Internal RAM address 20h
MOV 27h,#00h ;Clear Internal RAM address 20h
MOV 28h,#00h ;Clear Internal RAM address 20h
MOV 29h,#00h ;Clear Internal RAM address 20h
MOV 2Ah,#00h ;Clear Internal RAM address 20h
MOV 2Bh,#00h ;Clear Internal RAM address 20h
MOV 2Ch, #00h ;Clear Internal RAM address 20h
MOV 2Dh,#00h ;Clear Internal RAM address 20h
MOV 2Eh, #00h ;Clear Internal RAM address 20h
MOV 2Fh, #00h ;Clear Internal RAM address 20h

16.10 Incrementing and Decrementing Registers (INC, DEC)

Two instructions, INC and DEC, can be used to increment or decrement the
value of a register, Internal RAM, or SFR by 1. These instructions are rather
self-explanatory.

The INC instruction will add 1 to the current value of the specified register. If
the current value is 255, it will “overflow” back to 0. For example, if the Accumu-
lator holds the value 240 and the INC A instruction is executed, the Accumula-
tor will be incremented to 241.

INC A ;Increment the accumulator by 1
INC R1 ;Increment R1 by 1

INC 40h ;Increment Internal RAM address 40h by 1

8052 Assembly Language 16-9

Description

The DEC instruction will subtract 1 from the current value of the specified regis-
ter. If the current value is 0, it will “underflow” back to 255. For example, if the
Accumulator holds the value 240 and the DEC A instruction is executed, the
Accumulator will be decremented to 239.

DEC A ;Decrement the accumulator by 1
DEC R1 ;Decrement R1 by 1

DEC 40h ;Decrement Internal RAM address 40h by 1

NOTE: Under some assembly language architectures, the INC and DEC instructions
set an overflow or underflow flag when the register overflows from 255 to 0 or under-
flows from 0 back to 255, respectively. This is NOT the case with the INC and DEC
instructions in 8052 assembly language. Neither of these instructions affects any
flags whatsoever.

16.11 Program Loops (DJINZ)

16-10

LOOP:

Many operations are conducted within finite loops. That is, a given code seg-
ment is executed repeatedly until a given condition is met.

A common type of loop is a simple “Counter Loop.” That is, a code segment
is executed a certain number of times and then finishes. This is accomplished
easily in 8052 assembly language with the DIJNZ instruction. DJNZ means
“Decrement, Jump if Not Zero”. Consider the following code:

MOV RO, #08h ;Set number of loop cycles to 8

INC A ;Increment accumulator (or do whatever the loop does)
DJNZ RO,LOOP ;Decrement RO, loop back to LOOP if RO is not 0
DEC A ;Decrement accumulator (or whatever you want to do)

This is a very simple counter loop. The first line initializes RO to 8, which will
be the number of times the loop will be executed. The second line, “LOOP”,
is the actual body of the loop. This could contain any instruction or instructions
the user wishes to execute repeatedly. In this case, the Accumulator is increm-
ented with the INC A instruction.

The interesting part is the third line with the DINZ instruction. This instruction
reads “Decrement the RO Register, and if it is not now zero jump back to
“LOOP”. This instruction will decrement the RO register. It will then check to see
if the new value is zero and, if it is not, will go back to LOOP. The first time this
loop executes, RO will be decremented from 08 to 07, then 07 to 06, and so
on until it decrements from 01 to 00. At that point, the DINZ instruction will fail
because the Accumulator is zero. That will cause the program to not go back
to “LOOP” and, thus, it will continue executing with the DEC instruction—or
whatever the user wants the program to do after the loop is complete.

DJNZ is one of the most common ways to perform programming loops that ex-
ecute a specific number of times. The number of times the loop will be execut-
ed depends on the initial value of the “R” register that is used by the DINZ in-
struction.

Description

16.12 Setting, Clearing, and Moving Bits (SETB, CLR, CPL, MOV)

One very powerful feature of the 8052 architecture is its ability to manipulate in-
dividual bits on a bit-by-bit basis. As mentioned earlier in this document, there
are 128 numbered bits (004 through 7F) that may be used by the user’s pro-
gram as bit variables. Additionally, bits 804 through FFy allow access to SFRs
that are divisible by 8 on a bit-by-bit basis. The two basic instructions to manipu-
late bits are SETB and CLR while a third instruction, CPL, is also often used.

The SETB instruction will set the specified bit, which means the bit will then
have a value of “1”, or “on”. For example:

SETB 20h ;Sets user bit 20h (sets bit 0 of IRAM address 24h to 1)
SETB 80h ;Sets bit 0 of SFR 80h (P0O) to 1

SETB P0.0 ;Exactly the same as the previous instruction

SETB C ;Sets the carry bit to 1

SETB TR1 ;Sets the TR1 bit to 1 (turns on timer 1)

As illustrated by these instructions, SETB can be used in a variety of circum-
stances.

The first example, SETB 20h, sets user bit 20y. This corresponds to a user-de-
fined bit because all bits between 00y and 7Fy are user bits. It is clear that bit 204
is the 32nd user-defined bit because these 128 user bits reside in internal RAM
at the addresses of 20y through 2Fy. Each byte of Internal RAM by definition
holds 8 individual bits, so bit 20, would be the lowest bit of Internal RAM 24,.

NOTE: It is very important to understand that Bit memory is a part of internal RAM. In
the case of SETB 20h, we concluded that bit 20y is actually the low bit of internal RAM
address 24y. That is because bits 00-07y are internal RAM address 20y, bits 08-0F
are internal RAM address 21y, bits 104-17 are internal RAM address 224, bits 18-1F
are internal RAM address 23y, and bits 204-27 are internal RAM address 24,.

The second example, SETB 80h, is similar to SETB 20h. Of course, SETB 80h
sets bit 80y. However, remember that bits 804-FFy correspond to individual
bits of SFRs, not Internal RAM. Thus, SETB 80h will actually set bit 0 of SFR
80y, which is the PO SFR.

The next instruction, SETB PO0.0, is identical to SETB 80h. The only difference
is that the bit is now being referenced by name rather than number. This will
make the assembly language code more readable. The assembler will auto-
matically convert “P0.0” to 80y when the program is assembled.

The next example, SETB C, is a slightly special case. This instruction sets the carry
bit, which is a very important bit that is used for many purposes. It is also special
in that there is an opcode that means “SETB C”. While other SETB instructions
require two bytes of program memory, the SETB C instruction only requires one.

Finally, the SETB TR1 example shows a typical use of SETB to set an individu-
al bit of an SFR. In this case, TR1 is TCON.6 (bit 6 of TCON SFR, SFR address
88y). Due to TCON's SFR address being 88, it is divisible by 8 and, thus, ad-
dressable on a bit-by-bit basis.

8052 Assembly Language 16-11

Description

16-12

The CLR instruction functions in the same manner, but clears the specified bit.
For example:

CLR 20h ;Clears user bit 20h to 0
CLR P0.0 ;Sets bit 0 of PO to O
CLR TR1 ;Clears TR1 bit to 0 (stops timer 1)

These two instructions, CLR and SETB, are the two fundamental instructions
used to manipulate individual bits in 8052 assembly language.

A third bit instruction, CPL, complements the value of the given bit. The instruc-
tion syntax is exactly the same as SETB and CLR, but CPL will “flip the bit.”
If the bit was cleared, CPL will set it; likewise, if the bit was set it will be cleared.

NOTE: An additional instruction, CLR A, exists which is used to clear the contents
of the Accumulator. This is the only CLR instruction that clears an entire SFR, rather
than just a single bit. The CLR A instruction is the equivalent of MOV A,#00h. The
advantage of using CLR A is that it requires only one byte of program memory,
whereas the MOV A #00h solution requires two bytes. An additional instruction, CPL
A, also exists. This instruction will flip (complement) each bit in the Accumulator.
Thus if the Accumulator holds 255 (11111111 binary), it will hold 0 (00000000 binary)
after the CPL A instruction has executed.

Finally, the MOV instruction can be used to move bit values between any given
bit—user or SFR bits—and the Carry bit. The instructions MOV C,bit and
MOV bit,C allow these bit movements to occur. They function like the MOV in-
struction described earlier, moving the value of the second bit to the value of
the first bit.

Consider the following examples:

MOV C,P0.0 ;Move the value of the P0.0 line to the Carry bit
MOV C,30h :Move the value of user bit 30h to the Carry bit
MOV 25h,C ;Move the Carry bit to user bit 25h

These combination of MOV instructions that allow bits to be moved through
the Carry flag allow for more advanced bit operations without the need for “wor-
karounds” that would be required to move bit values if it were not for these
MOV instructions.

NOTE: The MOV instruction, when used with bits, can only move bit values to the
Carry bit and from the Carry bit. There is no instruction that allows you to copy directly
from one bit to the other bit with neither bit being the Carry bit. Thus, it is often neces-
sary to use the Carry bit as a temporary bit register to move a bit value from one user
bit to another user bit.

Description

16.13 Bit-Based Decisions and Branching (JB, JBC, JNB, JC, JNC)

It is often useful, especially in microcontroller applications, to execute different
code based on whether or not a given bit is set or cleared. The 8052 instruction
set offers five instructions that do precisely that.

JB means “Jump If Bit Set”. The MCU will check the specified bit and, if it is
set, will jump to the specified address or label.

JBC means “Jump If Bit Set, and Clear Bit". This instruction is identical to JB
except that the bit will be cleared if it was set. That is to say, if the specified bit
is set, the MCU will jump to the specified address or label, and also clear the
bit. In some cases, this can save the programmer the use of an extra CLR in-
struction.

JNB means “Jump If Bit Not Set”. This instruction is the opposite of JB. It tests
the specified bit and will jump to the specified label or address if the bit was
not set.

JC means “Jump If Carry Set.” This is the same as the JB instruction, but it only
tests the carry bit. An additional instruction was included in the instruction set
to test for this common conditionc because many operations and decisions are
based on whether or not the carry flag is set. Thus, instead of using the instruc-
tion “JB C,label”, which takes 3 bytes of program memory, the programmer
may use “JC label” which only takes 2.

JNC means “Jump If Carry Bit Not Set.” This is the opposite of JC. This instruc-
tion tests the carry bit and will jump to the specified label or address if the carry
bit is clear.

Some examples of these instructions are:

JB 40h,LABEL1 ;Jumps to LABEL1 if user bit 40h is set

JBC 45h,LABEL2 ;Jumps to LABEL2 if user bit 45h set, then clears it
JNB 50h,LABEL3 ;Jumps to LABEL3 if user bit 50h is clear

JC LABEL4 ;Jumps to LABEL4 if the carry bit is set

JNC LABELS5 ;Jumps to LABEL5 if the carry bit is clear

These instructions are very common, and very useful. Virtually all 8052
assembly language programs of any complexity will use them—especially the
JC and JNC instructions.

16.14 Value Comparison (CINE)

CJINE (Compare, Jump if Not Equal) is a very important instruction. It is used
to compare the value of a register to another value and branch to another
instruction based on whether or not the values are the same. This is a very
common way of building a switch...case decision structure or an
IF...THEN...ELSE structure in assembly language.

The CJNE instruction compares the values of the first two parameters of the
instruction and jumps to the address contained in the third parameter, if the first
two parameters are not equal.

8052 Assembly Language 16-13

Description

CJINE A, #24h,NOT24 ;Jumps to the label NOT24 if accumulator isn’t 24h

CJINE A, 40h,NOT40 ;Jumps to the label NOT40 if accumulator is
;different than the value contained in Internal
;RAM address 40h

CJINE R2, #36h,NOT36 ;Jumps to the label NOT36 if R2 isn’t 36h

CJNE @R1, #25h,NOT25 ;Jumps to the label NOT25 if the Internal RAM
;address pointed to by Rl does not contain 25h

As illustrated above, the MCU will compare the first parameter to the second
parameter. If they are different, it will jump to the label provided,; if the two val-
ues are the same then execution will continue with the next instruction. This
can allow the programming of extensive condition evaluations.

For example, to call the PROC_A subroutine if the Accumulator is equal to
30y, call the CHECK_LCD subroutine if the Accumulator equals 42y, and calll
the DEBOUNCE_KEY subroutine if the Accumulator equals 50y. This could
be implemented using CINE as follows:

CJINE A, #30h, CHECK2 ;If A is not 30h, jump to CHECK2 label

LCALL PROC A ;If A is 30h, call the PROC_A subroutine

SJMP CONTINUE ;When we get back, we jump to CONTINUE label
CHECK2 : CJINE A, #42h, CHECK3 ;If A is not 42h, jump to CHECK3 label

LCALL CHECK LCD ;If A is 42h, call the CHECK LCD subroutine

SJMP CONTINUE ;When we get back, we jump to CONTINUE label
CHECK3: CJINE A, #50h, CONTINUE ;If A is not 50h, we jump to CONTINUE label

LCALL DEBOUNCE KEY ;If A is 50h, call the DEBOUNCE KEY subroutine
CONTINUE: {Code continues here} ;The rest of the program continues here

As is shown, the first line compares the Accumulator with 30y. If the Accumula-
tor is not 30y, it jumps to CHECK?2, where the next comparison will be made.
If the Accumulator is 30y, however, program execution continues with the next
instruction, which calls the PROC_A subroutine. When the subroutine returns,
the SIMP instruction causes the program to jump ahead to the CONTINUE
label—thus, bypassing the rest of the checks.

The code at label CHECK2 is the same as the first check. It first compares the
Accumulator with 42y and then either branches to CHECKS3, or calls the
CHECK_LCD subroutine and jumps to CONTINUE. Finally, the code at
CHECKS3 does a final check for the value of 50y. This time there is no SIMP
instruction following the call to DEBOUNCE_KEY because the next instruction
is CONTINUE.

Code structures similar to the one shown above are very common in 8052
assembly language programs to execute certain code or subroutines based
on the value of some register, in this case the Accumulator.

16-14

Description

16.15 Less Than and Greater Than Comparison (CIJNE)

Often it is necessary not to check whether a register is or is not a certain value,
but rather to determine whether a register is greater than or less than another
register or value. As it turns out, the CINE instruction—in combination with the
carry flag—allows us to accomplish this.

When the CINE instruction is executed, not only does it compare parameterl
to parameter2 and branch if they are not equal, but it also sets or clears the
Carry bit based on which parameter is greater or less than the other.

[If parameterl < parameter2, the Carry bit will be set to 1.
[If parameterl > parameter2, the Carry bit will be cleared to 0.

This is the way an assembly language program can do a greater than/less than
comparisons. For example, if the Accumulator holds some number and we
want to know if it is less than or greater than 40y, the following code could be
used:

CJINE A,#40h,CHECK LESS ;If A is not 40h, check if < or > 40h

LIMP A IS_EQUAL ;If A is 40h, jump to A IS EQUAL code
CHECK LESS: JC A IS LESS ;If carry is set, A is less than 40h
A IS GREATER: {Code} ;Otherwise, it means A is greater than 40h

The code above first compares the Accumulator to 404. If they are the same,
the program will fall through to the next line and jump to A_IS_EQUAL because
we already know they are equal. If they are not the same, execution will contin-
ue at CHECK_LESS. If the Carry bit is set, it means that the Accumulator was
less than the second parameter (40y), so we jump to the label A IS LESS,
which will handle the “less than” condition. If the Carry bit was not set, execu-
tion will fall through to A_IS_GREATER, at which point the code for the “greater
than” condition would be inserted.

NOTE: Keep in mind that CINE will clear the Carry bit if parameterl is greater than
or equal to parameter2. That means it is very important that the values are checked
to be equal before using the carry bit to determine less than/greater than. Otherwise,
the code might branch to the “greater than” condition when, in fact, the two parame-
ters are equal.

16.16 Zero and Non-Zero Decisions (JZ/INZ)

Sometimes, it is useful to be able to simply determine if the Accumulator holds
a zero or not. This could be done with a CINE instruction, but because these
types of tests are so common in software, the 8052 instruction set provides two
instructions for this purpose: JZ and JNZ.

JZ will jump to the given address or label if the Accumulator is zero. The in-
struction means “Jump if Zero.”

JNZ will jump to the given address or label if the Accumulator is not zero. The
instruction means “Jump if Not Zero”.

8052 Assembly Language 16-15

Description

For example:

JZ ACCUM ZERO ;Jump to ACCUM ZERO if the Accumulator = 0
JNZ NOT ZERO ;jJump to NOT ZERO if the Accumulator is not 0

Using JZ and/or JNZ is much easier and faster than using CINE, if all that is
needed is to test for is a zero/non-zero value in the Accumulator.

NOTE: Other non-8052 architectures have a “Zero Flag” that is set by instructions,
and the zero-test instruction tests that flag, not the Accumulator. The 8052, however,
has no Zero Flag, and JZ and JNZ both test the value of the Accumulator, not the
status of any flag.

16.17 Performing Additions (ADD, ADDC)

16-16

The ADD and ADDC instructions provide a way to perform 8-bit addition. All
addition involves adding some number or register to the Accumulator and
leaving the result in the Accumulator. The original value in the Accumulator is
always overwritten with the result of the addition.

ADD A, #25h ;Add 25h to whatever value is in the Accumu-
lator

ADD A,40h ;Add contents of Internal RAM address 40h to
Accumulator
ADD A,R4 ;Add the contents of R4 to the Accumulator

ADDC A,#22h ;Add 22h to the Accumulator, plus carry bit

The ADD and ADDC instructions are identical except that ADD will only add
the Accumulator and the specified value or register, whereas ADDC will also
add the carry bit. The difference between the two, and the use of both, can be
seen in the following code.

This code assumes that a 16-bit number is in Internal RAM address 30y (high
byte) and address 314 (low byte). The code will add 10454 to the number, leav-
ing the result in addresses 32y (high byte) and 33y (low byte).

MOV A,31h ;Move value from IRAM address 31h (low byte) to Accumulator
ADD A, #45h ;Add 45h to the Accumulator (45h is low byte of 1045h)
MOV 33h,A ;Move the result from Accumulator to IRAM address 33h
MOV A, 30h ;Move value from IRAM address 30h (hi byte) to Accumulator
ADDC A, #10h ;Add 10h to the Accumulator (10h is the high byte of 1045h)
MOV 32h,A ;Move result from Accumulator to IRAM address 32h

This code first loads the Accumulator with the low byte of the original number
from Internal RAM address 31y. It then adds 454 to it. It does not matter what
the Carry bit holds because the ADD instruction is used. The result is moved
to 33y and the high byte of the original address is moved to the Accumulator
from address 304. The ADDC instruction then adds 10y to it, plus any carry
that might have occurred in the first ADD step.

Description

Both ADD and ADDC will set the Carry flag if an addition of unsigned integers
results in an overflow that cannot be held in the Accumulator, or will clear the
Carry flag if the . For example, if the Accumulator holds the value FOy and the
value 20y is added to it, the Accumulator will hold the result of 104 and the
Carry bit will be set. The fact that the Carry bit is set can subsequently be used
with the ADDC to add the Carry into the next addition instruction.

The Auxiliary Carry (AC) bit is set if there is a carry from bit 3, and cleared
otherwise. For example, if the Accumulator holds the value 2Ey and the value
05y is added to it, the Accumulator will then equal 33y as expected, but the
AC bit will be set because the low nibble overflowed from En to 34.

The Overflow (OV) bit is set if there is a carry out of bit 7 but not out of bit 6,
or out of bit 6 but not out of bit 7. This is used in the addition of signed numbers
to indicate that a negative number was produced as a result of the addition of
two positive numbers, or that a positive number was produced by the addition
of two negative numbers. For example, adding 20 to 704 (two positive num-
bers) would produce the value 904. However, if the Accumulator is being
treated as a signed number the value 90y would represent the number —104.
The fact that the OV bit was set means that the value in the Accumulator should
not really be interpreted as a negative number.

NOTE: Many other (non-8052) architectures only have a single type of ADD instruc-
tion—one that always includes the carry bit in the addition. The reason 8052 assem-
bly language has two different types of ADD instructions is to avoid the need to start
every addition calculation with a CLR C instruction. Using the ADD instruction is the
same as using the CLR C instruction followed by the ADDC instruction.

16.18 Performing Subtractions (SUBB)

The SUBB instruction provides a way to perform 8-bit subtraction. All subtrac-
tion involves subtracting some number or register from the Accumulator and
leaving the result in the Accumulator. The original value in the Accumulator is
always overwritten with the result of the subtraction.

SUBB A,#25h ;Subtract 25h from whatever value is in the Accumulator
SUBB A, 40h ;Subtract contents of IRAM address 40h from the Accumulator
SUBB A,R4 ;Subtract the contents of R4 from the Accumulator

The SUBB instruction always includes the Carry bit in the subtract operation.
That means if the Accumulator holds the value 38y and the Carry bit is set, sub-
tracting 64 will result in 31y (384 — 64 — Carry bit).

NOTE: Since SUBB always includes the Carry bit in its operation, it is necessary to
always clear the Carry bit (CLR C) before executing the first SUBB in a subtraction
operation, so that the prior status of the Carry flag does not affect the instruction.

SUBB sets and clears the Carry, Auxiliary Carry, and Overflow bits in much the
same way as the ADD and ADDC instructions.

8052 Assembly Language 16-17

Description

SUBB will set the Carry bit if the number being subtracted from the Accumula-
tor is larger than the value in the Accumulator. In other words, the Carry bit will
be set if a borrow is needed for bit 7. Otherwise, the Carry bit will be cleared.

The Auxiliary Carry (AC) bit will be set if a borrow is needed for bit 3; otherwise,
it is cleared.

The Overflow (OV) bit will be set if a borrow into bit 7 but not into bit 6, or into
bit 6 but not into bit 7. This is used when subtracting signed integers. If sub-
tracting a negative value from a positive value produces a negative number,
OV will be set. Likewise, if subtracting a positive number from a negative num-
ber produces a positive number the OV flag will also be set.

16.19 Performing Multiplication (MUL)

In addition to addition and subtraction, the 8052 also offers the MUL AB in-
struction to multiply two 8-bit values. Unlike addition and subtraction, the MUL
AB instruction always multiplies the contents of the Accumulator by the con-
tents of the “B” register (SFR FOR). The result overwrites both the Accumulator
and B, placing the low byte of the result in the Accumulator and the high byte
of the result in B.

For example, to multiply 20y by 75y, the following code could be used:

MOV A, #20h ;Load Accumulator with 20h
MOV B, #75h ;Load B with 75h
MUL AB ;Multiply A by B

The result of 204 * 754 is OEAOy Thus, after the above MUL instruction, the
Accumulator would hold the low byte of the answer (AOy) and B would hold the
high byte of the answer (OER). The original values of the Accumulator and B
are overwritten.

If the result is greater than 255, OV will be set; otherwise, it will be cleared. The
carry bit is always cleared and AC is unaffected.

NOTE: Any two 8-bit values may be multiplied using MUL AB and a result will be ob-
tained that will fit in the 16 bits available for the result in A and B. This is because
the largest possible multiplication would be (FFy ¢ FFy), which would result in
FEO1y, which comfortably fits into the 16-bit space. It is not possible to overflow a
16-bit result space with two 8-bit multipliers.

16.20 Performing Division (DIV)

16-18

The last of the basic mathematics functions offered by the 8052 is the DIV AB
instruction. This instruction, as the name implies, divides the Accumulator by
the value held in the B register. Like the MUL instruction, this instruction always
uses the Accumulator and B registers. The integer (whole-number) portion of
the answer is placed in the Accumulator and any remainder is placed in the
B register. The original values of the Accumulator and B are overwritten.

Description

For example, to multiply F34 by 134, the following code could be used:

MOV A,#0F3h ;Load Accumulator with F3h

MOV B,#13h ;Load B with 13h

DIV AB ;Divide A by B

The result of F3y/13y is 0Cy with remainder OFy. Thus, after this DIV instruc-
tion, the Accumulator will hold the value 0Cy, and B will hold the value OF.

The Carry bit and the Overflow bit are both cleared by DIV, unless a division by
zero is attempted, in which case the Overflow hit is set. In the case of division by
zero, the result in the Accumulator and B after the instruction are undefined.

NOTE: While the MUL instruction takes two 8-bit values and multiplies them into a
16-bit value, the DIV instruction takes two 8-bit values and divides it into an 8-bit
value and a remainder. The 8052 does not provide an instruction that will divided
a 16-bit number.

NOTE: You may find source code that includes 16-bit and 32-bit division in the Code
Library at http://www.8052.com/codelib.phtml.

16.21 Shifting Bits (RR, RRC, RL, RLC)

The 8052 offers four instructions that are used to shift the bits in the Accumulator
to the left or right by one bit: RR A, RRC A, RL A, RLC A. There are two instruc-
tions that shift bits to the right, RR A and RRC A, and two that shift bits to the
left, RL A and RLC A. The RRC and RLC instructions are different in that they
rotate bits through the carry bit, whereas RR and RL do not involve the carry bit.

RR A ;Rotate accumulator one bit to right, bit 0 is rotated into bit 7

RRC A ;Rotate accumulator to right, bit 0 is rotated into carry,
;carry into bit 7

RL A ;Rotate accumulator one bit to left, bit 7 is rotated into bit 0

RLC A ;Rotate the accumulator to the left, bit 7 is rotated into
;jcarry, carry into bit 0

Figure 16-1 shows how each of the instructions manipulates the eight bits of

the Accumulator and the carry bit.

Using the shift instructions is, obviously, useful for bit manipulations. They can
also be used, however, to quickly multiply or divide by multiples of two.

Figure 16-1.
RR A—Rotate Accumulator Right One Bit RL A—Rotate Accumulator Left One Bit
4. V4. W4 V4. V4. V. WAl \ FONPFP NI NP NP NP NP
][[elsTeeT=]"]0] lofl7felsfefefe]r]o]
RRC A—Rotate Accumulator Right One Bit, with Carry RLC A—Rotate Accumulator Left One Bit, with Carry
s V. W Ve Vi Was. Wan \ F NP NP NP NI NP NI NP
(o] [7fefsfsefofef1]o] Lol lelslelale]r]o]

8052 Assembly Language 16-19

Description

For example, there are two ways to multiply the Accumulator by two:

MOV B, #02h ;Load B with 2
MUL AB ;Multiply Accumulator by B (2), leaving low
;byte in Accumulator

Or you could simply use the RLC instruction:

CLR C ;Make sure carry bit is initially clear
RLC A ;Rotate left, multiplying by two

This may look like the same amount of work, but to the MCU it is not. The first
approach requires four bytes of program memory and takes six instruction
cycles, whereas the second approach requires only two bytes of program
memory and two instruction cycles. Therefore, the RLC approach requires half
as much memory and is three times as fast.

16.22 Bit-Wise Logical Instructions (ANL, ORL, XRL)

The 8052 instruction set offers three instructions to perform the three most
common types of bit-level logic: “Logical And” (ANL), “Logical OR” (ORL), and
“Logical Exclusive OR” (XRL). These instructions are capable of operating on
the Accumulator or an internal RAM address.

Some examples of these instructions are:

ANL A, #35h ;Performs logical AND between Accumulator and 35h,
;result in Accumulator

ORL 20h,A ;Performs logical OR between IRAM 20h and
;Accumulator, result in IRAM 20h

XRL 25h,#15h ;Performs logical Exclusive OR between IRAM 25h and 15h

ANL (Logical AND) looks at each bit of parameterl and compares it to the
same hit in parameter2. If the bit is set in both parameters, the bit remains set;
otherwise, the bit is cleared. The result is left in parameterl.

ORL (Logical OR) looks at each bit of parameterl and compares it to the same
bit in parameter2. If the bit is set in either parameter, the bit remains set; other-
wise, the bit is cleared. The result is left in parameterl.

XRL (Logical Exclusive OR) looks at each bit of parameterl and compares it to
the same bit in parameter2. If the bit is set in one of the two parameters, the bit
is set; otherwise, the bit is cleared. That means if the bit is set in both parameters,
it will be cleared. If it is set in one of the two parameters, it will remain set. If it is
clear in both parameters it will remain clear. The result is left in parameterl.

The following tables show the result of each of these logical instructions when
applied to each possible bit combination.

Table 16-2.Results of ANL, ORL, and XRL

16-20

ANL 0 1 ORL 0 1 XRL
1 0 0 0 0 1 0
0 0 1 1 1 1 1

Description

Most of the logical bit-wise instructions affect entire 8-bit memory registers.
However, the following instructions are available to perform logical operations
on the Carry bit. The result of these instructions is always left in the Carry bit
and the other bit is left unchanged.

ANL C,bit—this instruction will perform a logical AND between the Carry bit
and the specified bit. If both bits are set, the Carry bit will remain set. Other-
wise, the Carry bit is cleared.

ANL C,bit—this instruction performs a logical AND between the Carry bit and
the complement of the specified bit. That means if the specified bit is set, the
Carry bit will be ANDed as if it were clear. If the specified bit is clear, it will be
ANDed with the Carry bit as if it were set.

ORL C,bit—This instruction will perform a logical OR between the Carry bit
and the specified bit. If either the Carry bit or the specified bit is set, the Carry
bit will be set. If neither bit is set, the Carry bit will be cleared.

ORL C,bit—This instruction performs a logical OR between the Carry bit and
the complement of the specified bit. That means if the specified bit is set, the
Carry bit will be ORed as if it were clear. If the specified bit is clear, it will be
ORed with the Carry bit as if it were set.

NOTE: There is no XRL that operates on the Carry bit and another bit. Only the ANL
and ORL logical instructions are supported with the Carry bit.

16.23 Exchanging Register Values (XCH)

Very often, the value of the Accumulator will need to be swapped with the value
of another SFR or Internal RAM address. The XCH instruction allows this to
be done quickly and without using additional temporary holding variables.

XCH will take the value of the Accumulator and write it to the specified SFR
or internal RAM address, while at the same time writing the original value of
that SFR or internal RAM address to the Accumulator.

For example:
MOV A, #25h ;Accumulator now holds 25h

MOV 60h,#45h ;Internal RAM 60h now holds 45h

XCH A,60h ;Accumulator now holds 45, IRAM 60h now holds 25h

16.24 Swapping Accumulator Nibbles (SWAP)

In some cases it can be useful to swap the nibbles of the Accumulator. A nibble
is 4 bits, therefore, there are two nibbles in the Accumulator. The “high” nibble
consists of bits 4 through 7 while the “low” nibble consists of bits 0 through 3.

The SWAP A instruction will swap the two nibbles of the Accumulator. For ex-
ample, if the Accumulator holds the value 56y, the SWAP instruction will con-
vert it to 65y. Likewise, F7 will be converted into 7Fy. Note that the SWAP
A instruction is identical to executing four RL A instructions.

8052 Assembly Language 16-21

Description

16.25 Exchanging Nibbles Between Accumulator and Internal RAM (XCHD)

The XCHD instruction swaps the low nibble of the Accumulator with the low
nibble of the register or internal RAM address specified in the instruction.

For example, if RO holds 874 and the Accumulator holds 244, then the XCHD
RO instruction will result in the Accumulator holding 27 and RO holding 84y,.
The low nibbles of the two were simply exchanged.

| personally have never used this instruction, but presumably it is useful in some
situations because 11 opcodes of the 8052 instruction set are devoted to it.

16.26 Adjusting Accumulator for BCD Addition (DA)

16-22

DA A is a very useful instruction if you are doing BCD-encoded addition.

First of all, BCD stands for Binary Coded Decimal. BCD is a form of expressing
two decimal digits in a single 8-bit byte. When any 8-bit value is expressed in
hexadecimal, it can be expressed as a number between 00 and FF. Obviously,
it is possible to express all normal decimal numbers between 0 and 99 in hexa-
decimal format so that, printed as hexadecimal, they appear to be decimal
numbers.

For example, the decimal digits “00” would be represented in BCD as, not sur-
prisingly, 00y. The decimal digits “09” would be represented in BCD as 09,.
The decimal digits “10”, however, would be represented in BCD as 104—but
note that 10y is actually 16 (decimal). That is because in BCD, the hex values
A, B, C, D, E, and F are not used. Thus, 094 jumps to 104.

This is all fine and good, but what happens when adding two BCD numbers
together? For example, what happens when adding 38 to 25? Obviously, in
normal decimal math, 38 + 25 = 63. Ideally, doing the same addition on BCD
encoded values would have the same result.

However, 38 encoded as BCD is 38h and 25 encoded as BCD is 25.
38y + 254 = 5Dy. Obviously the result no longer looks like a decimal value—and
that is not surprising because BCD does not use the values A, B, C, D, E, and
F.

What DA A does is automatically “adjusts” the Accumulator after the addition
of two BCD values. In the above example, executing DA A when the Accumu-
lator holds 5Dy will result in the Accumulator being adjusted to 63y, thus “right-
ing” our rather strange addition.

The details of how DA A works and why are not extremely important to this tuto-
rial and would tend to confuse things rather than explain them. If planning on
doing BCD addition, please investigate this instruction further. For the majority
that will not be doing BCD addition, you can safely ignore this instruction.

Description

16.27 Using the Stack (PUSH/POP)

The stack, as with any processaor, is an area of memory that can be used to store
information temporarily, including the return address for returning from subroutines
that are called by ACALL or LCALL. The 8052 automatically handles the stack
when making an ACALL or LCALL, as well as when returning with the RET instruc-
tion. The stack is also handled automatically when an interrupt service routine is
triggered by an interrupt, and when returning from the ISR with the RETI instruction.

Additionally, the stack can be used for the user’s purposes and for temporary
storage by using the PUSH and POP instructions. The PUSH instruction will
“push” a value onto the stack, and the POP instruction will “pop” the last value
pushed on the stack. A value may be saved temporarily by PUSHing it onto
the stack, and that value may be restored by POPping it.

NOTE: The stack operates on a Last In-First Out (LIFO) basis. When PUSHing the
values 4, 5, and 6 (in that order), POPping them one at a time will return 6, 5, and
then 4. The value most recently added to the stack is the first value that will come
off when executing a POP instruction.

An example using the PUSH and POP instruction is:

MOV A, #35h ;Load the Accumulator with the value 35h
PUSH ACC ;Push accumulator onto stack, Accumulator still holds 35h
ADD A,#40h ;Add 40h to the Accumulator, Accumulator now holds 75h
POP ACC ;Pop the accumulator from stack, Accumulator holds

;35h again

The above code is functionally useless—it does not do anything useful. How-
ever, it does illustrate how to use PUSH and POP.

The code starts by assigning 35 to the Accumulator. It then PUSHes it onto
the stack. Then it adds 40y to the Accumulator, just to change the Accumulator
to something else. At this point the Accumulator holds 75y. Finally, it POPs
from the stack into the Accumulator. The POP restores the value of the Accu-
mulator to 354 because the last value pushed onto the stack was 354.

NOTE: When PUSHing or POPping the Accumulator, it must be referred to as ACC
because that is the memory location of the SFR. The instructions PUSH A and POP
A may not be assembled —both of these will result in an assemble-time error in most,
if not all, 8052 assemblers.

When using PUSH, the SFR or Internal RAM address that follows the PUSH
instruction is the value that will be PUSHed onto the stack. For example, PUSH
ACC will push the value of the Accumulator onto the stack. PUSH 60h will push
the value of Internal RAM address 60y onto the stack.

Likewise, the internal RAM address or SFR that follows a POP instruction indi-
cates where the value should be stored when it is POPped from the stack. For
example, POP ACC will pop the next value off the stack and into the Accumulator.
POP 40h will pop the next value off the stack and into Internal RAM address 404.

8052 Assembly Language 16-23

Description

16-24

The stack itself resides in internal RAM and is “managed” by the SP (Stack
Pointer) SFR. SP will always point to the Internal RAM address from which the
next POP instruction should obtain the data.

(1 POP will return the value of the Internal RAM address pointed to by SP,
then decrement SP by 1.

(1 PUSH will increment SP by 1, then store the value at the IRAM address
then pointed to by SP.

SP is initialized to 074 when an 8052 is first powered up. That means the stack
will begin at 08 and start growing from there. If PUSHing 16 values onto the
stack, for example, the stack will occupy addresses 08y through 17.

Using the stack can be both useful and powerful, but it can also be dangerous
when incorrectly used. Remember that the stack is also used by the 8052 to
remember the return addresses of subroutines and interrupts. If the stack is
modified incorrectly, it is very easy to cause the program to crash or to behave
in very unexpected ways.

When using the stack, all but advanced stack users should observe the follow-
ing recommendations:

1) When using the stack from within a subroutine or interrupt service routine,
be sure there is one POP instruction for every PUSH instruction. If the
number of POPs and PUSHes are not the same, the program will probably
end up crashing.

2) When using PUSH, be sure to always POP that value off the stack—even
if not in a subroutine.

3) Be sure not to jump over the section of code that POPs a value off the
stack. A common error is to PUSH a value onto the stack and then execute
a conditional instruction that jumps over the instruction that POPs that val-
ue off. This results in an unbalanced stack and will probably end up crash-
ing the program. Remember, not only must there be a POP instruction for
every PUSH, but a POP instruction must be executed for every PUSH that
is executed. Make sure the program does not jump over the POP instruc-
tions.

4) Always make sure to use the RET instruction to return from subroutines
and RETI instruction to return from interrupt service routines.

5) As a practice, only modify SP at the very beginning of the program in order
to initialize it. Once the stack is being used or subroutine calls are being
made, do not modify SP.

6) Make sure the stack has enough room. For example, the stack will start
by default at address 08y. If there is a variable at Internal RAM address
204 then the stack has only 24 bytes available to it, from 084 through 1F.
If the stack is 24 bytes long and another value is pushed onto the stack or
another subroutine is called, the variable at 204 will be overwritten.

Keep in mind, too, that the 8052 can only use Internal RAM for its stack. Even
if there is 64k of External RAM, the 8052 can only use its 256 bytes of internal
RAM for the stack. That means the stack should be used very sparingly.

Description

16.28 Setting the Data Pointer DPTR (MOV DPTR)

The next few instructions use the Data Pointer (DPTR), the 8052’s only 16-bit
register. DPTR is used to point to a RAM or ROM address when used with the
instructions that will be explained below.

As described earlier, DPTR is really made up of two SFRs: DPH and DPL
which hold the high and low bytes, respectively, of the 16-bit Data Pointer.
However, when DPTR is used to access memory, the 8052 will treat DPTR as
a single address.

To set the DPTR to a specific address, the MOV DPTR instruction is used. This
instruction sets both DPH and DPL in a single instruction. However, DPTR can
still be modified by accessing DPH and DPL directly, as illustrated in the follow-
ing examples:

MOV DPTR,#1234h ;Sets DPTR to 1234h

MOV DPTR, #0F123h ;Sets DPTR to F123h

MOV DPH, #40h ;Sets DPTR high-byte to 40h (DPTR now 4023h)
MOV DPL, #56h ;Sets DPTR low-byte to 56h (DPTR now 4056h)

As shown, the first two instructions set DPTR first to 1234y and then to F123}.
The next example sets DPH to 40y, leaving DPTR’s low byte unchanged. Since
the low byte is still 23 from the previous example, changing DPH to 40y will re-
sult in DPTR being equal to 4023y,. Finally, we change the low byte to 56, leaving
the high byte unchanged. Since the high byte was set to 404 in the previous ex-
ample, setting the low byte to 56 will leave the DPTR with a value of 4056.

In other words, MOV DPTR,#1567h is the same as MOV DPH,#15h and MOV
DPL,#67h. The advantage to using MOV DPTR is that it uses only three bytes
of memory and two instruction cycles, wheras the other method requires six
bytes of memory and four instruction cycles.

16.29 Reading and Writing External RAM/Data Memory (MOVX)

The 8052 generally has 128 or 256 bytes of Internal RAM that is accessed with
the MOV instruction, as described earlier. However, many projects will require
more than 256 bytes of RAM. The 8052 has the ability of addressing up to 64k
of “External RAM” which takes the form of additional, off-chip ICs.

The MOVX instruction is used to read and write to external RAM. The MOVX
instruction has four forms:

1) MOVX A,@DPTR: Reads External RAM address DPTR into the
Accumulator.

2) MOVX A ,@R#: Reads External RAM address pointed to by RO or R1 into
the Accumulator.

3) MOVX @DPTR,A: Sets External RAM address DPTR to the value of the
Accumulator

4) MOVX @R#,A: Sets the External RAM address held in RO or R1 to the
value of the Accumulator

The first two forms move data from External RAM into the Accumulator wheras
the last two forms move data from the Accumulator into External RAM.

8052 Assembly Language 16-25

Description

MOVX with DPTR—when using the forms of MOVX that use DPTR, DPTR wiill
be used as a 16-bit memory address. The 8052 will automatically communi-
cate with the off-chip RAM and obtain the value of that memory address and
store it in the Accumulator (MOVX A,@DPTR), or will write the Accumulator
to the off-chip RAM (MOVX @DPTR,A).

For example, to add 5 to the value contained in external RAM address 23564,
the following code could be used:

MOV DPTR, #2356h ;Set DPTR to 2356h

MOVX A,@DPTR ;Read External RAM address 2356h into Accumulator
ADD A, #05h ;Add 5 to the Accumulator
MOVX @DPTR, A ;Write new value of Accumulator back to

;External RAM 2356h

MOVX with @R0 or @R1—when using the forms of MOVX that use @RO or
@R1, RO or R1 will be used to determine the address of external RAM to ac-
cess. Since both RO and R1 are 8-hit registers, these forms of MOVX can only
be used to access external RAM addresses 0000 through 00FFy, unless ac-
tions are taken to control the high byte of the address.

16.30 Reading Code Memory/Tables (MOVC)

It is often useful to be able to read code memory itself from within a program.
This allows for the placement of data or tables in code memory to be read at
run time by the program itself. This is accomplished by the MOVC instruction.

The MOVC instruction comes in two forms: MOVC A,@A+DPTR and
MOV A,@A+PC. Both instructions move a byte of code memory into the
Accumulator. The code memory address from which the byte is read depends
on which of the two forms is used.

MOV C A,@A+DPTR will read the byte from the code memory address calcu-
lated by adding the current value of the Accumulator to that of DPTR. For ex-
ample, if DPTR holds the value 1234y and the Accumulator holds the value
10y, the instruction would copy the value of code memory address 1244, into
the Accumulator. This can be thought of as an “absolute” read because the
byte will always be read from the address contained in the two registers, Accu-
mulator and DPTR. DPTR is initialized to point to the first byte of the table, and
the Accumulator is used as an offset into the table.

For example, perhaps there is a table of values that resides at 2000y in code
memory. A subroutine needs to be written that obtains one of those six values
based on the value of the Accumulator. This could be coded as:

MOV A, #04h ;Set Accumulator to offset into the
;table we want to read
LCALL SUB ;Call subroutine to read 4th byte of the table

SUB: MOV DPTR, #2000h ;Set DPTR to the beginning of the value table
MOVC A, @A+DPTR ;Read the 5th byte from the table

RET ;Return from the subroutine

16-26

SUB:

Description

MOVC A,@A+PC will read the byte from the code memory address calculated
by adding the current value of the Accumulator to that of the Program Counter;
that is, the address of the currently executing instruction. This can be thought
of as a “relative” read because the address of code memory from which the
byte will be read depends on where the MOVC instruction is found in memory.
This form of MOVC is used when the data to be read immediately follows the
code that is to read it.

For example, if the data in the above example were located right after the rou-
tine that read it, instead of being located at code memory 2000y, the subrou-
tine could be changed to:

INC A ;Increment Accumulator to account for RET instruction
MOVC A,@A+PC ;Get the data from the table

RET ;Return from subroutine

DB 01h,02h,03h,04h,05h ;The actual data table

Note that in the above example we first increment the Accumulator by 1. This
is because the value of PC will be that of the instruction immediately following
the MOVC instruction—in this case, the RET instruction. The RET opcode is
not needed, but the data that follows RET is. Since the RET instruction re-
quires one byte of code memory, the Accumulator needs to be INCremented
by 1 byte to “skip over” the RET instruction.

NOTE: The value that the Accumulator must be incremented by is the number of
bytes between the MOVC instruction and the first data of the table being read. For
example, if the RET instruction above were replaced with an LIMP instruction, which
is 3 bytes long, the INC A instruction would be replaced with ADD A,#03h to
increment the Accumulator by 3.

16.31 Using Jump Tables (JMP @A+DPTR)

CHECK1:

CHECK2:

A frequent method for quickly branching to many different areas in a program
is the use of jump tables. For example, to branch to different subroutines based
on the value of the Accumulator, this could be accomplished with the CINE
instruction, which has already been covered:

CJINE A, #00h, CHECK1 ;If it’s not zero, jump to CHECK1

AJMP SUBO ;Go to SUBO subroutine
CJINE A, #01h, CHECK2 ;If it’s not 1, jump to CHECK2
AJMP SUB1 ;Go to SUB1 subroutine

The above code will work, but if each additional possible value will increase
the size of the program by 5 bytes—3 bytes for the CINE instruction and 2 by-
tes for the AJMP instruction.

A more efficient way is to create a “jump table” by using the IMP @A+DPTR
instruction. Like the MOVC @A+DPTR, this instruction will calculate an ad-
dress by summing the Accumulator and DPTR, and then jump to that address.
Therefore, if DPTR holds 20004 and the Accumulator holds 14y, the JMP in-
struction will jump to 2014y.

8052 Assembly Language 16-27

Description

16-28

JUMP_TABLE:

Consider the following code:

RL A ;Rotate Accumulator left, multiply by 2
MOV DPTR, #JUMP_ TABLE ;Load DPTR with address of jump table
JMP @A+DPTR ;Jump to the corresponding address
AJMP SUBO ;Jump table entry to SUBO

AJMP SUB1

This code first takes the value of the Accumulator and multiplies it by two by shift-
ing the Accumulator to the left by one bit. Since each AJMP entry in
JUMP_TABLE is two bytes long, the Accumulator must first be multiplied by two.

The code then loads the DPTR with the address of the JUMP_TABLE and pro-
ceeds to JMP to the address of the Accumulator plus DPTR. Since we already
know that we want to jump to the offset indicated by the Accumulator, no addi-
tional checks are necessary. We jump directly into the table that jumps to our
subroutine. Each additional entry in the jump table will require only two addi-
tional bytes (two bytes for each AJMP instruction).

NOTE: It almost always makes a good idea to use a jump table if there are two or
more choices based on a zero-based index. A jump table with just two entries, like
the above example, will save one byte of memory over using the CINE approach,
and will save three bytes of memory for each additional entry.

Chapter 17

Keil Simulator

Chapter 17 describes the Keil Simulator and its functions.

Topic Page
17.1 DeSCription e e 17-2
L17.2 TIMEIS oottt e e e e e 17-4
17.3 TIMr 2 ottt e 17-11
17.4 Watchdog Timert 17-12
17.5 System Timer ..ot e e 17-15
17.6 Control ClOCK 17-15
17.7 Analog-to-Digital Convertert 17-16
17.8 Accumulator/Shifter 17-19
17.9 INterrUPtS ..o 17-28
17.00 POItS .t 17-29
17.11 Serial Peripheral Interface (SPI) 17-30
17.12 pVision 2Debug Program Example 17-35
17.13 Serial Port /O oo 17-37
17.14 Additional RESOUICEottt 17-42

17-1

Description

17.1 Description

17-2

Along with this package, Texas Instruments Inc. has furnished the user with a uVi-
sion2 Integrated Development Environment (IDE). It is a standard Windows ap-
plication. The uVision2 is an integrated software development platform that com-
bines a robust screen editor, project manager with make facilities. In addition, the
Keil package has an integrated source-level debugger that contains a high-speed
simulator that gives the user the ability to simulate the entire 8051 system. This
includes the full complement of the 8051 resources, and the MSC1210 specific
on-chip peripherals and external hardware peripherals. The user can configure
the uVision2 platform for the attributes and peripherals specific to the particular
member of the TI MSC1210 family that is being targeted. The process for accom-
plishing this is outlined in the Keil Software Getting Started manual.

The pVision2 supports the 8051 C compiler, macro assembler, linker/locator
and an object-HEX converter. This gives the user the ability to speed up the
embedded system’s development. For more details on the array of develop-
ment tools available on the pVision2 system, please refer to the “Development
Tools” chapter in the Getting Started and Creating Applications manual.

The uVision2 has an integrated source-level debugger with a high-speed CPU
and peripheral simulator. The various development tools, including the editor,
file manager, project manager, window manager and so on, are described in
the chapter on development tools. The Peripheral Selection needs special
attention though, since some of its contents are MSC1210 specific.

When the target system is properly selected, in the debug mode, one has ac-
cess to the full complement of special MSC1210 peripherals. Some of the pe-
ripherals available on simulator are common to the standard 8051 device,
while the others are specific to the MSC1210. The following are the contents
of the Simulator Peripheral listing.
1) Interrupts
2) Portl/O

a) Port 0, b) Portl, c) Port2, d) Port3
3) Serial

a) Serial 0, b) Serial 1
4) Timers

a) Timer 0, b) Timer 1, c) Timer 2, d) System Timer, e) Watchdog
5) SPI
6) Analog-to-Digital Converter
7) Accumulator/Shifter
8) Clock Control

The use and the applications of these peripherals are discussed later in this
manual.

Description

The pVision2 IDE also has a complement of debugging, simulation and soft-
ware testing facilities. These facilities are described in the “uVision2 Debug
Functions” chapter of the Keil Getting Started and Creating Applications Users
Manual. More information is provided in the “Debug Facilities” Section of this
manual.

The Graphical User Interface (GUI) core of the Keil Simulator consists of a
collection of individual dialog windows that represent the respective MSC1210
peripheral module that is being simulated. These dialogs facilitate interaction
between the user/developer and the simulator. Facilities are provided for data
to be written to, or read from, the various Special Function Registers (SFRs)
that control or reflect the status of the individual peripheral modules being sim-
ulated by the Keil development platform. These interactive fields include the
following:

1) Various editable and noneditable text windows. The contents of these win-
dows represent the current value that is programmed into the respective
SFR or the present value of the pertinent register.

2) There are also special selection list windows that display a list of choices
from which the user is allowed to choose. The default settings for these
list items are selected and displayed upon the activation of the peripheral
module. Any selection made through this medium directly affects the set-
ting of the pertinent SFR, on the basis of the location of the affected bit(s)
within the register’s bit pattern. If the SFR is represented in the peripheral
module, its value is immediately updated and displayed in the proper text
display window.

3) There are also some labeled check boxes whose statuses, “Checked” or
“Cleared”, directly affect the associated bit within the respective SFR’s bit
pattern. A checked status on a check box item represents a logic “1”, while
a cleared status on a check box item represents a logic “0”. Conversely,
the current status of the corresponding bit within the associated SFR'’s bit
pattern is reflected in the pertinent check box.

4) In addition, there are some non-editable text field windows whose values or
statuses neither represent the value of any SFR nor the status of any particu-
lar bit field within an SFR. Instead, the contents of these text fields represent
the information inferred or deducted from a combination of statuses and con-
ditions of the pertinent peripheral module(s). For instance, in the snap shot
of the peripheral module depicted in Figure introd.1, Timer/Counter O is set
for the Timer option and in Mode 2. Referring to Chapter 8, “Timers,” when
the GATE is in an active state, and INTO# is active, if the TRO bit of the TCON
SFR is also set, the Timer will continue running, hence, the “Run” status dis-
played in the non-editable text window labeled “Status”. If the TRO bit of
TCON represented by the check box is activated once, clearing the state of
the TRO check box, the state of the non-editable text window labeled “Status”
will revert to “Stop”, implying that the Timer 0 has stopped running.

Keil Simulator 17-3

Description

17.2 Timers

Figure 17-1.

17-4

Note that parameter specification through the various dialog boxes is just an
alternative data entry facility for modifying the content of the corresponding
SFR on the fly, during the debugging process or during the software develop-
ment process. This could have just as easily been accomplished by modifying
the program so that the software reprograms the pertinent SFR, or by directly
accessing and modifying the internal data address of the corresponding SFR.
For instance, to change the Mode selection of the Timer/Counter O module to
Mode 3, one could:

1) Assign 0x1B to the variable TMOD in the software program, recompile the
program and re-execute, or

2) Perform a direct memory access to the RAM memory at address location
D:0x89, and overwrite its contents with a value of Ox1B, or

3) Place the cursor on the editable text window labeled TMOD, and replace
its contents with a value of Ox1B.

4) Activate the Mode selection box, and choose the item marked “3: Two 8
Bit Timer/Cnt”.

This is true for all the modules implemented in this simulator.

The Simulator Peripheral Timer has three Timer/Counter modules: Timers 0,
1, and 2; a System Timer module; and a Watchdog module. The Timer/Count-
er 0 module is identical to the Timer/Counter 1, so we shall only describe the
operations of Timer/Counter 0.

Timer/Counter 0 |

— Timer/Counter 0
kMode

|2: 3 Bit auta-reload j
ITimer j
TCOM: ID:-:'M- THOD: |14

THO: IEI:-:SE TLO: |0=5C

[¥ TOPin [~ TFO
Cortral

Statuis; IFIun

The first of the two selection boxes provides a list of four timer- operating modes
upon activation, from which the user is allowed to choose. The various timing
modes are discussed in the chapter on Timers. The default mode is Mode 0, the
13-Bit Timer/Counter mode. This selection properly updates the content of the

Description

TMOD on the basis of the logic statuses of the M1 and MO bits of the Timer Mode
control register (TMOD). The second selection box allows the user to select be-
tween the timer and the counter modes of operation. The result of the selection
is also properly reflected in the value displayed in the TMOD window, according
to the status of the C/TO bit in the TMOD register. In the same vein, the TLO and
THO registers are properly associated with the contents of the TLO and THO win-
dows within the dialog. The logical states of the TO pin (P3.4), TFO (Timer/Counter
0 interrupt flag), the TRO, INTO# and GATE bits of the TCON SFR for instance,
are reflected in the “Checked/Cleared” statuses of the “TO Pin”, TFO, TRO, GATE
and INTO# check box displays, respectively.

The interrupt trigger type is determined by the state of the ITO bit within the TCON
register. Clearing this bit implies level triggering, and setting it implies falling edge
triggering. If the level triggering option is selected, care must be taken to make
sure that the state of the INTO# pin returns to a high state (non- active) before re-
turning from an ISR, otherwise the interrupt request will be reasserted. For most
intents and purposes, it is unrealistic that the developer would be able to switch
the check box INTO# “on” and “off” fast enough to avoid causing an unintended
interrupt request. For this reason, an edge triggered interrupt option is recom-
mended for simulation. Whatever the case may be, both trigger types are accom-
modated and implemented in this simulation package.

Due to the MSC1210 peripherals being modular and relatively independent, even
if they share registers, each peripheral has it own unique set of bits that are associ-
ated and affiliated with it. For instance, referring to the Chapter 8, “Timers,” the sta-
tus and setup hits for both Timer/Counter 0 and Timer/Counter 1 occupy separate
bit positions within the same TCON SFR. The same holds for the TMOD register.

Note that the bit value or status of any editable bit can be modified by changing
the content of the corresponding control. Modifying such entries must be done
with care because it might alter the process of the program that is being executed.

17.2.1 Timer 0 & 1 Example

Due to this sample program setting the interrupt trigger edge type for “edge
trigger”, a transition from “Checked” to “Cleared” on the INTO# line will induce
an interrupt request.

The contents of the registers THO, TLO, TH1 and TL1 in Figure Timers 1 reflect
the snapshot values of the Timer 0 MSB, Timer 0 LSB, Timer 1 MSB and Timer
1 LSB registers respectively. As explained earlier, altering the contents of any
of these register displays is equivalent to altering the contents of the associat-
ed device register outside the operational confines of the program being exe-
cuted.

Keil Simulator 17-5

Description

Figure 17-2.

Figure 17-3.

Figure 17-4.

17-6

Timer/Counter 0 | X| |

— Timer/Caunter 0
ki ode

2 8 Bit auto-reload

ITimer j
TCOM: |IZI>:III¢1 THOD: [0x12

TH: IDHSE TLO: |0=5C

[¥ TOPin [TFO
Control

Statuis: IS top

[T TRO [T GATE W INTOH#

Parallel Port 3 |
— Port 3

7 Bits 0
P3|0FF v Ve e v v

PIDDRL: [0F WPV
P3DDRH: [014FF WMV

F'ins:ID:-:F? WiVl Vv

Timer/Counter 1 |
— Timer/Counter 11—
Mode
I'I: 16 Bit Tirmer/Counter j
ITimer j

TCOM: ||:|:-:|:|4 THOD: |III:-c12

TH1: [0x00 TL1: [0x00
vV T1Pin [~ TF1

Contral

Status IS top

Description

Figure 17-5.

Interrupt System |
Int Source |‘&dm|MMe|Hmﬂ halﬁ”*
F3.24nt0 0003H] 0 1] 1]
Tirner 0 QO0BH] 1 1]
F3.34nt1 0013H 1] 1 1]
Tirner 1 001EH] 1] 1]
Serial Rew 0 0023H] 1] o _
Serial #mit0. 0023H] 1] 1]
Timer 2 Q0ZEH] 1] 1]
F1.1/T2E= Q0ZEH 1 1] 1] 1]
Analog Low . 0033H n 1] 1]

Ciigital Low . 0033H n] 1]

One Second 003z2H n 1] 1] -

1| | »
Selected Interrupt

¥ EAL ’VI- ITI:E [IEQ [~ Ex0 F'ri.:IEI

The following is a listing of the C code used to demonstrate the timing and inter-
rupting features of Timer/Counters 0 and 1.

The included statements on the first three lines are the conventional ANSI C
include statements for adding the contents of different header files to a C pro-
gram. There are four routines including the main () program that are needed
to run this program. They are described in the following paragraphs.

#include ”MSC1210.h"

#include <math.h>

#include <stdio.h>

long int timer 0 overflow_ count;

int count_ start;

char end test;

void interrupt timerO ();// interrupt 1;// using 1

*********************************Setport ()*************************************

void setport (void)

{

P3DDRL &= O0xf0;

P3DDRL |= 0x07; //P30 input, P31 output
TF2 = CLEAR; T2 = CLEAR;
CKCON |= 0x20; // Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

//Initialize TH2:TL2 so that next clock generates first Baud Rate pulse
THL2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baudgen

//SCON: Async mode 1, 8-bit UART, enable rcvr; TI=CLEAR, RI = CLEAR

SCON = 0x50;
PCON |= 0x80; // Set SMODO for 16X baud rate clock

***************************interru pt tlmel’ 0 ()*********************************

Keil Simulator 17-7

Description

This is a type 1 interrupt, which implies that the vector address for this routine
is 0x06. If an interrupt request is issued, and there is no other interrupt request
of higher priority pending, and neither is an ISR from an interrupt source of
higher priority being processed, the processor makes a subroutine call to the
vector address location 0x06, from where it executes a long jump to the in-
tended ISR routine.

There is a counter variable of type LONG within this ISR, which allows the sys-
tem to monitor the number of overflow interrupts serviced during the course
of the test. In addition, since the Timer 0 is operating in Mode 1, 16 Bit Timer
with interrupt on overflow, the original value of the THO:TLO register pair must
be replenished at the end of each overflow cycle. The system is globally inter-
rupt disabled at the beginning of the routine, and then globally interrupt en-
abled at the end of the routine.

void interrupt_timerO () interrupt 1 using 1

{ /*This ISR is called when atype 1 interrupt causes the processor to vector
into the code segment address 0x0006.
Register Bank 1 is used, as opposed to the default Register Bank 0.*/

IE &= Ox7f; //disable global interrupt
timer_0O_overflow_count++; //Track number of timesthis ISR is called
/IReinitialize Timer O counters

THO = count_start / 256; //set THO for timerQ

TLO = count_start % 256; //set TLO for timerO

|E |= 0x80; /lenable global interrupt

}

***************************i nterru pt eXternaI O ()*********************************

Timer 0 is set up as a gated timer. This implies that while GATE is high and if
the INTO is low, there should not be any time count, regardless of the fact that
the TRO line is asserted. Hence, the Timer 0 “Status” window displays “Stop”.
While the GATE is high and TRO is to logic “1”, if the INTO line is raised, the
timer starts running, changing the “Status” display to “Run”. It continues run-
ning until the INTO line is dropped. This is essentially a pulse-width measure-
ment program.

If the number of calls is odd, the TRO bit for timer O is reset, which effectively
stops the timer, regardless of the state of GATE and INTO. The “Status” window
now displays “Stop”. The global variable end_test is set to a value of 1. This
allows the process to terminate the idle loop in the main program.

17-8

Description

void interrupt_externalO (void) interrupt 2 using 1

{

}

[*This ISR is called when atype 2 interrupt causes the processor to vector
into the code segment address 0x0013.
Register Bank 1 is used, as opposed to the default Register Bank 0.*/

i; /ldeclare static variablei, in order to track odd and even
/Inumber of callsto thisISR

if (1(i++ % 2))
{/leven number of callsincluding O

/fturn on timerO
TCON |=0x10; //Start timerO by setting TRO =1

{/lodd number of calls

TCON &= Oxef; //Stop timer0 by setting TRO=0
end_test = 1;

*********************************mai n ()**

time_lapse = (timer_O_overﬂow +

Every time the idle loop is interrupted, the MSC1210 vectors to the ISR of the
interrupting signal. If the interrupt source is the Timer 0 overflow, the processor
vectors to the interrupt_timer 0 () ISR, where the timer_0_overflow_count vari-
able is updated, and the THO:TLO register pair is replenished with a value of
0x0200. If the external Interrupt O signal is the interrupt source, the inter-
rupt_external 0 () is vectored to. This ISR keeps track of even and odd ISR
calls. For odd number of ISR calls, Timer 0's TRO bit is set, preparing the timer
to start running as soon as the INTO# line is raised. For even number of calls,
the ISR resets the TRO bit for Timer 0. This will stop Timer 0 from timing, wheth-
er the INTO# line is asserted or not. In addition, the value of end_test is
changed to 1, so that upon re-entering the idle loop, the value of end_test is
no longer 0, which forces the processor out of the loop.

Upon terminating the idle loop, the MSC1210 starts to compute the time lapse
within the period when the INTO# line was asserted and Timer 0's TRO bit was
high, or the time between the period when TRO and INTO# were high, and TRO
went low. This is purely arithmetic. It is important to state that THO and TLO nev-
er start at zero, hence the 0x0200 correction.

current_count — 00200\ 12 - ((x10000 — (0x0200)
(0x10000 — (x0200) 24 - 10°

The result of the Pulse Width computation is displayed on the Serial #1 display
window.

Subsequently, the MSC1210 enters an infinite loop.

Keil Simulator 17-9

Description

void main ()
{
float time_lapse, time lapse residual, current_count;
SP = 0x50; /lInitialize Stack Pointer
setport (); //Set up UART Comm. b/w Simulator and Serial #1Window

//Issue operation instructions

printf ("\nM SC1210 Ver:");

printf ("\nTimer 0 & 1 Test\n");

printf ("\nActivate the Timers 0 & 1 peripherals.”);

printf ("\nClear the Check Box for INTO. Thisis a Gated timer.”);

printf ("\nTo arm the Timer O, Clear the Check on INT1.”);

printf ("\nTiming begins when a Check is placed on INTO.");

printf ("\nTiming ends either by clearing INTO or Interrupting on INT1.”);

//Make INT1 edge triggered

TCON |= 0x04;

/lthis global variable track the number of times the Timer O timed out

timer_0_overflow_count = 0;

/track even or odd number of callsto ISR interrupt_externalO

end test =0;

[[Timer 0 THO:TLO will always count up from 0x0200 until overflow,

/fand will be replenished with 0x0200 indefinitely

count_start = 0x200;

[*Timer 0 and Timer 1 in Mode 1, timer mode, Gate 0 is closed and Gate
lisopened. System will clock if TRO set, only when INTO is asserted*/

TMOD = 0x19;

CKCON =0; //Select Divide by 12

//[Enable global interrupt, timer0 overflow and external_intl interrupts
IE = 0x86;

THO = count_start / 256; //set THO for timerO

TLO = count_start % 256; //set TLO for timerO

/* Indefinite Idle loop.

It breaks when interrupt_external0 () ISR is called an even number of times.
In that instance,end testissetto”1”,

otherwise, itis”0"*/

while (lend_test);

/*compute time elapsed, including the residual time in the 16-bit counter,
with correction for the 0x0200 counter offset.*/
current_count = THO * 256 + TLO; //current residual timerO count
time_lapse residual = (float)(current_count - count_start) /
(0x10000 - count_start);
time _lapse =time_lapse residual + timer_0_overflow_count;
time_lapse *= (12 / 24000000.) * (0x10000 - count_start);
printf ("\nThe Pulse Width for INTO was: %f Sec.”, time_lapse);

[lenter infinite loop
while (2);

17-10

17.3 Timer 2

Figure 17-6.

Description

The Timer/Counter 2 is quite different from the two other timers. The operation
mode is determined by the status of one or more of the register bits displayed

in the Table 17-1.

Table 17-1.
Register Bit Toggle Box Name
T2CON.TR2 TR2
T2CON.C/T2 TCIT
T2CON.CP/RL2 CP/RL2
T2CON.EXEN2 EXEN2
T2CON.TCLK TCLK
T2CON.RCLK RCLK
Timer/Counter 2 |
— Timer/Counter 2
b ode: ITimer;"EDunter dizabled
TEEDN:IDHDD [TRz
™ C/T2#
T2:|EI:-:EIEIEIEI
[CP/RL2#
HE.-'-‘-.F'E:IEI:-:EIEIEIEI [~ EXENZ
|40 |F“:! |- TCLE
IV Teex | | TF2 |~ Rk
¥ T2Fin| [ExF2

The hexadecimal equivalent of the bit pattern created by toggling the individual
bits is displayed in the editable text display, T2CON. Writing a number into this
window will correctly program the states of the respective bit; the same way
it would program the individual bits of the device’'s T2CON register.

By the same token, the checked or cleared state of the T2EX, T2 Pin, TF2 and
EXF2 boxes have the same effects on, or are affected the same way by the
P1.T2EX, T2CON.T2, T2CON.TF2 and T2CON.EXF2 pins respectively, as
discussed earlier.

The values and the implications of the contents of the editable text windows
T2 and RCAP2 are consistent with those of the actual device registers in the
MSC1210 system.

Keil Simulator 17-11

Description

17.4 Watchdog Timer

The process of setting, and the operation of the Watchdog Timer peripheral
facility are similar to those of the other peripherals we have considered so far.
However, this module has an additional feature: the special access setting or
resetting of the status conditions of the WDEN, WDDIS and WDRST check
boxes. These boxes directly or indirectly affect, or are affected by, the status
and conditions of the WDEN, WDDIS and WDRST bits of the WDTIMER SFR
respectively. Just as these bits, for security, require special access of an ap-
plication of a sequence of a logic “1”, followed by a logic “0” for their respective
setting and resetting in the actual MSC1210 device, so do the check boxes in
this simulator peripheral. Please see section 8.6.2, “Watchdog Timer,” of this
manual for the description of the special access programming.

To enable the Watchdog Timer system, the Watchdog Timer must be turned
on either by placing a check mark on the WDTON check box, or writing a logic
1 into the WDTON bit of the PWRMGT SFR from within the software. The ap-
propriate value must also be written into the watchdog timer register through
the WDTIMER editable text window. This would properly set the WDCNT
counter bits (lower five bits) of WDTIMER, through which watchdog expiration
time is defined. Then the special accessed procedure is performed for the
WDEN check box, involving the sequential process of activating the box
marked “1” followed by the box marked “0” that are associated with the WDEN
check box. While the watchdog timer is running, performing repeating the spe-
cial access process for the WDDIS will disable the watchdog timer. This will
automatically clear the check mark in the WDEN check box. On the other hand,
one could also perform the special access procedure on the WDRST check
box. This places a check on the associated check box. Figure 17-7 shows the
status of the watchdog peripheral mid-stride of a watchdog countdown.

Figure 17-7. Status of Watchdog Peripheral

17-12

Watchdog Timer |
—watchdag Timer
wDTON P woen @ [i] o]

] o
WOTIMER: [0:6 wopis 1] 0]
worsTI~ 1| 0]

Expire in: IEEEE.ESEED mz

The non-editable “Expire in:” display window indicates the amount of time left (in
milliseconds) before the user must perform either a timed access watchdog reset
or a watchdog disable, in order to avoid the watchdog timer initiating a system
reset (if watchdog reset is enabled). Note that WDTON does not enable the
Watchdog Timer Reset; it is enabled and disabled by the WDRESET bit in Flash
Configuration Register 0 (FCRO0). This register is located within the Flash
memory, therefore, it is not available for read or write in the execution mode. Refer
to the section on Flash programming for information on programming FCRO This
SFR is accessed using FADDR and FDATA. The WDRESET bit, when set, would

Description

enable the Watchdog Reset. This implies that upon Watchdog timeout, the sys-
tem automatically initiates a processor reset procedure. This also implies that
even if the Watchdog Timer interrupt is enabled, the associated ISR will never be
called. In order to be able to access the ISR, the Watchdog Reset must be dis-
abled. This is achieved by clearing the Watchdog Reset Enable bit. The default
state for this bit is logic 1, i.e., Watchdog Reset Enabled. The complete watchdog
facility cannot be simulated because the FADDRESS/FDATA access to the FCRO
is not implemented in this simulator version. However, an example is provided
here to show how the Watchdog system, with an interrupt facility, would have
been implemented were it possible to modify the WDRESET bit of FCRO.

17.4.1 Watchdog Reset Facility Example

#include”"MSC1210.H"

/lunsigned char datairgen_init _at_ Ox7f ; // image of IRQEN
#define FWVer 0x04

#define CONVERT 0

char watchdog_loop;

void init_watchdog ();
void watchdog_interrupt ();// interrupt 6;

void setport (void)

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output
TF2=CLEAR; T2=CLEAR;
CKCON |= 0x20; Il Set timer 2to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

/lInitialize TH2:TL 2 so that next clock generates first Baud Rate pulse

THL 2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baudgen

/ISCON: Async mode 1, 8-bit UART, enablercvr; TI=CLEAR, Rl = CLEAR
SCON = 0x50;

PCON |= 0x80; // Set SMODO for 16X baud rate clock

}

void init_watchdog ()
{
/*
/[For the actual device, thealogical AND of the content of the FRCO SFR
register with OxF7 must be performed to Disable the Watchdog Reset
so that the watchdog system can be controlled through the watchdog interrupt
facility.
FADDR = Ox7F;
FDATA &= ~0x08;
This must be done in the Parallel Programming mode, before the processor
starts up
*/
/*Turn Watchdog Timer On*/
PWRMGT |= 0x04;
/* Enable Watchdog Interrupt*/
EIE |= Ox10;
/* Set Watchdog Timer for 200 ms*/
WDTIMER = OxOE;
/* Enable Watchdog Timer*/

Keil Simulator 17-13

Description

}

WDTIMER |= 0x80;
WDTIMER &= ~0x80;

void watchdog_interrupt () interrupt 12 using 1

{

}

[*This routine cannot be tested since we cannot get around the
watchdog reset on the simulator. The watchdog reset cannot be disabled.
The watchdog interrupt is never activated, hence, 0x0063 is never vectored into.*/

staticint j;
/*Reset Watchdog. Thisis the sequential process of applying
Logic 1 followed by Logic 0*/

WDTIMER |= 0x20;
WDTIMER &= ~0x20;

/*Count Number of Resets*/

j++

printf ("\nWatchdog Reset %d Times’, j);
[* Terminate watchdog L oop*/
watchdog_loop = 0;

void main(void)

{

17-14

int ii;
setport ();
init_watchdog ();

[*start short loop to test WDDIS*/
for (i =0; i <4000; i ++)
{/lidle delay

j = (i *13) % 4000;

//Disable watchdog timer before timer expires
WDTIMER |= 0x40;
WDTIMER &= ~0x40;
//Reinitialize watchdog, sinice it has just been disabled
init_watchdog ();
[*start short loop to test WDRST*/
for (i=0;1<400; i ++)
{/lidle delay
j = (i *13) % 4000;
}

[*Reset Watchdog Timer before Watchdog Timer Expires*/
WDTIMER |= 0x20;
WDTIMER &= ~0x20;
[*Infinite loop to test Watchdog Timer Time out with interrupt.
In the case in which the Watchdog Reset cannot be disabled,
there will not be any interrupts. The watchdog time would
eventually run out, and a reset procedure will be activated*/
while (1)
{

watchdog_loop = 1;

while (watchdog_loop);

Description

17.5 System Timer

The MSC1210 device has many time ticks and an additional clock generator
(1MHz) that are derived, and, therefore, synchronized to the system clock.
Each time tick and clock generator has a set of registers that specify the value
of system clock divisions required to generate it. Some of these registers are
accessible through the System Timer peripheral windows. The editable “XTAL
Freg.:” window allows the user to set the crystal clock frequency. Setting it is
just a matter of entering the appropriate value. The ONEUSEC editable text
window sets the value of the device’s One Microsecond register. Referring to
the Chapter 8, “Timers,” it is apparent that bit patterns in the 5th, 6th and 7th
bit positions are ignored; they have no effect. This is also enforced in this pe-
ripheral. The “One Millisecond Low* and “One Millisecond High*" registers are
programmed through or displayed in the editable text windows ONEMSL and
ONEMSH, respectively. The One Hundred Milliseconds register, the Millisec-
ond Timer register and the Seconds Timer register are accessed through the
HUNDMS, STIMER and MSTIMER editable text windows. The statuses of the
Second System Timer Interrupt Status flag and the Millisecond System Timer
Interrupt Status flag are reflected in the checked or cleared statuses of the SE-
CIF and MSECIF check boxes respectively. The user can also force a Second
System Timer Interrupt or the Millisecond System Timer Interrupt by toggling
either of these check boxes. The SYSTEM Clock is turned on or turned off by
toggling the SYSTON check box. Please refer to Chapter 8, “Timers,” for a
more comprehensive discussion of the System Timer.

The corresponding time interval for the One Microsecond Timer, the One Milli-
second Timer, and the One Hundred Milliseconds Timer, on the bases of the
registered system clock frequency and the values of the pertinent timer regis-
ters, are displayed in the non-editable text windows 1us, 1ms and 100ms, re-
spectively.

17.6 Clock Control

The clock frequencies affecting the operations of the device timers, Watchdog
timers, UARTs and SPI systems depend on the states of the bit pattern of the
value written into the Clock Control register (CKCON). The stretch time for the
external memory access is also determined by this value. The value of the
CKCON register can either be written directly into the associated editable text
window, or modified or programmed by toggling the T2M, T1M and TOM check
boxes, which program and set the crystal frequency “divide-by-12" or
“divide-by-4” modes for Timers 2, 1 and 0, respectively. This allows the
MSC1210 to maintain backward compatibility with the standard 8051
processor. The default setting is the “divide-by-12" option. The MOVX stretch
can be modified by activating the “MOVX Duration (Cycles)” window. This
causes a display of selectable instruction cycle durations, from which, one
must be chosen. Please refer to the section for Timer Control for more detailed
information on the Clock Control register bit pattern. Note that (like the setting
of the WDTIMER text window in the Watchdog Timer peripheral) the 6th and
7th bit positions, though they may be programmed by the bit pattern written into
the CKCON editable text window, are ignored.

Keil Simulator 17-15

Description

17.7 Analog-to-Digital Converter

17-16

Data entry and bit pattern setting facilities for the Analog-to-Digital Converter
(ADC) peripheral are similar to those of the other peripherals. Some of the text
entry boxes are editable, while others are just read-only, and the check boxes
respond to mouse clicks with “Checked” and “Cleared” status. The editable
text entry windows marked ADCONO, ADCON1, ADCON2 and ADCON3
provide direct access to the ADC Control Registers 0, 1, 2 and 3, respectively.

Writing to the editable text entry box marked ADCONO sets the bit pattern for
the Burnout Detect bit, the Enable Internal Voltage Reference bit, the Voltage
Reference High Select bit, the Buffer Enable bit, and the bits that select the
Programmable Gain Amplification (PGA). All these bits could also be set or
modified by performing a Check/Clear activation on check boxes marked
BOD, VREF, BUF and VREFH, respectively, and selecting the desired pro-
grammable gain from the gain selection list that pops up when the box marked
PGA is activated.

The bit patterns for analog input data polarity, filter mode option selection, and
the device’s calibration mode control option selection can be programmed or
updated by entering appropriate byte data values into the editable text box
marked ADCONL1. Similarly, the polarity setting and the filter settling mode
selection option can also be programmed, alternatively, through the check box
marked POL and the selection box marked Filter. There is no data entry alter-
native for selecting the Calibration Mode Control bits.

Writing data values into the ADCON2 and ADCONS3 registers respectively sets
the ADC'’s decimation filter ratio values. The lower three bits of ADCON3 corre-
spond to the most significant three bits of the converter’s decimation ration,
and the whole ADCONZ2 byte represents the LSB for the decimation ratio. It
should be stressed that if the contents of either ADCONZ2 or ADCON3 are mod-
ified, the converter must be recalibrated.

The current ADC data conversion rate is automatically computed on the basis
of the System Clock setting. Its result is displayed in the non-editable text
display window marked “Data Rate”. The data conversion completed status,
is indicated by the logic state of the ADCIF bit of the PISTAT SFR. The 24-bit
result of the most recent analog-to-digital conversion, which is a concatenation
of the three result registers ADRESH, ADRESM and ADRESL, respectively,
is displayed in the text display window marked ADRESH/M/L.

The MSC1210 device has an input multiplexer which facilitates the selection
of any combination of any pair of differential inputs. If one selects any of the
input channels for the positive input of the differential input pair, any other input
could be selected for the negative input. Even, the same input could be se-
lected for both differential input pairs, if one wishes to perform the ADC conver-
sion calibration or quantify the conversion system’s noise measurements.

There are 10 possible analog input sources, including an on-chip temperature
sensor. Activating the analog input selection box associated with the pertinent
differential pair input, INP or INN, and clicking on the desired source could se-
lect any of these channels. The default selection for AINO for IMP, and AIN1
for INN.

Description

Figure 17-8.
Analog/Digital Converter
— &40 Canverter
apcon: [IEE E EESD o
ADCONY: [0400 [EVREF[¥ VREFH
ADCONZ:[01B | pea[1 =]
ADCON: [0408 Fiter: [aute =]
ODAC: [0+00 | ALk [0x03
Data Hate:lF
ADRESH/MJL: [0x000000 [~ POL
— Input Multiplexer

INP: [4IND 7]

INN: [&iN1 =]

—&nalog Input Channels

AIND: |0.0000000

AIN1: |0.0000000

ANI2: |0.0000000

AINE: |0.0000000

AlN4: |0.0000000

AINB: |0.0000000

AINE: |0.0000000

AIN7: |0.0000000

ACOM: |2.5000000

T ['C}: {25.000

— Reference Woltage:

YREFP: |3. 7a00000

Yref: |2.5000000

YREFN: |1 2500000

Figure 17-9.

Analog/Digital Converter
&40 Converter

ADCOND: P20 g ADON =

BOD I BUF
ADCONT:[0:35 [VREF [WREFH
ADCONZ: [0FF | pea[1 7]

ADCONZ: (000 | Filter: [2ute 7]

Data Rate: |385.2 v DRDY
ADRESH/MAL: IDH?D.*’-‘GD? [~ POL

— Input Multiplexer

IMP:[aig] NN ANt =]

—&nalog Input Channels
AIND: [1.1000000 | AINA: 0000000
ANIZ: 0.0000000 A3 [0.0000000
AIN4: [0.0000000 | AINS: [0.0000000
AINE: [0.0000000 | AIN7: [0.0000000
ACOM: [2.5000000 | T [°C] |25.000

— Reference Voltages————————————
WREFP: IS.FEDDDDD

Wrek: I‘I .2500000
WHEFN: |1.2EDDDDD

Keil Simulator 17-17

Description

Figure 17-10.

17-18

For each analog input source whose editable text windows are displayed un-
der the “Analog Input Channels” title, one could specify the desired analog
voltages to be converted. The pVision2 simulator also provides an alternate
way for entering analog voltage values by writing a script program that runs
in parallel with the program being executed. A sample code is appended.
Please refer to the pVision2 “Debug Functions” chapter in the Keil's Getting
Started and Creative Programming document for more information on writing
scripts.

The reference voltages are also specified through the VREFP and VREFN
editable text windows. Checks to evaluate the validity of the values placed in
these windows are also implemented. Should the difference between the val-
ue in VREFP and VREFN exceed 2.5V, the error message in Figure 17-10 is
displayed.

Invalid Reference Yoltages |

WREFP - WEEFM must not excesd 2.5% |
0ld waluez have been restored.

The value of internal reference voltage, which is based on the status of the
VREFH bit of the ACDONO SFR, is displayed on the non-editable Vref window.

Please refer to Chapter 12, “Analog-to-Digital Converters,” for more in-depth
discussions on the pertinent registers.

Description

17.8 Accumulator/Shifter

Figure 17-11.

The Accumulator/Shifter module implemented in this simulator package
allows the developer to experience how the automatic data averaging works.
It also allows the program to be tested while it is being developed.

Figure 17-11 shows a snapshot of the Accumulator/Shifter peripheral mid-stride of
a data acquisition cycle. The ASCON editable text field displays the programmed
value of the ASCON register, which sets the bits for the Summation/Shifter control,
the Summation Count, and the Shift Count. Please refer to the chapter on Accumu-
lator/Shifter for more in depth discussions on the features of these bit pattern set-
tings. The contents of this text field can also be updated. Like the other peripheral
modules in this simulator, the items and features that this register sets are also con-
figurable through the alternate data entry windows. The Summation/Shifter control
setting can be alternatively made by activating the control selection window marked
“Control”. This brings up a list of four different accumulator/shifter options: “No
Source”, “Accumulate”, “Shift” and “Accumulate & Shift”. One of these options must
be selected. The default is the “No Source” option. In the accompanying example,
as indicated in Figure 17-11, the “Accumulate & Shift” option was selected. Activat-
ing the “Acc Count” window permits the developer to determine the number of
24-bit data samples to be automatically accumulated. The count choice options are
2, 4, 8, 16, 32, 64, 128 and 256. Of these choices, one selection must be made.
Figure 17-11 shows that an accumulate count of 8 was selected. In the same man-
ner, the choice of Shift Count is made by activating the “Shift Count” selection win-
dow, and picking one of eight possible shift counts: 2, 4, 8, 16, 32, 64, 128 and 256.
Updating the content or the selection choice of any of these selection window items
will appropriately update the content of the ASCON editable text window.

Accumulator/S hifter Ed |

— Contral

.-i'-.SEEIN:ID:-:DE

Contral: ey rE =

Acc Count: IE "I |5_
Shift Count; IB "I

— &ccumulator Begisters
ACCR3 ACCR2 ACCR1 ACCRO
|00 [0xtE |Ox14 0x79

The intermediate result of the successive accumulations and the eventual
computation of the shifting process is displayed in the Accumulate Registers
editable text window sets marked ACCR3, ACCR2 ACCR1, and ACCRO.
These display windows reflect the values of the contents of the ACCR3,
ACCR2, ACCR1, and ACCRO registers in the MSC1210 device.

The non-editable text window across from the “Acc Count” shows the current
number of data samples accumulated into the Accumulator Registers for the

Keil Simulator 17-19

Description

current “Accumulate & Shift” cycle. The Accumulator/Shifter module depicted
in Figure 17-11 shows that five samples had been accumulated, and the con-
catenated result of the Accumulator Registers for the freeze-framed Accumu-
late & Shift cycle, up to that point, was 0XO0AE1479.

For this Accumulator/Shifter peripheral module, there is no possibility of an
overflow—even in the accumulate mode or cycle—since the worst-case
sample data value is OXOOFFFFFF (a 24-bit value), and the worst-case
accumulate or multiply count is 256. This makes the worst-case accumulate
result OxFFFFFFFF. This worst-case scenario is comfortably accommodated
because the Accumulator Register is 32 bits wide.

Please refer to the chapter on the Accumulator/Shifter for more detailed infor-
mation.

17.8.1 ADC/Accumulator/Shifter Example

17-20

An example program has been provided to give the user an insight into how
to use the ADC peripheral. In order to show how the accumulator will work with
this module, a software implementation of the combination of the ADC fea-
tures and the Accumulator/Shifter features have been provided. The C code
is grafted into this section. In addition, a script file that runs in parallel with this
C code is also provided. This script file is also written in C.

The ADC peripheral is set up with the following features:

VRer = 2.5V, Buff is turned on and BOD (Burn Out Detect) is turned off by
assigning a value of 0x20 to ADCONO. This register setting also selects an
unity gain amplification for the PGA. The bipolar option and the auto filter
options are selected through ADCONL1. Setting the value of register byte also
makes the calibration selection. In this case, the Reserved calibration option
was selected. The decimation ratio value of OXO0OFF was assigned to the
ACDON3:ADCONB2 register pair. Please refer to the chapter on the ADC
module for more information on the decimation ratio.

An ADC Conversion calibration is performed at the beginning of each data
conversion session. Calibration is initiated, and the processor enters an idle
state and stays there indefinitely, until the calibration process is completed.
When the converter calibration is completed, the ACC flag in the PISTAT SFR
is set. It is customary to discard the first 20 conversions after calibration.

The initialization of the Accumulator/Shifter is straightforward. A value of zero
must be written into the ASCON register. This action clears the contents of the
ACCR3, ACCR2, ACCR1 and ACCRO SFRs. Then the proper ASCON value,
in this case 0xD2, is assigned. This assignment value sets the accumulate-
count, Acc_count, to eight, and the Shift count value to eight. The “Accumulate
& Shift” option is also selected. This process of clearing and setting the value
of ASCON must be done at the beginning of every Acc_count data accumula-
tion cycle, otherwise the previous accumulate and shift result is combined with
the next accumulate and shift data collection.

This setting essentially causes the accumulator to collect eight consecutive
data samples from the ADC. Upon completion, it divides the result by eight,
by implementing a 3-bit position Arithmetic Right Shift. In other words, it com-
putes the average value of eight consecutive samples.

Description

The following is the C code for the sample exercise described above:

#include”"MSC1210.H”
/lunsigned char datairgen_init _at_ Ox7f ; // image of IRQEN
#define CONVERT 0

char converting, averaging;

void setport (void);

void init_accumulator ();

char init_a to_d ();
longread_a to d result ();

long read_accumulator_result ();

void init_accumulator ()

{
/*Clearing the ASCON register will always reset the concatenated string
of ACCR3:ACCR2:ACCR1:ACCRO registers. This must be performed prior to
initiating a fresh set of A/D Conversion result accumulation*/
ASCON = 0x00;
/* Set Accumulator/Shifter for 8 A/D result accumulation and averaging*/
ASCON = 0xD2;

}
void setport (void)

P3DDRL &= Oxf0;

P3DDRL |= 0x07; //P30 input, P31 output
TF2=CLEAR; T2=CLEAR;
CKCON |= 0x20; /I Set timer 2to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

/lInitialize TH2: TL 2 so that next clock generates first Baud Rate pulse

THL 2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baud generation

/ISCON: Async mode 1, 8-bit UART, enablercvr; TI=CLEAR, Rl = CLEAR
SCON = 0x50;

PCON |= 0x80; // Set SMODO for 16X baud rate clock

}

long read_accumulator_result ()

{
/* Convert the concatenated Accumulate Result string ACCR3:ACCR2:ACCR1:ACCRO

to aLONG integer*/
long j;

j =ACRS;
j<<=8§;

j +=ACR2
j<<=8

j +=ACR1,;
j <<= 8;

j +=ACRQ;

return (j);

Keil Simulator 17-21

Description

longread_a to d result ()

{
long j;

[*Convert A/D Conversion results from the ADRESH:ADRESM:ADRESL
register string to a LONG integer ith sign extension*/

j = ADRESH;

j <<=§;

j += ADRESM;

j<<=8

j += ADRESL;

j &= OxOOffffff; //eleminate upper nibble
if (j & 0x00800000)
{/lisresult negative?
j |= OxOff000000;
}

return (j);
}

charinit a to d()

{

chari, j;

* Setup ADC */
I ADCONO = 0x30; /I Vref on 2.5V, Buff on, BOD off
ADCONO = 0x20; /I Vref on 1.25V, Buff on, BOD off
ADCONL1 = 0XQ0;
ADCON2 = OxFF; /I decimation ratio
ADCON3 = 0x00;
ADCON1 = 0x05; /I bipolar, Filter = auto, self calibration, offset, gain
[Iwait for the calibration to take place
printf ("\n\nCalibrating....\n");

while(! (PISTAT & 0x20));
j = ADRESL;

for (i =0;i<20; i++)

{ 1/ dump 20 conversions
[*wait for DRBY bit*/
while(!(PISTAT & 0x20));

}

[*set up Accumulator / Shifter*/

[* Select Accumulator / Shifter option,

Acc Count = 8, Shift Count =8

*/

init_accumulator ();

Ilextract Accumulate-Count from ASCON SFR Register.

j =ASCON & 0x38;

j=8

j=1<<(+1)

return (j);

}

void a to_d accumulate (void) interrupt 6 using 1

{

17-22

}

[*interrupt type 6 vectored to 0x33.
Any PFI type interrupt would come to this ISR.
Evaluating the ACCIF and ADCIF bits of PISTAT will determine
whether the ISR call was due to the A/D Converter interrupt or
the Accumulator/Shifter interrupt*/
if (PISTAT & 0x20)
{/IA/D conversion interrupt
converting = 0;
PISTAT &= ~0x20; I*clear ADCIF bit*/

}
if (PISTAT & 0x40)
{//Accululator/Shifter interrupt
averaging = 0;
PISTAT &= ~0x40; /*clear ACCIF bit*/
}

return;

void main(void)

{

inti;

char accum_count;

long I;

float voltage value, vref, max_range;
char convert_accumulate;

convert_accumulate = 1; //Select data averaging option.
CKCON &= 0xf8; // 0 MOVX cycle stretch

/Iset Serial # 1 indow up for output display
setport ();

printf ("\nMSC1210 Ver:");

printf ("\nA/D Res H/M/L\t");

printf ("Acc Reg 3/2/1/0\n");

/[Enable global interrupt and enable Power Fail Interrupt
IE = 0x80;
EPFI = 1;

/linitialize A/D converter and extract Accumulation-Count
accum_count = init_a to d ();

//Wait for conversion to be completed

while ((PISTAT & 0x20));

/[Conversion completed, then read result of the A/D converter
| =read a to d result ();

//set conversion constants max_range and vref
if (ADCON1 & 0x40) //is polarity unipolar or bipolar?
{/lunipolar
max_range = OXFFFFFF;
}

else

{//bipolar
max_range = Ox7FFFFF,

Keil Simulator

Description

17-23

Description

17-24

}

if (ADCONO & 0x10) //isVref = Vrefh or Vref = Vrefl?

{/IVrefh

vref = 2.5;

}

else
{IIVrefl

vref = 1.25;

}

switch (convert_accumulate)

{

case CONVERT: //straight A/D conversion results, no averaging
IRQEN = 0x20;
for (i = 0; i < 0x40; i++)

{

}

break;

converting = 1;
[*straight conversion idle loop.
Value of "converting” is changed inthea to_d accumulate ()
ISR which iscalled at the end of each conversion.*/
while (converting);
/*Get LONG integer result and convert to afloating point
voltage value using the proper values for vref and max_value*/
| =read a to d result ();
voltage value = (float)l * vref / max_range;
printf ("\nInstantaneous Value: %ld, i.e. %f volts’,
[, voltage value);

default: //Averaged A/D conversion results
IRQEN = 0x60;
for (i = 0; i < Ox40; i++)

}
while (2);

{

break;

averaging = 1;

[*averaged conversion idle loop.

Value of "averaging” ischangedinthea to d accumulate ()

ISR which is caled at the end of each completed

averaging sequence.*/

while (averaging);

/*Get LONG integer result and convert to afloating point

voltage value using the proper values for vref and max_value*/

| =read accumulator_result ();

voltage value = (float)l * vref / max_range;

init_accumulator ();

printf ("\nInstantaneous voltage Values");

printf (" Averaged Over %d Samples: %ld,\ni.e. %f volts’,
(int)accum_count, |, voltage value);

Description

In order to demonstrate how the Accumulator/Shifter handles the incremental
accumulation of sampled data, we have opted to enable both the ADC
conversion interrupt enable, ADCEN, and the accumulator interrupt enable,
ACCEN, by assigning a value of 0x60 to the PIREG SFR. This implies that the
Power Fail Interrupt, PFI, is pulsed each time the ADC completes a sample
conversion on ADCIF, and each time the number of accumulation matches the
Acc_count value on ACCIF. This means if a breakpoint were inserted in the
a_to_d_interrupt ISR routine for each data averaging cycle, eight samples in
this case, the value displayed in the non-editable text window associated with
Acc_Count of the Accumulator/Shifter peripheral increase from zero to seven
each time the ADCIF interrupt is pulsed. The data values in the Accumulator
Registers vary as well, with the accumulation of conversion data results. On
the eighth sample of the cycle, when the ACCIF interrupt has been pulsed, the
value content of the non-editable display window rolls over from seven to zero,
and the contents of the Accumulator registers will be properly adjusted for the
result of the eight data sample averaging. Right after the averaged data has
been successfully read, the Accumulator registers must be reset to all zeroes
so it can start the next batch of eight sample averaging with a clean slate. This
can be most conveniently achieved by assigning a 0x00 value to the ASCON
SFR. However, in this case, the contents of this register must be replenished
with the previous value of 0xD2, in order to properly set the operating
parameters for the Accumulator/Shifter module. This is equivalent to calling
the init_accumulator subroutine. These processes are repeated 64 times,
after which the simulator jumps into an infinite loop.

Note that if we were not particularly interested in studying the individual data
accumulation step, we would have assigned a value of 0x40 to the PIREG
SFR. In this case, the PFI interrupt’'s ISR will be called only when the ACCIF
interrupt is triggered.

Snapshots of the Accumulator/Shifter peripheral and the ADC peripheral mid-
stride a typical 8-sample averaging block are shown in Figures 17-12 and
17-13. In the ADC Conversion peripheral, the AINO window shows that the in-
put voltage value of the most recent ADC conversion is 1.399994V. This is a
result of the 1.4V value set from the debugging script program. The 24-bit con-
version of this AINO value is displayed in the editable window labeled
ADRESH/M/L. The digital value of this conversion is 0x74B166. The non-edit-
able text window associated with Acc Count shows that four out of eight sam-
ples have been accumulated in the Accumulator registers, and thus far, the
sum of all four accumulated 24-bit conversion values is 0x01D2F198.

Keil Simulator 17-25

Description

Figure 17-12. Accumulator/Shifter Peripheral

Figure 17-13.

17-26

Accumulator?S hifter | x| |

— Cantral

.-’-'-.SEEIN:ID:-:DE

Cottral: (e E ==

Acc Count; I a - I |4_
Shift Count: I a hd I

— Accumulator Beqgisters
ACCR3 ACCR2 ACCR1 ACCRO
|0 |0xD2 |0xF1J0x38

The ADC Peripheral Mid-Stride a Typical 8-Sample Averaging Block

Analog/Digital Conyerter |
—&/0 Converter

ADCONG: [0:20 W ADON
[~ BOD [BUF

ADCAONT: IUHEE v “REF [~ “REFH

ﬁDEDNE:IDHFF F'G,.-}.':I‘I vI
ADCOM3: IDHDD Filter: I,&,utg - I

Ciata R ate: ISEE.E v DRDY
ﬁ.DHESH.-"M.-"L:IDHNBEEE [~ POL

— |nput kultipleser
INP: [siND =] INM: AN]

— Analog Input Channelz
AIND: [1.1399934 AINT: {0.0000000
ANI2: [0.0000000 | AIN3: [0.0000000
AIN4: |0.0000000 AINS: {0.0000000
AINE: |0.0000000 AINZ: {0.0000000

ACOM: [2.5000000 T ['C]: |25.000

— Reference Woltages:

YREFP: I3.F"5EIEIEIEIEI
ref: |1 .2500000
WVREFM: |1 2500000

Description

In addition to the previous sample code, a sample driving code for the debug-
ging is included below. This is a special feature of the pVision2 Simulator sys-
tem, which allows the developer to send input voltage values to the editable
analog text fields in the ADC peripheral module. In the case of this example,
the AINO input channel is selected. These input values are automatically writ-
ten to the text window within a preprogrammed time interval, which is deter-
mined by the argument of the Predefined Function twatch (ulong states).
Where “states” is the unsigned long value of the number of CPU clock states
that must elapse before the next statement in the program is executed. While
this function is being executed, the debug system is placed in an idle state,
while the target program continues executing. Upon expiration of this time pe-
riod of number of CPU clock states, the debugging process continues at the
next statement. For all intents and purposes, the target process is oblivious to
the execution or the state of the debugging program.

The debugging program is declared as one with a return value of type SIGNAL.
The debugging variable AINO is assigned an initial value of 0.5V. This will be
subsequently incremented by an incremental value of 0.01V. After the AINO
value has been initialized, a delay of 196,000 CPU clock samples is imposed,
while the main program, which started at the same time as this debug program
is performing its parameter initialization and book keeping until it is ready for
the next data to be sampled. Within the For Loop, another 900 CPU clock delay
is imposed, then the value of AINO is incremented by 0.01. It then processes
another 130,100 CPU clock delay. This is repeated until the For Loop count
expires. In the meantime, the AINO text window in the ADC peripheral is incre-
mentally updated, and its value is periodically sampled, converted, averaged
and displayed from within the main program.

Please refer to the chapter on the pVision2 Debug functions for more informa-
tion of writing, compiling and running script files.

SIGNAL voida to_d sim (void)

{

int i;

/* Data written into the variable ain0 is automatically entered into the
editable text window labeled AINO in the A/D Converter peripheral dialog.*/
an0=0.5; /Ispecify start value for ain0

//debug program idles for 196000 clock cycles, while simulation continues
running in parallel*/

twatch (196000);

/*the following loop sends out 64 consecutive samples of ain0,

each incremented by 0.01. Each transmittal is spaced 131000 clock cycles
from the previous one.*/

for (i = 0; i < 0x40; i++)

{
twatch (900);
ain0 +=0.01;
twatch (130100);
}

Keil Simulator

17-27

Description

17.9 Interrupts

The list box for the Interrupt peripheral is shown in Figure 17-14. The figure
shows a list of interrupt sources along with their associated vector addresses
that the processor automatically vectors to in the event that an enabled inter-
rupt is triggered, there are no pending interrupt requests of higher priority, and
there is no interrupt service routine being executed pertaining to an interrupt
source of higher priority. As shown in Figure 17-14, the columns with headings
“Int Source”, “Vector”, “Mode”, “Req”, “Ena” and “Pri” pertain, respectively, to
the interrupt source name, the interrupt vector address, the interrupt edge
type, (O for level triggered and 1 for edge triggered), the interrupt request sta-
tus, the interrupt enabled status and its priority level. There are some interrupt
sources listed without any priority listing. All such sources have the same vec-
tor address as that of the Power-fail Indicator (PFI) interrupt. The priority levels
of all interrupts affiliated with it are also unalterable and have the highest prior-
ity level setting because the PFI has the highest, and an unalterable, priority.

Figure 17-14. List Box for the Interrupt Peripheral

17-28

Interrupt System I
Int Source | Vectnrl Mode | Reg | Ena | Pri |A
P3.24nt0 0003H 0 i 0 0
Timer 0 Q00BH i 1 Il
P3.34nt1 003H 1 i 1 0
Timner 1 001BH i 0 0
Serial Ry 0023H i 0 o _
Serial #mitl, 0023H il] 0
Tirner 2 002EH i 0 Il
P1.14T2Ex 00z2BH Il i 0 Il
Analog Low . 0o3aH 0 i} i
Digital Lo W, 0033H 0 i 0
One Second 0033H 0 a 0 -
4| |»

Selected Intermupt
¥ EAL [l‘ ifd e rem Pifo

Selecting any of the itemized interrupt sources will force its pertinent associated
settings and status value to be transferred to the set of check boxes in the lower
part of the Interrupt display. Clicking on its corresponding check box could alter
the status of each piece of information. On the Interrupt display shown in Figure
17-14, the set of check boxes in the lower section of the display indicate that the
Global Enable flag “EA” is high (EA has a check). This implies that any interrupt
source that is enabled has the potential to generate an interrupt request. If the
EA button is clicked, clearing the selection, the processor’s interrupts are globally
disabled. Just for clarification, it should be restated that the status of EA has no
bearing on the ability of a PFI interrupt condition, or those of any of the peripheral
interrupts tied to it, to initiate an interrupt request. Setting the EFPI bit of EICON
enables the PFI. One could induce an interrupt by placing a check on the corre-
sponding “Req” slot of the desired interrupt source. This is equivalent to activating
the interrupt through the software or the hardware.

Sample routines of the Interrupt Peripheral module have been incorporated
into sample programs for other peripheral modules that have been discussed
earlier. Please study those programs for more information.

17.10 Ports

Description

There are four parallel I/O ports on this device, Port 0, Port 1, Port 2 and Port
3, and as such, there are four separate parallel port displays. Since all four I/O
port displays are similar, we shall discuss the operation of just one of them.

The Parallel Port 0 shown in Figure 17-15 depicts the value and the bit pattern
of the contents on the Port O register (P0), the Port 0 Data Direction High register
PODDRH, and the Port O Data Direction Low register PODDRL. In addition, the
byte value and the bit pattern of the logic levels of the signals on the Port 0 I/O
pins are also depicted. The value of any of these registers or I/O pin settings can
be changed by changing either the corresponding byte value or bit pattern.

Figure 17-15. Parallel Port O Contents Display Window

Parallel Port D E3
—Port 0

FODDRL: [0FF pRvmVFRW
PODDRH: [0:55 o T Wl
F'ins: 7 vl vl v e e

For example, the bit pattern for PODDRH could have been set either by writing
a value of 0x55 into the editable text input window for PODDRH, or clicking
once on checked bit pattern toggle switches for bits 7, 5, 3, and 1, in any se-
quence. This, by the way, sets the Port 0 pins as inputs for Port pins 0, 1, 2 and
3, and strong driver outputs for pins 4, 5, 6 and 7. Byte values of 0x55 and OxFF
could just as well have been written into the PODDRH and PODDRL registers
respectively, through the software program, for the same effect.

As explained in the chapter on Parallel I/O ports, until a port read is performed,
the value in the port register (PO for instance) does not necessarily reflect the sta-
tus of the port pins.

The Keil Simulator also has facilities for error detection and warning. If, for instance,
one were to configure the upper nibble of Port O for inputs and the lower nibble for
outputs, trying to toggle the INT1 pin (P3.3) in order to simulate an interrupt trigger
will result in an error message (see Figure 17-16). This is because the pin #3 of
the Port 0 was configured for output, and the user is trying to drive it as an input.

Figure 17-16. Error Message

Port 3 Error B

Yo have tied to modify a port pin
which iz configured az output!

Sample routines of the 1/0 Port Peripheral module have been incorporated into
sample programs for other peripheral modules that have been discussed earli-
er. Please study those programs for more information.

Keil Simulator 17-29

Description

17.11 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) implemented in this simulator package
mimics the behavior and characteristics of a Data Memory Access (DMA) SPI
module, integrated into the MSC1210. The MSC1210 SPI module is an en-
implemented by other manufactur-
ers. Its enhancement involves substituting the single buffering on the transmit
and receive ends with an adjustable depth First In First Out (FIFO) circular
buffer system which has all the signaling characteristics and observes all the
data collection protocols of a typical DMA system. With this DMA enhance-
ment, under normal operating conditions,

hanced version of the popular SPI modules

if the SPI circular buffer is deep

enough, the likelihood of a data overflow is virtually eliminated.

The snapshot in Figure 17-17 shows the freeze-framed picture of the SPI
peripheral window mid-stride a typical data communication transmit/receive

session.

Figure 17-17. SPI Peripheral Window

17-30

5PI

— SPl Control
[+ SPIOM [System On)

[SFIEN [Enable]

_ ¥ MSMODE [Master)
SPICON:[0534 |~ (o1 ik Poleri]
[CPHA [Clack Phase]

[~ ORDER [Bit arder)

Clock Rate: {Fosc /32 =
M aster Clock: I?'EEIEIDEI

SPI Buffer
Tranzmit Buffer

SPIT=CON: |0x00 | Counter

TXIHE!:IJ, vl IRG Level

_| TFLUSH [Flush Buffer)

Receive Buffer
SPIRRCOM: |0x02 Counter

R=IRG: |2 vl IRQ Level

_| R¥FLUSH [Flush Buffer)

SPISTART: |0xa7 Tranemit Pointer
040 Buffer Start

SPIEMD: |Ond5 Receive Pointer
0:E0 Buffer End

SPIDATA: IEIH-'-‘«S

—Data————— " Intermipts

[~ SPIRIF [Receive lntermuipt]
[+ SPITIF [Tranzmit nkermipt]

M 55H Pin

" Slave Select

Like the other peripheral modules, pertinent SFRs could be programmed or
updated by writing the appropriate data into the associated editable text win-
dow, or by placing or removing check marks from corresponding check boxes.
SFR names and individual bit names are also preserved between the actual

MSC1210 SPI module and the simulator’'s SPI peripheral module.

Entries made into the editable SPICON text window will set or clear the check
marks of the SPI enable (SPIEN), Master (MSMODE), Clock Polarity (CPOL),
Clock Phase (CPHA), Bit Order (ORDER) check boxes, and the correspond-
ing “divide by” selection from the Clock Rate selection window. Conversely,
clearing or setting the check mark on any of the check boxes, will change the

Description

value of data displayed in the SPICON window, on the basis of the bit position
of the corresponding configuration bit within the SFR’s bit pattern. Likewise,
changing the Clock Rate “divide by” value changes the SPICON entry accord-
ingly. The result of the oscillator frequency divided by the selected “divide by”
factor is displayed in the non-editable Master Clock window.

The trigger level for the transmit IRQ and receive IRQ are selectable through
the selection windows marked IRQ Level within the transmit buffer and receive
buffer blocks, respectively. The number of data bytes currently in the circular
FIFO buffer (waiting to be transmitted or already received and waiting to be
read) are displayed in the SPITCON and SPIRCON windows, respectively.

Clicking on the Transmit Flush Buffer box, TXFLUSH, destroys the bytes of data
within the circular buffer that are waiting to be transmitted. It changes the SPI
Transmit pointer so that it points to the same address as the FIFO OUT pointer,
and clears the Transmit Counter value within the SPITCON SFR. The Transmit
Counter indicates the number of bytes within the circular buffer that are waiting to
be transmitted. Similarly, clicking on the Receive Flush buffer RXFLUSH box, de-
stroys the bytes of data, within the circular buffer, that have already been received,
but still waiting to be read by the processor. It forces the Receive pointer to point
to the same address location as the FIFO IN pointer, and it resets the Receive
Counter value within the SPIRCON SFR. The Receive Counter indicates the num-
ber of bytes within the circular buffer that are waiting to be read by the processor.

It is worth stressing that all this window text editing and check box marking are
just alternative methods of programming the various SFRs in software.

The circular buffer can be set or redefined, by writing the desired value into the
editable Transmit Pointer window (SPISTART) and the editable Receive Buffer
window (SPIEND). The user will observe that whatever entry is made into the
SPISTART text window will also appear in the non-editable text window labeled
“Buffer Start”, and the editable text window labeled “SPIEND.” The content of
the non-editable text window labeled “Buffer End” would remain unchanged.
Writing the desired value for the other end of the circular buffer causes the en-
tered value to appear in the “Buffer End” display window, but the data displayed
in the SPIEND window automatically reverts to the value written into the SPIS-
TART window. So, before data communication begins, SPISTART and SPIEND
must contain the same value, implying that the buffer is empty, while the “Buffer
Start” and “Buffer End” displays the boundaries for the DMA's circular buffer.
Although the contents of the SPISTART and SPIEND windows will change as
data is written into and transmitted out of the transmit buffer, and data is received
into and read from the receive buffer, the contents of the non-editable text win-
dows “Buffer Start” and “Buffer END” will not change. Notice that flushing the
transmit buffer will not affect the contents of the SPISTART window; it seems
as though the transmit data was never written into the buffer. Flushing the re-
ceive buffer will neither affect the contents of the SPISTART window nor those
of the SPIEND window. RAMISH, Help!! Are the SPIT/RIF flags reset auto-
matically?

Data written into the editable text window SPIDATA will be handled as a piece
of data to be transmitted. The SPITCON and SPISTART windows will be prop-
erly updated, the circular buffer entry will be made into the appropriate buffer

Keil Simulator 17-31

Description

address pointed to by the Transmit Pointer. The values in the SPITCON win-
dow and the TXIRQ window determine the check/clear status of the SPITIF
check box. As data is being received from the external device, the value of the
received data will be momentarily displayed in the SPIDATA window, and the
content of SPIRCON window is properly updated. In addition, as data is read
from the circular buffer, the value displayed in the SPIEND windows is properly
updated. The status of the SPIRIF bit is also updated on the basis of the values
displayed in the SPIRCON and RXIRQ windows.

A simple code example for a typical SPI communication exercise is appended.

17.11.1 SPI Sample Code

17-32

The following program simulates the data communication interaction between
two devices with SPI capabilities, where one operates in the master mode and
the other in the slave mode. Like the other example covered so far, a C style
program script was written using the pVision 2's Debug Functions protocol. This
program runs in parallel to the main program. The main program is set up as
the Master, and the pVision 2’'s Debug Functions package is set up as a Slave.

The various SFRs that are pertinent to the SPI module are enabled and initialized.
The SPI peripheral is asserted as the Master, and the communication speed is
specified. The receive and transmit buffers are flushed, and IRQ levels of four and
two are specified for the transmit and receive sections, respectively. The limits of
the circular buffer are defined as OxOA and OxO0B. Finally, the SPI transmit and
receive interrupts are enabled, and the processor is globally interrupt enabled.

After having properly set up the I/O system for the Serial #1 window, and initial-
izing the interrupt enables and the SPI Communication system, this program
sends out a dummy data byte to start up the communication. The processor
then enters an infinite loop that is interrupted anytime there is an SPI transmit
or receive interrupt.

The SPITIF flag is asserted whenever the transmitter IRQ level limit is not at-
tained, and the SPIRIF flag is asserted when the receive IRQ level is exceeded.
Either condition will generate a PFI type interrupt. The transmit_receive () ISR
is called whenever this interrupt is acknowledged. As discussed earlier, the proc-
essor vectors to address, 0x33, from which a long jump instruction is executed.
The processor branches to the appropriate section of the ISR routine on the basis
of the value contained in the PISTAT SFR. If the interrupt was caused by trigger-
ing the transmit flag, SPITIF, the processor branches into the transmit block of the
ISR. If the interrupt was caused by the receive flag, SPIRIF, the receive block will
be selected. Please refer to the chapter on SPI communication in this manual.

Within the receive block of the ISR, the processor reads the contents of the re-
ceive section of the circular buffer by reading the SPIDATA buffer continuously
until the SPIRCON count expired. The ISR resets the SPIRIF interrupt flag.

Within the transmit block of the ISR, the processor increments the value of the
static integer variable “j” and transmits its new value by writing it into the SPI-
DATA SFR. The ISR resets the SPITIF interrupt flag.

Upon completion of the associated ISR routine block, the process returns to
the infinite loop.

Description

#include "M SC1210.H”

/lunsigned char datairgen_init _at_ Ox7f ; // image of IRQEN
#define FWVer 0x04

#define CONVERT 0

char

received data[50];

void init_spi ();
void transmit_receive ();// interrupt 6;
void test_spi ();

void test_spi ()

}

SPIDATA = 55;
while (2);

void setport (void)

}

P3DDRL &= 0xf0;

P3DDRL |= 0x07; //P30 input, P31 output
TF2=CLEAR; T2=CLEAR;
CKCON |= 0x20; Il Set timer 2 to clk/4

RCAP2 = 0xffd9; //Set Timer 2 to Generate 57690 bps

llInitialize TH2: TL 2 so that next clock generates first Baud Rate pulse

THL 2=0xffff;

T2CON = 0x34; // Set T2 for Serial0 Tx/Rx baud generation

/ISCON: Async mode 1, 8-bit UART, enablercvr; TI=CLEAR, Rl = CLEAR
SCON = 0x50;

PCON |= 0x80; // Set SMODO for 16X baud rate clock

void init_spi ()

{

}

[*enable SPI, specify Master SPI and specify clock rate, (Fosc / 32)
and CPHA = 1*/

SPICON = 0x96;

[*Flush receive buffer, and set IRQ level to 2*/

SPIRCON = 0x81,;

/*Flush transmit buffer, and set IRQ level to 4*/

SPITCON = 0x82;

[*buffer start address = 0x0a0, and end address = Ox0b0*/
SPISTRT = 0x0a0;

SPIEND = 0x0b0;

/*Master mode: set MISO for input, and MOSI, SS & SCK for strong outputs*/
P1DDRH = 0x75;

P1 |= OxFO;

[*enable SPI interrupt*/

PIREG |= OxQc;

|E |= 0x80;

EPFI = 1;

void transmit_receive () interrupt 6 using 1

{

[*Thisisatype 6 interrupt (PFl). Processor vectors to 0x33,
from which it is redirected to this | SR. Because both SPI transmit
and SPI receive interrupts are enabled, additional steps must be

Keil Simulator 17-33

Description

17-34

taken to differentiate between transmit and receive interrupt requests.

Hence, the ”if (PISTAT ...)” statements.*/

inti, k;//, p;

saticintj, I;
Each time the transmit block is selected; the value of the static integer j is increm-
ented by two, and written into the SPIDATA SFR. This automatically advances
the Transmit Pointer value, and places the value of j into the circular buffer. The
count in the SPITCON SFR is incremented. Note that the SPITCON count will
decrement automatically as soon as a byte has been successfully transmitted.
Finally, the SPITIF bit in the PISTAT SFR is cleared before exiting out of this block.

if (PISTAT & 0x08)

{/* Transmitter*/
j +=2; [/set up value of j to be transmitted
SPIDATA =j; [/ltransmit j. Thisactually goesto the circular buffer
PISTAT &= ~0x08; /[clear SPI transmit interrupt flag

The static integer variable | is checked to make sure that the array limits for the
received_data array of characters is not exceeded. If the limit has been
reached, the processor would print out the contents of the array to the Serial
#1 window, and then reset the value for | to O.

Since the SPIRCON SFR contains both the number of data bytes available in the
circular buffer for retrieval and the RXFLUSH bit, one must mask out the MSB of
this SFR in order to extract the number of bytes. When the processor reads a byte
from the SPIDATA SFR, the oldest item in the current batch of received data bytes
is read, and the SPIDATA will point to the next item in the batch. This implies that
in order to read the batch of received data bytes that triggered the current inter-
rupt, the user could just read the SPIDATA SFR “SPIRCON & Ox7F” times with
a FOR loop, and wait for the next time the interrupt is triggered.

if (PISTAT & 0x04)

{/*Receiver*/
i = SPIRCON & Ox7F; /l/extract the count for the number of
PISTAT &= ~0x04; /Ideactivate SPI receive flag
if (I >=50)
{

/*do not exceed the 50 received_data[] array limit*/
for (I =0; 1 <5; [++)

{
printf ("\n");
for (k = 0; k < 10; k++)
{

printf (" %c", received_data[k + | * 10]);
}

}
printf ("\n");
[=0; Ilreset the received_data[] array index.

}
for (k=0; k <i; k++)

if (I >=50)
break;

/*data received through the SPI channel isread at the SPIDATA SFR*/

received_datg[l++] = SPIDATA; //keep track of received data

}
}
}
void main(void)
{
setport ();
init_spi ();
test_spi ();
}

Description

In addition to the main simulation program, a pVision 2 debugging program
was also written to supply the “received” data to the test simulation program.
This uVision program transmits and receives data at periodic intervals from the
main program. The SPI communication protocol is used for this data transfer.
The pVersion 2 debug program behaves as the Slave, while the main program
is the Master. The debug program is presented and explained in the following

paragraphs.

17.12 pVision 2 Debug Program Example

SIGNAL void spi_sim (void)

{

[*This program runs in parallel with the main program.

It sends out a character byte whose value is post incremented at the end of each associated

time lapse.
SPI_IN isthe portal through which the byte datais sent to the main program.
In addition, the data transmitted from the main program is received at the portal, SPI_OUT*/

int
j =0x21;

i
/linitialize byte data value to be transmitted

spi_in=j; //send byte data
twatch (100); /lidle 100 clock cycles
while (1) /[start infinite loop

{

twatch (50);

j++; /lincrement value of byte data to be transmitted

spi_in=j; /ltransmit another byte of data

twatch (97); /Iwait 97 clock cycles

/*data transmitted from main program has been receive in portal SPI_OUT
automatically. Its value is displayed in the Command Line display area*/
printf ("\nSPI_OUT = %d", spi_out);

I+

/*send another incremented data byte, and receive and display a new data
byte transmitted from main.*/

spi_in=j;

twatch (116);

printf ("\nSPI_OUT = %d", spi_out);

Keil Simulator

17-35

Description

The data received from the puVersion 2 debug program, by the main SPI pro-
gram is written to the Serial #1 window. A snapshot of this window is included
in Figure 17-18.

Figure 17-18.
I spi_analog - pVision2
File Edit “iew Project Debug Perpherals Tools SYCS Window Help
Sl | @RS = 0T % G o anib i ket = iy | 0 | S [@ [EE] L e I |
SBemT6 o s Ee|alavsee »
=
I Value I B C:\UserData\ChaptersA\D¥T_Tucson(SPI1105)%
I }
054 nrintf (TunTr j
nde
0x05 ‘l
D:ff PR LY+, -
0400 s 12356889 ;<
000 =?Y@BCEFGIJ It
0400 LHOPQSTVWY =
00 Z[1"~ acdeg
------ a 0400 hjIfifoo0d0
""" b 0401 PUUUYDRA&AEE A
""" 3 0476 2geélllaia
""" P_Mas Ox7c do+unuaiavpllI
""" PC % C:0=04... 111
""" dpz 0x00 11
""" dptr 0x054c
""" dptri 00000
""" states 248095 =
""" 80 00413 ﬂ v 4
B paw 008 TO=0430 ESSh oLy ELU=0A
C:0xz0432 6480 ¥EL A,#PO(0xz80)
C:0xz0434 98 SUEE A,RO
EiF. & Vil] R Coan o A
[=pT_0OUT = 202 =l ﬂ Address: [1180
SPI_OUT = 202
SPI_OUT = 202 I:0x80: 00 00O 0O 00 0O
I:0x87: 00 00 0O 00 0O
5 I:0x8E: 00 00 00 00 00
ASM ASSIGN BreakDisable |z| IEX5E ﬁﬁ ﬁﬁ ﬁﬁ ﬁﬁ ﬁg
4[4[[P} command £ Fif <[] »] [[[wI]:, Memory #1 A Memary #2 f Memory #5 4[4 TP Locals A Watch #1 A, Watch #2 A Gall Stack §
Ready I [[R

17-36

The window labeled Serial #1 shows the printed ASCII character representation
of the data bytes received by the main SPI program from the debugging pro-
gram. Note that the first character printer is an 'I" mark which has a numerical
value of O0x21. This was the first value of j to be transmitted from the debugger
through the SPI_IN portal. The subsequent characters are supposed to corre-
spond to ASCII characters whose numerical values are a value of one off from
the previous character. However, once in a while, there is a skip in characters.
This can be explained by the fact that once in a while, the two programs become
unsynchronized. Better “twatch” delay timing would have resolved this issue,
but that is not the essence of this example. The Serial #1 window shows the re-
sults of two 50-byte transfers from the uVersion 2 debug program.

Note that even though the pVersion 2 debug program and the main SPI pro-
gram are separate and independent programs, they run in parallel, and they
are synchronized. This way, the incoming data from the debugger is always
ready when the main SPI program is ready to receive data. The delay timing
computation is very delicate. If it is too short, data to be transmitted from the

Description

debugging program will be overwritten before it is transmitted. If it is too long,
the data transmitted from the main SPI program will be overwritten before the
debugging program reads it.

17.13 Serial Port 1/O

In addition to the SPI communication protocol that was presented earlier in this
manual, the more basic Serial Port I/O was also implemented in this Simulator.
The two serial ports 0 and 1 are simulated in this package. An example of this
communication protocol has been used a couple of times in this section of the
manual. The show_baud_gen () subroutine is used to set up the output display
of programming example results on the Serial #1 window.

The show_baud_gen () subroutine is described in details below.

Parallel port P3 is set such that P3.0 is an input pin, and P3.1 is an output pin.
Referring to the chapter on Parallel ports will reveal that port pins 0 and 1 are
also alternate pins for Serial Port 0 Receive and Serial Port O Transmit, respec-
tively, for Serial Port 0 in either modes 1, 2, or 3. In Serial Port Mode 0, P3.0
is the bidirectional data transfer pin for Serial Port 0, and P3.1 emits the syn-
chronizing clock for serial port 0 communication.

The Timer 2 timer overflow flag is cleared, in order to remove any preexisting
Timer 2 interrupt request. The Timer 2 external input is also set to 0. Timer 2 in
the “baud rate generation” mode generates the data communication baud rate.
On the basis of the “Fogc divide by 4” selection made by setting the Timer 2 Clock
Select bit (bit T2M of the CKCON SFR) and the oscillator clock frequency, the
auto-reload value for the Timer 2 Capture pair, RCAP2H:RCAP2L (RCAP2),
required to produce a baud rate of 37500bps was computed to be OxFFCA4.
Presetting the Timer 2 register pair TH2:TL2 (THL2) to OxFFFF ensures that
Timer 2 generates an overflow on the first “Fogc divide by 4” clock. This
automatically generates an overflow pulse, which is further divided by 16 to drive
the Rx and/or Tx clocks. In addition, upon overflow, the contents of the RCAP2
register pair are automatically transferred into the THL2 register pair, which would
have just rolled over to 0x0000. Note that in this mode, Timer 2 does not generate
an overflow interrupt signal. Please refer to the section on Timer 2, in the chapter
on Timers, for more information.

The timer overflow pulse for Timer 2 is used to generate Baud Rate clock for
the Transmit block, and Timer 1 overflow is used for the Receive block. Setting
the Timer 2 Run Control bit through T2CON also enables the Timer 2 clock.
For this operation, the following options were selected for Timer 2:

1) Auto-reload,
2) Timer option,

3) Specify Timer Overflow pulse as Baud Rate clock for the Transmit block
and not for the Receive block, and

4) Specify the option to ignore all external events on the T2EX (P1.1) pin.

The bit pattern for the specifications above requires that TCON2 be assigned
a value of 0x14.

Keil Simulator 17-37

Description

For the serial communication, the Serial Port 0 was set for an asynchronous
10-bit (1 start bit, 8 data bits and one stop bit) Mode 1, serial data communica-
tion operation. The serial port 0 is also receive enabled. These were accom-
plished by setting the SCONO SFR to 0x50.

The baud rate doubling option 16X was selected by setting the SMODO bit of
the PCON SFR.

A snapshot of the Serial Channel 0 communication peripheral after at typical
show_baud_gen () subroutines execution is shown in Figure 17-19.

Figure 17-19. Serial Channel 0 Communication Peripheral

17-38

Serial Channel O |

Mode: [N i

SCOMD: IEI:-:EE SEUFD: IEI:-:EEI

[T sMz0 [T TBRO ™ REELD
v REMN_D

— Baudrate
¥ sMOoD0 [~ RCLE | TCLK

Tranzmit B audrate; IS?EEIEI
Receive Baudrate: IS?EEIEI

— IR0

M 1.0 [T/ RLO

The statuses of the transmit and/or receive flags are also reflected in the
conditions of the TI_0 and RI_0 check boxes. The computed transmit and receive
baudrates are displayed in the Transmit Baudrate and the Receive Baudrate
non-editable windows respectively. Note that the transmit baudrate and the
receive baudrate do not necessarily have to come from the same timer overflow
source. The programmer has a choice of two independent sources of the
“divide-by-16" transmit/receive counters. Setting or clearing the bit fields for
RCLK and TCLK of the T2CON SFR, respectively, determine independently,
whether the timer overflow source for the “divide-by-16" transmit/receive counters
is the Timer 1 Overflow or the Timer 2 Overflow.

The following section is a graft of the show_baud_gen () subroutine used in
earlier examples.

Description

17.13.1 Serial Port 0 Operation Mode 1 Example

void show_baud_gen (void)

{

P3DDRL &= Oxf0;

P3DDRL |= 0x07; //P30 input, P31 output
TF2=CLEAR; T2=CLEAR;
CKCON |= 0x30; I Set timer 2 to clk/4

RCAP2 = 0xFF16; //37500 bps

THL2=0xFFFF;

/* Set T2 for Serial0 Tx baudgen.

Timer 2 is designated the clock source for the "divide by 16” clock

for the Transmit block, while Timer 1 isthe implied source for the
"divide by 16" clock for the Receive block.

TR2 isactivated*/

T2CON = 0x14;

/ISCON: Async mode 1, 8-bit UART, enablercvr; TI=CLEAR, Rl = CLEAR
SCON = 0x50;

PCON |= 0x80; // Set SMODO for 16X baud rate clock

//set Timer 1 up for Rx Baud Rate Generation @ 37500 bps

TH1 = OxF6;

/*Make the Timer 1 clocking Gated. Thisimplies that for the Timer 1 to
run, both TR1 and INT 1# must be set.*/

TMOD = 0xAO;

TCON = 0x48;

TI=SET;

17.13.2 Transmit Block Baud Rate Computation

In this example, two different Baud Rate sources have been used, one for Re-
ceive, Timer 1 Overflow, and the other for Transmit, Timer 2 Overflow. Of
course, there is no good reason for this, except to show that it could be done,
and to show how to use different timer modes for Baud Rate generation. The
analyses for operational parameters for the individual timer overflow sources
are described in the following paragraphs.

For the Transmit Baud rate generation, based on the SFR settings for the Tim-
er 2 simulator peripheral, and the Timer 2 Baud Rate Generator formulas out-
lined in the Timer section of this manual, the communication Baud Rate com-
putes as follows:

If the TM2 bit of CKCON is 0, then clock divide is Fogc/12.

. FOSC
BaudRate = o>— = (0x10000 — RCAP2)

RCAP2 is a concatenation of the SFR pair RCAP2H:RCAP2L. In this example,
it carries a value of OXFFC4. Hence, the generated BaudRate works out to be
12500bps.

If the faster clocking option of Fogc/4 was selected, then this equation must
be modified to accommodate this faster operation.

Keil Simulator 17-39

Description

If the TM2 bit of CKCON is 0, then clock divide is Fogc/4.

Fosc * 3

BaudRate = 5—— (0x10000 — RCAP2)

In this case, the generated Baud Rate computes to be 37,500bps. The factor
of three (3) is a result of the fact that the “divide by 4” factor option was se-
lected, as opposed to the “divide by 12" option.

Of course, these Baud Rate values scale proportionally with the selected value
for FOSC.

17.13.3 Receive Block Baud Rate Computation

17-40

The Timer 1 is set for a Mode 2 timer operation in an 8-bit auto-reload capacity.
This is achieved by assigning a 0x20 value to the TMOD SFR. Recall that the
SMODO bit of PCON has been set in an earlier section of this program. This
effectively doubles the communication baud rate. Based on the baud rate com-
putation formulas, it was determined that the desired 12,500 or 37,500 baud
rate settings could be attained by assigning a value of OxFB to the TH1 SFR.

If the TM2 bit of CKCON is 0, then clock divide is Fogc/12.

ZSMOD .

— FOSC
BaudRate = 3515 (256 — THI)

And if the TM2 bit of CKCON is 1, then clock divide is Fogc/4

2SMOD .

— FOSC
BaudRate = 324 - (256 — THI)

Since SMOD carries a value of one, this forces a factor of two in the numerator
in either case. For the case in which the T1M bit of CKCON is cleared, the value
of 12 in the denominator is a consequence of the Fogc/12 option selected,
whereas the factor of four in the denominator of the second expression is a
consequence of choosing the Fogc/4 option. With the value for TH1 set at
OxFB, the first expression results in a baud rate of 12,500bps, while the second
expression results in a baud rate value of 37,500bps. Whatever the case may
be, the correct value of the transmit and/or receive baud rates are properly re-
flected in the non-editable Transmit Baud Rate and Receive Baud Rate win-
dows, respectively.

A value of 0x48 is assigned to the TCON SFR. This sets its TR1 (Timer 1 Run)
bit and its INT1 bit. Actually, in this example, since we are not gating Timer 1,
the status of INT1 is irrelevant.

If the TR1 check box is cleared—setting the TR1 bit of TCON to 0—Timer 1
“Stops” running, and the receive baud rate value becomes 0.

Figure 17-20.

Figure 17-21.

Figure 17-22.

Clock Control |

— Control Register

CKCOM: IEI:-:31

W T2 Wi

— Timerz Rate Cantral———————————

— External Memaony Access——————

M 0% Duration [Cycles]: |3 vI

Senal Channel 0 |

Mode: IS-Bit var.Baudrate ﬂ

SCOMD: IEI:-:EEI SBUFD: IDHDD

I~ TEe 0 RBBD
[~ REM_D

— Baudrate

[T/ 5MOD0 [~ RCLE v TCLE
Tranzmit Baudrate: IBTEDD
Receive Baudrate: IS?EDD

FHQ' 7.0 I RLD ‘

Timer/Counter 1 |
— Timer/Counter 1
tode
|2: 8 Bit auto-reload j
ITiI‘I‘IEI j

TCOM: |Dx48 THOD: |D:-c20
TH1: |0«FB TL1:|DHEIEI

¥ T1 Fin [TF1

Cantrol

Statug IHun

IV TR1 [GATE [INT1#

Keil Simulator

Description

17-41

Description

Figure 17-23.

Timer/Counter 2 x| |

— Timer/Counter 2

Mode: ITimer: Baud Rate Gen.

T2I:EIN:|IZIM14 ¥ TR2
[CiTet

TZ IDHFFDS
™ CR/ARL2#
RCAPZ: IDMFFEﬂl [~ EXEMNZ

W iTeks | |7 TF2 | = poik
¥ T2Fin| | ExF2

17.14 Additional Resource

It is highly recommended that the user review the Keil Compiler Tutorial inte-
grated into this package for an animated demonstration of some useful IDE

facilities.

17-42

oL Jerdeyd

EV-LT

How to use the turnpage template and catalog

The TurnPageCat catalog is not a link (as most other catalogs are). Instead, it is a real copy that you must open and edit.
Open the TurnPageCat catalog. The text in the header and footer frames is entered as old-style text strings. Change the text
to read as you want it to.

Because the TurnPageCat catalog exports header and footer frames, once you have edited the catalog, this document will
have the correct headers and footers.

Buns 1xal—apiL Buluuny

Syntax

17-44

Additional Features in the MSC1210
compared to the 8052

Appendix A deals with additional features found in the MSC1210 as compared
to the 8052.

Topic Page

A.1 Addtional Features in the MSC1210 Compared to the 8052 A-2

Additional Features in the MSC1210 Compared to 8052

A.1 Additional Features in the MSC1210 Compared to 8052

A-2

The MSC1210 includes the following features in addition to those that are in-
cluded in a standard 8052 microcontroller.

a

I N I Ay I

U U o o od g

Flash Memory, up to 32k Partitionable as Program and/or Data Memory.
Low-Voltage/Brownout Detection.

High-Speed Core: 4 Clocks per Instruction Cycle.

Dual Data Pointers (DPTR).

1280 Bytes On-Chip SRAM (256 bytes Internal RAM, 1024 bytes address-
able as external RAM)

2k Boot ROM

32-Bit Accumulator
Watchdog timer
Master/Slave SPI with DMA
16-Bit PWM

24-Bit Analog-to-Digital Converter (ADC)

Clock Timing Diagram

Appendix B diagrams the MSC1210 timing chain and clock control.

Topic Page

B.1 MSC1210 Timing Chain and Clock Control Diagram B-2

MSC1210 Timing Chain and Clock Control Diagram

B.1 MSC1210 Timing Chain and Clock Control Diagram

Figure B-1.MSC1210 Timing Chain and Clock Control

B-2

SCLK
SY8 Clock |)—| SPICON
Oscillator |=—— PDCON.O
o PWMHI PWMLOW | PWM Clock
A3 A2
PDCON.4
\ USEC uSec FTCON Flash Write
1 FB 301 e Timing (30-40 uS)
e |MSECH |MSECL | o mSec FI.'CON Flash Erase (411 mS)
FD FC [7:4] EF| Timing
milliseconds
D MSINT | internupt _
FA
seconds
PDCON.1 SECINT | interrupt
F9
L_| HMSEC e 100 mS WDTCON watchog
PDCON.2
1 ACLK | _|Divide | J| ADCON3 | ADCON2 ADC Output Rate
F6 by 64 DF DE
ADC Power Down Decimation Ratio
‘ Modulator Clock
PDCON.3
F[> Timers 0/1/2 |- - - -+ UARTO/
IDLE
CPU Clock

Appendix C

Boot ROM Routines

Appendix C defines the MSC1210 boot ROM routines.

Topic Page

C.1 DeSCHPLION . ..t C-2
C.2 Note Regarding Put String Function C-2

Description

C.1 Description

The MSC1210 has a 2K ROM. This code provides the interaction for serial and
parallel programming. There are also several routines that are useful and nec-
essary for use with user applications. For example, when writing to Flash
memory, the code cannot be executing out of Flash memory. By calling the
Flash write routine in ROM, this condition is satisfied. Convenient access to
those routines is supplied through a jump table summarized in Table C-1.

Table C-1.
Address | Routine C Declarations Description

FFD1
FFD3
FFD5 _put_string void put_string(char code *string); Output String (see Section C.1.1)
FFD7 _page_erase char page_erase (int fadd, char fdat, char fdm); Erase Flash Page
FFD9 Write_flash Assembly only; DPTR=address, R5=data Fast Flash Write
FFDB _write_flash_chk char write_flash_chk (int fadd, char fdat, char fdm); Write Flash byte, Verify
FFDD | _write_flash_byte | char write_flash_byte (int fadd, char fdat, char fdm); | Write Flash byte
FFDF _faddr_data_read | char faddr_data_read(char addr); Read HW config byte from addr
FFE1 _data_x_c_read char data_x_c_read(int addr, char fdm); Read xdata or code byte
FFE3 _tx_byte void tx_byte(char); Send byte to UARTO
FFE5 _tx_hex void tx_hex(char); Send Hex value to UARTO
FFE7 putok void putok(void); Send “OK” to UARTO
FFE9 rx_byte char rx_byte(void); Read byte from UARTO
FFEB rx_byte_echo char rx_byte_echo(void); Read & echo byte on UARTO
FFED rx_hex_echo char rx_hex_echo(void); Read & echo hex on UARTO
FFEF rx_hex_int_echo Int rx_hex_int_echo(void); Read int as hex & echo: UARTO
FFF1 rx_hex_ptr_echo Int rx_hex_ptr_echo(void); Read ptr as hex & echo: UARTO
FFF3 autobaud void autobaud(void); Set baud with received CR
FFF5 putspace4 void putspace4(void); Output 4 spaces to UARTO
FFF7 putspace3 void putspace3(void); Output 3 spaces to UARTO
FFF9 putspace2 void putspace2(void); Output 2 spaces to UARTO
FFFB putspacel void putspacel(void); Output 1 space to UARTO
FFFD putcr void putcr(void); Output CR, LF to UARTO

‘C’ parameters are passed to the subroutine code such that the first parameter
is passed in R7 while additional parameters used lower ‘R’ registers (R7 first,
then R6, R5, etc.). In the case of multibyte parameters, the low byte uses the
next available ‘R’ register while the high byte uses the lower ‘R’ register. Thus,
the put_string routine uses R7 to receive the low byte of the address of the
string while R6 is used to receive the high byte of the address of the string.

The result or error code is returned in R7 and/or R6, with the low byte in R7
and the high byte, if any, in R6.

Description

C.1.1 Note Regarding the put_string Function

The put_string routine was designed to print strings that are referenced when
the Boot ROM is located at 0x0000 and also at 0xF800. This means that it
forces the location of the string to match the same 2K segment the program
is located in. This will lead to strange behavior if the string address is located
in a different 2K segment. For this reason it is suggested that you use the fol-
lowing code instead:

void putstring(char code * data msg)

{
while (*msg != 0)
{
tx byte((unsigned char) *msg) ;
if (*msg==\n)
tx_byte(*\r’);
msg++
}
}

Boot ROM Routines c-3

8052 Instruction-Set Quick-Reference Guide

Appendix D gives a list of the 8052 instruction set.

Topic Page

D.1 8052 Instruction-Set Quick-Reference Guide D-2

8052 Instruction-Set Quick-Reference Guide

D.1 8052 Instruction-Set Quick-Reference Guide

00
01
02
03
04
05
06
07
08
09
0A
0B
ocC
oD
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30

31

32

33

34

35

36

37

38

39

3A
3B
3C
3D

NOP

AJMP pgOAddr
LIMP addr16
RR A

INC A

INC direct

INC @RO

INC @R1

INC RO

INC R1

INC R2

INC R3

INC R4

INC R5

INC R6

INC R7

JBC bitAddr,relAddr
ACALL pgOAddr
LCALL address16
RRC A

DEC A

DEC direct
DEC @RO
DEC @R1
DEC RO

DEC R1

DEC R2

DEC R3

DEC R4

DEC R5

DEC R6

DEC R7

JB bitAddr,relAddr
AIMP pglAddr
RET

RL A

ADD A #data8
ADD A, direct
ADD A,@RO
ADD A,@R1
ADD A,RO
ADD AR1
ADD AR2
ADD AR3
ADD A R4
ADD AR5
ADD A R6
ADD AR7

JNB bitAddr,relAddr
ACALL pglAddr
RETI

RLC A

ADDC A #data
ADDC A, direct
ADDC A,@RO
ADDC A,@R1
ADDC A,RO
ADDC A,R1
ADDC A,R2
ADDC A,R3
ADDC A,R4
ADDC A,R5

40
41
42
43
44
45
46
47
48
49
aA
4B
ac
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D

JC relAddr
AJMP pg2Addr
ORL direct,A
ORL direct,#data8
ORL A #data8
ORL A,direct
ORL A,@RO
ORL A,@R1
ORL A,RO

ORL A,R1

ORL AR2

ORL AR3

ORL A,R4

ORL A,R5

ORL A,R6

ORL A,R7

JNC relAddr
ACALL pg2Addr
ANL direct,A
ORL direct,#data8
ANL A #data8
ANL A,direct
ANL A,@RO
ANL A,@R1
ANL A,RO

ANL AR1

ANL A,R2

ANL A,R3

ANL A,R4

ANL A,R5

ANL A,R6

ANL A,R7

JZ relAddr
AJMP pg3Addr
XRL direct,A
XRL direct,#data8
XRL A #data8
XRL A,direct
XRL A,@RO
XRL A,@R1
XRL A,RO

XRL AR1

XRL A,R2

XRL A,R3

XRL A,R4

XRL A,R5

XRL A,R6

XRL A,R7

JINZ relAddr
ACALL pg3Addr
ORL C,bitAddr
JMP @A+DPTR
MOV A #data8
MOV direct,#data8
MOV @RO0,#data8
MOV @R1,#data8
MOV RO,#data8
MOV R1 #data8
MOV R2 #data8
MOV R3,#data8
MOV R4,#data8
MOV R5,#data8

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD

SJIMP relAddr
AJMP pg4Addr
ANL C,bitAddr
MOVC A,@A+PC
DIV AB

MOV direct,direct
MOV direct, @R0O
MOV direct, @R1
MOV direct,RO
MOV direct,R1
MOV direct,R2
MOV direct,R3
MOV direct,R4
MOV direct,R5
MOV direct,R6
MOV direct,R7
MOV DPTR,#datal6
ACALL pg4Addr
MOV bitAddr,C
MOVC A,@DPTR
SUBB A #data8
SUBB A,direct
SUBB A,@RO
SUBB A,@R1
SUBB A,RO
SUBB AR1
SUBB A ,R2
SUBB A,R3
SUBB A R4
SUBB AR5
SUBB AR6
SUBB AR7

ORL C,/bitAddr
AJIMP pg5Addr
MOV C,bitAddr
INC DPTR

MUL AB

MOV @RO,direct

MOV @R1,direct

MOV RO,direct

MOV R1,direct

MOV R2,direct

MOV R3,direct

MOV R4,direct

MOV R5,direct

MOV Ré6,direct

MOV R7,direct

ANL C,/bitAddr

ACALL pg5Addr

CPL bitAddr

CPLC

CJINE A #data8,relAddr
CJNE A, direct,relAddr
CJINE @RO,#data8,relAddr
CINE @R1,#data8,relAddr
CJNE RO,#data8,relAddr
CJNE R1,#data8,relAddr
CJINE R2,#data8,relAddr
CJNE R3,#data8,relAddr
CJNE R4,#data8,relAddr
CJINE R5,#data8,relAddr

co
c1
c2
c3
c4
cs
c6
c7
cs
co
CA
cB
cc
cD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD

PUSH direct
AJMP pg6Addr
CLR bitAddr
CLRC

SWAP A

XCH A, direct
XCH A,@RO0
XCHA,@R1
XCH ARO
XCH A,R1
XCH AR2
XCH AR3
XCH AR4
XCH AR5
XCH A,R6
XCH AR7
POP direct
ACALL pg5Addr
SETB bitAddr
SETBC

DA A

DJINZ direct,relAddr
XCHD A,@R0
XCHD A,@R1
XCHD ARO
XCHD AR1
XCHD A,R2
XCHD A,R3
XCHD A R4
XCHD A,R5
XCHD A,R6
XCHD A,R7
MOVX A,@DPTR
AIMP pg7Addr
MOVX A,@RO
MOVX A,@R1
CLRA

MOV A, direct
MOV A,@R0O
MOV A,@R1
MOV A,RO
MOV AR1
MOV A R2
MOV AR3
MOV A R4
MOV AR5
MOV A R6
MOV AR7
MOVX @DPTR,A
ACALL pg7Addr
MOVX @RO,A
MOVX @R1,A
CPLA

MOV direct,A
MOV @RO,A
MOV @R1,A
MOV RO,A
MOV R1,A
MOV R2,A
MOV R3,A
MOV R4,A
MOV R5,A

8052 Instruction Set

Appendix E lists the 8052 instruction set.

Topic Page

E.1 DesSCription E-2
E.2 8052 Instruction Setot E-2

Description

E.1 Description

This appendix is a reference for all instructions in the 8052 instruction set. For
each instruction, the following information is provided:
Instruction—indicates the correct syntax for the given opcode.
OpCode—the operation code, in the range of 0x00 through OxFF, that rep-
resents the given instruction in machine code.

Bytes—the total number of bytes (including the opcode byte) that make
up the instruction.

Cycles—the number of machine cycles required to execute the instruc-
tion.

Flags—the flags that are modified by the instruction, if any.

U U 0O oo

When listing instruction syntax, the following terms will be used:
bitAddr—Bit address value (00-FF)

pgXAddr—Absolute 2k (13-bit) Address

dataB—Immediate 8-bit data value

datal6—Immedate 16-bit data value

address16—16-bit code address

direct—Direct address (IRAM 00-7F, SFR 80-FF)
relAddr—Relative address (-127 to +128 bytes)

Uoooood

E.2 8052 Instruction Set

ACALL
Syntax

E-2

Absolute Call within 2k Block
ACALL codeAddress

Instructions OpCode Bytes Cycles Flags
ACALL pgOAddr 0x11 2 2 None
ACALL pglAddr 0x31 2 2 None
ACALL pg2Addr 0x51 2 2 None
ACALL pg3Addr 0x71 2 2 None
ACALL pg4Addr 0x91 2 2 None
ACALL pg5Addr 0xB1 2 2 None
ACALL pg6Addr 0xD1 2 2 None
ACALL pg7Addr OxF1 2 2 None

ACALL unconditionally calls a subroutine at the indicated code address. ACALL
pushes the address of the instruction that follows ACALL onto the stack, least-
significant-byte first, and most-significant-byte second. The Program Counter is
then updated so that program execution continues at the indicated address.

The new value for the Program Counter is calculated by replacing the least-
significant-byte of the Program Counter with the second byte of the ACALL in-
struction, and replacing bits 0-2 of the most-significant-byte of the Program
Counter with bits 5-7 of the opcode value. Bits 3-7 of the most-significant-byte
of the Program Counter remain unchaged.

Since only 11 bits of the Program Counter are affected by ACALL, calls may
only be made to routines located within the same 2k block as the first byte that
follows ACALL.

See also: LCALL, RET

ADD, ADDC
Syntax

8052 Instruction Set

Add Value, Add Value with Carry

ADD A,operand
ADDC A,operand

Instructions OpCode Bytes Cycles Flags

ADD A #data8 0x24 2 1 C,AC, OV
ADD A direct 0x25 2 1 C,AC, OV
ADD A,@RO 0x26 1 1 C,AC, OV
ADD A,@R1 ox27 1 1 C,AC, OV
ADD ARO 0x28 1 1 C,AC, OV
ADD A,R1 0x29 1 1 C,AC, OV
ADD A,R2 0x2A 1 1 C,AC, OV
ADD A,R3 0x2B 1 1 C,AC, OV
ADD A,R4 0x2C 1 1 C,AC, OV
ADD AR5 0x2D 1 1 C,AC, OV
ADD A,R6 Ox2E 1 1 C,AC, OV
ADD A,R7 Ox2F 1 1 C,AC, OV
ADDC A #data8 0x34 2 1 C,AC, OV
ADDC A direct 0x35 2 1 C,AC, 0OV
ADDC A,@R0O 0x36 1 1 C,AC, OV
ADDC A,@R1 0x37 1 1 C,AC, OV
ADDC A,RO 0x38 1 1 C,AC, OV
ADDC AR1 0x39 1 1 C,AC, OV
ADDC AR2 0x3A 1 1 C,AC, OV
ADDC A,R3 0x3B 1 1 C,AC, OV
ADDC A,R4 0x3C 1 1 C,AC, OV
ADDC AR5 0x3D 1 1 C,AC, OV
ADDC AR6 Ox3E 1 1 C,AC, OV
ADDC AR7 Ox3F 1 1 C,AC, OV

ADD and ADDC both add the value operand to the value of the Accumulator,
leaving the resulting value in the Accumulator. The value operand is not af-
fected. ADD and ADDC function identically except that ADDC adds the value
of operand as well as the value of the Carry flag whereas ADD does not add
the Carry flag to the result.

The Carry (C) bit is set if there is a carry-out of bit 7. In other words, if the un-
signed summed value of the Accumulator, operand, and (in the case of ADDC)
the Carry flag exceeds 255, the Carry bit is set. Otherwise, the Carry bit is
cleared.

The Auxillary Carry (AC) bit is set if there is a carry-out of bit 3. In other words,
if the unsigned summed value of the low nibble of the Accumulator, operand,
and (in the case of ADDC) the Carry flag exceeds 15, the Auxillary Carry flag
is set. Otherwise, the Auxillary Carry flag is cleared.

The Overflow (OV) bit is set if there is a carry-out of bit 6 or out of bit 7, but
not both. In other words, if the addition of the Accumulator, operand, and (in
the case of ADDC) the Carry flag treated as signed values results in a value
that is out of the range of a signed byte (-128 through +127), the Overflow flag
is set. Otherwise, the Overflow flag is cleared.

See also: SUBB, DA, INC, DEC

8052 Instruction Set

8052 Instruction Set

AIJMP
Syntax

ANL
Syntax

E-4

Absolute Jump within 2k Block
AJMP codeAddress

Instructions OpCode Bytes Cycles Flags
AJIMP pgOAddr 0x01 2 2 None
AJMP pglAddr 0x21 2 2 None
AIJMP pg2Addr 0x41 2 2 None
AJMP pg3Addr 0x61 2 2 None
AJIMP pg4Addr 0x81 2 2 None
AJIMP pg5Addr OxAl 2 2 None
AJMP pg6Addr 0xC1 2 2 None
AJMP pg7Addr OxE1 2 2 None

AJMP unconditionally jumps to the indicated codeAddress. The new value for
the Program Counter is calculated by replacing the least-significant-byte of the
Program Counter with the second byte of the AJMP instruction, and replacing
bits 0-2 of the most-significant-byte of the Program Counter with bits 5-7 of
the opcode value. Bits 3-7 of the most-significant-byte of the Program Counter
remain unchaged.

Since only 11 bits of the Program Counter are affected by AJMP, jumps may
only be made to code located within the same 2k block as the first byte that
follows AJMP.

See also: LIMP, SIMP

Bitwise AND

ANL operandl,operand2
Instructions OpCode Bytes Cycles Flags
ANL direct,A 0x52 2 1 None
ANL direct,#data8 0x53 3 2 None
ANL A #data8 0x54 2 1 None
ANL A direct 0x55 2 1 None
ANL A,@RO 0x56 1 1 None
ANL A,@R1 0x57 1 1 None
ANL A,RO 0x58 1 1 None
ANL AR1 0x59 1 1 None
ANL AR2 Ox5A 1 1 None
ANL AR3 0x5B 1 1 None
ANL A R4 0x5C 1 1 None
ANL AR5 0x5D 1 1 None
ANL A,R6 Ox5E 1 1 None
ANL AR7 Ox5F 1 1 None
ANL C,bitAddr 0x82 2 1 C
ANL C,/bitAddr 0xBO 2 1 C

ANL does a bitwise “AND” operation between operandl and operand?2, leav-
ing the resulting value in operandl. The value of operand2 is not affected. A
logical “AND” compares the bits of each operand and sets the corresponding
bit in the resulting byte only if the bit was set in both of the original operands.
Otherwise, the resulting bit is cleared.

See also: ORL, XRL

CJINE
Syntax

CLR

Syntax

CPL
Syntax

8052 Instruction Set

Compare and Jump if Not Equal
CJINE operandl,operand2,reladdr

Instructions OpCode Bytes | Cycles Flags
CJNE A #data8,reladdr 0xB4 3 2 C
CJNE A, direct,reladdr 0xB5 3 2 C
CJINE @RO,#data8,reladdr 0xB6 3 2 C
CJINE @R1,#data8,reladdr 0xB7 3 2 C
CJINE RO,#data8,reladdr 0xB8 3 2 Cc
CJINE R1,#data8,reladdr 0xB9 3 2 C
CJINE R2,#data8,reladdr O0xBA 3 2 C
CJNE R3,#data8,reladdr 0xBB 3 2 C
CJINE R4, #data8,reladdr 0xBC 3 2 C
CJINE R5,#data8,reladdr 0xBD 3 2 Cc
CJINE R6,#data8,reladdr OxBE 3 2 C
CJINE R7,#data8,reladdr OxBF 3 2 C

CJINE compares the value of operandl and operand2 and branches to the indi-
cated relative address if the two operands are not equal. If the two operands are
equal program flow continues with the instruction following the CINE instruction.

The Carry (C) bit is set if operandl is less than operand2, otherwise it is cleared.

See also: DINZ

Clear Register
CLR register

Instructions OpCode Bytes Cycles Flags
CLR bitAddr 0xC2 2 1 None
CLRC 0xC3 1 1 C

CLR A OxE4 1 1 None

CLR clears (sets to 0) the bit(s) of the indicated register. If the register is a bit
(including the Carry bit), only the specified bit is affected. Clearing the Accumu-
lator sets the Accumulator’s value to O.

See also: SETB

Complement Register
CPL operand

Instructions OpCode Bytes Cycles Flags
CPLA OxF4 1 1 None
CPLC 0xB3 1 1 C

CPL bitAddr 0xB2 2 1 None

CPL complements operand, leaving the result in operand. If operand is a
single bit, the state of the bit will be reversed. If operand is the Accumulator,
all the bits in the Accumulator will be reversed. This can be thought of as “Accu-
mulator Logical Exclusive OR 255" or as “255-Accumulator.” If operand refers
to a bit of an output port, the value that will be complemented is based on the
last value written to that bit, not the last value read from it.

See also: CLR, SETB

8052 Instruction Set

8052 Instruction Set

DA
Syntax

DEC
Syntax

DIV
Syntax

E-6

Decimal Adjust Accumulator

DA A
Instructions OpCode Bytes Cycles Flags
DA A 0xD4 1 1 C

DA adjusts the contents of the Accumulator to correspond to a BCD (Binary
Coded Decimal) number after two BCD numbers have been added by the ADD
or ADDC instruction.

If the Carry bit is set or if the value of bits 0-3 exceed 9, 0x06 is added to the
Accumulator. If the Carry bit was set when the instruction began, or if 0x06 was
added to the Accumulator in the first step, 0x60 is added to the Accumulator.

The Carry (C) bit is set if the resulting value is greater than 0x99. Otherwise,
it is cleared.

See also: ADD, ADDC

Decrement Register
DEC register

Instructions OpCode Bytes Cycles Flags
DECA 0x14 1 1 None
DEC direct 0x15 2 1 None
DEC @RO 0x16 1 1 None
DEC @R1 0x17 1 1 None
DEC RO 0x18 1 1 None
DEC R1 0x19 1 1 None
DEC R2 Ox1A 1 1 None
DEC R3 0x1B 1 1 None
DEC R4 0x1C 1 1 None
DEC R5 0x1D 1 1 None
DEC R6 Ox1E 1 1 None
DEC R7 Ox1F 1 1 None

DEC decrements the value of register by 1. If the initial value of register is 0,
decrementing the value will cause it to reset to 255 (OxFFy). Note that the
Carry flag is not set when the value “rolls over” from 0 to 255.

See also: INC, SUBB

Divide Accumulator by B

DIV AB
Instructions OpCode Bytes Cycles Flags
DIV AB 0x84 1 1 C, oV

Divides the unsigned value of the Accumulator by the unsigned value of the
“B” register. The resulting quotient is placed in the Accumulator and the re-
mainder is placed in the “B” register.

The Carry (C) flag is always cleared.

The Overflow (OV) flag is set if division by 0 was attempted. Otherwise, it is
Cleared.

See also: MUL AB

DINZ
Syntax

INC
Syntax

8052 Instruction Set

Decrement and Jump if Not Zero
DJNZ register,relAddr

Instructions OpCode | Bytes Cycles Flags
DJNZ direct,relAddr 0xD5 3 2 None
DJNZ RO,relAddr 0xD8 2 2 None
DJINZ R1,relAddr 0xD9 2 2 None
DJINZ R2,relAddr OxDA 2 2 None
DJINZ R3,relAddr 0xDB 2 2 None
DJINZ R4,relAddr 0xDC 2 2 None
DJINZ R5,relAddr 0xDD 2 2 None
DJNZ R6,relAddr OxDE 2 2 None
DJINZ R7,relAddr OxDF 2 2 None

DJNZ decrements the value of register by 1. If the initial value of register is 0,
decrementing the value will cause it to reset to 255 (OxFFy). If the new value
of register is not O the program will branch to the address indicated by relAddr.
If the new value of register is 0, program flow continues with the instruction fol-
lowing the DJNZ instruction.

See also: DEC, JZ, INZ

Increment Reister

INC register
Instructions OpCode Bytes Cycles Flags
INC A 0x04 1 1 None
INC direct 0x05 2 1 None
INC @RO 0x06 1 1 None
INC @R1 0x07 1 1 None
INC RO 0x08 1 1 None
INC R1 0x09 1 1 None
INC R2 O0x0A 1 1 None
INC R3 0x0B 1 1 None
INC R4 0x0C 1 1 None
INC R5 0x0D 1 1 None
INC R6 Ox0E 1 1 None
INC R7 OxOF 1 1 None
INC DPTR 0xA3 1 2 None

INC increments the value of register by 1. If the initial value of register is 255
(OxFFy), incrementing the value will cause it to reset to 0. Note that the Carry
flag is not set when the value “rolls over” from 255 to O.

In the case of “INC DPTR”, the two-byte value of DPTR is incremented as an
unsigned integer. If the initial value of DPTR is 65535 (OxFFFFy), incrementing
the value will cause it to reset to 0. Again, the Carry flag is not set when the
value of DPTR “rolls over” from 65535 to O.

See also: ADD, ADDC, DEC

8052 Instruction Set

8052 Instruction Set

JB
Syntax

JBC
Syntax

JC
Syntax

JMP
Syntax

E-8

Jump if Bit Set
JB bitAddr,relAddr

Instructions OpCode Bytes Cycles Flags
JB bitAddr,relAddr 0x20 3 2 None

JB branches to the address indicated by relAddr if the bit indicated by bitAddr
is set. If the bit is not set, program execution continues with the instruction fol-
lowing the JB instruction.

See also: JBC, JNB

Jump if Bit Set and Clear Bit
JBC bitAddr,relAddr

Instructions OpCode Bytes Cycles Flags
JBC bitAddr,reladdr 0x10 3 2 None

JBC will branch to the address indicated by relAddr if the bit indicated by
bitAddr is set. Before branching to relAddr the instruction will clear the
indicated bit. If the bit is not set, program execution continues with the
instruction following the JBC instruction and the value of the bit is not changed.

See also: JB, JNB

Jump if Carry Set

JC relAddr
Instructions OpCode Bytes Cycles Flags
JC relAddr 0x40 2 2 None

JC will branch to the address indicated by relAddr if the Carry Bit is set. If the
Carry bit is not set, program execution continues with the instruction following
the JC instruction.

See also: INC

Jump to Data Pointer + Accumulator
JMP @A+DPTR

Instructions OpCode Bytes Cycles Flags
JMP @A+DPTR 0x73 1 2 None

JMP jumps unconditionally to the address represented by the sum of the value
of DPTR and the value of the Accumulator.

See also: LIMP, AJMP, SIMP

JNB
Syntax

JNC
Syntax

JNZ
Syntax

Jz
Syntax

8052 Instruction Set

Jump if Bit Not Set
JNB bitAddr,reladdr

Instructions OpCode Bytes Cycles Flags
JNB bitAddr,relAddr 0x30 3 2 None

JNB will branch to the address indicated by relAddr if the indicated bit is not
set. If the bit is set, program execution continues with the instruction following
the JNB instruction.

See also: JB, JBC

Jump if Carry Not Set

JNC reladdr
Instructions OpCode Bytes Cycles Flags
JNC relAddr 0x50 2 2 None

JNC branches to the address indicated by relAddr if the Carry bit is not set. If
the Carry bit is set, program execution continues with the instruction following
the JNB instruction.

See also: JC

Jump if Accumulator Not Zero

JNZ reladdr
Instructions OpCode Bytes Cycles Flags
JNZ relAddr 0x70 2 2 None

JNZ will branch to the address indicated by relAddr if the Accumulator contains
any value except 0. If the value of the Accumulator is zero, program execution
continues with the instruction following the JNZ instruction.

See also: JZ

Jump if Accumulator Zero

JZ reladdr
Instructions OpCode Bytes Cycles Flags
JZ relAddr 0x60 2 2 None

JZ branches to the address indicated by relAddr if the Accumulator contains
the value 0. If the value of the Accumulator is not zero, program execution con-
tinues with the instruction following the JNZ instruction.

See also: JINZ

8052 Instruction Set

8052 Instruction Set

LCALL Long Call

Syntax LCALL address16
Instructions OpCode Bytes Cycles Flags
LCALL address16 0x12 3 2 None

LCALL calls a program subroutine. LCALL increments the program counter by
3 (to point to the instruction following LCALL) and pushes that value onto the
stack , low byte first, high byte second. The Program Counter is then set to the
16-bit value address16, causing program execution to continue at that address.

See also: ACALL, RET

LIMP Long Jump

Syntax LIMP address16
Instructions OpCode Bytes Cycles Flags
LIMP address16 0x02 3 2 None

LIMP jumps unconditionally to the specified address16.

See also: AJMP, SIMP, JMP

MOV Move Memory Into/Out of Accumulator
Syntax MOV operandl, operand2
Instructions OpCode Bytes Cycles Flags
MOV A, #data8 0x74 2 1 None
MOV A,@RO OXE6 1 1 None
MOV A,@R1 OXE7 1 1 None
MOV @RO0,A 0xF6 1 1 None
MOV @R1,A OxF7 1 1 None
MOV A,RO OxES8 1 1 None
MOV A,R1 OXE9 1 1 None
MOV A,R2 OXEA 1 1 None
MOV AR3 OXEB 1 1 None
MOV A,R4 OXEC 1 1 None
MOV A,R5 OXED 1 1 None
MOV A,R6 OXEE 1 1 None
MOV A,R7 OXEF 1 1 None
MOV A,direct OXES5 2 1 None
MOV RO,A 0xF8 1 1 None
MOV R1,A OxF9 1 1 None
MOV R2,A OXFA 1 1 None
MOV R3,A OxFB 1 1 None
MOV R4,A OxFC 1 1 None
MOV R5,A OxFD 1 1 None
MOV R6,A OxFE 1 1 None
MOV R7,A OXFF 1 1 None
MOV direct,A 0xF5 2 1 None

MOV copies the value of operand?2 into operandl. The value of operand2 is
not affected.

See also: MOVC, MOVX, XCH, XCHD, PUSH, POP

E-10

8052 Instruction Set

MOV Move Into/Out of Carry Bit

Syntax MOV bit1,bit2
Instructions OpCode Bytes Cycles Flags
MOV C,bitAddr 0xA2 2 1 C
MOV bitAddr,C 0x92 2 2 None

MOV copies the value of bit2 into bitl. The value of bit2 is not affected. Either
bitl or bit2 must refer to the Carry bit.

MOV Move into/out of Internal RAM
Syntax MOV operandl,operand?
Instructions OpCode Bytes Cycles Flags
MOV @RO,#data8 0x76 2 1 None
MOV @R1,#data8 Ox77 2 1 None
MOV @RO,direct 0xA6 2 2 None
MOV @R1,direct OxA7 2 2 None
MOV RO,#data8 0x78 2 1 None
MOV R1,#data8 0x79 2 1 None
MOV R2 #data8 Ox7A 2 1 None
MOV R3 #data8 0x7B 2 1 None
MOV R4 #data8 0x7C 2 1 None
MOV R5,#data8 0x7D 2 1 None
MOV R6 #data8 OX7E 2 1 None
MOV R7 #data8 Ox7F 2 1 None
MOV RO,direct 0xA8 2 2 None
MOV R1,direct OxA9 2 2 None
MOV R2,direct O0xAA 2 2 None
MOV R3,direct 0xAB 2 2 None
MOV R4,direct OxAC 2 2 None
MOV R5,direct O0xAD 2 2 None
MOV Ré6,direct OXAE 2 2 None
MOV R7,direct OxAF 2 2 None
MOV direct,#data8 0x75 3 2 None
MOV direct, @R0 0x86 2 2 None
MOV direct, @R1 0x87 2 2 None
MOV direct,RO 0x88 2 2 None
MOV direct,R1 0x89 2 2 None
MOV direct,R2 Ox8A 2 2 None
MOV direct,R3 0x8B 2 2 None
MOV direct,R4 0x8C 2 2 None
MOV direct,R5 0x8D 2 2 None
MOV direct,R6 Ox8E 2 2 None
MOV direct,R7 Ox8F 2 2 None
MOV directl,direct2 0x85 3 2 None

MOV copies the value of operand?2 into operandl. The value of operand?2 is
not affected.

NOTE: In the case of “MQV directl,direct2 ”, the operand bytes of the instruction are stored in reverse
order. That is, the instruction consisting of the bytes 85y, 204, 504 means “Move the contents of Internal
RAM location 0x20 to Internal RAM location 0x50,” although, the opposite would be generally presumed.

See also: MOVC, MOVX, XCH, XCHD, PUSH, POP

8052 Instruction Set E-11

8052 Instruction Set

MOV DPTR
Syntax

MOVC
Syntax

MOVX
Syntax

E-12

Move value into DPTR
MOV DPTR,#datal6

Instructions OpCode Bytes Cycles Flags
MOV DPTR,#datal6 0x90 3 2 None

Sets the value of the Data Pointer (DPTR) to the value datal6é.

See also: MOVX, MOVC

Move Code Byte to Accumulator
MOVC A,@A+register

Instructions OpCode Bytes Cycles Flags
MOVC A,@A+DPTR 0x93 1 2 None
MOVC A,@A+PC 0x83 1 1 None

MOVC moves a byte from code memory into the Accumulator. The code
memory address from which the byte will be moved is calculated by summing
the value of the Accumulator with either DPTR or the Program Counter (PC).
In the case of the Program Counter, PC is first incremented by 1 before being
summed with the Accumulator.

See also: MOV, MOVX

Move Data to/from External RAM
MOVX operandl,operand2

Instructions OpCode Bytes Cycles Flags
MOVX @DPTR,A O0xFO 1 2 None
MOVX @RO,A 0xF2 1 2 None
MOVX @R1,A OxF3 1 2 None
MOVX A, @DPTR OxEO 1 2 None
MOVX A,@RO OXE2 1 2 None
MOVX A,@R1 OxE3 1 2 None

MOVX moves a byte to or from external memory into or from the Accumulator.

If operandl is @DPTR, the Accumulator is moved to the 16-bit External
Memory address indicated by DPTR. This instruction uses both PO (port 0) and
P2 (port 2) to output the 16-bit address and data. If operand?2 is DPTR then the
byte is moved from external memory into the Accumulator.

If operandl is @RO or @R1, the Accumulator is moved to the 8-bit external
memory address indicated by the specified register. This instruction uses only
PO (port 0) to output the 8-bit address and data. P2 (port 2) is not affected. If
operand2 is @RO0 or @R1, the byte is moved from external memory into the
Accumulator.

See also: MOV, MOVC

MUL
Syntax

NOP
Syntax

ORL
Syntax

8052 Instruction Set

Multiply Accumulator by B

MUL AB
Instructions OpCode Bytes Cycles Flags
MUL AB OxA4 1 4 C, oV

Multiplies the unsigned value in the Accumulator by the unsigned value in the
“B” register. The least-significant byte of the result is placed in the Accumulator
and the most-significant byte is placed in the “B” register.

The Carry (C) flag is always cleared.

The Overflow (OV) flag is set if the result is greater than 255 (if the
most-significant byte is not zero). Otherwise, it is cleared.

See also: DIV

No Operation

NOP
Instructions OpCode Bytes Cycles Flags
NOP 0x00 1 1 None

NOP, as its name suggests, causes no operation to take place for one machine
cycle. NOP is generally used only for timing purposes. Absolutely no flags or
registers are affected.

Bitwise OR

Syntax: ORL operandl,operand2
Instructions OpCode Bytes Cycles Flags
ORL direct,A 0x42 2 1 None
ORL direct,#data8 0x43 3 2 None
ORL A #data8 0x44 2 1 None
ORL A,direct 0x45 2 1 None
ORL A,@RO 0x46 1 1 None
ORL A,@R1 0ox47 1 1 None
ORL ARO 0x48 1 1 None
ORL A|R1 0x49 1 1 None
ORL AR2 Ox4A 1 1 None
ORL AR3 0x4B 1 1 None
ORL AR4 0x4C 1 1 None
ORL AR5 0x4D 1 1 None
ORL AR6 Ox4E 1 1 None
ORL AR7 Ox4F 1 1 None
ORL C,bitAddr 0x72 2 2 C
ORL C,/bitAddr OxAO0 2 1 C

ORL does a bitwise “OR” operation between operandl and operand2, leaving
the resulting value in operand1l. The value of operand2 is not affected. A logical
“OR” compares the bits of each operand and sets the corresponding bit in the
resulting byte if the bit was set in either of the original operands. Otherwise,
the resulting bit is cleared.

See also: ANL, XRL

8052 Instruction Set E-13

8052 Instruction Set

POP
Syntax

PUSH
Syntax

E-14

Pop Value from Stack
POP register

Instructions OpCode Bytes Cycles Flags
POP direct 0xDO 2 2 None

POP “pops” the last value placed on the stack into the direct address specified.
In other words, POP will load direct with the value of the Internal RAM address
pointed to by the current Stack Pointer. The stack pointer is then decremented
by 1.

NOTE: The address of direct must be an Internal RAM or SFR address. The user
cannot POP directly into “R” registers such as RO, R1, etc.. For example, to pop a
value off the stack into RO, pop the value into the Accumulator and then move the
value of the Accumulator into RO.

NOTE: When popping a value off the stack into the Accumulator, code the instruction
as POP ACC, not POP A. The latter is invalid and will result in an error at assemble
time.

See also: PUSH

Push Value onto Stack
PUSH register

Instructions OpCode Bytes Cycles Flags
PUSH direct 0xCO 2 2 None

PUSH “pushes” the value of the specified direct address onto the stack. PUSH
first increments the value of the Stack Pointer by 1, then takes the value stored
in direct and stores it in internal RAM at the location pointed to by the increm-
ented Stack Pointer.

NOTE: The address of direct must be an internal RAM or SFR address. The user
cannot PUSH directly from “R” registers such as RO, R1, etc. For example, to push
a value onto the stack from RO, move RO into the Accumulator, and then PUSH the
value of the Accumulator onto the stack.

NOTE: When pushing a value from the accumulator onto the stack into the, code the
instruction as PUSH ACC, not PUSH A. The latter is invalid and will result in an error
at assemble time.

See also: POP

RET
Syntax

RETI
Syntax

RL
Syntax

RLC -
Syntax

8052 Instruction Set

Return from Subroutine

RET
Instructions OpCode Bytes Cycles Flags
RET 0x22 1 2 None

RET is used to return from a subroutine previously called by LCALL or ACALL.
Program execution continues at the address that is calculated by popping the
top-most two bytes off the stack. The most-significant byte is popped off the
stack first, followed by the least-significant byte.

See also: LCALL, ACALL, RETI

Return from Interrupt

RETI
Instructions OpCode Bytes Cycles Flags
RETI 0x32 1 2 None

RETI is used to return from an interrupt service routine. RETI first enables in-
terrupts of equal and lower priorities to the interrupt that is terminating. Pro-
gram execution continues at the address that is calculated by popping the top-
most 2 bytes off the stack. The most-significant byte is popped off the stack
first, followed by the least-significant byte.

RETI functions identically to RET if it is executed outside of an interrupt service
routine.

See also: RET

Rotate Accumulator Left

RL A
Instructions OpCode Bytes Cycles Flags
RL A 0x23 1 1 C

RL shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of the
Accumulator is loaded into bit O.

See also: RLC, RR, RRC

Rotate Accumulator Left Through Carry

RLC A
Instructions OpCode Bytes Cycles Flags
RLC A 0x33 1 1 C

RLC shifts the bits of the accumulator to the left. The left-most bhit (bit 7) of the
Accumulator is loaded into the Carry flag, and the original Carry flag is loaded
into bit O of the Accumulator.

See also: RL, RR, RRC

8052 Instruction Set E-15

8052 Instruction Set

RR
Syntax

RRC
Syntax

SETB
Syntax

SIMP
Syntax

E-16

Rotate Accumulator Right

RR A
Instructions OpCode Bytes Cycles Flags
RR A 0x03 1 1 None

RR shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of
the Accumulator is loaded into bit 7.

See also: RL, RLC, RRC

Rotate Accumulator Right Through Carry

RRC A
Instructions OpCode Bytes Cycles Flags
RRC A 0x13 1 1 C

RRC shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of
the Accumulator is loaded into the Carry flag, and the original Carry flag is
loaded into bit 7.

See also: RL, RLC, RR

Set Bit

SETB bitAddr
Instructions OpCode Bytes Cycles Flags
SETB C 0xD3 1 1 (o}
SETB bitAddr 0xD2 2 1 None

SETB sets the specified bit.

If the instruction requires the Carry bit to be set, the assembler will automatical-
ly use the OxD3 opcode. If any other bit is set, the assembler will automatically
use the OxD2 opcode.

See also: CLR

Short Jump
SIMP relAddr

Instructions OpCode Bytes Cycles Flags
SJIMP relAddr 0x80 2 2 None

SJIMP jumps unconditionally to the address specified relAddr. RelAddr must
be within -128 or +127 bytes of the instruction that follows the SIMP instruc-
tion.

See also: LIMP, AJMP

SUBB
Syntax

SWAP
Syntax

8052 Instruction Set

Subtract from Accumulator with Borrow

SUBB A,operand

Instructions OpCode Bytes Cycles Flags

SUBB A #data8 0x94 2 1 C, AC, OV
SUBB A,direct 0x95 2 1 C, AC, OV
SUBB A,@RO 0x96 1 1 C, AC, OV
SUBB A,@R1 0x97 1 1 C, AC, OV
SUBB A,RO 0x98 1 1 C, AC, OV
SUBB AR1 0x99 1 1 C,AC, OV
SUBB AR2 0x9A 1 1 C,AC, OV
SUBB AR3 0x9B 1 1 C,AC, OV
SUBB AR4 0x9C 1 1 C, AC, OV
SUBB AR5 0x9D 1 1 C, AC, OV
SUBB A,R6 Ox9E 1 1 C, AC, OV
SUBB AR7 Ox9F 1 1 C, AC, OV

SUBB subtracts the value of operand from the value of the Accumulator, leav-
ing the resulting value in the Accumulator. The value operand is not affected.

The Carry (C) bit is set if a borrow was required for bit 7. Otherwise, it is
cleared. In other words, if the unsigned value being subtracted is greater than
the Accumulator, the Carry flag is set.

The Auxillary Carry (AC) bit is set if a borrow was required for bit 3. Other-
wise, it is cleared. In other words, the bit is set if the low nibble of the value be-
ing subtracted was greater than the low nibble of the Accumulator.

The Overflow (OV) bit is set if a borrow was required for bit 6 or for bit 7, but
not both. In other words, the subtraction of two signed bytes resulted in a value
outside the range of a signed byte (-128 to 127). Otherwise, it is cleared.

See also: ADD, ADDC, DEC

Subtract Accumulator Nibbles

SWAP A
Instructions OpCode Bytes Cycles Flags
SWAP A 0xC4 1 1 None

SWAP swaps bits 0-3 of the Accumulator with bits 4-7 of the Accumulator.
This instruction is identical to executing “RR A” or “RL A” four times.

See also: RL, RLC, RR, RRC

8052 Instruction Set E-17

8052 Instruction Set

XCH Exchange Bytes

Syntax XCH A, register
Instructions OpCode Bytes Cycles Flags
XCH A,@RO 0xC6 1 1 None
XCH A ,@R1 0xC7 1 1 None
XCH A,RO 0xC8 1 1 None
XCH AR1 0xC9 1 1 None
XCH A,R2 O0xCA 1 1 None
XCH A,R3 0xCB 1 1 None
XCH A,R4 0xCC 1 1 None
XCH A,R5 OxCD 1 1 None
XCH A,R6 OxCE 1 1 None
XCH A,R7 OxCF 1 1 None
XCH A, direct 0xC5 2 1 None

XCH exchanges the value of the Accumulator with the value contained in register.

See also: MOV
XCHD Exchange Digit
Syntax XCHD A register
Instructions OpCode Bytes Cycles Flags
XCHD A,@RO 0xD6 1 1 None
XCHD A,@R1 0xD7 1 1 None

XCHD exchanges bits 0- 3 of the Accumulator with bits 0- 3 of the internal RAM
address pointed to indirectly by RO or R1. Bits 4- 7 of each register are unaffected.

See also: DA

XRL Bitwise Exclusive OR

Syntax XRL operandl,operand2
Instructions OpCode Bytes Cycles Flags
XRL direct,A 0x62 2 1 None
XRL direct,#data8 0x63 3 2 None
XRL A #data8 0x64 2 1 None
XRL A, direct 0x65 2 1 None
XRL A,@RO 0x66 1 1 None
XRL A ,@R1 0x67 1 1 None
XRL ARO 0x68 1 1 None
XRL AR1 0x69 1 1 None
XRL A,R2 Ox6A 1 1 None
XRL AR3 0x6B 1 1 None
XRL AR4 0x6C 1 1 None
XRL AR5 0x6D 1 1 None
XRL A,R6 Ox6E 1 1 None
XRL A,R7 Ox6F 1 1 None

XRL does a hitwise “EXCLUSIVE OR” operation between operandl1 and oper-
and2, leaving the resulting value in operandl. The value of operand?2 is not af-
fected. A logical “EXCLUSIVE OR” compares the bits of each operand and
sets the corresponding bit in the resulting byte if the bit was set in either (but
not both) of the original operands. Otherwise, the bit is cleared.

See also: ANL, ORL

E-18

UNDEFINED
Syntax

8052 Instruction Set

Undefined Instruction

?7?7?
Instructions OpCode Bytes Cycles Flags
?2?? O0xA5 1 1 C

The “undefined” instruction is, as the name suggests, not a documented in-
struction. The 8052 supports 255 instructions and OpCode 0xA5 is the single
OpCode that is not used by any documented function. Since it is not docu-
mented nor defined, it is not recommended that it be executed.

However, based on my research, executing this undefined instruction takes
one machine cycle and appears to have no effect on the system except that
the Carry bit always seems to be set.

NOTE: We received input from an 8052.com user that the undefined instruc-
tion really has a format of “Undefined bit1,bit2” and effectively copies the value
of bit2 to bitl. In this case, it would be a three-byte instruction. We have not
had an opportunity to verify or disprove this report, so we present it to the world
as “additional information.”

See also: NOP

8052 Instruction Set E-19

Bit-Addressable SFRs (alphabetical)

Appendix F defines the MSC1210’s bit-addressable Special Function Regis-
ters (SFRs) in alphabetical order.

Topic Page

F.1 Bit-Addressable SFRs (alphabetical) F-2

Bit Addressable SFRs (alphabetical)

F.1 Bit Addressable SFRs (alphabetical)

Enable Interrupt Control (EICON)

SFR Name: EICON
SFR Address: D8y
Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name SMOD1 — EAI Al WDTI — — —
Bit Address DFH DEH DDH DCH DBH DAH D9H D8H

SMOD1—Serial Port 1 Mode. 0 = Normal baud rate for serial port 1, 1 = Serial
port 1 baud rate doubled.

EAI—Enable Auxiliary Interrupt. 1 = Interrupt enabled.

Al—Auxiliary Interrupt Flag. 1 = Auxiliary interrupt pending, will trigger inter-
rupt if EAI bit set.

WDTI—Watchdog Interrupt Flag. 1 = Watchdog interrupt pending, will trig-
ger interrupt if Watchdog interrupt enabled.

Extended Interrupt Enable (EIE)

SFR Name: EIE
SFR Address: E8y
Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name — — — EWDI EX5 EX4 EX3 EX2
Bit Address EFH EEH EDH ECH EBH EAH EgH E8H

F-2

EWDI—Watchdog Interrupt Enable. 1 = Watchdog interrupt enabled.
EX5—External 5 Interrupt Enable. 1 = External 5 interrupt enabled.
EX4—External 4 Interrupt Enable. 1 = External 4 interrupt enabled.
EX3—External 3 Interrupt Enable. 1 = External 3 interrupt enabled.

EX2—External 2 Interrupt Enable. 1 = External 2 interrupt enabled.

Bit Addressable SFRs (alphabetical)

Extended Interrupt Priority (EIP)

SFR Name: EIE
SFR Address: F8y4
Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name — — — PWDI PX5 PX4 PX3 PX2
Bit Address FFH FEH FDH FCH FBH FAH FgH F8H

Interrupt Enable (IE)

PWDI—Watchdog Interrupt Priority. 1 = Watchdog interrupt high-level priority,

0 = low-level priority.

PX5—External 5 Interrupt Priority. 1 = External 5 interrupt high-level priority,

0 = low-level priority.

PX4—External 4 Interrupt Priority. 1 = External 4 interrupt high-level priority,

0 = low-level priority.

PX3—External 3 Interrupt Priority. 1 = External 3 interrupt high-level priority,

0 = low-level priority.

PX2—External 2 Interrupt Priority. 1 = External 2 interrupt high-level priority,

0 = low-level priority.

SFR Name: IE
SFR Address: A8y
Bit-Addressable: Yes

Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name EA — ET2 ES ET1 EX1 ETO EXO
Bit Address AFy AEy ADy ACH ABy AAH A9y A8y

EA—Enable/Disable All Interrupts. 1 = interrupts enabled.
ET2—Enable Timer 2 Interupt. 1 = interrupt enabled.
ES—Enable Serial Interupt. 1 = interrupt enabled.
ET1—Enable Timer 1 Interupt. 1 = interrupt enabled.
EX1—Enable External 1 Interupt. 1 = interrupt enabled.
ETO—Enable Timer 0O Interupt. 1 = interrupt enabled.

EXO0—Enable External 0 Interupt. 1 = interrupt enabled.

Bit-Addressable SFRs (alphabetical)

F-3

Bit Addressable SFRs (alphabetical)

INTERRUPT PRIORITY (IP)

SFR Name: IP
SFR Address: B8y
Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name — — PT2 PS PT1 PX1 PTO PX0

Bit Address BFy BEy BDy BCh BBy BAY B9y B8y
PT2—Priority Timer 2 Interupt. 1 = high-priority interrupt, O = low-priority
interrupt.
PS—Priority Serial Interupt. 1 = high-priority interrupt, O = low-priority
interrupt.
PT1—Priority Timer 1 Interupt. 1 = high priority interrupt, O = low-priority
interrupt.
PX1—Priority External 1 Interupt. 1 = high priority interrupt, O = low-priority
interrupt.
PTO—Priority Timer O Interupt. 1 = high priority interrupt, O = low-priority
interrupt.
PX0—Priority External O Interupt. 1 = High priority interrupt, O = low-priority
interrupt.

Port 0 (PO)
SFR Name: PO
SFR Address: 80y
Bit-Addressable: Yes
Bit Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name AD7 AD6 AD5 AD4 AD3 AD2 AD1 ADO
Bit Address 87H 86H 85H 84H 83H 82H 81H 80H

F-4

NOTE: These bit names indicate that 1/O line’s function on the PO bus when used
with external memory (code/RAM). A standard 8052 assembler will not recognize
these bits by the given names; rather, they will only be recognized as P0.7, P0.6, etc.

NOTE: Port 0 is only available for general input/output if the project does not use
external code memory or external RAM. When such external memory is used, Port
0 is used automatically by the microcontroller to address the memory and read/write

data from/to said memory.

Bit Addressable SFRs (alphabetical)

Port 1 (P1)
SFR Name: P1
SFR Address: 90y
Bit-Addressable: Yes
Bit-Definitions:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name P1.7 P1.6 P15 P1.4 P1.3 P1.2 T2EX T2
Bit Address 97H 96H 95H 94H 93H 92H ng 90H
T2EX—Timer 2 Capture/Reload. Optional external capturing or reloading of
timer 2.
T2—Timer 2 External Input. Optionally used to control timer/counter 2 via
external source.
Port 2 (P2)
SFR Name: P2
SFR Address: AOy
Bit-Addressable: Yes
Bit-Definitions:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name Al5 Al4 A13 Al2 All A10 A9 A8
Bit Address A7y Aby A5y Ady A3y A2y Aly AOy

NOTE: These bit names indicate that I/O line’s function on the P2 bus when used
with external memory (code/RAM). A standard 8052 assembler will not recognize
these bits by the given names; rather, they will only be recognized as P2.7, P2.6, etc.

NOTE: Port 2 is only available for general input/output if the project does not use
external code memory or external RAM. When such external memory is used, Port
2 is used automatically by the microcontroller to address the memory and read/write
data from/to said memory.

Bit-Addressable SFRs (alphabetical) F.5

Bit Addressable SFRs (alphabetical)

Port 3 (P3)

SFR Name: P3

SFR Address: BOy

Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Name RD WR T1 TO INT1 INTO TXD RXD
Bit Address B7H BGH BSH B4H B3H BZH BlH BOH

F-6

RD—Read Strobe. 0 = external memory read strobe.
WR—Write Strobe. 0 = external memory write strobe.

T1—Timer/Counter 1 External Input. Optionally used to control timer/counter
1 via external source.

TO—Timer/Counter 0 External Input. Optionally used to control timer/counter
0 via external source.

INT1—External Interrupt 1. Used to trigger external interrupt 1.
INTO—External Interrupt 0. Used to trigger external interrupt O.

TXD—Serial Transmit Data. 8052’s serial transmit line (from 8052 to external

device).

RXD—Serial Transmit Data. 8052’s serial receive line (to 8052 from external

device).

NOTE: These bit names indicate that I/O line’s function on the P3 bus. A standard
8052 assembler will not recognize these bits by the given names; rather they will only

be recognized as P3.7, P3.6, etc.

Bit Addressable SFRs (alphabetical)

Program Status Word (PSW)

SFR Name: PSW
SFR Address: DOy
Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name CYy AC FO RS1 RSO ov — P
Bit Address D7H DGH D5H D4H D3H DZH DlH DOH

CY—Carry Flag. Set or cleared by instructions ADD, ADDC, SUBB, MUL, and
DIV.

AC—Auxiliary Carry. Set or cleared by instructions ADD, ADDC.
FO—Flag 0. General flag available to developer for user-defined purposes.

RS1/RS0—Register Select Bits. These two bits, taken together, select the
register bank which will be used when using “R” registers RO through R7, ac-
cording to the following table:

RS1 RSO Register Bank Register Bank Addresses
0 0 0 004-07 4
0 1 1 08y-0F 4
1 0 2 104-17 4
1 1 3 18-1F

OV—Overflow Flag. Set or cleared by instructions ADD, ADDC, SUBB, and
DIV.

P—Parity Flag. Set or cleared automatically by core to establish even parity
with the Accumulator, such that the number of bits set in the Accumulator plus
the value of the parity bit will always equal an even number.

Bit-Addressable SFRs (alphabetical) F.7

Bit Addressable SFRs (alphabetical)

Serial Control (SCON)

SFR Name: SCON
SFR Address: 98y
Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name SMO SM1 SM2 REN TB8 RB8 TI RI
Bit Address 9FH 9EH 9DH QCH QBH 9AH 99H 98H

F-8

SMO0/SM1- Serial Mode. These two bits, taken together, select the serial
mode in which the serial port will operate.

SMO | SM1 | Serial Mode Description Baud
0 0 0 Shift Register Oscillator/12
0 1 1 8-Bit UART Variable (T1 or T2)
1 0 2 9-Bit UART Oscillator/64 or /32
1 1 3 9-Bit UART Variable (T1 or T2)

SM2—Serial Mode 2 (Multiprocessor Communication). When this bit is set,
multiprocessor communication is enabled in modes 2 and 3 causing the RI bit
to only be set when the 9th bit of a byte received is set. In mode 1, Rl will only
be set if a valid stop bit is received. SM2 should be cleared in mode 0.

REN—Received Enable. This bit must be set to enable data reception via the
serial port. No data will be received by the serial port if this bit is clear.

TB8—Transmit Bit 8. When in modes 2 and 3, this bit will be the 9th bit that
is sent when a byte is written to SBUF.

RB8—Receive Bit 8. When in modes 2 and 3, this is the 9th bit that was re-
ceived. In mode 1, and if SM2 is set, RB8 holds the value of the stop bit that
was received. RB8 is not used in mode 0.

Tl—Transmit Interrupt. Set by hardware when the byte previously written to
SBUF has been completely clocked out the serial port.

RI—Receive Interrupt. Set by hardware when a byte has been received by
the serial port and is available to be read in SBUF.

Bit Addressable SFRs (alphabetical)

Timer Control (TCON)

SFR Name: TCON
SFR Address: 88y
Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name TF1 TR1 TFO TRO IE1 IT1 IEO ITO
Bit Address 8Fy 8EH 8Dy 8ChH 8BH 8AH 894 88y

TF1—Timer 1 Overflow Flag. This bit is set by the MCU when Timer 1
overflows from FFFFy back to 00004. Cleared by software, or cleared
automatically by hardware if a timer 1 interrupt is triggered.

TR1—Timer 1 Run Control. When this bit is set, Timer 1 will count depending
on its configuration in TMOD. When this bit is clear, Timer 1 will be stopped.

TFO—Timer 0 Overflow Flag. This bit is set by the MCU when Timer O
overflows from FFFFy back to 0000y. Cleared by software, or cleared
automatically by hardware if a Timer O interrupt is triggered.

TRO—Timer 1 Run Control. When this bit is set, Timer 0 will count depending
on its configuration in TMOD. When this bit is clear, Timer O will be stopped.

IE1—External 1 Interrupt Flag. This bit is set by the MCU when an external
1 interrupt is detected on the INT1 line. Cleared by software, or cleared auto-
matically by hardware if an external 1 interrupt is triggered.

IT1—External 1 Interrupt Type Flag. This bit controls whether or not external
1 interrupt is edge-triggered or low-level-triggered. If this bit is set, external 1
interrupt will be triggered when a 1-0 transition is detected on the INT1 line.
If this bit is clear, external 1 interrupt will be triggered continuously when INT1
is at a low state.

IEO—External O Interrupt Flag. This bit is set by the MCU when an external
0 interrupt is detected on the INTO line. Cleared by software, or cleared auto-
matically by hardware if an external 1 interrupt is triggered.

ITO—External 0 Interrupt Type Flag. This bit controls whether or not external
0 interrupt is edge-triggered or low-level-triggered. If this bit is set, external 1
interrupt will be triggered when a 1-0 transition is detected on the INTO line.
If this bit is clear, external 0 interrupt will be triggered continuously when INTO
is at a low state.

Bit-Addressable SFRs (alphabetical) F-9

Bit Addressable SFRs (alphabetical)

Timer 2 Control (T2CON)

SFR Name: T2CON
SFR Address: C8y
Bit-Addressable: Yes

Bit-Definitions:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Name TF2 EXF2 RCLK TCLK EXEN2 TR2 CIT2 CP/RL2C
Bit Address CFH CEH CDH CCH CBH CAH CQH C8H

F-10

TF2—Timer 2 Overflow Flag. This bit is set by the MCU when Timer 2 over-
flows from FFFFy back to 00004. When enabled, this bit will cause a Timer 2
interrupt. Cleared by software. This bit is not set when TCLK or RCLK is set.

EXF—Timer 2 External Flag. This bit is set by the MCU when a timer capture
or reload is triggered by a 1-0 transition on T2EX. When enabled, this bit will
cause a Timer 2 interrupt. Cleared by software.

RCLK—Timer 2 Receive Clock. When this bit is set, Timer 2 will provide the
serial port receive baud rate clock.

TCLK—Timer 2 Transmit Clock. When this bit is set, Timer 2 will provide the
serial port transmit baud rate clock.

EXEN2—Timer 2 External Enable. When this bit is set, a capture or reload
will be triggered on a 1-0 transition on the T2EX line.

TR2—Timer 2 Run Control. When this bit is set, Timer 2 will be activated/run.
When this bit is clear, Timer 2 will be stopped.

C/T2—Counter/Interval Timer. When this bit is set, Timer 2 will act as an
event counter based on external stimulus on the T2EX line. When this bit is
clear, Timer 2 will act as an interval timer.

CP/RL2C—Capture/Reload. When set, a capture will occur on a 1-0 transi-
tion of T2EX. When clear, a reload will occur on timer overflow or on a 1-0 tran-
sition of T2EX. This bit is only relevant if EXENZ2 is set, and will not apply if
RCLK or TCLK are set.

Appendix G

SFRs/Address Cross-Reference Guide
(alphabetical)

Appendix G lists an alphabetical cross-reference of the Special Function
Registers (SFRs) and their addresses.

Topic Page

G.1 SFR/Address Cross-Referencecooviiiiiinnnnnn.. G-2

SFR/Address Cross-Reference

G.1 SFR/Address Cross-Reference

SFR Name Description SFR Address (Hex)
ACLK Analog Clock F6n
ADCONO ADC Control 0 DCh
ADCON1 ADC Control 1 DDy
ADCON2 ADC Control 2 DEy
ADCON3 ADC Control 3 DFy
ADMUX ADC Multiplexer D74
ADRESH ADC Result High DBy
ADRESL ADC Result Low D9y
ADRESM ADC Result Middle DAH{
AIE Auxiliary Interrupt Enable Aby
AISTAT Auxiliary Interrupt Status ATy
BPCON Breakpoint Control A9y
BPH Breakpoint High ABy
BPL Breakpoint Low AAH
CADDR Configuration Address 934
CDATA Configuration Data 94y
CKCON Clock Control 8Ey
DPLO Data Pointer O Low 82y
DPHO Data Pointer 0 High 83H
DPL1 Data Pointer 1 Low 84y
DPH1 Data Pointer 1 High 85y
DPS Data Pointer Select 86H
EIE Extended Interrupt Enable E8H
EIP Extended Interrupt Priority F8H
EWU Enable Wake Up from Idle C6h
EXIF External Interrupt Flag 91y
FMCON Flash Memory Control EEy
FTCON Flash Memory Timing Control EFy
GCH Gain Calibration High D6y
GCL Gain Calibration Low D4y
GCM Gain Calibration Middle D5y
HMSEC Hundred Millisecond Counter FEQ
HWPCO Hardware Product Code 0 E9y
HWPC1 Hardware Product Code 1 EAH
LVDCON Low Voltage Detection Control E7y
MCON Memory Control 954
MPAGE Memory Page 92y
MSECH Millisecond Counter High FDy
MSECL Millisecond Counter Low FCh
MSINT Microseconds Interrupt Fay
MWS Memory Write Select 8Fy
OCH ADC Offset Calibration High D3y
OCL ADC Offset Calibration Low D1y
OoCM ADC Offset Calibration Middle D2y
ODAC Offset DAC E6y
PO Port 0 80y

G-2

SFR/Address Cross-Reference

PODDRH Port 0 Data Direction High ADy
PODDRL Port 0 Data Direction Low ACH
P1 Port 1 90y

P1DDRH Port 1 Data Direction High AFy
P1DDRL Port 1 Data Direction Low AEy
P2 Port 2 A0y
P2DDRH Port 2 Data Direction High B2y
P2DDRL Port 2 Data Direction Low Bly
P3 Port 3 BOH
P3DDRH Port 3 Data Direction High B4y
P3DDRL Port 3 Data Direction Low B3y
PAI Pending Auxiliary Interrupt Aby
PASEL PSEN/ALE Select F2y

PCON Power Control 87H

PDCON Power-Down Control Fly

PWMCON PWM Control Aly
PWMHI PWM High A3y
PWMLOW PWM Low A2y
RCAP2H Reload/Capture Timer 2 High CBy
RCAP2L Reload/Capture Timer 2 Low CAH
SBUFO Serial Buffer 0 99

SBUF1 Serial Buffer 1 Cly
SCONO Serial Control 0 984

SCON1 Serial Control 1 COy
SECINT Seconds Interrupt Foy

SP Stack Pointer 81y

SPICON SPI Control 9AH
SPIDATA SPI Data 9By
SPIEND SPI Buffer End Address 9Fy

SPIRCON SPI Receive Control 9CH
SPISTART SPI Buffer Start Address 9EH
SPITCON SPI Transmit Control 9Dy
SRST System Reset F7y

SSCON Summation/Shifter Control Ely
SSUMRO Summation Register 0 E24
SSUMR1 Summation Register 1 E34
SSUMR2 Summation Register 2 E4y
SSUMR3 Summation Register 3 E5y
T2CON Timer 2 Control C8y
TCON Timer Control 88y

THO Timer 0 High 8CH
TH1 Timer 1 High 8Dy
TH2 Timer 2 High CDy
TLO Timer O Low 8AH
TL1 Timer 1 Low 8BH
TL2 Timer 2 Low 8CH
TMOD Timer Mode 89y

USEC Microseconds FBH
WDTCON Watchdog Timer Control FFy

SFRs/Address Cross-Reference Guide (alphabetical) G-3

