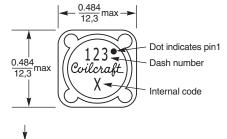
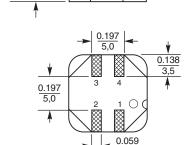
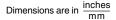


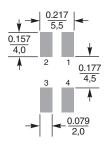
Coupled Inductors-MSD1260

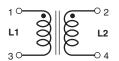

www.DataSheet4U.com For SEPIC and other **Applications**

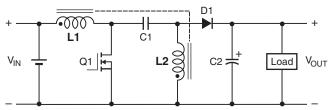

The excellent coupling coefficient ($k \ge 0.94$) makes the MSD1260 series of coupled inductors ideal for use in SEPIC applications. In SEPIC topologies, the required inductance for each winding in a coupled inductor is half the value needed for two separate inductors, allowing selection of a part with lower DCR and higher current handling.


These parts provide high inductance, high efficiency and excellent current handling in a rugged, low cost part. They are also well suited for use as a VRM inductors in high-current DC-DC converters and VRM/ VRD controllers.

They can also be used as two single inductors connected in series or parallel, as a common mode choke or as a 1:1 transformer.


Parts manufactured prior to Sept. 2007 were marked with only the dash number.





0.236 ±0.008 6,0 ±0,2

Recommended **Land Pattern**

Typical SEPIC schematic Refer to Application Note, Document 639,

"Selecting Coupled Inductors for SEPIC Applications"

Core material Ferrite

Terminations RoHS compliant matte tin over nickel over phos bronze. Other terminations available at additional cost.

Weight: 2.8 - 3.2 g

Ambient temperature -40°C to +85°C with Irms current, +85°C to +125°C with derated current

Storage temperature Component: -40°C to +125°C.

Packaging: -40°C to +80°C

Winding to winding isolation 500 Vrms

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF) 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332

Packaging 500/13" reel; Plastic tape: 24 mm wide, 0.35 mm thick, 16 mm pocket spacing, 6.6 mm pocket depth

PCB washing Only pure water or alcohol recommended

Specifications subject to change without notice. Please check our website for latest information.

Document 528-1 Revised 12/05/08

Coupled Inductors for SEPIC – MSD1260 Series

www.DataSheet4U.com

	Inductance² (μΗ)		DCR max ³ (Ohms)	SRFtyp ⁴ (MHz)	Isat⁵ (A)	Irms(A)	
Part number¹						both windings ⁶	one winding ⁷
MSD1260-472ML_	4.7	±20%	0.036	32.0	10.3	3.16	4.47
MSD1260-562ML_	5.6	±20%	0.040	31.0	9.66	3.00	4.24
MSD1260-682ML_	6.8	3 ±20%	0.048	28.0	9.21	2.75	3.88
MSD1260-822ML_	8.2	±20%	0.052	25.0	8.55	2.63	3.72
MSD1260-103ML_	10	±20%	0.060	22.0	7.40	2.45	3.46
MSD1260-123ML_	12	±20%	0.074	21.0	6.86	2.21	3.12
MSD1260-153ML_	15	±20%	0.085	17.6	6.09	2.06	2.92
MSD1260-183ML_	18	±20%	0.097	17.0	5.30	1.93	2.73
MSD1260-223ML_	22	±20%	0.116	15.0	5.01	1.76	2.49
MSD1260-273ML_	27	±20%	0.124	13.6	4.66	1.70	2.41
MSD1260-333ML_	33	±20%	0.134	12.7	4.22	1.64	2.32
MSD1260-393ML_	39	±20%	0.142	11.7	3.80	1.59	2.25
MSD1260-473ML_	47	±20%	0.174	8.7	3.25	1.44	2.03
MSD1260-563ML_	56	±20%	0.198	7.6	3.07	1.35	1.91
MSD1260-683ML_	68	±20%	0.216	6.1	2.83	1.29	1.83
MSD1260-823ML_	82	±20%	0.274	5.3	2.55	1.15	1.62
MSD1260-104ML_	100	±20%	0.322	5.0	2.20	1.06	1.50
MSD1260-124KL_	120	±10%	0.418	4.4	2.05	0.93	1.31
MSD1260-154KL_	150	±10%	0.476	4.0	1.82	0.87	1.23
MSD1260-184KL_	180	±10%	0.536	3.6	1.60	0.82	1.16
MSD1260-224KL_	220	±10%	0.691	3.2	1.51	0.72	1.02
MSD1260-274KL_	270	±10%	0.806	2.8	1.41	0.67	0.95
MSD1260-334KL_	330	±10%	1.09	2.5	1.28	0.57	0.81
MSD1260-394KL_	390	±10%	1.20	2.3	1.16	0.55	0.77
MSD1260-474KL_	470	±10%	1.59	2.1	1.00	0.48	0.67
MSD1260-564KL_	560	±10%	1.81	2.0	0.95	0.45	0.63
MSD1260-684KL_	680	±10%	2.06	1.8	0.88	0.42	0.59
MSD1260-824KL_	820	±10%	2.65	1.5	0.79	0.37	0.52
MSD1260-105KL_	1000	±10%	3.06	1.2	0.69	0.34	0.49

1. When ordering, please specify **termination** and **packaging** codes:

MSD1260-105KLD

 $\begin{tabular}{ll} \textbf{Termination:} & L = RoHS compliant matte tin over nickel over phos bronze. \\ & Special order: \textbf{T} = RoHS tin-silver-copper (95.5/4/0.5) or \\ \end{tabular}$

S = non-RoHS tin-lead (63/37).

Packaging: D = 13" machine-ready reel. EIA-481 embossed plastic tape (500 parts per full reel).

B = Less than full reel. In tape, but not machine ready. To have a leader and trailer added (\$25 charge), use code letter D instead.

- Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.
- DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.
- SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.
- 5. DC current, at which the inductance drops 30% (typ) from its value without current. It is the sum of the current flowing in both windings.
- Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- 7. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.
- 8. Electrical specifications at 25°C.

Refer to Doc 639 "Selecting Coupled Inductors for SEPIC Applications." Refer to Doc 362 "Soldering Surface Mount Components" before soldering.

Temperature rise calculation based on specified Irms

Winding power loss = $(I_{L1}^2 + I_{L2}^2) \times DCR$

Temperature rise (Δt) = Winding power loss $\times \frac{55.6^{\circ}C}{W}$

$$\Delta t = (I_{L1}^2 + I_{L2}^2) \times DCR \times \frac{55.6^{\circ}C}{W}$$

Example 1. MSD1260-153ML (Equal current in each winding) Winding power loss = $(2.06^2 + 2.06^2) \times 0.085 = 0.721$ W

$$\Delta t = 0.721 \text{ W} \times \frac{55.6^{\circ}\text{C}}{\text{W}} = 40^{\circ}\text{C}$$

Example 2. MSD1260-153ML ($I_{L1} = 2.4 \text{ A}, I_{L2} = 1.3 \text{ A}$)

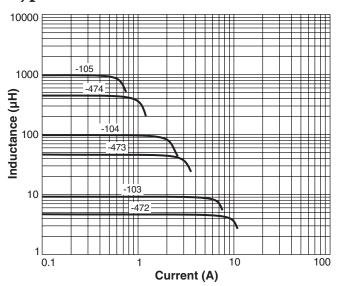
Winding power loss = $(2.4^2 + 1.3^2) \times 0.085 = 0.633 \text{ W}$

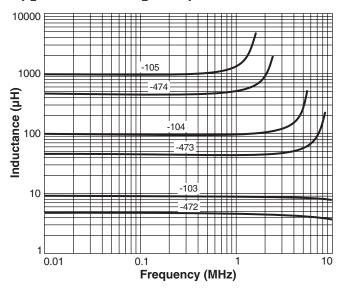
$$\Delta t = 0.633 \text{ W} \times \frac{55.6^{\circ}\text{C}}{\text{W}} = 35.2^{\circ}\text{C}$$

Coupled Inductor Core and Winding Loss Calculator

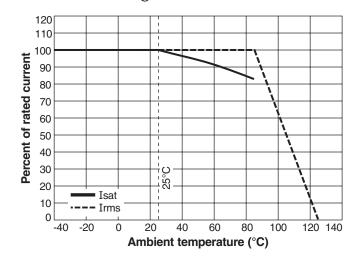
This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. Visit www.coilcraft.com/coupledloss.

Specifications subject to change without notice. Please check our website for latest information.


Document 528-2 Revised 12/05/08


Coupled Inductors for SEPIC – MSD1260 Series

www.DataSheet4U.com


Typical L vs Current

Typical L vs Frequency

Current Derating

