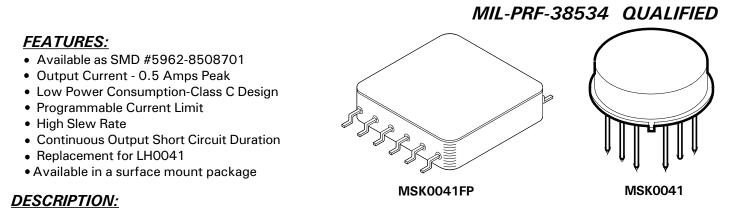
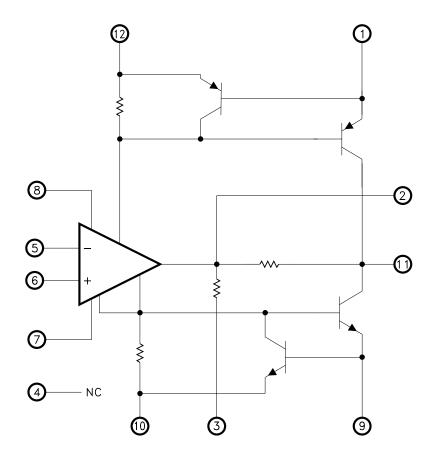
ISO 9001 CERTIFIED BY DSCC



MEDIUM POWER OP-AMP

UU4 I SERIES


4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

The MSK 0041 and 0041FP are general purpose Class C power operational amplifiers. These amplifiers offer high output currents, making them an excellent low cost choice for motor drive circuits. The amplifier and load can be protected from fault conditions through the use of internal current limit circuitry that can be user programmed with two external resistors. These devices are also compensated with a single external capacitor. The MSK 0041 is available in a hermetically sealed 12 pin TO-8 package. The MSK 0041FP is packaged in a 12 pin hermetic metal flatpack.

EQUIVALENT SCHEMATIC

(PIN NUMBERS ARE FOR TO-8)

TYPICAL APPLICATIONS

- Servo Amplifer
- Motor Driver
- Audio Amplifier
- Programmable Power Supply

(PIN-OUT INFORMATION					
MSK0041		MS	K0041 FP			
1	ISC +	1	GND			
2	Compensation	2	Balance			
3	GND	3	-Input			
4	NC	4	+ Input			
5	-Input	5	Balance			
6	+ Input	6	NC			
7	Balance	7	-VCC			
8	Balance	8	ISC-			
9	ISC-	9	Output			
10	-VCC	10	ISC +			
11	Output	11	+ VCC			
12	+ VCC	12	Compensation			

ABSOLUTE MAXIMUM RATINGS

\pm Vcc	Supply Voltage ±18V
Ιουτ	Peak Output Current 0.5A
Vin	Differential Input Voltage
Vin	Common Mode Input Voltage $\dots \dots \dots \dots \dots \pm 15V$
Rтн	Thermal Resistance-Junction to Case
	MSK 0041
	MSK 0041FP

ELECTRICAL SPECIFICATIONS

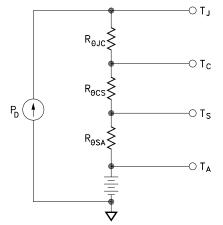
Tst Tld	Storage Temperature Range
	(10 Seconds)
ТJ	Junction Temperature
Тс	Case Operating Temperature Range
	Military Versions (H/B/E)
	Industrial Versions

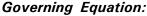
Parameter	Test Conditions	Group A	Military (5)		Industrial ④				
		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC									
Supply Voltage Range 2		-	± 5	±15	±18	± 5	±15	±18	V
Quiescent Current	VIN = OV	1, 2, 3	-	±1.0	±3.5	-	±1.0	±4.0	mA
Power Consumption (2)	VIN = OV	1,2,3	-	75	105	-	90	120	mW
INPUT									
Input Offset Voltage	VIN = OV	1	-	±0.5	±3.0	-	±0.5	±6.0	mV
		2, 3	-	±2.0	±5.0	-	-	-	µV/°C
Input Bias Current	VCM = OV	1	-	± 100	±300	-	± 150	± 500	nA
	Either Input	2, 3	-	±0.4	±1.0	-	-	-	μA
Input Offset Current	$V_{CM} = 0V$	1	-	± 2.0	±100	-	± 2.0	± 200	nA
		2,3	-	-	± 300	-	-	-	nA
Input Capacitance ③	F = DC	-	-	3	-	-	3	-	рF
Input Resistance 2	F = DC	-	0.3	1.0	-	0.3	1.0	-	MΩ
Common Mode Rejection Ratio	$F = 10Hz$ Vcm $= \pm 10V$	4	70	90	-	70	90	-	dB
		5,6	70	90	-	-	-	-	dB
Power Supply Rejection Ratio	Vcc = $\pm 5V$ to $\pm 15V$	1	80	95	-	80	95	-	dB
		2,3	80	-	-	-	-	-	dB
Input Noise Voltage ③	F = 10Hz to $10KHz$	-	-	5	-	-	5	-	μ Vrms
OUTPUT									
Output Voltage Swing	$RL = 100\Omega$ F = 100Hz	4	± 13	±14	-	±13	± 14	-	V
Output voltage Swing		5,6	±13	±14	-	-	-	-	V
Output Short Circuit Current	$Rsc = 3.3\Omega$ Vout = MAX	4	182	220	300	180	220	300	mA
Settling Time 0.1% 2V step		-	-	4	-	-	4	-	μS
TRANSFER CHARACTERISTICS									
Slew Rate ③	$VOUT = \pm 10V$ $RL = 100\Omega$	4	1.5	3.0	-	1.0	3.0	-	V/µS
Open Loop Voltage Gain	$F = 10Hz$ $RL = 1K\Omega$	4	100	105	-	100	105	-	dB
		5,6	88	96	-	-	-	-	dB
Transition Times	Vout = 1V Rise and Fall	4	-	0.3	1.0	-	0.3	1.5	μS
Overshoot	Small Signal	4	-	5	20	-	5	30	%

<u>NOTES:</u>

- (1) Unless otherwise specified, $\pm Vcc = \pm 15V$, Cc = 3000pF.
- Q Guaranteed by design but not tested.
 Q Typical parameters are representative
- ③ Typical parameters are representative of actual device performance but are for reference only.
- ④ Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.
- (5) Military grade devices (B/H suffix) shall be 100% tested to subgroups 1, 2, 3 and 4.

Subgroup 1, 4 $TA = TC = +25^{\circ}C$ Subgroup 2, 5 $TA = TC = +125^{\circ}C$


- Subgroup 2, 5 $TA = TC = +125^{\circ}C$ Subgroup 3, 6 $TA = TC = -55^{\circ}C$
- 6 Reference DSCC SMD 5962-8508701 for electrical specifications for devices purchased as such.
- $\bar{(2)}$ Subgroup 5 and 6 testing available upon request.


APPLICATION NOTES

HEAT SINKING

To select the correct heat sink for your application, refer to the thermal model and governing equation below.

Thermal Model:

 $T_J = P_D x (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$

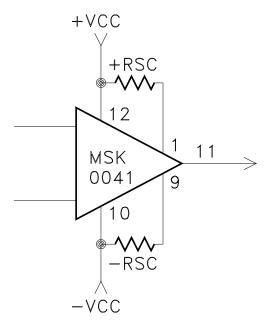
Where

010	
TJ	 Junction Temperature
Pd	 Total Power Dissipation
Rejc	= Junction to Case Thermal Resistance
Recs	= Case to Heat Sink Thermal Resistance
Resa	= Heat Sink to Ambient Thermal Resistance
Тс	= Case Temperature
ТА	= Ambient Temperature
Ts	= Sink Temperature

Example: (TO-8 PACKAGE)

In our example the amplifier application requires the output to drive a 10 volt peak sine wave across a 100 ohm load for 0.1 amp of output current. For a worst case analysis we will treat the 0.1 amp peak output current as a D.C. output current. The power supplies are ± 15 VDC.

- 1.) Find Power Dissipation
 - PD = [(quiescent current) X (+Vcc (Vcc))] + [(Vs Vo) X lout]= (3.5 mA) X (30V) + (5V) X (0.1A)= 0.1W + 0.5W= 0.6W
- 2.) For conservative design, set $T_J = +150$ °C.
- 3.) For this example, worst case $TA = +25 \,^{\circ}C$.
- 4.) $R_{\theta JC} = 85^{\circ}C/W$
- 5.) Rearrange governing equation to solve for R_{0SA}:
 - $R_{\theta}SA = (T_J T_A) / P_D (R_{\theta}J_C) (R_{\theta}C_S)$
 - = (150°C 25°C) / 0.6W (85°C/W) (0.15°C/W) = 123°C/W


The heat sink in this example must have a thermal resistance of no more than $123 \,^{\circ}$ C/W to maintain a junction temperature of less than $+ 150 \,^{\circ}$ C. This calculation assumes a case to sink thermal resistance of $0.15 \,^{\circ}$ C/W.

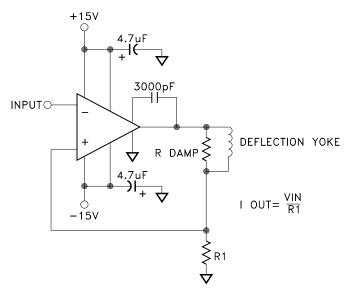
CURRENT LIMIT

The MSK 0041 has an on-board current limit scheme designed to limit the output drivers anytime output current exceeds a predetermined limit. The following formula may be used to determine the value of the current limit resistance necessary to establish the desired current limit.

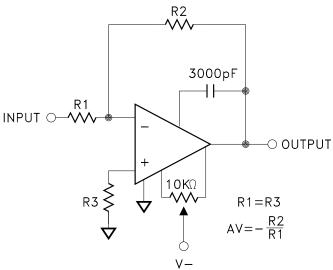
$$Rsc = \frac{0.7}{Isc}$$

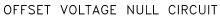
Current Limit Connection

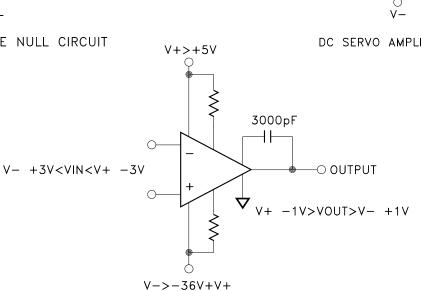
See "Application Circuits" in this data sheet for additional information on current limit connections.

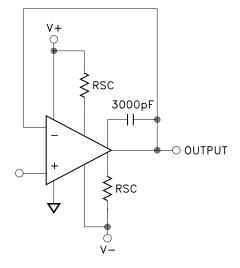

POWER SUPPLY BYPASSING

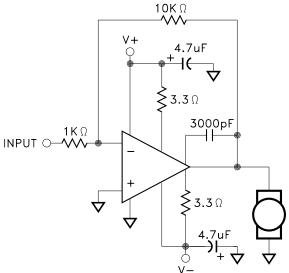
Both the negative and the positive power supplies must be effectively decoupled with a high and low frequency bypass circuit to avoid power supply induced oscillation. An effective decoupling scheme consists of a 0.1 microfarad ceramic capacitor in parallel with a 4.7 microfarad tantalum capacitor from each power supply pin to ground. This capacitor will eliminate any peak output voltage clipping which may occur due to poor power supply load regulation. All power supply decoupling capacitors should be placed as close to the package power supply pins as possible.


SAFE OPERATING AREA

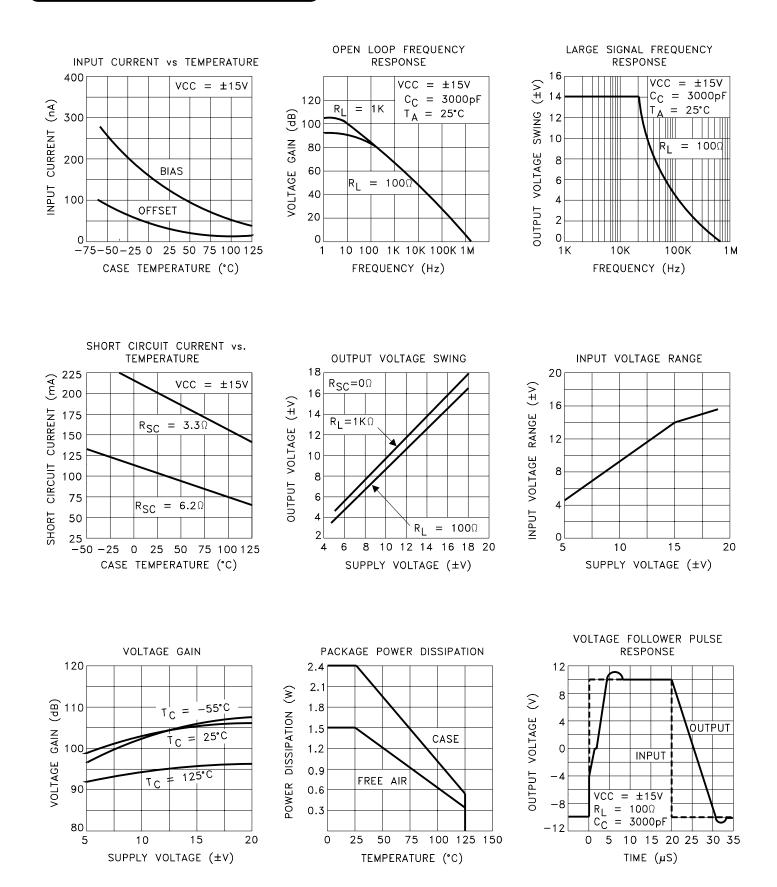

The safe operating area curve is a graphical representation of the power handling capability of the amplifier under various conditions. The wire bond current carrying capability, transistor junction temperature and secondary breakdown limitations are all incorporated into the safe operating area curves. All applications should be checked against the curves to ensure high M.T.B.F.


APPLICATION CIRCUITS

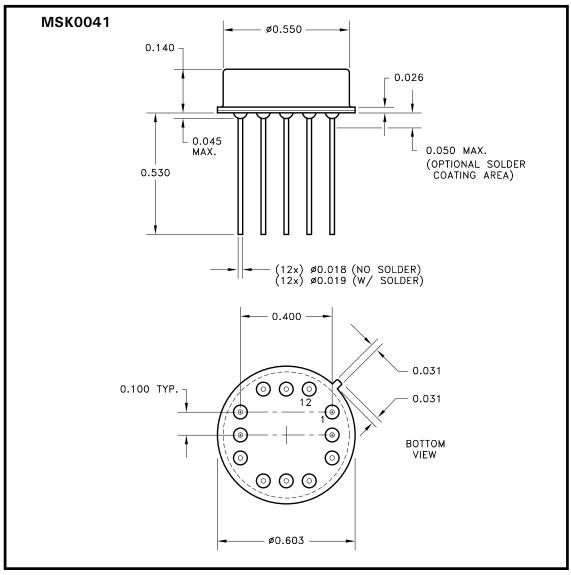

CRT DEFLECTION YOKE DRIVER



NON SYMMETRICAL SUPPLIES



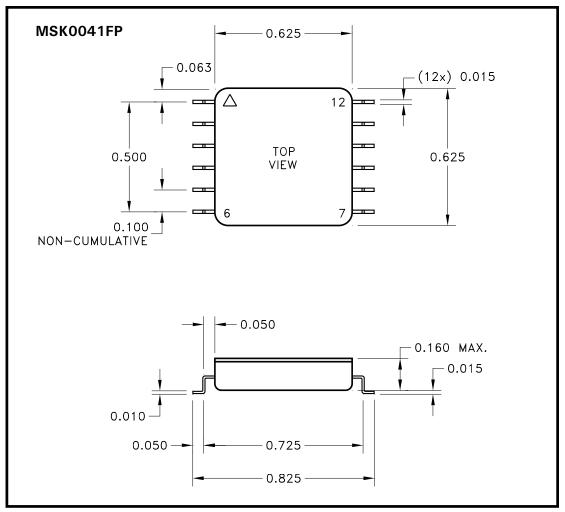
UNITY GAIN CIRCUIT WITH SHORT CIRCUIT LIMITING



DC SERVO AMPLIFIER

TYPICAL PERFORMANCE CURVES

MECHANICAL SPECIFICATIONS



NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED

ORDERING INFORMATION

Part Number	Screening Level
MSK 0041	Industrial
MSK 0041 B	MIL-PRF-38534 CLASS H
MSK 0041 E	EXTENDED RELIABILITY
5962-8508701X	DSCC - SMD

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE \pm 0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK 0041FP	Industrial
MSK 0041FP H	MIL-PRF-38534 CLASS H
MSK 0041FP E	EXTENDED RELIABILITY
TBD	DSCC - SMD

DEVICE IS ALSO AVAILABLE WITHOUT LEAD FORMING.

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 Fax (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet