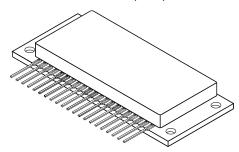


THREE PHASE BRIDGE MOSFET POWER MODULE 3015

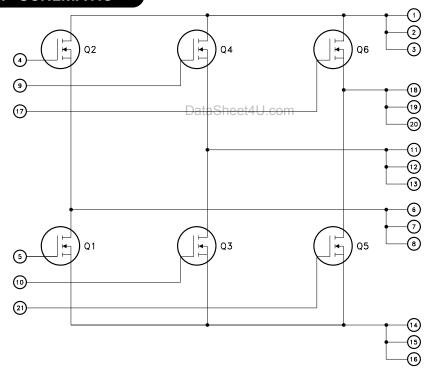
M.S.KENNEDY CORP.


4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

DataShe

FEATURES:


- All N-Channel Mosfets
- · Isolated Package for Direct Heat Sinking, Excellent Thermal Conductivity
- · Avalanche Rated Devices
- · Interfaces with Most Brushless Motor Drive IC's
- 100 Volt, 23 Amp Full Three Phase Bridge at 25°C

DESCRIPTION:

The MSK 3015 is an all N-Channel three phase power MOSFET Bridge Circuit. Packaged in a space efficient isolated ceramic tab power SIP that allows for direct heat sinking, the MSK 3015 can be interfaced with a wide array of brushless motor drive IC's. The MSK 3015 uses M.S Kennedy's proven power hybrid technology to produce a cost effective high performance circuit for use in today's sophisticated servo motor and disk drive systems.

EQUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- Three Phase Brushless DC Motor Servo Control
- Disk Drive Spindle Control
- · Fin Actuator Control
- · Az-El Antenna Control

PIN-OUT INFORMATION

1 Drain Q2, Q4, Q6
2 Drain Q2, Q4, Q6
3 Drain Q2, Q4, Q6
12 Drain Q3, Source Q4
13 Drain Q3, Source Q4
14 Source Q1, Q3, Q5

4 Gate Q2 15 Source Q1, Q3, Q5

5 Gate Q1
 6 Drain Q1, Source Q2
 16 Source Q1, Q3, Q5
 17 Gate Q6

7 Drain Q1, Source Q2 18 Drain Q5, Source Q6 8 Drain Q1, Source Q2 19 Drain Q5, Source Q6

9 Gate Q4 20 Drain Q5, Source Q0

21 Gate Q5

alaSneel4U.com

11 Drain Q3, Source Q4

10 Gate Q3

Rev. - 8/01

ABSOLUTE MAXIMUM RATINGS

Vdss Vdgdr	Drain to Source Voltage 100V MAX Drain to Gate Voltage	Single Pulse Avalanche Energy 830 mJ TJ Junction Temperature +150°C MAX
	$(RGS = 1M\Omega)$ 100V MAX	Tst Storage Temperature55°C to +150°C
Vgs	Gate to Source Voltage	Tc Case Operating Temperature Range -55°C to +125°C
	(Continuous) ± 20V MAX	TLD Lead Temperature Range
ID	Continuous Current 23A MAX	(10 Seconds)
IDM	Pulsed Current 41A MAX	
RTH-JC	Thermal Resistance	
	(Junction to Case)@25°C 1.2°C/W	
RTH-JC	Thermal Resistance	
	(Junction to Case)@125°C 2.0°C/W	

ELECTRICAL SPECIFICATIONS

	Parameter	Test Conditions ④		MSK3015			
			Min.	Typ.	Max.	Units	
-	Drain-Source Breakdown Voltage	Vgs=0 ID=0.25mA	100	-	-	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Drain-Source Leakage Current	VDS = 100V VGS = 0V	-	-	250	μΑ	
	Gate-Source Leakage Current	$V_{GS} = \pm 20V \ V_{DS} = 0$	-	-	±100	nA	
1	Gate-Source Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250\mu A$	2.0	-	4.0	V	
İ	Drain-Source On Resistance ②	VGS = 10V ID = 23A	-	-	0.09	Ω	
i i	Drain-Source On Resistance ③	Vgs = 10V ID = 23A	-	-	0.06	Ω	
	Forward Transconductance ①	Vps = 25V lp = 23A	13	-	-	S	
	Total Gate Charge ①	ID = 23A	-	-	140	nC	
	Gate-Source Charge ①	V _{DS} = 80V	-	-	29	nC	
et4U.cor	Gate-Drain Charge ①	Vgs = 10V	-	-	68	nC	Lobor
5140.001	Turn-On Delay Time ①	V _{DD} = 50V	-	16	-	nS	ataShe
	Rise Time ①	DataSAeet4U.com	-	120	-	nS	
	Turn-Off Delay Time ①	$R_G = 6.2\Omega$	-	60	-	nS	1
	Fall Time ①	$R_D = 1.2\Omega$	-	81	-	nS	1
	Input Capacitance ①	V _G S = 0V	-	2800	-	pF	1
	Output Capacitance ①	V _{DS} = 25V	-	1100	-	pF	1
	Reverse Transfer Capacitance ①	f=1MHz	-	280	-	pF	7
	Body Diode						1
	Forward On Voltage ①	Is = 23 A VGS = 0V	-	2.5	-	V	1
	Reverse Recovery Time ①	$Is = 23 \text{ A } di/dt = 100 \text{A}/\mu\text{S}$	-	220	330	nS]
	Reverse Recovery Charge ①	7	-	1.9	2.9	μC	

NOTES:

DataSheet4U.com

D a t a4U. c o

This parameter is guaranteed by design but need not be tested. Typical parameters are representative of actual device performance but are for reference only.
 Resistance as seen at package pins.
 Resistance for die only; use for thermal calculations.
 TA = 25°C unless otherwise specified.

www.DataSheet4U.com

Rev. - 8/01 DataSheet4U.com

2

APPLICATION NOTES

BRIDGE DRIVE CONSIDERATIONS

It is important that the logic used to turn ON and OFF the various transistors allow sufficient "dead time" between a high side transistor and its low side transistor to make sure that at no time are they both ON. When they are, this is called "shoot-through", and it places a momentary short across the power supply. This overly stresses the transistors and causes excessive noise as well. See Figure 1.

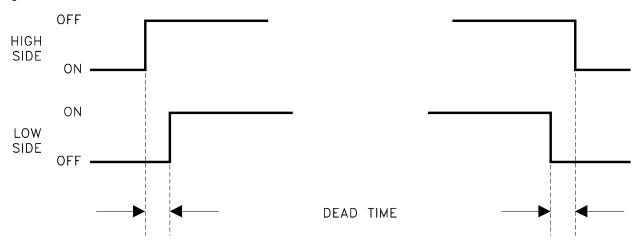


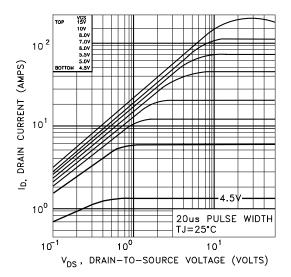
Figure 1

This deadtime should allow for the turn on and turn off time of the transistors, especially when slowing them down with gate resistors. This situation will be present when switching motor direction, or when sophisticated timing schemes are used for servo systems such as locked antiphase PWM'ing for high bandwidth operation.

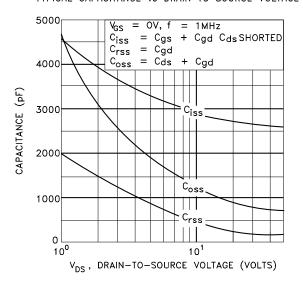
et4U.com

DataShe

DataSheet4U.com

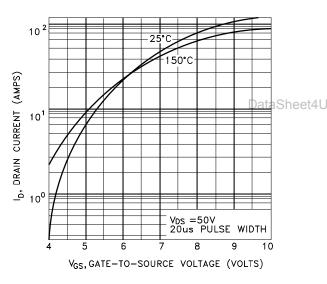

DataSheet4U.com www.DataSheet4U.com

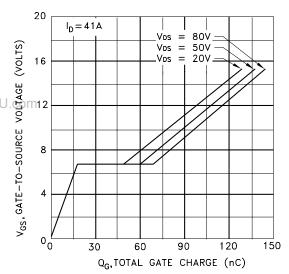
3

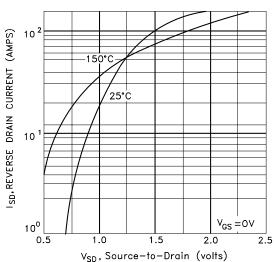

DataSheet4U.com

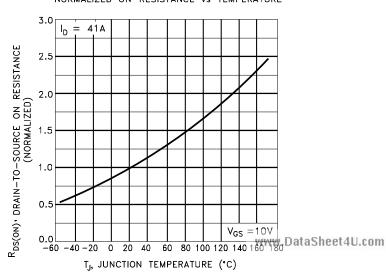
TYPICAL PERFORMANCE CURVES

TYPICAL OUTPUT CHARACTERISTICS $T_c = 25^{\circ}C$




TYPICAL CAPACITANCE vs DRAIN TO SOURCE VOLTAGE


TYPICAL TRANSFER CHARACTERISTICS

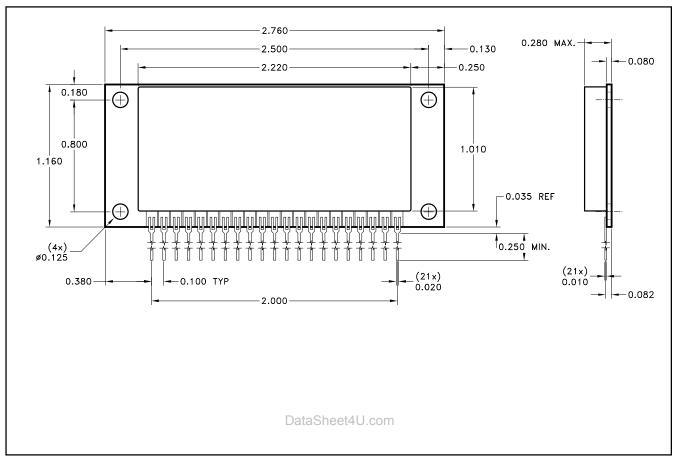


TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE

NORMALIZED ON-RESISTANCE vs TEMPERATURE

DataSheet4U.com

et4U.com


Rev. - 8/01

DataShe

DataSheet4U.com

4

MECHANICAL SPECIFICATIONS

ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED.

ORDERING INFORMATION

Part Number	Screening Level	
MSK 3015	Industrial	

M.S. Kennedy Corp.
4707 Dey Road, Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com

www.DataSheet4U.com

Rev. - 8/01

et4U.com