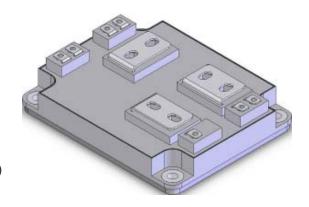
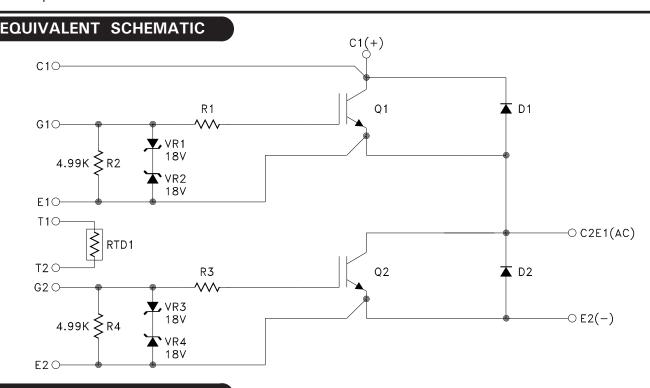


600V/800A HALF BRIDGE P<u>EM</u>


4802

4707 Dev Road Liverpool, N.Y. 13088

(315) 701-6751


FEATURES:

- · Half Bridge Configuration
- · 600V Rated Voltage
- 800A Continuous Output Current
- Internal Zener Clamps on Gates; Internal RTD
- Proprietary Encapsulation Provides Near Hermetic Performance
- HI-REL Screening Available (Modified 38534)
- · Light Weight Domed ALSIC Baseplate
- · Robust Mechanical Design for Hi-Rel Applications
- · Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling (-55°C to +125°C)
- · High Side Collector Sense Pin for De-Sat Detection

DESCRIPTION:

The MSK 4802 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The half bridge configuration and 600 volt/800 amp rating make it ideal for use in high current motor drive and inverter applications. The Aluminum Silicon Carbide (AlSiC) baseplate offers superior flatness and light weight; far better than the copper or copper alloys found in most high power plastic modules. The high thermal conductivity materials used to construct the MSK 4802 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES™ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allowing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM's are also available with industry standard silicone gel coatings for a lower cost option.

TYPICAL APPLICATIONS

- Motor Drives
- Inverters

ABSOLUTE MAXIMUM RATING

VCE	Collector to Emitter Voltage	600V	Tst	Storage Temperature Range55 °C to +125	°C
VGE	Gate to Emitter Voltage	± 20V	TJ	Junction Temperature	٥С
Iout	Current (Continuous)	800A	Tc	Case Operating Temperature Range	
IOUTP	Current Pulsed (1mS)	000A		MSK 4802H55°C to +125°	٥С
VCASE	Case Isolation Voltage	500 V		MSK 480240°C to +85°	٥С

ELECTRICAL SPECIFICATIONS

Parameter ⑦		Test Conditions	Group A	М	MSK 4802 H			MSK 4802		
			Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
R(RTD) ②		VCE=0V, VGE=0V, IC=0A	1	Nom -4	-	Nom +4	Nom -6	-	Nom +6	Ω
N(KID)			2	Nom -7	-	Nom +7	-	-	-	Ω
	or-Emitter Saturation Voltage	Ic = 800A, VGE = 15V	1	-	2.3	2.6	-	2.3	2.8	V
Collector-Emitter S			2	-	2.5	2.8	-	-	-	V
			3	-	3.2	3.8	-	-		V
Callagray Emitter L	nakana Currant	VCE = 600V, VGE = 0V	1	-	0.1	1	-	0.1	1	mΑ
Collector-Emitter Le	tor-Emitter Leakage Current		2	-	2.0	5	-	-	-	mΑ
	l Voltage	IC = 100mA, VCE = VGE	1	3.5	4.1	7.5	3.3	4.1	7.8	V
Gate Threshold Vol			2	3.0	3.5	7.5	-	-	-	V
			3	4.0	4.5	8.5	-	-	-	V
	Forward Voltage	IC = 800A	1	-	1.6	2.5	-	1.6	2 .7	V
Diode Forward Volt			2	-	1.4	2.1	-	-	-	V
			3	-	1.8	2.5	-	-	-	V
Total Gate Charge	1	V = 300V, Ic = 800A	4	-	4.0	6.5	-	4.0	6.5	uС
	$V = 300V$, IC = 800A, RG = 5Ω , VGE = $-7/+15V$		4	-	21	-	-	21	-	mJ
5 () (nn) (1) —	$-00A$, $RG = 5\Omega$, $VGE = -7/ + 15V$	4	-	11	20	-	11	20	mJ
E(on) ()		$800A, RG = 5\Omega, VGE = -7/ + 15V$	5	-	TBD	-	-	-	-	mJ
	$V = 300V$, $IC = 400A$, $RG = 5\Omega$, $VGE = -7/ + 15V$		5	-	TBD	-	-	-	-	mJ
	$V = 300V$, $IC = 800A$, $RG = 10\Omega$, $VGE = -7/ + 15V$		4	-	120	-	-	120	-	mJ
E/. (1) (1)	nff) (1) —————	$OOA, RG = 10\Omega, VGE = -7/ + 15V$	4	-	60	90	-	60	90	mJ
E(OTT) ()		$00A, RG = 10\Omega, VGE = -7/ + 15V$	5	-	TBD	_	-	_	-	mJ
	$V = 300V$, IC = 400A, RG = 10Ω , VGE = $-7/+15V$		5	-	TBD	-	-	-	-	mJ
		IE = 800, $di/dt = 2500A/uS$	4	-	120	-	-	120	-	nS
Diale De con Dec	- 	IE = 400, $di/dt = 2500A/uS$	4	-	110	-	-	110	-	nS
Diode Reverse Rec	overy time (I) =	IE = 800, $di/dt = 2500$ A/uS	5	-	TBD	-	-	-	-	n\$
		IE = 400, $di/dt = 2500A/uS$	5	-	TBD	-	-	-	-	nS
Diode Reverse Recovery Energery (1)		4	-	1.5	-	-	1.5	-	mJ	
		IE = 400, $di/dt = 2500A/uS$	4	-	1.0	5	-	1.0	5	mJ
		IE = 800, $di/dt = 2500A/uS$	5	-	TBD	-	-	-	-	mJ
		IE = 400, $di/dt = 2500$ A/uS	5	-	TBD	-	-	-	-	mJ
Thermal Resistance ①		IGBT @ TJ = 125°C	-	-	0.030	0.042	-	0.030	0.042	°C/W
		DIODE @ TJ=125°C	-	-	0.032	0.045	-	0.032	0.045	°C/W

NOTES:

- (1) Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
 (2) R(RTD) nominal is case temperature dependent. R(RTD) nominal equals 1000Ω + (3.85* TCASE °C).
 (3) Industrial grade devices shall be tested to subgroup 1 unless otherwise specified.
 (4) HI-REL grade devices ("H" suffix) shall be 100% tested to subgroups 1, 2 and sample tested to subgroup 3.
 (5) Subgroup 4 testing available upon request.
 (6) Subgroup 1, 4 TA = +25°C

- - 2, 5 TA = +125 °C
 - 3, $TA = -55 \,^{\circ}C$
- Unless otherwise specified all specifications apply to both the upper and lower sections of the half bridge.
- VGE = 15V unless otherwise specified.
 Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle

THERMAL CALCULATIONS

Power dissipation and maximum allowable temperature rise involve many variables working together. Collector current, PWM duty cycle and switching frequency all factor into power dissipation. DC losses or "ON-TIME" losses are simply VCE(SAT) x Collector Current x PWM duty cycle. For the MSK 4802, VCE(SAT) = 2.6V max., and at 800 amps and a PWM duty cycle of 30%, DC losses equal 624 watts. Switching losses vary proportionally with switching frequency. The MSK 4802 typical switching losses at VCE = 300V and ICE = 800A are about 141mJ, which is simply the sum of the turn-on switching loss and the turn-off switching loss. Multiplying the switching frequency times the switching losses will result in a power dissipation number for switching. The MSK 4802, at 5KHz, will exhibit switching power dissipation of 705 watts. The total losses are the sum of DC losses plus switching losses, or in this case, 1329 watts total.

1329 watts x 0.042°C/W thermal resistance equals 55.8 degrees of temperature rise between the case and the junction. Subtracting 55.8°C from the maximum junction temperature of 150°C equals 94.2°C maximum case temperature for this example.

VCE(SAT) x IC x PWM duty cycle = 2.6V x 800 amps x 30% = 624 watts DC losses

Turn-on switching loss + Turn-off switching loss = Total switching losses = 21 + 120 = 141mJ

Total switching loss x PWM frequency = Total switching power dissipation = 141mJ x 5KHz = 705 watts

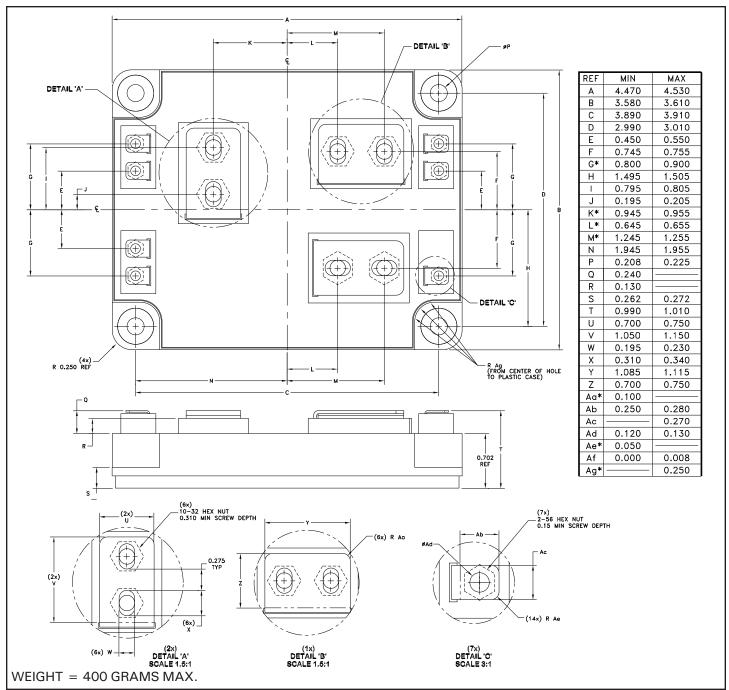
Total power dissipation = DC losses + switching losses = 624 + 705 = 1329 watts

Junction temperature rise above case = Total power dissipation x thermal resistance

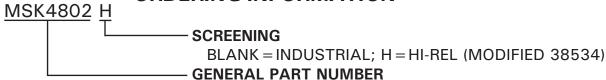
1329 watts x 0.042 °C/W = 55.8 °C temperature rise above case

Maximum junction temperature - junction temperature rise = maximum baseplate temperature

 $150^{\circ}\text{C} - 55.8^{\circ}\text{C} = 94.2^{\circ}\text{C}$


TYPICAL PERFORMANCE CURVES

TBD


SCREENING CHART

OPERATION	INDUSTRIAL	H SUFFIX
QUALIFICATION (MODIFIED)	NO	YES
ELEMENT EVALUATION	NO	YES
CLEAN ROOM PROCESSING	YES	YES
NON DESTRUCT BOND PULL SAMPLE	YES	YES
CERTIFIED OPERATORS	NO	YES
MIL LINE PROCESSING	YES	YES
MAX REWORK SPECIFIED	NO	YES
ENCAPSULANT	GEL COAT	SEES TM
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H
TEMP CYCLE (-55°C TO +125°C)	NO	YES
BURN-IN	NO	YES - 160 HOURS
ELECTRICAL TESTING	YES - 25°C	YES - FULL TEMP
EXTERNAL VISUAL	YES - SAMPLE	YES
XRAY	NO	NO
PIN FINISH	NI	NI

NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

ORDERING INFORMATION

THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752

www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.